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We derive constraints on the tensor to scalar ratio and on the background charge of the warped
throat for DBI inflation driven by D5- and D7-branes wrapped over cycles of the throat. It is shown
that the background charge well beyond the known maximal value is required in most cases for
DBI inflation to generate cosmological observables compatible with the WMAP3 data. Most of the
results derived in this paper are insensitive to the details of the inflaton potential, and could be
applied to generic warped throats.

I. INTRODUCTION

Numerous attempts have been made to explain inflation from string theory. Among them, brane inflation in a flux
compactified warped throat [1] is one of the most promising ideas. However, it was soon realized that this model had
a serious problem in realizing slow-roll without the help of fine tuning. Ever since, many interesting ideas have been
put forward to overcome this so-called η problem ([2, 3, 4], etc.).
On the other hand, an alternative approach to the η problem which gives up slow-roll was suggested in the idea

of DBI inflation [5, 6]. In this model, a relativistic motion of a D3-brane is considered. Nevertheless, the potential
energy dominates over the kinetic energy since the latter is suppressed due to the warping of the throat, which leads
to an accelerated expansion of the universe.
Besides being a remedy for the η problem, DBI inflation has a further exciting property which gathered attention.

It has a possibility of producing signals in the temperature fluctuation in the cosmic microwave background radiation
within the observable range of future detectors. Especially, it is expected to produce large non-Gaussianity. These
features can be attributed to DBI inflation being a kind of k-inflation with general speed of sound [7, 8].
However, recently it has been pointed out that DBI inflation driven by a mobile D3-brane might contradict the

current WMAP3 data [9, 10, 11, 12]. One of the essential points is that one can derive an universal lower bound on
the tensor to scalar ratio r under the assumption that the non-Gaussianity is large. Another, more microscopic, point
is that r is related to the change of the inflaton ∆φ by the so-called Lyth bound [13] (see (30) below). Therefore,
the lower bound of r requires large ∆φ over observable scales. However, since the inflaton field represents the radial
position of the brane, ∆φ is restricted by the size of the extra dimensions. We shall review more details of the
argument in Section IV but the essence is, as mentioned above, the universal lower bound of r implied by the large
non-Gaussianity and the relation between ∆φ and the size of the extra dimensions.
In this paper we consider a simple extension of the DBI inflation model in which the relation between ∆φ and the

size of the extra dimensions is modified. We shall consider higher dimensional D-branes wrapped over cycles of the
throat, instead of a simple D3-brane. The volume of the cycles appears as an overall factor of the kinetic term of the
inflaton. Thus, properly normalizing the definition of the inflaton field, the relation between ∆φ and the size of the
extra dimensions should be modified. The larger the volume of the cycles, the larger ∆φ for the same size of extra
dimensions. Therefore, it is rather natural to expect that higher dimensional, wrapped D-branes is one of the simplest
scenarios to bypass the above mentioned problem of DBI inflation.
For this reason, in this paper, we focus on a D5- or D7-brane moving with a relativistic speed towards the tip

of a warped throat, hoping to find a model which generates large non-Gaussianity and is consistent with WMAP3
data. Unfortunately, contrary to the hope, in many cases we find difficulties. We find that DBI inflation with a D5-
brane requires a large Euler number of a Calabi–Yau four-fold, exceeding the known maximal value χ=1820448 [14].
However, we also show that a D7-brane may be able to excite DBI inflation provided that the observed CMB scale is

∗tkobayashi˙at˙utap.phys.s.u-tokyo.ac.jp
†mukoyama˙at˙phys.s.u-tokyo.ac.jp
‡kinoshita˙at˙utap.phys.s.u-tokyo.ac.jp

http://arxiv.org/abs/0708.4285v2
mailto:tkobayashi_at_utap.phys.s.u-tokyo.ac.jp
mailto:mukoyama_at_phys.s.u-tokyo.ac.jp
mailto:kinoshita_at_utap.phys.s.u-tokyo.ac.jp


2

produced when the D7-brane is in the region of the throat where the contribution of the NS-NS 2-form potential B2

to the action is substantial.
The outline of the paper is as follows: In Section II we lay out the basic setup. The expressions for the cosmological

observables in DBI inflation are reviewed in Section III. In Section IV we review the constraints on gravitational waves
derived by Lidsey and Huston [11], and then extend the discussion to higher dimensional D-branes in Section V. We
present more stringent bounds focusing on background charge in Section VI, and we conclude in Section VII. As an
example of a flux compactified warped throat, the Klebanov–Strassler solution [15, 16] is introduced in Appendix A.
The behavior of the inflaton near the tip of the throat is discussed in Appendix B. In Appendix C, we discuss the
number of e-foldings produced in the region where B2 can be neglected. Also, a brief discussion on det(Gkl −Bkl) is
given in Appendix D.

II. THE BASIC SETUP

We assume a warped throat background with its moduli stabilized based on flux compactification of type IIB string
theory. The generic 10-dimensional metric takes the following form:

ds2 = h2(ρ) ηµν dx
µdxν + h−2(ρ)

(

dρ2 + ρ2 g(5)mn dx
mdxn

)

, (1)

where xµ (µ = 0, 1, 2, 3) are the external 4-dimensional coordinates, ρ is the radial coordinate which decreases as it
approaches the tip of the throat, and xm (m = 5, 6, 7, 8, 9) are the internal 5-dimensional angular coordinates.
In this paper, we investigate conditions that can be imposed upon DBI inflation caused by a D-brane moving with

relativistic speed towards the tip of a warped throat. Since type IIB string theory contains stable Dp-branes with p
odd, we focus on D3-, D5-, and D7-branes and collectively refer to them as D(3+2n)-branes (n = 0, 1, 2). We assume
that a D(3+2n)-brane stretches out along the external space and also wraps a 2n-cycle in the angular directions of
the internal space.
DBI inflation is motivated by the Dirac–Born–Infeld (DBI) action, which takes the following form for a D(3+2n)-

brane,

S = −T3+2n

∫

d4+2nξ e−Φ
√

− det(GAB −BAB), (2)

where GAB is the induced metric on the D-brane world-volume, BAB is the pull-back of the NS-NS 2-form flux B2,
Φ is the dilaton, and T3+2n = 1/(2π)3+2ngsα

′n+2 is the brane tension. We assume that the dilaton is stabilized to a
constant value and is set to 0 hereafter.
We take the first four brane coordinates ξα to coincide with xα (α = 0, · · · , 3) and that the angular position of

the brane in the internal space are functions of the remaining 2n brane coordinates xm = xm(ξl). Then, by further
assuming that the D-brane radial position ρ depends only on ξα, the induced metric is

GAB dξ
A dξB = (h2ηαβ + h−2∂αρ ∂βρ)dξ

α dξβ +Gkl dξ
k dξl, (3)

where

Gkl = h−2ρ2g(5)mn

∂xm

∂ξk
∂xn

∂ξl
. (4)

ForB2, we assume it to have a logarithmic radial dependence and have components only along the angular directions.
This is a well motivated property for B2 in order for the dual description to reproduce a logarithmic flow of couplings
found in field theory [17, 18]. However, we postpone the explicit form of B2 until Section VI and here we merely state
that the legs of B2 is along the angular directions of the internal space:

B2 =
1

2
bmndx

m ∧ dxn, (5)

where bmn is antisymmetric in its indices.
Then the DBI action for a D(3+2n)-brane takes the following form,

S = −T3+2n

∫

d4ξ h4
√

1 + h−4ηαβ∂αρ∂βρ

∫

d2nξ
√

det(Gkl −Bkl), (6)
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where

Bkl = bmn
∂xm

∂ξk
∂xn

∂ξl
. (7)

Assuming that the physical energy scale associated with the 4-dimensional universe is much lower than the energy

scale of moduli stabilization, we promote the 4-dimensional flat metric ηµνdx
µdxν to a curved metric g

(4)
µν dxµdxν :

S = −T3+2n

∫

d4ξ
√

−g(4)h4
√

1 + h−4g(4)αβ∂αρ∂βρ

∫

d2nξ
√

det(Gkl −Bkl). (8)

Introducing a new variable and a function

dφ ≡ T
1/2
3+2n

{∫

d2nξ
√

det(Gkl −Bkl)

}1/2

dρ, (9)

T (φ) ≡ T3+2n h
4

∫

d2nξ
√

det(Gkl −Bkl), (10)

the action turns into a simple form

S = −
∫

d4ξ
√

−g(4) T (φ)
√

1 + g(4)αβ∂αφ∂βφ/T (φ). (11)

It should be noted that the differences in results we derive in this paper between D3-branes and higher dimensional
wrapped D-branes originate in the normalization factor of the inflaton in (9).
Further adding a Chern–Simons term and the inflaton potential to the DBI action coupled to gravity, the full

inflaton action takes the familiar form

S =

∫

d4ξ
√

−g(4)
[

M2
p

2
R−

{

T (φ)
√

1 + g(4)αβ∂αφ∂βφ/T (φ)− T (φ) + V (φ)

}

]

, (12)

where Mp is the reduced Planck mass.

