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Abstract

We compute the non-Gaussianity of the curvature perturbation generated by ekpy-
rotic collapse with multiple fields. The transition from the multi-field scaling solution
to a single-field dominated regime converts initial isocurvature field perturbations to an
almost scale-invariant comoving curvature perturbation. In the specific model of two
fields, φ1 and φ2, with exponential potentials, −Vi exp(−ciφi), we calculate the bispec-
trum of the resulting curvature perturbation. We find that the non-Gaussianity is dom-
inated by non-linear evolution on super-Hubble scales and hence is of the local form.
The non-linear parameter of the curvature perturbation is given by fNL = −5c2j/12,
where cj is the exponent of the potential for the field which becomes sub-dominant
at late times. Since c2j must be large, in order to generate an almost scale invariant
spectrum, the non-Gaussianity is inevitably large. By combining the present observa-
tional constraints on fNL and the scalar spectral index, the specific model studied in
this paper is thus ruled out by current observational data.

1 Introduction

The existence of an almost scale-invariant spectrum of primordial curvature perturbations
on large scales, with an approximately Gaussian distribution, is one of the most important
observations that any model of the early universe should explain. The inflationary scenario
offers a possible explanation in terms of vacuum fluctuations of scalar fields during an ac-
celerated expansion preceding the standard hot big bang, though attempts to embed such a
scenario within a fundamental theory such as superstring/M-theory may require some degree
of fine-tuning (see [1] for a recent review).
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The ekpyrotic scenario [2] (see also [3, 4]) is one alternative approach where the large-scale
perturbations are generated from vacuum fluctuations during a collapse phase driven by a
scalar field with a steep, negative exponential potential. It was shown, however, that even
though the Bardeen potential acquires a scale-invariant spectrum during ekpyrotic collapse,
the comoving curvature perturbation has a steep blue spectrum in the original ekpyrotic
scenario driven by a single scalar field [5]. If the contracting pre-big bang phase is connected
to the expanding hot big bang phase through a regular four-dimensional bounce, then we
expect the comoving curvature perturbation to remain constant for adiabatic perturbations
on large scales [6, 7, 8], which means that the growing mode of curvature perturbations in
the expanding phase also acquires a steep blue spectrum.

One way to avoid this is to consider non-adiabatic perturbations, which require two
or more fields [9, 10]. Recently, there has been progress in generating a scale-invariant
spectrum for curvature perturbations in the ekpyrotic scenario with more than one field,
which we will refer to as the new ekpyrotic scenario [11, 12, 13]. If these fields have steep
negative exponential potentials, there exists a scaling solution where the energy densities
of the fields grow at the same rate during the collapse [14, 15]. In this multi-field scaling
solution background, the isocurvature field perturbations have an almost scale-invariant
spectrum [14], owing to a tachyonic instability in the isocurvature field. The multi-field
scaling solution in the new ekpyrotic scenario can be shown to be an unstable saddle point
in the phase space and the stable late-time attractor is the old ekpyrotic collapse dominated
by a single field [16].

The existence of a tachyonic instability raises questions about initial conditions in the
new ekpyrotic scenario [17], but the transition from the multi-field scaling solution to the
single-field-dominated solution also provides a mechanism to automatically convert the initial
isocurvature field perturbations about the multi-field scaling solution into comoving curva-
ture perturbations about the late-time attractor [18]. In this case, the final amplitude of the
comoving curvature perturbation is determined by the Hubble scale at the transition and if
this parameter and the initial conditions are set appropriately, the prediction for the primor-
dial curvature perturbations from this scenario is compatible with an almost scale-invariant
spectrum (see [11, 12, 13, 19] for other mechanisms to convert the initial scale-invariant
isocurvature perturbations into curvature perturbations).

Recently, the non-Gaussianity of the distribution of primordial curvature perturbations
in the inflationary scenario has been extensively studied by many authors (see e.g. [20] for
a review). Measurements of the non-Gaussianity already provide important constraints on
specific models of the early universe and such measurements will continue to improve in the
near future, for instance with the Planck satellite [21]. Since the non-Gaussian signal from
single-field, slow-roll inflation is suppressed by slow-roll parameters to an undetectable level
[22], if non-Gaussianities are detected then this would rule out many models of inflation.

Thus, as a natural extension of the study performed in [16, 18], in this paper we compute
the non-Gaussianity of the primordial curvature perturbations generated from the contract-
ing phase of the multi-field new ekpyrotic cosmology. We adopt the same specific model
as the previous analysis of Refs. [16, 18] where the scale-invariant curvature perturbation is
generated by the transition from a scaling solution, with two fields driving the collapse, to
a single-field dominated regime. We assume that the ekpyrotic collapse is subsequently con-
verted to expansion by a regular bounce, during which the comoving curvature perturbation
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is conserved on large scales and the curvature perturbation generated during the collapse is
thus directly related to the amplitude of the observed primordial density perturbation.

This paper is organized as follows. In Sec. 2 we briefly review the background dynamics.
In Sec. 3 we summarize the statistical properties of linear and non-linear perturbations. The
δN -formalism is introduced which is used to compute the primordial curvature perturbation.
In Sec. 4 we study linear perturbations while in Sec. 5 we generalize this study to non-
linear perturbations and quantify the expected non-Gaussianity. In Sec. 6 we draw our
conclusions. In three appendices we review previous results for the linear fluctuations of
the isocurvature field during the ekpyrotic phase and calculate its intrinsic non-Gaussianity
using the interaction Hamiltonian, as well as presenting a numerical check of our analytical
results.

