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COMPUTING KNOT FLOER HOMOLOGY IN CYCLIC

BRANCHED COVERS

ADAM SIMON LEVINE

Abstract. We use grid diagrams to give a combinatorial algo-
rithm for computing the knot Floer homology of the pullback of
a knot K in its m-fold cyclic branched cover Σm(K), and we give
computations when m = 2 for over fifty three-bridge knots with
up to eleven crossings.

1. Introduction

Heegaard Floer knot homology, developed by Ozsváth and Szabó
[14] and independently by Rasmussen [18], associates to a knot K in

a three-manifold Y a bigraded group ĤFK(Y,K) that is an invariant
of the knot type of K. If K is a knot in S3, then the inverse im-
age of K in Σm(K), the m-fold cyclic branched cover of S3 branched
along K, is a nulhomologous knot K̃ whose knot type depends only

on the knot type of K, so the group ĤFK(Σm(K), K̃) is a knot invari-
ant of K. In this paper, we describe an algorithm that can compute

ĤFK(Σm(K), K̃) (with coefficients in Z/2) for any knot K ⊂ S3, and
we give computations for a large collection of knots with up to eleven
crossings.
Any knot K ⊂ S3 can be represented by means of a grid diagram,

consisting of an n × n grid in which the centers of certain squares
are marked X or O, such that each row and each column contains
exactly one X and one O. To recover a knot projection, draw an arc
from the X and the O in each column and from the O to the X in
each row, making the vertical strand pass over the horizontal strand
at each crossing. We may view the diagram as lying on a standardly
embedded torus T 2 ⊂ S3 by making the standard edge identifications;
the horizontal grid lines become α circles and the vertical ones β circles.
Manolescu, Ozsváth, and Sarkar [12] showed that such diagrams can

be used to compute ĤFK(S3, K) combinatorially; we shall use them to

compute ĤFK(Σm(K), K̃) for any knot K ⊂ S3. (See also [1, 13, 21].)
Let T̃ be the surface obtained by gluing together m copies of T

(denoted T0, . . . , Tm−1) along branch cuts connecting the X and the O
1
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Figure 1. Heegaard diagram D̃ = (T̃ , α̃, β̃, w̃, z̃) for

(Σ2(K), K̃), where K is the right-handed trefoil. The
solid and dashed lines represent different lifts of the
α (horizontal/red) and β (vertical/blue) circles. The
black squares and crosses represent two generators of

C̃ = ĈFK(D̃), and the shaded region is a disk that con-
tributes to the differential.

in each column. Specifically, in each column, if the X is above the O,
then glue the left side of the branch cut in Tk to the right side of the
same cut in Tk+1 (indices modulo m); if the O is above the X , then
glue the left side of the branch cut in Tk to the right side of the same
cut in Tk−1. The obvious projection π : T̃ → T is an m-fold cyclic
branched cover, branched around the marked points. Each α and β
circle in T intersects the branch cuts a total of zero times algebraically
and therefore has m distinct lifts to T , and each lift of each α circle
intersects exactly one lift of each β circle. (We will describe these
intersections more explicitly in Section 4.)
Denote by R the set of embedded rectangles in T whose lower and

upper edges are arcs of α circles, whose left and right edges are arcs of
β circles, and which do not contain any marked points in their interior.
Each rectangle in R has m distinct lifts to T̃ (possibly passing through
the branch cuts as in Figure 1); denote the set of such lifts by R̃.
Let SS be the set of unordered mn-tuples x of intersection points

between the lifts of α and β circles such that each such lift contains
exactly one point of x. (We will give a more explicit characterization
of the elements of SS later.) Let C be the Z/2-vector space generated
by SS. Define a differential ∂ on C by making the coefficient of y in
∂̃x nonzero if and only if the following conditions hold:

• All but two of the points in x are also in y.
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• There is a rectangle R ∈ R̃ whose lower-left and upper-right
corners are in x, whose upper-left and lower-right corners are
in y, and which does not contain any point of x in its interior.

In Section 4, we shall define two gradings (Alexander and Maslov)
on C, as well as a decomposition of C as a direct sum of complexes
corresponding to spinc structures on Σm(K). We shall prove:

Theorem 1. The homology of the complex (C, ∂) is isomorphic as a

bigraded group to ĤFK(Σm(K), K̃;Z/2)⊗V ⊗n−1, where V ∼= Z/2⊕Z/2
with generators in bigradings (0, 0) and (−1,−1).