Hereafter, we assume that the metric g
(4)
αβ is the physical 4-dimensional metric which directly couples to matter

fields on the Standard Model brane. In general, from the viewpoint of the 4-dimensional effective field theory there
is no symmetry argument to prohibit the possibility that the Standard Model fields may be coupled to a conformally

transformed metric Ω2g
(4)
αβ rather than g

(4)
αβ itself, where Ω is a function of the inflaton. However, from the higher-

dimensional point of view, if the Standard Model brane is geometrically separated from branes responsible for inflation
then such a coupling should be highly suppressed. This is the situation expected in multi-throat scenarios, where
the Standard Model brane is in a different throat from the inflationary throat. (Further motivations for considering
multi-throat scenarios are reviewed in [19, 20, 21].) To be more precise, the induced metric on the Standard Model

brane is g
(4)
αβ only up to a conformal factor. However, this conformal factor is essentially independent of the inflaton

for the reason explained above. Thus, this conformal factor can be considered as a constant at low energy as far
as all moduli, including volume and shape of extra dimensions and the position of the Standard Model brane, are
properly stabilized. By rescaling the unit of reference, one can set the constant conformal factor to 1. (It should be
noted that this rescaling does not affect the values of the dimensionless cosmological observables, such as the ones we
introduce in the next section. However, it does change the local string scale on the Standard Model brane so that a
large hierarchy may be generated a la Randall and Sundrum [22].) For these reasons, throughout the present paper

we suppose that matter fields on the Standard Model brane are directly coupled to the metric g
(4)
αβ .

Recently there have been attempts to study the inflaton potential in detail for D3-branes [23, 24, 25]. Nevertheless,
with our present understanding of string theory, it is fair to say that the form of the potential V (φ) is not well under
theoretical control, let alone the potential for wrapped D-branes. Therefore, in this paper we seek constraints on DBI
inflation without specifying the form of the potential. In other words, the results of this paper depend only on the
kinetic term of the inflaton action, and are insensitive to the Chern–Simons term and the potential term. We leave
the potential arbitrary and focus only on the DBI part of the action.

III. COSMOLOGICAL OBSERVABLES

Cosmological observables such as the spectrum of density and tensor perturbations generated by the action (12) have
been studied in [6, 8, 26, 27]. We now briefly review the expressions of cosmological observables for DBI inflation. Due
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to the nontrivial form of the kinetic term in the action (12), DBI inflation can be interpreted as a kind of k-inflation
with a general speed of sound [7, 8].

By taking the functional derivative of the action with respect to the 4-dimensional metric g
(4)
αβ , we obtain the

following expression for the stress-energy tensor

Tαβ = γ∂αφ∂βφ− g
(4)
αβ

[

T (φ)(γ−1 − 1) + V (φ)
]

, (13)

where γ is an analog of a Lorentz factor in special relativity

γ ≡ 1
√

1 + g(4)αβ∂αφ∂βφ/T (φ)
. (14)

For the FRW background with a homogeneous φ, the pressure p and the energy density ρ take the following form

p = T (φ)(1− γ−1)− V (φ), ρ = T (φ)(γ − 1) + V (φ), (15)

and γ is

γ =
1

√

1− φ̇2/T (φ)
. (16)

The speed of sound relevant to inhomogeneous perturbations is given by

cs =
1

γ
. (17)

We define the following parameters (often called DBI parameters) in analogy with the usual slow-roll parameters

ǫ̃ ≡ 2M2
p

γ

(

H ′

H

)2

, (18)

η̃ ≡ 2M2
pH

′′

γH
, (19)

s̃ ≡ 2M2
pγ

′H ′

γ2H
, (20)

where H is the Hubble expansion rate. We have adopted the Hamilton-Jacobi formalism and a prime denotes
derivatives with respect to the scalar field φ. The absolute values of these parameters are assumed to be less than
one during inflation.
To the lowest order in these parameters, the cosmological observables are

Ps =
1

8π2M2
p

H2

csǫ̃
, (21)

Pt =
2

π2

H2

M2
p

, (22)

ns − 1 = 2η̃ − 4ǫ̃− 2s̃, (23)

nt = −2ǫ̃, (24)

r = 16csǫ̃, (25)

fNL =
1

3

(

1

c2s
− 1

)

, (26)

where Ps: scalar perturbation, Pt: tensor perturbation, ns: scalar spectral index, nt: tensor spectral index, r:
tensor to scalar ratio, fNL: non-Gaussianity parameter. Note that the right hand sides should be estimated at the
moment of sound horizon crossing kcs = aH (although the tensor perturbations freeze when k = aH , the difference
is unimportant to lowest order in the DBI parameters).
Since DBI inflation can be described as a type of brane inflation with a large Lorentz factor γ, it is clear from

(17) and (26) that DBI inflation generates large non-Gaussianity. In this paper, we investigate various consistency
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relations under the assumption that |fNL| is large. For a detailed discussion on the required largeness of |fNL|, see
subsection IVA.
Throughout this paper, the following relation among the observables is frequently used

π2

16
r2Ps

(

1 +
1

3fNL

)

=
T (φ)

M4
p

. (27)

Note that φ in the right hand side is estimated at the moment the fluctuation is being produced. Other useful relations
are

r =
8

M2
p

(

dφ

dN

)2

(28)

where N is the number of e-folds, and

1− ns = 4ǫ̃+
2s̃

1− γ2
− 2M2

p

γ

T ′H ′

TH
. (29)

In particular, the following corollary of (28) is called the Lyth bound [13]:

(

∆φ

Mp

)2

≃ r

8
(∆N )2. (30)

IV. REVIEW OF CONSTRAINTS ON DBI INFLATION DRIVEN BY D3-BRANES

Constraints on gravitational waves for DBI inflation (fNL ≫ 1) with a D3-brane have been derived by Lidsey and
Huston (LH) [11], following the work of Baumann and McAllister (BM) [9]. We quickly review the discussion in [11]
in this section. Since D3-branes are the focus of this section, (9) and (10) are simply

dφ = T
1/2
3 dρ, (31)

T = T3h
4. (32)

A. Lower Bound of r

The following relation can be obtained from (29),

1− ns =
r

4

√

1 + 3fNL − 2s̃

3fNL
+

Ṫ

TH
. (33)

Assuming the following inequality, a lower bound for the tensor to scalar ratio r can be derived,

Ṫ ≤ 0. (34)

From (32), this is equivalent to ḣ ≤ 0. In other words, this states that the brane is moving towards the tip of the
throat.
The identity (33) combined with the inequality (34) gives an inequality relation,

r

4

√

1 + 3fNL − 2s̃

3fNL
≥ 1− ns. (35)

We focus on DBI inflation models generating large non-Gaussianity |fNL| and a red spectral index ns < 1. (The
tilt of the spectrum is preferred to be red by the WMAP3 data. However, if there is significant negative running in
the spectral index, a blue tilted spectrum is also allowed.)
When r is negligible, then the WMAP3 result 1 − ns > 0.037 combined with (35) requires |s̃| to be large (|s̃| >

0.05|fNL|) and this violates the derivation of an almost scale invariant power spectrum (23).1 When r is non-negligible,

1 Furthermore, since higher order terms in DBI parameters are omitted in deriving the results in Section III, a large |s̃| will lead to
important corrections to other cosmological observables as well. Besides, omission of higher derivative terms of φ in the DBI action may
be inconsistent when |s̃| is large.
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a lower bound on r can be obtained from (35),

r &
4(1− ns)√
1 + 3fNL

>
1− ns

8
≃ 0.002. (36)

The second inequality comes from the WMAP3 limit |fNL| < 300 [28, 29]. The far right hand side is obtained by
substituting the WMAP3 best-fit value 1− ns ≃ 0.013.
We should remark that the second term of the left hand side of (35) was ignored in deriving the first inequality of

(36). This procedure is valid under a small s̃ and a large fNL. For example, when |s̃| . 0.1, |fNL| & 20 is sufficient.