2 Homogeneous dynamics

We first review the background dynamics of the fields in the new ekpyrotic cosmology with
multiple scalar fields. During the ekpyrotic collapse the contraction of the universe is assumed
to be described by a 4D Friedmann equation in the Einstein frame with n scalar fields with
negative exponential potentials

3H2 = V +
n
∑

j

1

2
φ̇2
j , (1)

where

V = −
n
∑

j

Vje
−cjφj , (2)

and we take Vi > 0 and set 8πG equal to unity.
From now on, for simplicity, we concentrate our attention on the case of two fields. In

this case, it will be easier to work in terms of new variables [16],

ϕ =
c2φ1 + c1φ2
√

c21 + c22
, χ =

c1φ1 − c2φ2
√

c21 + c22
, (3)

corresponding to a fixed rotation in field space. The potential given by Eq. (2) can then be
simply re-written as [14, 16, 23]

V = −U(χ) e−cϕ , (4)

where
1

c2
≡
∑

j

1

c2j
, (5)

and the potential for the orthogonal field is given by

U(χ) = V1 e
−(c1/c2)cχ + V2 e

(c2/c1)cχ , (6)

which has a minimum at

χ = χ0 ≡
1

√

c21 + c22
ln

(

c21V1

c22V2

)

. (7)
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If we expand U(χ) in Eq. (6) about its minimum we obtain

U(χ) = U0

[

1 +
c2

2
(χ− χ0)

2 +
c̃c2

6
(χ− χ0)

3 + . . .

]

, (8)

where

c̃ ≡ c22 − c21
√

c21 + c22
. (9)

The multi-field scaling solution corresponds to the classical solution along this minimum
χ = χ0, while ϕ is rolling down the exponential potential. The explicit form of the multi-field
scaling solution is given as

a = (−t)p , (10)

ϕ =
2

c
ln(−t)− 1

c
ln

(

p(1− 3p)

U0

)

, (11)

where p =
∑

j 2/c
2
j = 2/c2. The potential for χ has a negative mass-squared around χ = χ0,

m2
χ ≡ ∂2V

∂χ2
= c2V < 0 , (12)

and thus χ represents the instability direction. Furthermore, the χ field evolution is nonlin-
ear, with the cubic interaction being given by

V (3) ≡ ∂3V

∂χ3
= c̃m2

χ , (13)

which becomes important when we consider the non-Gaussianity later in this paper.
If the initial condition for χ is slightly different from χ0 or χ̇ is not zero, then χ starts

rolling down the potential and the solution approaches a single-field-dominated scaling so-
lution. The explicit form of the single-field-dominated scaling solution is given as

a = (−t)pj , (14)

φj =
2

cj
ln(−t)− 1

cj
ln

(

pj(1− 3pj)

Vj

)

, (15)

where pj = 2/c2j . In this paper, we consider the case in which the background evolves from
the multi-field scaling solution to the φ2-dominated scaling solution without loss of generality.

3 Statistical correlators

Here we briefly summarize the statistical properties of the scalar field fluctuations during
ekpyrotic collapse. Then, in order to link these to the observable primordial curvature
perturbation we discuss the δN -formalism.

In the two-field new ekpyrotic cosmology, the isocurvature fluctuations acquired by the
field χ during the multi-field scaling regime, play a crucial role to generate a scale-invariant
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spectrum of perturbations. On the other hand, the fluctuations of the field ϕ are negligible
on large scales, because of its very blue spectral tilt [11, 12, 13]. Thus, in the following we
neglect δϕ fluctuations.

In linear perturbation theory, when interactions are neglected, the free-field fluctuations
δχ are Gaussian. Their power spectrum Pχ can be defined by

〈δχk1
δχk2

〉 ≡ (2π)3δ3(k1 + k2)
2π2

k3
1

Pχ(k1) , (16)

where the angle brackets denote an ensemble average.
If the cubic self-interaction in Eq. (8) is taken into account δχ is no longer Gaussian and

the first signal of non-Gaussianity comes from the three-point correlation function. Similarly
to Eq. (16), the bispectrum of δχ, Bχ, is defined by

〈δχk1
δχk2

δχk3
〉 ≡ (2π)3δ3(

∑

j

kj)Bχ(k1, k2, k3) . (17)

To characterize the bispectrum one can also define the nonlinear parameter of the field
fluctuation, fχ

NL, as
6

5
fχ
NL ≡

∏

j k
3
j

∑

j k
3
j

Bχ

4π4P2
χ

. (18)

When the intrinsic non-Gaussianity is local in real space this parameter is k independent
and δχ can be written as

δχ = δχL +
3

5
fχ
NLδχ

2
L , (19)

where δχL is the linear and Gaussian part of the field fluctuations.
To relate the non-Gaussianity of the scalar field fluctuations to observations, we need

to calculate the three-point functions of the comoving curvature perturbation ζ . In order
to do that, we can use the δN -formalism [24, 25, 26, 27, 28, 29]. In the δN -formalism,
the comoving curvature perturbation ζ evaluated at some time t = tf coincides with the
perturbed expansion integrated from an initial flat hypersurface at t = ti, to a final uniform
density hypersurface at t = tf , with respect to the background expansion, i.e.,

ζ(tf ,x) ≃ δN(tf , ti,x) ≡ N (tf , ti,x)−N(tf , ti) , (20)

with

N (tf , ti,x) ≡
∫ tf

ti
H(x, t)dt , N(tf , ti) ≡

∫ tf

ti
H(t)dt , (21)

where H(x, t) is the inhomogeneous Hubble expansion. We can calculate δN on large scales
using the homogeneous equations of motion, in the assumption that the local expansion on
sufficiently large scales behaves like a locally homogeneous and isotropic universe, according
to the so-called “separate universe” approach [30, 31, 6]. This allows us to compute the full
nonlinear curvature perturbation in the large-scale limit. Note that we leave the initial time
ti unspecified and we are free to identifying it with the time of Hubble crossing t = t∗, i.e.
the time when a mode k exits the Hubble radius during inflation, k = aH , or with a later
time.
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We will chose the initial time ti to be during the multi-field scaling regime. Furthermore,
since ϕ is unperturbed, δN can be expanded in series of the initial field fluctuations δχi.
Retaining only terms up to second order, we obtain