In Section 2, we review the construction of Heegaard Floer homol-
ogy for knots using multi-pointed Heegaard diagrams. In Section 3, we
show how to obtain a Heegaard diagram for (Σm(K), K̃) given one for
(S3, K), and we use apply that discussion to grid diagrams in Section 4,

proving Theorem 1. In Section 5, we give the values of ĤFK(Σm(K), K̃)
for over fifty knots with up to eleven crossings. (Grigsby [6] has shown
how to compute these groups for two-bridge knots, so our tables only
include knots that are not two-bridge.) Finally, we make some obser-
vations and conjectures about these results in Section 6.

Acknowledgments. I am grateful to Peter Ozsváth for suggesting
this problem, providing lots of guidance, and reading a draft of this pa-
per, and to John Baldwin, Tom Peters, Josh Greene, Matthew Hedden,
and especially Eli Grigsby for many extremely helpful conversations.

2. Review of Heegaard Floer homology for knots

Let us briefly recall the basic construction of Heegaard Floer ho-
mology for knots [14]. For simplicity, we work with coefficients mod-
ulo 2. A multi-pointed Heegaard diagram D = (Σ,α,β,w, z) con-
sists of an oriented surface Σ; two sets of closed, embedded curves
α = {α1, . . . , αg+n−1} and β = {β1, . . . , βg+n−1} (where g = g(Σ) and
n ≥ 1), each of which spans a g-dimensional subspace of H1(Σ;Z); and
two sets of basepoints, w = {w1, . . . , wn} and z = {z1, . . . , zn}, such
that each component of Σ −

⋃
αi and each component of Σ −

⋃
βi

contains exactly one point of w and one point of z. We obtain an ori-
ented 3-manifold Y and a handlebody decomposition Y = Hα ∪Σ Hβ

by attaching 2-handles to Σ× I along the circles αi×{0} and βi×{1}
and then canonically filling in 3-balls. To obtain a knot or link K,
we connect the w (resp. z) basepoints to the z (resp. w) basepoints
with arcs in the complement of the α (resp. β) curves and push those
arcs into Hα (resp. Hβ). The orientations are such that K intersects Σ
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positively at the z basepoints (where it is passing from Hα to Hβ) and
negatively at the w basepoints (where it is passing from Hβ to Hα).
In terms of Morse theory, we obtain a Heegaard diagram for a given

pair (Y,K) by taking a self-indexing Morse function f on Y and a
Riemannian metric such that K is a union of gradient flowlines con-
necting all the index-0 and index-3 basepoints. We then define Σ as
f−1(3

2
), the α (resp. β) circles as the intersections of Σ with the as-

cending (resp. descending) manifolds of index-1 (resp. index-2) critical
points of f , and the w (resp. z) basepoints as the intersections of Σ
with the segments of K that go from the index-3 (resp. index-0) criti-
cal points to the index-0 (resp. index-3) critical points. We then have
Hα = f−1([0, 3

2
]) and Hβ = f−1([3

2
, 3]).

The Heegaard Floer complex ĈFK(D) is defined as follows. Let Tα

and Tβ be the images of α1× · · ·×αg+n−1 and β1× · · ·× βg+n−1 in the
symmetric product Symg+n−1(Σ); these are both embedded copies of

T g+n−1. The group ĈFK(D) is the Z/2-vector space generated by the
(finitely many) intersection points in Tα ∩ Tβ, and the differential ∂ is
defined by taking counts of holomorphic disks connecting intersection
points:

∂x =
∑

y∈Tα∩Tβ

∑

φ∈π2(x,y)|
µ(φ)=1

nw(φ)=nz(φ)=0

#

(
M(φ)

R

)
y.

Each homotopy class of Whitney disks φ ∈ π2(x,y) has an associated
domain in Σ: a 2-chain D =

∑
aiDi, where the Di are components of

Σ−
⋃

αi−
⋃

βi (elementary domains), such that ∂D is made of arcs of α
curves that connect each point of x to a point of y and arcs of β curves
that connect each point of y to a point of x. Then nw(φ) and nz(φ)
are the multiplicities of the elementary domains containing points of
w and z, respectively. The Maslov index µ(φ) can be computed using
a formula due to Lipshitz [10]:

µ(φ) =
∑

i

aie(Di) + px(D) + py(D),

where px(D) (resp. py(D)) equals the sum of the average of the multi-
plicities of the domains at the four corners of each point of x (resp. y),
and e(Di), the Euler measure, equals 1− k

2
when Di is a convex 2k-gon.