B. Upper Bound of r

Since the 4-dimensional reduced Planck mass Mp ≡ (8πG)−1/2 is given by

M2
p =

2

(2π)7g2sα
′4

∫

dρVol(X5)
ρ5

h4(ρ)
, (37)

it is convenient to define the warped volume of extra dimensions as

V6 ≡
∫

dρVol(X5)
ρ5

h4(ρ)
. (38)

Here, Vol(X5) is the dimensionless volume of the unit-radius 5-dimensional base space (X5) of the throat. Generically,
we expect Vol(X5) to be O(1)×π3 (e.g. Vol(S5) = π3 for a 5-sphere, Vol(T 1,1) = 16

27π
3 for a Klebanov–Strassler (KS)

throat which is discussed in Appendix A).
The two inequalities used to derive the upper bound of r are the following:

ρ∗ > ∆ρ, (39)

V6 > ∆V6, (40)

where the subscript “∗” denotes the quantity to be estimated at the moment the CMB-scale fluctuation is produced,
∆ρ denotes the change of the D3-brane radial position when the observable scales are generated, and ∆V6 is a fraction
of the warped volume of the throat corresponding to the radial variation ∆ρ. The validity of the inequalities (39) and
(40) is clear for DBI inflation driven by a D-brane moving toward the tip of the throat.
Since ∆ρ corresponds to no more than ∆N ≃ 4 e-foldings of inflationary expansion (which is equivalent to the

range 2 ≤ l < 100), ∆ρ is expected to be a narrow range in the radial dimension. Hence we adopt the following
approximate expression for ∆V6:

∆V6 ≃ Vol(X5)
ρ5∗
h4∗

∆ρ, (41)

where h∗ ≡ h(φ∗).
From (40) and (41), we obtain

1

M2
p

=
(2π)7g2sα

′4

2V6
<

(2π)7g2sα
′4

2∆V6
≃ (2π)7g2sα

′4h4∗
2Vol(X5)ρ5∗∆ρ

. (42)

This can be converted further with the use of (39),

1

M2
p

<
(2π)7g2sα

′4h4∗
2Vol(X5)(∆ρ)6

. (43)

From the Lyth bound (30), together with (27), (31), (32), and (43), an upper bound for r can be obtained

r <
25π3

(∆N )6Vol(X5)
Ps

(

1 +
1

3fNL

)

. (44)

Taking Ps = 2.5×10−9 (WMAP3 [28] normalization), Vol(X5) = π3, ∆N = 1 (the most optimistic estimate for the
minimum number of e-foldings that can be probed by observation), and ignoring the f−1

NL term since we have assumed
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|fNL| to be large, the upper bound becomes r < 10−7. This obviously contradicts with the lower bound derived in
the previous subsection. (Note that this upper bound is valid even if the D3-brane is moving away from the tip of the
throat, as long as the inequalities (39) and (40) hold.) Therefore, DBI inflation driven by a D3-brane in relativistic
motion (leading to a large |fNL|) always contradicts current observations. In other words, the above results predict
low velocity of the D-brane and small |fNL| for inflation driven by a D3-brane in a warped throat, which makes the
model indistinguishable from ordinary slow-roll inflation models.

C. Note on the Difference Between BM and LH

In this section, we have briefly reviewed the constraints on gravitational waves investigated by LH. Before ending
this section, we should point out some of the main differences between the approaches taken by BM [9] and LH [11].
The first is the derivation of the universal lower bound on r by LH, which is reviewed in subsection IVA. LH

combined this bound with other constraints derived by BM.
Another difference is that BM considers the total variation of the D3-brane radial position throughout inflation,

which leads to the introduction of the effective number of e-foldings

Neff ≡
∫ Nend

0

dN
(

r

r∗

)1/2

. (45)

Since it is difficult to estimate the values of cosmological observables on scales we haven’t observed, some assumptions
need to be imposed in order to have a quantitative discussion on Neff . In contrast, LH only make use of the variation
of the D3-brane position ∆ρ and number of e-foldings ∆N while the observable scales are generated, as can be seen
from (39) and (40). Hence the approach taken by LH provides more conservative bounds which can be applied to
general cases.
Furthermore, the constraints by LH apply to the case in which D-branes are moving relativistically, since their

derivation rely on the assumption that |fNL| is large. On the other hand, the bounds by BM also apply in the slow
roll limit.
It should also be noted that the results of LH are insensitive to the details of the throat geometry and the inflaton

potential. The results are directly related to cosmological observables in order to derive constraints. Meanwhile, BM
consider an explicit case in which the geometry of the throat is AdS5 × X5 and the inflaton potential is quadratic
V (φ) = 1

2m
2φ2. This procedure enables detailed arguments involving microscopic string theory inputs. As can be

seen in [9], rather stringent bounds on the background flux can be obtained when the inflaton potential consists only
of a quadratic term.
Throughout this paper we generalize the approach taken by LH and do not fix the inflaton potential to any form.

(For the warp factor, a throat with AdS5 ×X5 geometry is considered as an example in Section VI.)

V. EXTENSION TO D5- AND D7-BRANES

We now consider higher dimensional D-branes and extend the bounds on r derived in the previous section for a
D3-brane to the case of generic D(3+2n)-branes. However, derivation of upper bounds of r is complicated and subtle
for D5- and D7-branes. Thus, to make arguments simpler, in this paper we consider two extreme cases in which Gkl

or Bkl is dominant over the other in det(Gkl −Bkl).
In this section, we derive constraints without specifying the explicit forms of the warp factor and the overall ρ-

dependence of the B2 potential. While we derive a general lower bound of r in subsection VA, the upper bound
derived in subsection VB holds only in the region of the warped throat where the effect of B2 can be ignored. There
we find that the upper bound of r relaxes significantly, due to the change in the relation between the inflaton and the
D-brane radial position. It is shown that there is a regime of r consistent with both the lower and upper bounds.
In the next section we specify the warp factor and the B2 potential and provide a more complete and stringent

discussion on the constraints, taking into account the tadpole condition and the known maximal value of the Euler
number of a Calabi–Yau four-fold.