δN = N,χi
δχi +

1

2
N,χiχi

(δχi)
2 , (22)

where N,χ denotes the derivative of N with respect to χ.
Now we can convert the higher-order information about the initial field fluctuations into

the statistical properties of the observed primordial curvature perturbations. The power
spectrum of the comoving curvature perturbation ζ , Pζ , is defined as

〈ζk1
ζk2

〉 ≡ (2π)3δ(3)(k1 + k2)
2π2

k3
1

Pζ(k1) . (23)

At lowest order, from Eqs. (16), (22) and (23), Pζ is expressed as

Pζ = N2
,χi
Pχi

. (24)

Note that N,χi
is independent of wavenumber k and hence the scale dependence of the

primordial spectrum, ∆n ≡ d lnPζ/d ln k, is given by the spectral tilt of the field fluctuations,
∆nχ, on the initial hypersurface [given in Eq. (69) in Appendix A].

The bispectrum of the curvature perturbation ζ , which includes the first signal of non-
Gaussianity, is defined as

〈ζk1
ζk2

ζk3
〉 ≡ (2π)3δ(3)(

∑

j

kj)Bζ(k1, k2, k3) , (25)

where the left hand side of Eq. (25) can be evaluated by the δN -formalism using Wick’s
theorem,

〈ζk1
ζk2

ζk3
〉 = N3

,χi
〈δχik1

δχik2
δχik3

〉+ 1

2
N2

,χi
N,χiχi

〈δχik1
δχik2

(δχi ⋆ δχi)k3
〉+ perms . (26)

In the above equation, a star ⋆ denotes the convolution and we have neglected correlators
higher than the four-point.

Observational limits on the non-Gaussianity of the primordial curvature perturbations
are usually given on the nonlinear parameter fNL defined by [22]

6

5
fNL ≡

∏

j k
3
j

∑

j k
3
j

Bζ

4π4P2
ζ

. (27)

If the non-Gaussianity is local, one can write ζ as

δN = ζL +
3

5
fNLζ

2
L , (28)

where ζL is a Gaussian variable.
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To compute the bispectrum of the curvature perturbation one can use the δN -formalism
and after some manipulations, from Eqs. (25) and (26) one finds

Bζ(k1, k2, k3) = N3
,χi
Bχi

(k1, k2, k3) + 4π4P2
ζ

∑

j k
3
j

∏

j k
3
j

N,χiχi

N2
,χi

, (29)

where Bχi
(k1, k2, k3) is the bispectrum of the scalar field evaluated at t = ti. Together with

Eq. (27) the nonlinear parameter fNL becomes

fNL =
fχi

NL

N,χi

+
5

6

N,χiχi

N2
,χi

, (30)

where we have used Eqs. (19) and (27). The first term on the right hand side of Eq. (30),

f
(3)
NL ≡ fχi

NL

N,χi

, (31)

comes from the intrinsic three-point correlation functions of the field fluctuations and con-
tains also the non-Gaussianity of quantum origin generated on small-scales, i.e., inside the
Hubble radius during the ekpyrotic collapse described by the multi-field scaling solutions.
The second term on the right hand side of Eq. (30),

f
(4)
NL ≡ 5

6

N,χiχi

N2
,χi

, (32)

is completely momentum independent and local in real space, because it is due to the evo-
lution of nonlinearities outside the Hubble radius during the multi-field ekpyrotic collapse.
Note that the splitting in f

(3)
NL and f

(4)
NL depends on the time ti.

4 Linear curvature perturbation

The power spectrum of χ is given by (see [18] and Eq. (70) in Appendix A)

Pχ(k) = ǫ2
(

H

2π

)2

, (33)

in the limit of large ǫ, where the fast-roll parameter ǫ is defined as ǫ ≡ −Ḣ/H2 = c2/2 = 1/p,
and it is constant for the multi-field scaling solution. Thus, in this limit, Pχ has a scale
invariant spectrum.

On the other hand, as shown in [18] in the fast-roll limit and assuming an instantaneous
transition from the multi-field scaling solution to the single-field φ2- dominated scaling solu-
tion, the power spectrum of the final (after the transition) curvature perturbations becomes

Pζ =
ǫ2

c21 + c22

∣

∣

∣

∣

HT

2π

∣

∣

∣

∣

2

, (34)

7



where HT is the Hubble parameter evaluated at the transition time t = tT . The scalar
spectral index of ζ is

∆n = 4

(

1

c21
+

1

c22

)

. (35)

Note that it is always positive, i.e., the power spectrum is always blue
Let us now interpret the result above in the light of the δN -formalism. We consider

the situation in which χi is perturbed on the t = ti hypersurface, while Hi assumes on this
hypersurface a constant value. This is justified by the fact that the t = ti hypersurface is flat
and since χ is an isocurvature field its fluctuations do not affect the local Hubble expansion.
Furthermore, we assume that the transition into the single-field-dominated scaling solution
at the time t = tT , happens instantaneously on the hypersurface χ = χT = const., where HT

is perturbed.
Under these assumptions, the expansion N defined by Eq. (21) can be split into

N =
∫ tT

ti
Hdt+

∫ tf

tT
Hdt , (36)

where tf is set sufficiently later than the transition time tT . In Eq. (36), the first integral is
over the multi-field scaling evolution and the last integral is over the φ2-dominated phase.