The coefficient of y represents the number of holomorphic representa-
tives of φ and generally depends on the choice of almost complex struc-
ture on Σ. For suitable choices, the homology of the complex is then
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isomorphic to ĤFK(Y,K)⊗ V ⊗n−1, where V ∼= Z/2⊕Z/2 with gener-

ators in bigradings (−1,−1) and (0, 0), and ĤFK(Y,K) is an invariant
of the knot type of K ⊂ Y .
To define the spinc structure sw(x) associated to a generator x, let

Nx be the union of regular neighborhoods of the closures of the gradient
flowlines through the points of x and w. (Flowlines through the former
connect index-1 and index-2 critical points of f ; those through the
latter connect index-0 and index-3 critical points.) The gradient vector

field ~∇f is non-vanishing on Y −Nx and hence defines a spinc structure
(using Turaev’s formulation of spinc structures as homology classes

of non-vanishing vector fields [22]). Let ĈFK(D, s) ⊂ ĈFK(D) be
the subspace generated by the generators x with sw(x) = s. To test
whether two generators x and y are in the same spinc structure, let
γx,y be a 1-cycle obtained by connecting x to y along the α circles and
y to x along the β circles, and let ǫ(x,y) be its image in

H1(Y ) ∼= H1(Σ)/ Span([αi], [βi] | i = 1, . . . , g + n− 1).

Then x and y are in the same spinc structure if and only if ǫ(x,y) = 0.
In particular, if y appears in the boundary of x, then ǫ(x,y) = 0, so

ĈFK(D, s) is a subcomplex. The homology of each of these summands
does not depend on the choice of complex, so there is a natural splitting

ĤFK(Y,K) =
⊕

s∈Spinc(Y )

ĤFK(Y,K, s).

If K is nulhomologous, the Alexander grading on ĈFK(Y,K) is de-
fined as follows. For each generator x, let s

w,z(x) ∈ Spinc(Y,K) =
Spinc(Y0(K)) be the spinc structure on the zero-surgery Y0(K) ob-
tained by extending sw(x)|Y−N(K) over Y0(K). Given a Seifert surface

F for K, the Alexander grading of x is AF (x) =
1
2

〈
c1(sw,z(x)), [F̂ ]

〉
,

where F̂ is the capped-off Seifert surface in Y0(K). The Alexander
grading is always independent of the choice of F up to an additive
constant and completely independent when Y is a rational homology
sphere. The relative Alexander grading between two generators x and
y, A(x,y) = A(x) − A(y), can also be given as the linking number
of γx,y and K (i.e., the intersection number of γx,y with F ), or by
the formula A(x,y) = nz(D) − nw(D) when x and y are in the same
spinc structure and D is any domain connecting x to y. The latter for-

mula shows that the complex ĈFK(D, s) splits according to Alexander
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gradings, and hence

ĤFK(Y,K, s) =
⊕

i∈Z

ĤFK(Y,K, s, i).

If s ∈ Spinc(Y ) is a torsion spinc structure, the relative Maslov grad-
ing between two generators x and y with sw(x) = sw(y) = s is given
by M(x,y) = µ(D)−2nw(D), where D is any domain connecting x to
y. An easy way to compute the relative Maslov grading between two
generators in the same spinc structure is to find a linear combination
of α and β circles that is homologous to γx,y (which is possible since
γx,y ≡ 0 in H1(Y )). Then γx,y minus this linear combination bounds a
domain D in Σ connecting x to y, and we then apply Lipshitz’s formula
to compute µ(D).
Moreover, if Y is a rational homology sphere, the relative Z-gradings

on the ĈFK(Y,K, s) lift to an absolute Q-grading on all of ĈFK(Y,K).
Lipshitz and Lee [9] show that it is easy to compute the relative Q-
grading between two generators that are not necessarily in the same
spinc structure. Since H1(Y ) is finite, there exists m ≥ 1 such that
mγx,y is homologous to a linear combination of α and β circles, somγx,y
minus this combination bounds a domain D. The relative Maslov Q-
grading between x and y is then M(x,y) = 1

m
(µ(D)− 2nw(D)). The

absolute Q-grading is more complicated, and we shall not discuss it in
this paper.
Call a diagram D good if every elementary domain that does not

contain a basepoint is either a bigon or a square. Manolescu, Ozsváth,
and Sarkar showed that in any good diagram, the coefficient of y in ∂x
is nonzero in two cases:

• All but one of the points of y are also in x, and the remaining
two points are the vertices of a bigon without a basepoint or a
point of x in its interior.