A. General Lower Bound of r

The derivation of the lower bound of the tensor to scalar ratio r in the previous section relies only on the inequality
(34). In this section, however, for the definition of φ and T we now have (9) and (10) instead of (31) and (32). Thus,
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in this subsection we will derive the lower bound on r by showing the inequality (34) for (9) and (10) with n = 1, 2.
We assume that the brane is moving towards the tip of the throat, i.e. ρ̇ < 0. Thus, the inequality (34) is equivalent
to

d

dρ

{∫

d2nξ
√

h8 det(Gkl −Bkl)

}

≥ 0. (46)

Let us take the angular brane coordinates to diagonalize Gkl. If the adequate gauge cannot be chosen throughout
the 2n-cycle, then we divide the wrapped cycle into patches on which proper coordinates can be chosen, and sum up.
It is evident that Gkl is a Riemannian metric and, thus, the diagonal components Gll are positive. Now, we rewrite
Gkl as

Gkl =
ρ2

h2
diag(G5, · · · ,G4+2n), (47)

where Gk (> 0) are assumed to satisfy d
dρ(ρ

2Gk) ≥ 0. (For example, this inequality is trivially satisfied if g
(5)
mn

∂xm

∂ξk
∂xn

∂ξl

are independent of ρ.) We note that throughout this paper, we focus on a throat with its warp factor obeying

dh

dρ
≥ 0. (48)

For Bkl, we assume that it can be decomposed into the following form,

Bkl = BBkl, with
dB

dρ
≥ 0. (49)

Here, B is a function of ρ, while Bkl depends only on the angular brane coordinates. (For example, the fields can take
the form of (47) and (49) in the region away from the tip in the KS solution, as can be seen from (A19) and (A22).)
For a D5-brane (n = 1), we obtain

h8 det(Gkl −Bkl) = h4ρ4G5G6 + h8B2(B56)
2. (50)

Since each term takes the form of a product of non-decreasing functions of ρ, (46) is obvious.
For the case of a D7-brane (n = 2), from the discussion in Appendix D, the following can be obtained,

h8 det(Gkl −Bkl) = ρ8G5G6G7G8 + h4ρ4B2
[

G5G6(B78)
2 + G5G7(B68)

2+

G5G8(B67)
2 + G6G7(B58)

2 + G6G8(B57)
2 + G7G8(B56)

2
]

+h8B4(B58B67 − B57B68 + B56B78)
2. (51)

Similarly, (46) is clear.
Hence the condition (46) is verified for both D5- and D7-branes, which leads to the lower bound (36).
Before closing this subsection, we should remark that near the tip of a deformed conifold, Bkl does not take the

form of (49). Nevertheless, (46) and the lower bound (36) may still hold. We show this in Appendix B through the
example of the KS solution.

B. Upper Bound of r in Gkl Dominant Region

As the D5- or D7-brane moves toward the tip of the throat, the contributions of Gkl and Bkl to det(Gkl − Bkl)
change. For the case of the KS solution, initially Bkl is dominant over Gkl, and then Gkl becomes dominant in the
region closer to the tip (for a detailed discussion, see Appendix C).
As already stated in the beginning of this section, in this subsection we seek an upper bound of r without specifying

the form of the warp factor h. This is possible if we can neglect Bkl compared with Gkl. This is equivalent to
restricting our consideration to the region of the throat where Gkl is dominant over Bkl. The other extreme case, i.e.
the Bkl dominant region, will be considered in the next section by using the explicit form of the warp factor and the
NS-NS 2-form.
Ignoring Bkl, the integral term in (9) or (10) represents the wrapped volume. Introducing

v2n ≡
∫

d2nξ

√

det

(

g
(5)
mn

∂xm

∂ξk
∂xn

∂ξl

)

, (52)
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which is the unit-radius dimensionless volume of the 2n-cycle, (9) and (10) transform to

dφ = T
1/2
3+2nv

1/2
2n

(ρ

h

)n

dρ, (53)

T (φ) = T3+2nv2nh
4

(

ρ2

h2

)n

. (54)

Now we combine two inequality relations (39) and (42) to obtain an upper bound on r. We transform (39) into the
form

(

1

ρ∗

)
2κ−3n+10

n+2

<

(

1

∆ρ

)
2κ−3n+10

n+2

. (55)

Here we have introduced an arbitrary parameter κ which satisfies 2κ−3n+10
n+2 > 0 (hence κ can be taken as any

nonnegative number). Later on, we will fix κ to an appropriate value in order to derive the most effective bounds.
The combination of κ and n in (55) is chosen so that the final inequality expression (59) will contain an equal number
of ρ∗ and 1/h∗.
Employing the inequality relation (55) on the far right hand side of (42), we obtain

1

M2
p

<
(2π)7 g2s α

′4

2Vol(X5)

h4∗

ρ
5− 2κ−3n+10

n+2
∗ ∆ρ

(

1

ρ∗

)
2κ−3n+10

n+2

<
(2π)7 g2s α

′4

2Vol(X5)

h4∗

ρ
5− 2κ−3n+10

n+2
∗ ∆ρ

(

1

∆ρ

)
2κ−3n+10

n+2

. (56)

From the Lyth Bound (30) and (53),

∆ρ ≃ ∆N Mp r
1/2

23/2 T
1/2
3+2n v

1/2
2n

(

h∗
ρ∗

)n

. (57)

From (27) and (54),

r =
4T

1/2
3+2n v

1/2
2n

π P
1/2
s (1 + 1

3fNL
)1/2

(

h∗
Mp

)2(
ρ∗
h∗

)n

. (58)

After cancelling out ∆ρ from the far right hand side of (56) with the use of (57), and then cancelling out Mp with
the help of (58), an upper bound for r with the following form can be derived:

r <
(2π)7 g2s α

′4

2Vol(X5)

(

4T
1/2
3+2n v

1/2
2n

π P
1/2
s (1 + 1

3fNL
)1/2

)

−κ+2n−4
n+2 (

8T3+2n v2n
(∆N )2

)
κ−n+6
n+2

(

ρ∗
h∗

)κ

. (59)

It can be shown that this equation also applies to the case of n = 0 (when n = κ = 0, (59) turns out to be (44)).
The above form of the upper bound containing equal numbers of ρ∗ and 1/h∗ is advantageous, as we will see in the
subsequent discussions.
In order to obtain a bound without specifying a concrete form of the warp factor h(ρ), we take κ to be 0. Again

we substitute the following values, which lead to the most optimistic upper bounds (as is explained below (44)):
Ps = 2.5× 10−9, Vol(X5) = π3, ∆N = 1, and ignoring the fNL term, we obtain the following upper bounds of r

(D5) r <
23 π g

2/3
s v

4/3
2

Vol(X5) (∆N )10/3

{

Ps

(

1 +
1

3fNL

)}1/3

≃ 1.1× 10−3 g2/3s v
4/3
2 , (60)

(D7) r <
4 gs v4

Vol(X5) (∆N )2
≃ 0.13 gs v4. (61)

We expect v2n to obey v2 ∼ 4π (which is the value for a 2-sphere) and v4 ∼ 8
3π

2 (the value for a 4-sphere). Hence,

as long as the string coupling constant gs is larger than O(10−2) for a D5- and O(10−4) for a D7-brane, the upper
bound for r is compatible with the lower bound.
One may expect to obtain more stringent bounds by assigning some number other than 0 to κ in (59). However, in

order to do so, the explicit form of the warp factor is needed. In view of this, in the following section, we focus on a
warped throat with an AdS geometry and derive more severe constraints.
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VI. MORE STRINGENT BOUNDS

In the previous section we found that the upper bounds of r for D5- and D7-branes are significantly weaker than
that for a D3-brane and are compatible with the lower bound. However, in this section we will find that a large
number of background charge is needed. In many cases this requires too large an Euler number of a Calabi–Yau
four-fold, well beyond the known maximal value.
To make our arguments concrete, in this section we assume that the throat is approximately AdS5×X5 away from

the tip. Though the throat geometry deviates from the AdS geometry as one approaches the tip for the case of a
deformed conifold, we focus on the AdS region of the warped throat and estimate various constraints. The validity
of this procedure is shown in Appendix B, where it is shown through the example of a KS throat that the observed
CMB scale is generated away from the tip in DBI inflation.
The warp factor in the AdS region is h(ρ) = ρ/R with the AdS radius

ρ

h(ρ)
= R =

(

22π4gsα
′2N

Vol(X5)

)1/4

, (62)

where N is the background number of charges [30].
The warp factor at the tip of the throat is characterized by the integers M and K associated with R-R and NS-NS

fluxes respectively, as [31]

h(0) ∼ exp

(

− 2πK

3gsM

)