Since the multi-field scaling solution is characterized by Eq. (10), the first term on the
right hand side of Eq. (36) can be expressed as (1/ǫ) ln(Hi/HT ). Similarly, since the single-
field dominated scaling solution is characterized by Eq. (14), the second term becomes
(1/ǫ2) ln(HT/Hf), where ǫ2 = c22/2. Then, for a fixed ti and tf , the expansion N can be
expressed as

N = − 2

c21
ln |HT |+ const., (37)

which depends only on the parameter c1, besides the transition time tT .
During the multi-field scaling regime, the linear evolution equation of χ on large scales

is given by
χ̈+ 3Hχ̇+m2

χχ = 0 , (38)

where the mass of χ is defined in Eq. (12). During the multi-field scaling the evolution of
χ is dominated by the tachyonic mass and thus 3Hχ̇ ≪ m2

χχ. With m2
χ = −2/t2 (see the

appendix, Sec. A), one finds χ ∝ 1/t ∝ H , and thus

HT = Hi
χT

χi
. (39)

Using this relation one can derive N with respect to χi and obtain

N,χi
=

2

c21χi
=

2

c21χT

HT

Hi
. (40)

In particular, by using this equation and comparing Eq. (24) with Eq. (34), one obtains the
value of χT , i.e.,

χT =
2
√

c21 + c22

c21
. (41)

In appendix C, we have calculated N,χi
numerically and checked Eq. (41).
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5 Non-Gaussianities

In this section we compute the non-Gaussianity of the primordial curvature perturbation
generated by the nonlinear dynamics during multi-field ekpyrotic collapse. We will use the
δN -formalism to calculate δN(χ) in the instantaneous transition approximation. We will
thus consider quadratic terms in δχi in the δN -expansion (22) and, in contrast with Sec. 4, we
also allow for non-linear evolution of χ on large scales. For another example of the multi-field
calculation of non-Gaussianity from fields with exponential potential see [32], even though
in the context of assisted inflation.

Including the cubic self-interaction V (3) given in Eq. (13), the large scale evolution equa-
tion for χ in the multi-field scaling regime becomes

χ̈+ 3Hχ̇+m2
χχ = −1

2
c̃m2

χχ
2. (42)

The above evolution equation can be solved perturbatively. Given the solution to the linear
equation (38), i.e., χL ∝ H , the growing-mode solution for χ is

χ = χL +
1

4
c̃χ2

L = αH +
1

4
c̃α2H2 , (43)

where α is a constant parameter whose value distinguishes the different trajectories. Note
that this is a perturbative result, i.e., it is valid only as long as c̃χ ≪ 1. However, since χ
grows during the collapse, unless prevented by a bouncing phase, eventually this condition
is violated.

For perturbations in the value of χ on a hypersurface of uniform H we have

δχ =
(

1 +
1

2
c̃αH

)

Hδα+
1

4
c̃H2(δα)2 . (44)

The non-linear self-interaction of χ in Eq. (41) grows in time on super-Hubble scales, and
thus the intrinsic non-Gaussianity of χ increases. Therefore, unless we take ti sufficiently
early that we can neglect these nonlinearities, we cannot naively use Eq. (39), which is only
valid at linear order, and its derivative with respect to χi, to estimate the non-Gaussianity
of the curvature perturbation. We need to work with a variable that is as close as possible
to a Gaussian. It turns out that it is convenient to choose α as such a variable. Indeed, if we
assume that δχL, the perturbation of the solution of the linear equation (38), is Gaussian,
then also δα is a Gaussian random variable because δα = δχL/H . Comparing this equation
with Eq. (19) we find that the intrinsic non-Gaussianity of χ is of local form and time
independent, and it is given by

fχ
NL =

5

12
c̃. (45)

In Sec. B of the appendix, we have checked that this result agrees with the one obtained
using the approach of Maldacena [22] with an interaction Hamiltonian containing V (3) [13],
and confirms that we can consistently assume δχL, and thus δα, to be Gaussian. The reason
for this is that the classical nonlinear evolution on large scales completely dominates over
the sub-Hubble nonlinear interactions of quantum nature.
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We will now compute the non-Gaussianity of the curvature perturbation using Eqs. (30–
32). The final result for fNL will be manifestly independent of the time we choose to evaluate

δχi although the splitting into f
(3)
NL and f

(4)
NL is dependent on ti.

Since δα can be assumed to be Gaussian, the simplest way to compute fNL is to calculate
the δN corresponding to the fluctuation δα, i.e.,

δN = N,αδα +
1

2
N,αα(δα)

2 . (46)

In order to compute N,α and N,αα we want to use Eq. (37), and for this we need to know
how HT varies as a function of α at the transition from multi-field scaling to single-field
φ2-dominated scaling solution. Inverting Eq. (43) (to leading order in c̃χ) gives

α =
χ

H

(

1− 1

4
c̃χ
)

. (47)

Assuming as in the linear case that the transition corresponds to a critical value of the
tachyon field χ = χT , on the transition surface (constant χT ) we have from (47) that α ∝ H−1

T

and hence we find

δN =
2

c21

δα

α
− 1

c21

(

δα

α

)2

, (48)

which means

N,α =
2

c21

1

α
, N,αα = − 2

c21

1

α2
. (49)

Taking δα to be a Gaussian random variable and comparing with Eq. (28) with ζL =
−2δα/(c21α) we obtain the nonlinear parameter for the curvature perturbation after the
transition:

fNL =
5

6

N,αα

N2
,α

= − 5

12
c21 . (50)

This is our main result. The non-Gaussianity is given in terms of c1, where −V1 exp(−c1φ1) is
the potential of the field φ1 which remains subdominant after the transition from the multi-
field scaling to the single-field dominated regime. The non-Gaussianity is of local form. This
is due to the fact that it is generated by the nonlinear super-Hubble evolution.