. (63)

As we briefly mentioned in Section II, in many cases, the NS-NS 2-form potential B2 depends on the radial
coordinate logarithmically in the AdS region of the throat and have legs along the angular directions of the internal
space. Therefore let us consider the case of B2 taking the following form [17, 18]:

Bkl = BBkl, B = gsMα′ ln

(

ρ

ρb

)

. (64)

where M is an integer associated with R-R 3-form F3, and Bkl is independent of ρ as in (49). For example, as can
be seen in (A22), the KS solution in the large τ region indeed has Bkl of this form. We assume ρb to be roughly the
place of the boundary between the AdS region and the region near the tip where the warp factor is nearly constant.
Then ρb takes the following form:

ρb ∼ (gsMα′)1/2 exp

(

− 2πK

3gsM

)

, (65)

where K is an integer associated with the NS-NS 3-form H3. (For the value of ρb in the KS solution, see (A23).)
The product of M and K produces the net background charge N , and from the tadpole condition it is related to

the topology of a Calabi–Yau four-fold:

KM = N =
χ

24
≤ 75852, (66)

where χ is the Euler characteristic of a CY four-fold and the inequality on the right hand side comes from the known
maximal value χ = 1820448 [14].
As already stated in the previous section, derivation of the upper bounds of r for D5- and D7- branes is rather

complex because of the presence of the determinant of (Gkl −Bkl) in the action. Therefore we consider two extreme
cases in which Gkl or Bkl is dominant over the other. In the following subsections, we consider each case separately.
Moreover, in Appendix C, the number of e-foldings generated in the Gkl dominant region is roughly estimated and

we discuss the place where the CMB scale is produced.

A. Lower Bound of N in Gkl Dominant Region

In this subsection we consider the case in which Gkl is dominant over Bkl. As discussed in Appendix C, this
corresponds to the region relatively closer to the tip.
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We have already considered this region in subsection VB and obtained the upper bound of r (59). With the use of
(62), we now reinterpret (59) as a lower bound of the background charge N :

N >
Vol(X5)(∆N )

8
2+n

2
2(1−n)
2+n π

6
2+n g

n
2+n
s v

2
2+n

2n P
2

2+n
s (1 + 1

3fNL
)

2
2+n





Vol(X5)(∆N )
2(6−n)
2+n r

2
10−n
2+n π

3(2−n)
2+n g

2n
2+n
s v

4
2+n

2n P
2−n
2+n
s (1 + 1

3fNL
)

2−n
2+n





4/κ

, (67)

where κ is now an arbitrary positive number.
Again we substitute Ps = 2.5 × 10−9, Vol(X5) = π3, v2 = 4π, v4 = 8

3π
2, 1

3fNL
= 0. Furthermore, the minimum

number of e-foldings ∆N = 1 and the lower limit value for the tensor-to-scalar ratio during relativistic inflation
r = 0.002 from (36) is substituted in order to obtain a conservative bound for N . For gs, we take the value 0.1.

• D3-brane (n = 0)
In Sec. IV, it was already shown that DBI inflation driven by a D3-brane is inconsistent with cosmological
observations if |fNL| is large. Nonetheless, as a consistency check, let us show it again. The bound (67) turns
out to be N > 2.0×108×(3.9×1017)1/κ. Taking the limit κ→ 0+, this lower bound forN diverges, which implies
that an infinitely large N is required for a D3-brane to cause DBI inflation, i.e. DBI inflation is incompatible
with WMAP3 data.2 Hence we have obtained the same result, seen from a different perspective.

• D5-brane (n = 1)
The bound (67) in this case is N > 6.8 × 105 × (7.0 × 10−3)1/κ. Since the number in parentheses is less than
one, let us take the limit κ → ∞. The lower bound for N turns out to be 6.8 × 105. This exceeds the known
maximal value of N (66) by an order.

• D7-brane (n = 2)
In this case we obtain N > 9.7 × 104 × (1.2 × 10−9)1/κ from (67). The lower bound for N becomes 9.7 × 104

in the limit κ → ∞. This still exceeds the maximal known value of N . However, adopting different values to
the parameters may relax the lower bound. If the string coupling is larger than about 0.2 (while keeping the
other parameters fixed to the values discussed above), then the lower bound for N becomes compatible with
(66). The same could be done by considering a throat with Vol(X5) . 20.

Note that the upper bound for r (59) and the lower bound for N (67) relax with a larger string coupling. The
results above imply the difficulty of maintaining perturbative control gs < 1 and satisfying the upper bound for N
(66) at the same time.

B. Upper Bound of r in Bkl Dominant Region

We now consider the opposite extreme case, where Bkl dominates over Gkl. The results we obtain in this subsection
is expected to be relevant if perturbations of the CMB scale are generated in the large ρ region (see Appendix C.).
In this subsection we derive an upper bound of r. In this sense the analysis in this subsection is a counterpart

to that of subsection VB, where we have derived an upper bound of r in the Gkl dominant region. However, the
difference is that the analysis in this subsection requires (reasonable but explicit) assumptions about the properties of
the warp factor h(ρ) and the NS-NS flux B(ρ) which were reviewed in the beginning of this section, while the analyses
in subsection VB were independent of those properties.
In the next subsection we shall reinterpret the result of this subsection as an lower bound of the background charge

N .
Now let us start the analysis by introducing

b2n ≡
∫

d2nξ
√

detBkl. (68)

2 It was already mentioned in [6] that the original DBI scenario with D3-branes required a large number of background charge N & 1010.
This result was derived under the assumption of the inflaton potential consisting only of a quadratic term. We have shown here without
specifying the form of the potential that a more stringent condition N > ∞ can be obtained by combining the results of Section IV.



12

Based on examples of specific cycles in the KS solution, we expect that b2 ∼ v2 ∼ 4π and that b4 ∼ v4 ∼ 8
3π

2. Then
(9) and (10) now take the form

dφ = T
1/2
3+2nb

1/2
2n

{

gsMα′ ln

(

ρ

ρb

)}n/2

dρ, (69)

T (φ) = T3+2nb2nh
4

{

gsMα′ ln

(

ρ

ρb

)}n

. (70)

From the Lyth Bound (30) and (69),

∆ρ ≃ ∆N
23/2T

1/2
3+2n(gsMα′)n/2b

1/2
2n

Mpr
1/2

{

ln
(

ρ∗

ρb

)}n/2
. (71)

Combining (27) with (70),

r =
4T

1/2
3+2n b

1/2
2n (gsMα′)n/2

π P
1/2
s

(

1 + 1
3fNL

)1/2

(

h∗
Mp

)2{

ln

(

ρ∗
ρb

)}n/2

. (72)

From (39) and (42), and again introducing an arbitrary parameter κ as in subsection VB,

1

M2
p

<
(2π)7 g2s α

′4

2Vol(X5)

h4∗ ρ
κ
∗

∆ρ

(

1

ρ∗

)κ+5

<
(2π)7 g2s α

′4

2Vol(X5)

h4∗ ρ
κ
∗

∆ρ

(

1

∆ρ

)κ+5

. (73)

Now κ has to satisfy κ > −5. ∆ρ can be cancelled out from the far right hand side of (73) with the use of (71). Then,
after cancelling out Mp with the help of (72), one can deduce an upper bound for r,

r <
(2π)7 g2s α

′4

2Vol(X5)

(

π1/2{Ps(1 +
1

3fNL
)}1/4

2T
1/4
3+2nb

1/4
2n (gsMα′)n/4

)κ+4(

∆N
23/2T

1/2
3+2n(gsMα′)n/2b

1/2
2n

)−κ−6
(

ρ∗
h∗

)κ{

ln

(

ρ∗
ρb

)}
n
4 (κ+8)

. (74)

Since ρ
h = R, ρ ∼ R is roughly the place where the throat connects to the bulk (to be precise, one should be aware

that the geometry deviates from the AdS geometry in the UV region, due to the connection of the throat to the
bulk). Since we consider the case of inflation occurring within a single throat, ρ∗ < R. Together with (62), (74) can
be rewritten in the following form,

r <
(2π)7 g2s α

′4

2Vol(X5)

(

π1/2{Ps(1 +
1

3fNL
)}1/4

2T
1/4
3+2n(gsMα′)n/4b

1/4
2n

)κ+4(

∆N
23/2T

1/2
3+2n(gsMα′)n/2b

1/2
2n

)−κ−6

Rκ

{

ln

(

R

ρb

)}
n
4 (κ+8)

. (75)

From (62) and (65)

R

ρb
∼ 21/2 π

Vol(X5)1/4

(

K

gsM

)1/4

exp

(

2πK

3gsM

)

. (76)

Since the exponential factor in the right hand side is approximately the inverse of the warping at the tip of the throat
(63), 2πK

3gsM
is expected to be larger than 1. Therefore,

ln
R

ρb
∼ 2πK

3gsM
. (77)

Substituting (77) to (75) and taking κ to 0 yields the following upper limit for r:

(D5) r <
23 π b22K

2 Ps(1 +
1

3fNL
)

32Vol(X5) (∆N )6
≃ 3.5× 10−8K2, (78)

(D7) r <
2 b24K

4 Ps(1 +
1

3fNL
)

34 πVol(X5) (∆N )6
≃ 4.4× 10−10K4. (79)

Here, Ps = 2.5 × 10−9, Vol(X5) = π3, b2 = 4π, b4 = 8
3π

2, 1
3fNL

= 0, and ∆N = 1 have been substituted for the

estimate of the far right hand sides.
For these upper bounds to be compatible with the lower bound (36), K needs to be larger than about 240 for a

D5- and 46 for a D7-brane, which can readily be achieved.
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C. Lower Bound of N in Bkl Dominant Region

The upper bound of r (75) together with (77) can be transformed into a lower bound for N with κ > 0:

N >
2n−13nVol(X5)(∆N )4

π3−nb2nKnPs(1 +
1

3fNL
)

(

22n−5 32n π2n−3 Vol(X5) (∆N )6 r

b22n Ps(1 +
1

3fNL
)K2n

)
4
κ

(80)

Substituting the same values as above and r = 0.002, the following results can be obtained:

• D5-brane (n = 1)
NK > 3.0 × 108 × (240/K)8/κ. When K & 240, taking κ → ∞ yields a lower bound for the combination of
the charge numbers, NK > 3.0 × 108. For example, when the background charge takes the maximum value
N = 75852, the lower bound requires K & 4000, which in this case is equivalent to M . 20. The smallness of
M may invalidate the supergravity approximation in the warped throat.

• D7-brane (n = 2)
NK2 > 2.7× 109 × (46/K)16/κ. If K & 46, then taking κ→ ∞ yields NK2 > 2.7× 109. When N = 75852, the
constraint turns out to be K & 190 (M . 4000).

In terms of the background charge, a D7-brane doesn’t seem to have problems exciting DBI inflation. We also
remark that the upper bound for r (78) and (79), and the lower bound for N (80) do not depend on the string
coupling directly, in contrast to the bounds derived in the Gkl dominant region.

VII. CONCLUSION

We have presented constraints on DBI inflation with large non-Gaussianity, caused by a D-brane in relativistic
motion towards the tip of the throat. We focused on D5- and D7-branes which wrap cycles of the warped throat.
As expected, the upper bound on the gravitational wave spectrum for D3-branes is relaxed for wrapped D5- and
D7-branes, due to the difference in the normalization factor of the inflaton. However, for when the known maximal
value for the Euler number of the Calabi–Yau four-fold is considered, we showed the difficulty in obtaining a sufficient
number of background charge for producing the cosmological observables consistent with the WMAP3 data. The
results of this paper are insensitive to the details of the inflaton potential, and could be applied to generic warped
throats.
Our estimation imposes severe constraints on a D5-brane turning on DBI inflation. However, for the case of a

D7-brane producing the CMB scale in the Bkl dominant region of the throat, the constraint is loosened. D7-brane
DBI inflation in the Gkl dominant region may also be compatible with the Euler number bound, provided the string
coupling and the parameters of the throat are tuned to some appropriate range. These cases may be the area to seek
for brane inflation models generating observable signals in the sky.
Our aim in this paper was to estimate whether DBI inflation can reproduce observable signatures compatible with

WMAP3 data in the currently known construction of string theory. The results in this paper indicate the difficulty of
obtaining workable models due to the Euler number bound. However, let us mention some possible scenarios in which
the bound may be relaxed. Though it is presently unknown whether those possibilities can be implemented in string
theory, they are worth pointing out. One way of alleviating the Euler number bound is to consider a throat with a
base space that is orbifolded [6, 34]. Orbifolding implies a smaller volume of the base space Vol(X5), leading to a
relaxation of the lower bound on N ((67) and (80)). If the orbifolded base space decreases the volume of the wrapped
cycles (which works in the direction of tightening the bound), one can also consider D-branes winding around the
throat more than once to cancel the decrease of v2n. However, it is obvious from the results in this paper that a
substantial number of orbifolding (and winding number) is needed in any case. At present it is far from clear whether
this could be justified in a consistent compactification. Other ways to relax the Euler number bound are to add
negative charges by considering orientifolds or gluing on a whole throat of negative D3 charge [35] (though this would
lead to an increase of the compactified volume).3 Finally, if the Euler number of Calabi–Yau four-folds exceeding the
known maximal value is to be found, then of course the constraints derived in this paper will be relaxed.

3 We thank Melanie Becker and Sarah Shandera for pointing these out to us.
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An alternative approach to bypassing the background flux bounds is to combine DBI inflation with other scenarios
such as modular inflation models. Then DBI inflation could generate large non-Gaussianity while some other sector
is producing enough e-foldings.
We should also mention backreaction of the mobile D-branes on the background geometry. We treated wrapped

D-branes as a probe, but since D5- and D7-branes have a more significant backreaction than D3-branes (especially
when the winding number is large), this potential problem deserves careful consideration. An order of magnitude
estimate of the backreaction by multi-winding D5-branes around orbifolded base space is given in [34].
We did not fix the form of the inflaton potential throughout this paper. However, as we mentioned in subsection IVC,

it should be noted that under some explicit form of potentials, even more severe constraints on the background charge
could be obtained (see for e.g. [9, 34] where a tight upper bound on N is derived under the assumption of a
quadratic inflaton potential). The constraints we investigated are conservative bounds, which can be applied to
general situations.
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APPENDIX A: KLEBANOV–STRASSLER SOLUTION

The KS geometry [15, 16] is

ds2 = h̃−1/2(τ)ηµνdx
µdxν + h̃1/2(τ)ds26 (A1)

where xµ (µ = 0, · · · 3) are 4-dimensional external coordinates and ds26 is the metric of the deformed conifold [32]

ds26 =
ǫ4/3

2
K(τ)

[

1

3K(τ)3

(

dτ2 + (g5)2
)

+ cosh2
(τ

2

)(

(g3)2 + (g4)2
)

+ sinh2
(τ

2

)(

(g1)2 + (g2)2
)

]

(A2)

where

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3 sinh τ
(A3)

and gi (i = 1, · · · 5) are orthonormal basis [33] defined by

g1 =
e1 − e3√

2
, g2 =

e2 − e4√
2

, g3 =
e1 + e3√

2
, g4 =

e2 + e4√
2

, g5 = e5 (A4)

with

e1 = − sin θ1 dφ1, e2 = dθ1, e3 = cosψ sin θ2 dφ2 − sinψ dθ2,

e4 = sinψ sin θ2 dφ2 + cosψ dθ2, e5 = dψ + cos θ1 dφ1 + cos θ2 dφ2. (A5)