Equation (50) includes also the non-linear growth of the tachyon field on large scales due

to its self-interaction. In order to see this, we can compute f
(3)
NL and f

(4)
NL defined in Eqs. (31)

and (32). Thus, we have to identify the linear and non-linear dependence of δN on the field
values δχi on the initial hypersurface.

Replacing Eq. (45) in Eq. (31) we obtain

f
(3)
NL =

5

12

c̃

N,χi

. (51)

Furthermore, from Eqs. (47) and (48) we have

N,χi
=

dN

dα

dα

dχi

=
2

c21χi

(

1− 1

4
c̃χi

)

, (52)
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and hence

f
(3)
NL =

5

24
c21c̃χi (53)

=
5

12
(c22 − c21)

Hi

HT
, (54)

where for the last equality we have replaced c̃ using its definition, Eq. (9), expressed χi in
terms of χT using the linear relation Eq. (39), and replace χT using Eq. (41).

Secondly we have the contribution due to

N,χiχi
=

d2N

dα2

(

dα

dχi

)2

+
dN

dα

d2α

dχ2
i

= − 2

c21χ
2
i

. (55)

Note that this relation is valid to linear order in c̃χi, and thus contains also the nonlinear
self-interaction of χ generating non-Gaussianities after ti. Using Eq. (32), this gives

f
(4)
NL = − 5

12
c21

(

1 +
1

2
c̃χi

)

(56)

= − 5

12
c21 −

5

12
(c22 − c21)

Hi

HT

. (57)

Both f
(3)
NL and f

(4)
NL depend upon the choice of the initial hypersurface and thus of χi. However

the total fNL comes from the sum of the two terms, it is independent of ti, and is given by
Eq. (50).

In appendix C, we calculated N,α and N,αα numerically and confirm that the result
Eq. (50) obtained by the instantaneous transition and the fast roll approximations is satisfied
with good accuracy.

6 Conclusion

In this paper we have studied the nonlinear evolution of perturbations in the multi-field new
ekpyrotic cosmology. If one sets the model parameters and initial conditions appropriately,
then the prediction for the power spectrum of curvature perturbations produced in multi-
field ekpyrotic collapse can be constrained by present observations [11, 12, 13, 18]. In order
to distinguish this model from other early universe scenarios, such as inflation, by future
observations, it is important to estimate the non-Gaussianity of the curvature perturbations.

We have studied the simplest model based on two fields with exponential potentials
and considered the specific scenario in which the nearly scale-invariant comoving curvature
perturbation is generated by the transition from the multi-field scaling solution to the single-
field dominated attractor solution. We have applied the δN -formalism, which is widely
adopted to study the non-linearity of the primordial curvature perturbation from inflation
[28], to ekpyrotic cosmology. We identify the non-linear curvature perturbation on uniform-
density hypersurfaces at late times with the perturbed local expansion, δN , with respect
to an initial spatially flat hypersurface. The primordial non-Gaussianity parameter fNL

is a sum of two contributions: f
(3)
NL, defined in Eq. (31), comes from the intrinsic three-

point function of the isocurvature field perturbation δχ on an initial hypersurface, and f
(4)
NL,
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defined in Eq. (32), originates from the nonlinear relation between the primordial curvature
perturbation and the isocurvature field perturbations during multi-field ekpyrotic collapse.
It should be emphasized that although the decomposition of fNL into f

(3)
NL and f

(4)
NL may be

convenient, it is unphysical and depends upon the choice of the initial time ti. However, we
show that the physical quantity, the total fNL, is independent of ti.

Both the multi-field and single-field ekpyrotic solutions are power-law solutions. We find
a general result that in case of a sudden transition between two power-law solutions the local
expansion is only a function of the Hubble rate at the transition, HT . Thus the calculation
of the primordial curvature perturbation in our model reduces to finding the perturbation
of HT for different trajectories in phase-space, and hence the local value of the isocurvature
field χ on the initial spatially flat hypersurface.

We find that after the transition to the single-field attractor solution the non-Gaussian
parameter fNL = −5c21/12, where −V1 exp(−c1φ1) is the potential of the field φ1 which
becomes subdominant at late time. Since the non-Gaussianity is mainly generated by the
nonlinear super-Hubble evolution, it is of the local form, and the nonlinear parameter is k
independent. We show in appendix B that the contribution of the intrinsic non-Gaussianity
of the isocurvature field perturbations on sub-Hubble scales is subdominant.

We have checked our analytical results by calculating the expansion, N , numerically in
appendix C. We confirmed that when the fast-roll parameter satisfies 400 > ǫ > 25 the
analytic estimation is accurate within at a few % level. The discrepancy arises from the
breakdown of both the fast-roll approximation and the sudden transition approximation.

A negative value of fNL is much more tightly constrained by current observations than
a positive value. For instance, if we choose c1 = 5 we obtain a nonlinear parameter fNL ≈
−10 that is marginally consistent with current constraints on the non-Gaussianity of the
primordial density perturbation [33, 34]. However such a small value of c1 leads to too large
a value of the spectral index (35), ∆n > +0.16, which is excluded by observations [33].

Corrections to the exact exponential potentials that we have studied in this paper have
been proposed [11, 12] to produce a red spectrum of perturbations. Indeed corrections are
also required to stabilise the multi-field scaling solution at early times (before observables
scales exit the Hubble scale) [17]. We assume that the classical background solution starts
close to the multi-field scaling solution. However, as the multi-field scaling solution is a saddle
point in the phase space, we need some preceding phase that initially drives the classical
background solution to the saddle point. It is important to check whether such corrections
will also affect the non-linear evolution of the field perturbations during the collapse phase,
which could lead to additional sources of primordial non-Gaussianity.