Away from the tip, the geometry is approximately AdS5 × S5.
The base of the cone has the topology of S2×S3. As one approaches the tip, the radius of S2 shrinks to zero, while

the radius of S3 remains finite. Hence, the geometry is roughly S3 × R3 at the tip of the throat. The S3 subspace
is a 3-cycle, which is referred to as the A-cycle. Another dual 3-cycle which is the S2 times a circle extending along
the radial direction is called the B-cycle. The R-R 3-form flux F3 and NS-NS 3-form flux H3 is supported on these
cycles, whose quantization conditions are

1

2πα′

∫

A

F3 = 2πM,
1

2πα′

∫

B

H3 = −2πK, (A6)

where M and K are integers, and

g2sF
2
3 = H2

3 . (A7)
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The tadpole condition requires

KM =
χ

24
(A8)

where χ is the Euler number of a Calabi–Yau four-fold.
F3 and B2 have the Z2 symmetric ((θ1, φ1) ↔ (θ2, φ2)) ansatz:

F3 =
Mα′

2

[

g5 ∧ g3 ∧ g4 + d{F (τ)(g1 ∧ g3 + g2 ∧ g4)}
]

, (A9)

B2 =
gsMα′

2

[

f(τ)g1 ∧ g2 + k(τ)g3 ∧ g4
]

. (A10)

Combining with (A7), the dilaton Φ and the R-R scalar C0 can consistently be set to zero. The BPS saturated
solution found by Klebanov and Strassler is

F (τ) =
sinh τ − τ

2 sinh τ
, f(τ) =

τ coth τ − 1

2 sinh τ
(cosh τ − 1), k(τ) =

τ coth τ − 1

2 sinh τ
(cosh τ + 1), (A11)

and

h̃(τ) = 22/3(gsMα′)2ǫ−8/3I(τ), (A12)

where

I(τ) =

∫ ∞

τ

dx
x coth x− 1

sinh2 x
(sinh(2x)− 2x)1/3. (A13)

For this solution,

C4 = g−1
s h̃−1dx0 ∧ dx1 ∧ dx2 ∧ dx3 (A14)

in a particular gauge. For large gsM the curvature is small everywhere and we can trust the supergravity description.

I(τ) reaches a finite value as τ approaches zero,

I(0) = a0 with a0 ≃ 0.71805. (A15)

Since the warp factor at the tip of the throat can be characterized by the flux integer numbers M and K introduced
in (A6),

h̃−1/4(0) ≃ exp

(

− 2πK

3gsM

)

, (A16)

the deformation parameter ǫ in (A12) is

ǫ ≃ 21/4a
3/8
0 (gsMα′)3/4 exp

(

− πK

gsM

)

. (A17)

The correspondence between the KS metric (A1) and the generic metric (1) we use in this paper is clear by the
change of variables

dρ =
ǫ2/3√
6K(τ)

dτ, (A18)

and

h(ρ) = h̃(τ)−1/4. (A19)

In the large τ region, the metric of the deformed metric (A2), the relation between ρ and τ (A18), and the NS-NS
2-form potential B2 (A10) is

ds26 ≃ dρ2 + ρ2
{

1

6

(

(g1)2 + (g2)2 + (g3)2 + (g4)2
)

+
1

9
(g5)2

}

, (A20)
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ρ ≃ 31/2

25/6
ǫ2/3eτ/3, (A21)

B2 ≃ 3

4
gsMα′ ln

(

ρ

ρb

)

[g1 ∧ g2 − g3 ∧ g4], (A22)

where

ρb ≡
31/2e1/3

25/6
ǫ2/3 ≃ 31/2e1/3a

1/4
0

22/3
(gsMα′)1/2 exp

(

− 2πK

3gsM

)

. (A23)

The far right hand side of (A23) is from (A17).
In the small τ region (τ . 1),

ds26 ≃ dρ2 + ρ2
{

1

2
(g1)2 +

1

2
(g2)2

}

+ ρ20

{

(g3)2 + (g4)2 +
1

2
(g5)2

}

(A24)

where

ρ0 ≡ ǫ2/3

21/331/6
, (A25)

ρ =
ǫ2/3τ

25/631/6
, (A26)

B2 ≃ gsMα′

2

[

τ3

12
(g1 ∧ g2) + τ

3
(g3 ∧ g4)

]

. (A27)

APPENDIX B: DBI INFLATION NEAR THE TIP OF THE THROAT

In this appendix, we discuss DBI inflation in the non-AdS region, nearby the tip of the throat. We take the KS
throat as an example and show that the CMB scale is produced away from this region.
In a KS throat, the conifold singularity is smoothed out by turning on background flux. While the S2 of the

base space disappears as one approaches the tip of the deformed conifold, the S3 remains finite and the warp factor
approaches a constant value (A16).
In the region τ . 1 (i.e. ρ . 0.8ρ0, where ρ0 is defined in (A25)), τ and ρ become proportional to each other, as

can be seen from (A26). The metric and the NS-NS 2-form potential B2 in the region is given by (A24) and (A27).
In the g1 and g2 directions, the behavior of the metric and B2 in this region are respectively

ρ2

h2
∝ τ2, f(τ) ∝ τ3. (B1)

In the g3 and g4 directions,

ρ20
h2

∝ τ0, k(τ) ∝ τ. (B2)

Furthermore, B2 does not have a leg in the g5 direction.
Hence it is expected that the B2 term is negligible compared to the term coming from the metric in the DBI action

(8). Therefore we ignore B2 in estimating possible e-fold numbers near the tip.
Ignoring B2, the applicability of the lower bound for the tensor to scalar ratio (36) to the region near the tip with

the metric (A24) can be verified in a similar way to the discussion in subsection VA. Taking the angular brane
coordinates to diagonalize Gkl, it is clear that ∂(h2Gkk)/∂ρ ≥ 0. Hence (46) is verified, leading to the lower bound
(36).
Also, the equations introduced in subsection VB to estimate the upper bound for r in the Gkl dominant region

can be used here likewise. However, it should be noted that the constants Vol(X5) and v2n now become dependent
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on ρ, due to the S2’s constant radius. The effective unit-radius dimensionless volume of the wrapped 2n-cycle is now
defined as

v2n(ρ) ≡
(

h

ρ

)2n ∫

d2nξ
√

det(Gkl). (B3)

Now let us give a rough estimate of the number of e-foldings which can be generated in the region near the tip. We
will see that the e-fold number is suppressed to a negligible amount by the warping of the throat.
A typical element of Gkl takes the form of a quadratic equation of ρ or ρ0, divided by h2. Therefore, v2n(ρ) can

practically be expressed as a product of ρ−2n and a 2n-order polynomial of ρ or ρ0. Therefore, in the “tip” region,
i.e. ρ . 0.8ρ0, the effective unit-radius dimensionless volume is

v2n(ρ) ∼
O
(

ρ2n0
)

ρ2n
. (B4)

Combining the Lyth Bound (30), (53), and (B4), we obtain

dN ∼ T
1/2
3+2n O

(

ρn0
)

Mp r1/2 hn
dρ. (B5)

The number of e-foldings can be evaluated by integrating the right hand side. We estimate the maximal number of
e-foldings by fixing the tensor to scalar ratio to the smallest r = rmin in the region of integration. Similarly, we fix
the warp factor to the value at the tip of the throat h = htip. Integrating between 0 and ρ0, (it should be noted that
inflation actually ends before reaching ρ = 0 in most models)

Ntip .
T

1
2
3+2n O

(

(ρ0)
n+1
)

Mp r
1
2

min h
n
tip

∼ g
n
2
s M

n+1
2 htip

α′ 12 Mp r
1
2

min

. (B6)

In obtaining the far right hand side, we have used

ρ0 =
a
1/4
0

21/6 31/6
(gsMα′)1/2htip (B7)

which is a combination of (A16), (A17), (A19), and (A25). Hence we have shown that the number of e-foldings that
can be generated in the “tip” region is suppressed by the warp factor.