Modifications to the effective action are certainly required at high energies to turn con-
traction to expansion before the collapse phase reaches the big crunch singularity [35, 11,
12, 13]. In this paper, we assumed that the comoving curvature perturbation is conserved
on super-Hubble scales through such a non-singular bounce, neglecting the effect of non-
adiabatic perturbations which are expected to rapidly decay about the single-field attractor
solution. In this case the power spectrum and the non-Gaussian parameter Eq. (50) that we
have calculated in the single-field dominated collapse are directly related to those observed
perturbations in the expanding, hot big bang phase. It is certainly possible to convert the
initial isocurvature field perturbations to curvature perturbations through a different mech-
anism, e.g., via the bounce [11, 12, 13, 17]. In this case the non-linear dependence of the

12



expansion, δN , upon the initial field perturbations may be different, but the non-linear
growth on super-Hubble scales of the isocurvature field perturbations about the multi-field
scaling solution is still expected to lead to a large non-Gaussianity [13, 17]. Further work is
required to quantify the non-Gaussianity predicted in these models.

Note added: This arXiv version of our article includes corrections made after publication
of the journal article. We give the correct expressions for several equations that have an
incorrect sign. This incorrect sign is due to a sign error in the integrated expansion N
in Eq. (37), which then propagates into other equations. As a consequence, the nonlinear
parameter fNL in this new ekpyrotic scenario turns out to be negative and it is much more
tightly constrained by current data than it would have been with a positive sign. By combining
the present observational constraints on fNL and the scalar spectral index, the specific model
studied in this paper is thus ruled out by current observational data.
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A Linear field fluctuations

Here, we briefly summarise the results obtained in the previous works [11, 12, 13, 14, 16] about
the generation and the evolution of linear fluctuations of the χ field about the background
multi-field scaling solution.

In the multi-field scaling solution δχ coincides with entropy field perturbation, which is
automatically gauge-invariant and does not couple with gravity at first order. Since there is
no coupling between the adiabatic and the entropy field perturbations, neglecting the non-
linear self-interactions of the entropy field which are negligible at sufficiently early times,
the equation of motion for δχ becomes simply the equation of a free massive field in an
unperturbed FRW metric,

δ̈χ+ 3H ˙δχ+

(

k2

a2
+m2

χ

)

δχ = 0 , (58)

where m2
χ has been defined in Eq. (12). Introducing the rescaled field v ≡ aδχ, and writing

the wave equation in terms of conformal time τ ≡ ∫

dt/a, we have

v,ττ +
[

k2 − a,ττ
a

+m2
χa

2
]

v = 0 , (59)

where (. . .),τ denotes the derivative with respect to τ .
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For the multi-field scaling solutions, we can show that the following relations hold,

aH =
1

(ǫ− 1)τ
, (60)

a,ττ
a

= −(ǫ− 2)a2H2, (61)

m2
χ = 2ǫ(3− ǫ)H2 . (62)

Thus, Eq. (58) becomes

v,ττ +

[

k2 +
ǫ+ 3ηχ − 2

(ǫ− 1)2τ 2

]

v = 0 , (63)

where ηχ ≡ m2
χ/(3H

2).
Using the usual Bunch-Davies vacuum state to normalise the amplitude of the fluctuations

on small scales, we obtain

v =

√
π

2

ei(ν+1/2)π
2

k1/2
(−kτ)1/2H(1)

ν (−kτ) , (64)

where the order of the Hankel function is given by

ν2 =
9

4
− 3ǫ

(ǫ− 1)2
. (65)

At late times, −kτ → 0, making use of the asymptotic form of the Hankel function,

H(1)
ν (−kτ) → −i

Γ(ν)

π

(

−kτ

2

)−ν

, (66)

the power spectrum of δχ in this limit becomes

Pχ = C2
ν

k2

a2
(−kτ)1−2ν , (67)

where Cν ≡ 2ν−3/2Γ(ν)/π3/2. Then the spectral tilt of the generated fluctuations is

∆nχ ≡ d lnPχ

d ln k
= 3− 2ν , (68)

and to leading order in a fast-roll expansion,

∆nχ ≃ 2

ǫ
. (69)

Thus, for a steep exponential potential we obtain a slightly blue spectrum, becoming scale-
invariant as ǫ → ∞.

Approximating ν ≃ 3/2, on large scales we can relate the amplitude of δχ to H as

P1/2
χ = ǫ

|H|
2π

. (70)
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B Isocurvature field bispectrum

In this section we calculate the intrinsic non-Gaussianity of the field χ, using the approach of
Maldacena [22], which also includes the contribution from sub-Hubble nonlinear interactions.
Following [22], the three-point correlator is given by

〈δχ3(t)〉 = −i
∫ t

−∞
dt〈[δχ3(t), Hint(t

′)]〉 , (71)

where Hint is the interaction Hamiltonian. Here we consider only the cubic interaction, which
is the dominant one for the three-point function,

Hint(t
′) =

∫

d3xa3
V (3)

3!
δχ3 , (72)

where V (3) is given in Eq. (13).
Writing Eq. (71) in Fourier space,

〈δχk1
(t)δχk2

(t)δχk3
(t)〉 = (2π)3δ(

∑

j

kj)×

2Re
(

−iδχk1
(t)δχk2

(t)δχk3
(t)
∫ t

−∞
dt′a3V (3)δχ∗

k1
(t′)δχ∗

k2
(t′)δχ∗

k3
(t′)

)

, (73)

and using the normalised free field solution

δχk =
1

a
√
2k

e−ikτ
(

1− i

kτ

)

(74)

valid in the limit p ≪ 1, we get

〈δχk1
(t)δχk2

(t)δχk3
(t)〉 = −(2π)3δ(

∑

j

kj)
V (3)

4H2

ǫ2H4

∏

j k
3
j

×

Re
[

i (1 + ik1τ) (1 + ik2τ) (1 + ik3τ) e
−i
∑

j
kjτ

τ
∫ τ

−∞

dτ ′

τ ′5
(1− ik1τ

′) (1− ik2τ
′) (1− ik3τ

′) ei
∑

j
kjτ ′

]

, (75)

where we have taken out V (3) from the time integral using that V (3)/H2 is constant.
Taking into account only the leading contribution in −kjτ ≪ 1, the last two lines of the

above equation yield
∑

j k
3
j/4. Furthermore, using also Eqs. (13) and (62) to replace V (3),

we finally find

〈δχk1
(t)δχk2

(t)δχk3
(t)〉 = (2π)3δ(

∑

j

kj)

∑

j k
3
j

∏

j k
3
j

c̃

8
ǫ4H4 . (76)

The intrinsic non-Gaussianity after Hubble-exit is thus of the local form, as it is dominated
by the super-Hubble evolution. Note that using ǫ = 1/p and H = −p/t we can rewrite the
last term in the equation above as

c̃

8
ǫ4H4 =

c̃

8t4
. (77)
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Thus, for c̃ = 1/M we recover the result of [13]. With the definition of the power spectrum
for δχ, Eq. (33), we can rewrite Eq. (76) as

〈δχk1
(t)δχk2

(t)δχk3
(t)〉 = (2π)3δ(

∑

j

kj)

∑

j k
3
j

∏

j k
3
j

2π4c̃P2
χ , (78)

which yields, using Eq. (17),

Bχ(k1, k2, k3) =

∑

j k
3
j

∏

j k
3
j

2π4c̃P2
χ . (79)

This equation is equivalent to Eq. (45), confirming the result found from the large scale
nonlinear evolution in Sec. 5. Thus non-linearities on sub-Hubble scales are completely
subdominant with respect to the nonlinear classical super-Hubble evolution.

C Numerical results

In this appendix, we check the validity of the analysis of Secs. 4 and 5 by numerically
calculating the expansion δN .

C.1 Phase space variables

For numerical calculations, it is more convenient to adopt phase space variables. Thus, first
we summarise the background dynamics in terms of the phase space variables. These are
defined as [15, 36, 37]

xj =
φ̇j√
6H

, (80)

yj =

√

Vje−cjφj

√
3H

, (81)

and their evolution equations are given by

dxj

dN
= −3xj(1−

∑

k

x2
k)− cj

√

3

2
y2j , (82)

dyj
dN

= yj



3
∑

k

x2
k − cj

√

3

2
xj



 , (83)

where N = log a and j = 1, 2 for two fields case. The Friedmann equation gives a constraint,

∑

j

x2
j −

∑

j

y2j = 1 . (84)
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Assuming
∑

j c
−2
j < 1/6, there are 4 fixed points of the system where dxj/dN = dyj/dN = 0,

A :
∑

k

x2
k = 1 , yj = 0 . (85)

Bj : xj =
cj√
6
, yj = −

√

c2j
6
− 1 , xk = yk = 0 , (for j 6= k) , (86)

B : xj =

√
6

3p

1

cj
, yj = −

√

√

√

√

2

c2jp

(

1

3p
− 1

)

, (87)

where p =
∑

j 2/c
2
j . A linearized stability analysis shows that the multi-field scaling solution,

B, always has one unstable mode. On the other hand, the single-field-dominated scaling
solutions, Bj, are always stable.

In the (x1, x2) plane, the three fixed points B,B1 and B2 are connected by a straight
line, which is given by

c2x1 + c1x2 =
c1c2√
6
. (88)

Solutions which start close to the saddle pointB evolve along this line to one of the single-field
dominated solutions, B1 or B2. As in the main text, we concentrate on the case in which the
background evolves from the multi-field scaling solution B to the single-field φ2-dominated
scaling solution B2 for simplicity.

C.2 Numerical scheme

We first briefly summarise the numerical scheme. For the phase space variables xj , yj defined
by Eqs. (80) and (81), we solve the evolution equations (82) and (83), numerically. Since
we concentrate on the case in which the background evolves from the multi-field scaling
solution, initial conditions are characterised by a point close to B in the phase space. As in
the main text, in the multi-field scaling solution background, the fluctuations of the field ϕ
are negligible.

Thus, for the phase space variables, we choose the initial conditions

ϕ̇√
6H

=
c2x1 + c1x2
√

c21 + c22
=

c√
6
, (89)

−χ̇√
6H

=
c2x2 − c1x1
√

c21 + c22
≡ z , (90)

where Eq. (89) is given by the background scaling solution in Eqs. (10) and (11). This
guarantees that (x1, x2) lies on the line given by Eq. (88).

Equation (90) defines the quantity z, which characterises the deviation along the insta-
bility direction from B. Once we fix a model, i.e. the values of c1 and c2, the initial values
of x1 and x2 are determined from Eqs. (89) and (90) for a given initial value of z.

For this set of (x1, x2), y1 is fixed so that (x1, x2, y1) is in the instability direction from
B, and then y2 is fixed from the constraint equation (84). Using this set of initial values
(x1, x2, y1, y2), we can specify a background trajectory by solving the evolution equation.
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The left panel of Fig. 1 shows an example of the background solution. For this background,
we evaluate an expansion δN from the hypersurface characterised by Hi to that by Hf .