Now we confirm the above result with an explicit example. Let us consider a D5-brane which wraps a 2-cycle
specified by

ψ = 0, θ1 = θ2, φ1 = −φ2. (B8)

Then the following can be derived

∫

d2ξ
√

det(Glk −Blk) =
23 π ρ20
h2

{

1 +

(

h2 gsMα′ρ

22/3 3 ρ30

)2}1/2

. (B9)

The first term in parentheses of the right hand side originates from Gkl, and the second term from Bkl. Approximating
the warp factor by the value at the tip, then from (B7) the ratio between them is

B term

G term
≃ 0.2× ρ2

ρ20
. (B10)

Hence it is clear that B2 can be ignored in the “tip” region (i.e. ρ . 0.8ρ0).
Ignoring the B2 term, the effective unit-radius dimensionless volume is

v2(ρ) =
(ρ0
ρ

)2
8π. (B11)

This simple form originates from the fact that the 2-cycle specified by (B8) wraps only the non-vanishing S3.
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The integration which led (B5) to (B6) can be explicitly carried out for the simple form of v2 (B11). Keeping also
the numerical factors, we obtain

Ntip ≤ 0.007

r
1/2
min

× g
1/2
s M

Mp α′1/2
× htip (B12)

Assuming that the CMB scale is generated in the “tip” region, we substitute rmin = 0.002 which is the lower bound
of r over the observable scales for DBI inflation (36). Then the right hand side of (B12) is expected to be dominated
by the warping at the tip of the throat, suppressing Ntip to be much smaller than the minimum number of e-foldings
produced while the observable scales are generated, i.e. ∆N ≃ 1.
Since the CMB scale was generated 30 to 60 e-foldings before the end of inflation, the above estimates indicate that

the CMB scale cannot be produced in the non-AdS region nearby the tip of the KS throat.
Throughout this paper we consider warped throats. However, we should note that in the case of a barely warped

throat (e.g. htip ∼ O(1)), there will be a large non-AdS region and it is possible that a sufficiently large number of
e-foldings will be generated in the region. (In that case, the volume of the internal space must be large for explaining
the hierarchy of the universe.)

APPENDIX C: NUMBER OF e-FOLDINGS IN THE Gkl DOMINANT REGION

In Sections V and VI we discussed constraints on r and N for the case of the observed CMB scale being produced
in the Gkl or Bkl dominant region. The analyses indicate that DBI inflation requires a large Euler number of the
Calabi–Yau four-fold, which exceeds the maximal value (66) under typical values for various parameters. However,
for DBI inflation with a D7-brane in the Bkl dominant region, the constraint is relaxed.
In this appendix, we roughly estimate the number of e-foldings than can be produced in the Gkl dominant region

and consider the place where the CMB scale is produced.
The typical ratio between the components of Gkl and Bkl is

components of Gkl

components of Bkl
=
ρ2

h2
×
{

gsMα′ ln
( ρ

ρb

)

}−1

=
R2

gsMα′ ln( ρ
ρb
)
. (C1)

Therefore, the Gkl dominant region is roughly

ρ < ρb exp

(

R2

gsMα′

)

≡ ρG/B. (C2)

From the Lyth Bound (30), (62), and (53),

dN ≃ v
1/2
2n Nn/4

2n/2 π3/2 g
(2−n)/4
s α′Mp Vol(X5)n/4 r1/2

dρ. (C3)

The number of e-foldings NG generated in the Gkl dominant AdS region can be obtained by integrating (C3)
between ρG/B and the IR boundary of the AdS region, which we approximate to 0. Note that r depends on ρ.
Combining (C1) with (62) and (65) yields the following,

NG .
v
1/2
2n M (n+1)/2

2n/2 π3/2 α′1/2Mp r
1/2
min

×
( gs
Vol(X5)

)n/4(K

M

)n/4

exp

[

{

2π2

g
1/2
s Vol(X5)1/2

− 2π

3gs

(K

M

)1/2
}

(K

M

)1/2
]

, (C4)

where we pulled r out of the integration by introducing the smallest r = rmin in the region of integration, thereby an
upper bound for NG is obtained.
The second line of (C4) is expressed as a function of K/M . It increases monotonically when K/M is small, and

when

K

M
=

9gs
8

{

π2

Vol(X5)
+

n

3π
+

(

π4

Vol(X5)2
+

2nπ

3Vol(X5)

)1/2
}

, (C5)
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it reaches its maximum value

[

3gs
4π

{

π2

Vol(X5)
+

(

π4

Vol(X5)2
+

2nπ

3Vol(X5)

)1/2
}]n/2

× exp

[

3π3

4Vol(X5)
− n

4
+

3π

4

(

π4

Vol(X5)2
+

2nπ

3Vol(X5)

)1/2
]

, (C6)

and then it drops sharply as K/M becomes larger than (C5). Note that the maximum value (C6) is a monotonically
increasing function of gs, and a monotonically decreasing function of Vol(X5).
Assuming values such as Vol(X5) = π3, v2 = 4π, v4 = 8

3π
2, gs = 0.1, and α′M2

p = 1000, then from (C4), (C5), and
(C6) the following upper bounds can be obtained:

(D5) NG . 3× 10−3 M

r
1/2
min

(

K

M

)1/4

exp

[{

11− 21

(

K

M

)1/2
}

(

K

M

)1/2
]

≤ 7× 10−3 × M

r
1/2
min

, (C7)

(D7) NG . 8× 10−4 M

r
1/2
min

(

K

M

)1/2

exp

[{

11− 21

(

K

M

)1/2
}

(

K

M

)1/2
]

≤ 1× 10−3 × M

r
1/2
min

. (C8)

The far right hand sides of (C7) and (C8) are obtained when K/M ∼ 0.1. For example, let us substitute N = 75852,
M = 10K ≃ 870, and rmin = 0.002, then the upper bounds for NG are about 140 for a D5- and 20 for a D7-brane.
However, we should remark that rmin could be smaller than 0.002. Perturbations at scales smaller than the CMB
scale could be generated by standard slow-roll inflation. Even if DBI inflation continues until the end of inflation, if
1−ns decreases at scales smaller than the CMB scale, then the lower bound for r in (36) becomes smaller than 0.002.
Since the upper bound for NG varies with the parameters (especially sensitive to K/M and Vol(X5)), we end this

appendix by stating that the region where the CMB scale is generated depends on the details of the DBI inflation
model.

APPENDIX D: DETERMINANT OF Gkl −Bkl

Taking a gauge in which the metric Gkl is diagonalized, the difference between the n×n Gkl and an antisymmetric
Bkl takes the following form:

Gkl −Bkl =













G11 B12 . . . B1n

−B12 G22
. . .

...
...

. . .
. . . Bn−1n

−B1n . . . −Bn−1n Gnn













. (D1)

The expansion of the determinant of (D1) in terms of the diagonal components of Gkl is

det(Gkl −Bkl) =
n
∑

m=0

∑

Gn−m

Gim+1im+1 · · ·Ginin × det













0 Bi1i2 . . . Bi1im

−Bi1i2 0
. . .

...
...

. . .
. . . Bim−1im

−Bi1im . . . −Bim−1im 0













, (D2)

where
∑

Gn−m requires to sum up all the combinations of choosing (n−m) numbers of different Gkk.
The matrix on the right hand side of (D2) is built from Gkl − Bkl by erasing the im+1, im+2, · · · , inth rows and

im+1, im+2, · · · , inth columns, and changing the diagonal terms to zero. Since it is an m ×m antisymmetric matrix,
its determinant is zero for odd m. Hence det(Gkl −Bkl) is expanded with even-ordered Gll.
If m is even, the determinant of an antisymmetric matrix is equal to the square of the Pfaffian of the matrix, which

is a polynomial in the components. When X is a 2p× 2p antisymmetric matrix with components xij , the Pfaffian of
X is

Pf(X) =
1

2pp!

∑

σ∈S2p

sgn(σ)

p
∏

i=1

xσ(2i−1) σ(2i), (D3)
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where S2p is the symmetric group. Then the determinant of X is

det(X) = Pf(X)2. (D4)
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