From Eqs. (43), (47) and (90), we can see that a different choice of z corresponds to that
of α and χ as

z =
ǫH√
6

(

1 +
1

2
c̃αH

)

α , (91)

=
ǫ√
6

(

1 +
1

4
c̃χ
)

χ . (92)

Then zi is related with χi and it determines the Hubble parameter at the transition HT in
this scheme. In order to calculate the derivatives of N(zi) with respect to zi, we change zi
slightly and calculate the difference of the expansion N(zi). The right panel of Fig. 1 shows
the effect of the change in zi on the Hubble parameter.

0.01004 0.01006 0.01008

-6.02

-6.01

Log|H|
0.01 0.02 0.03 0.04 0.05

-20

-15

-10

-5

N
Log |H|

Log |H |T

B

B 2

N

Figure 1: Left: An example of background solution for log |H| with initial condition z = zi.
We also show log |HT | which is determined from the amplitude of δχ. Right: The same
background solution shown around N ∼ 0.01005 which is much later than the transition.
We also show the solutions with slightly different initial condition, z = zi + δzi, z = zi − δzi,
with dashed lines. After the transition, this difference of initial z generates the curvature
perturbations which can be evaluated as the difference of N at H = Hf .

C.3 Power spectrum and non-Gaussian parameter

In the following we first check numerically the linear relation Eq. (34). Note that from
Eqs. (91) and (92), δz ∝ δα ∝ δχ holds at the linearised level. From Eqs. (24) and (33), the
power spectrum of the curvature perturbation is given by

Pζ = N2
,χi
ǫ2
∣

∣

∣

∣

Hi

2π

∣

∣

∣

∣

2

. (93)

In our numerical scheme, from Eq. (92) we evaluate N,χi
as

N,χi
=

ǫ√
6
N,zi =

ǫ√
6

N(zi + δzi)−N(zi − δzi)

2δzi
, (94)
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which is valid for sufficiently small δzi. From Eq. (34), the power spectrum of the curvature
perturbations can also be expressed in terms of the scalar field fluctuation δχ as

Pζ =
ǫ2

c21 + c22

∣

∣

∣

∣

HT

2π

∣

∣

∣

∣

2

=
ǫ2

c21 + c22

|δχ|2B2

|δχ|2B

∣

∣

∣

∣

Hi

2π

∣

∣

∣

∣

2

. (95)

As Eq. (95) and Eq. (93) should agree, we examine whether a quantity q defined by

q ≡ N2
,χi
(c21 + c22)|δχ|2B
|δχ|2B2

, (96)

becomes close enough to 1. We find that q = 1 is satisfied within about 1 % accuracy in our
numerical simulations.

Next, we compute numerically fNL. From Eq. (91), we can write down N,α and N,αα in
terms of z:

N,α = N,z
dz

dα
=

ǫ√
6
Hi

(

1 +

√
6c̃

ǫ
zi

)

N,z , (97)

N,αα = N,zz

(

dz

dα

)2

+N,z
d2z

dα2
=

ǫ2

6
H2

i

(

1 +
2
√
6c̃

ǫ
zi

)

N,zz +
ǫc̃H2

i√
6
N,z . (98)

In our numerical scheme, we evaluate N,zizi as

N,zizi =
N(zi + δzi)− 2N(zi) +N(zi − δzi)

(δzi)2
. (99)

If the instantaneous transition approximation is valid, the non-Gaussianity parameter
fNL is given by

fNL =
5

6

N,αα

N2
,α

. (100)

Thus, in order to verify the accuracy of the analytical result fNL = −5c21/12, we examine
whether a quantity r defined by

r ≡ −2N,αα

c21N
2
,α

, (101)

becomes close to 1 or not.
Since we checked that the choice of δzi does not affect the results for sufficiently small

values, we use δzi = 10−5. It was also verified that the time evolution of δχ can be described
by that of the multi-field scaling solution up to zi = 0.01; thus, we take zi = 0.01. Using
these initial conditions, we calculate fNL for various combinations of c1 and c2. It is worth
noting that in terms of c1 and c2 the fast-roll parameter is expressed as ǫ = c21c

2
2/2(c

2
1 + c22).

For the examples we show in Table 1, the range of the value of ǫ varies from 25 (c1 = c2 = 10)
to 400 (c1 = c2 = 40). The results for fNL and r are summarised in Table 1.

From Table 1 we can see that for these parameters, the results for fNL are accurately
described by fNL = −5c21/12 which agrees with the result obtained analytically based on the
instantaneous transition approximation and the fast roll approximation in the main text.
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Table 1: c1 and c2 dependence of the nonlinear parameter. We also compare with the results
obtained by the instantaneous transition and the fast-roll approximations. The deviation
from r = 1 denotes the error of these approximations. We adopt zi = 0.01 and δzi = 10−5.

c1 c2 fNL r
10 10 −40.6165 0.974797
10 20 −40.9285 0.982283
10 40 −41.5317 0.996761
15 10 −90.4979 0.965311
15 20 −92.6425 0.988187
15 40 −93.5294 0.997647
20 10 −161.014 0.966082
20 20 −164.976 0.989855
20 40 −169.365 1.01619
40 10 −639.909 0.959865
40 20 −659.744 0.989617
40 40 −664.996 0.997494

We can see that the analytical results deviate from the numerical results for smaller ǫ
(compare the cases with c1 = c2). This is because the fast-roll approximation becomes worse
for smaller ǫ. We can also see that, for a fixed c1, the analytical results again deviate from
the numerical results for smaller c2. This is because the potential around B becomes flatter
along the direction to B2 for smaller c2, and the instantaneous transition approximation
becomes worse.
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