• All but two of the points of y are also in x, and the remaining
four points are the vertices of a rectangle without a basepoint
or a point of x in its interior.

It follows that when D is a good diagram, the boundary map can
be determined simply from the combinatorics of the diagram, without

reference to the choice of complex structure on Σ, so ĤFK(Y,K) can
be computed algorithmically.
IfK is a knot in S3, then a grid diagram forK, drawn on a torus as in

Section 1, yields a Heegaard diagram D = (T 2,α,β,w, z) for the pair
(S3, K), where the α circles are the horizontal lines of the grid, the β
circles are the vertical lines, and the w and z basepoints are the points
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marked O andX , respectively. Every region of this diagram is a square,

so ĤFK(S3, K) can be computed combinatorially as above. Specifically,
the generators correspond to permutations of the set {1, . . . , n}, and
the Alexander and Maslov gradings of each generator can be given
by simple formulae (discussed later). Using this diagram, Baldwin

and Gillam [1] have computed ĤFK(S3, K) for all knots with up to
12 crossings. Additionally, Manolescu, Ozsváth, Szabó, and Thurston
[13] give a self-contained proof that this construction yields a knot
invariant. (See also Sarkar and Wang [21], who show how to obtain
good diagrams for knots in arbitrary 3-manifolds.)

3. Heegaard diagrams for cyclic branched covers of

knots

Given a knot K ⊂ S3 and an integer m ≥ 2, there is a well-known
construction of a 3-manifold Σm(K) and an m-fold branched covering
map π : Σm(K) → S3 whose downstairs branch locus is K and whose
upstairs branch locus is a knot K̃ ⊂ Σm(K). The manifold Σm(K) can
be constructed from m copies of S3− intF , where F is a Seifert surface
for K, by connecting the negative side of a bicollar of F in the kth copy
to the positive side in the (k + 1)th (indices modulo m). The inverse
image of K in Σm(K) is a knot K̃, which is nulhomologous because it
bounds a Seifert surface (any of the lifts of the original Seifert surface
F ). For the details of this construction, see Rolfsen [20].
The group of covering transformations of Σm(K) → S3 is cyclic of

order m, generated by a map τm : Σm(K) → Σm(K) that takes the kth

copy of S3r intF to the (k+1)th (indices modulo m). If γ is a 1-cycle
in S3, then by using transfer homomorphisms, we see that for any lift
γ̃, the equation

(1)

m−1∑

k=0

τkm∗(γ̃) = 0

holds in H1(Σ
m(K);Z). In particular, when m = 2, we have τ2∗(γ̃) =

−γ̃.
When m is a power of a prime p, the group H1(Σ

m(K);Z) is then
finite and contains no pr-torsion for any r [4, p. 16]. The order of

H1(Σ
m(K)) is equal to

∏m−1
j=0 ∆K(ω

j), where ∆K is the Alexander

polynomial of K, and ω is a primitive mth root of unity [2, p. 149].
In particular, note that the action of the deck transformation group on
H1(Σ

m(K);Z) has no nonzero fixed points: if τm∗(α) = α, then

0 = α + τm∗(α) + · · ·+ τm−1
m∗ (α) = mα,
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by Equation 1, so α = 0.
Let D = (S,α,β,w, z) be a multi-pointed Heegaard diagram for

K ⊂ S3 with genus g and n basepoint pairs.1 If f : S3 → R is a self-
indexing Morse function compatible with D, then f̃ = f ◦π : Σm(K) →
R is a self-indexing Morse function for the pair (Σm(K), K̃) whose crit-
ical points are simply the inverse images of the critical points of f . This
function induces a Heegaard splitting Σm(K) = H̃α∪S̃ H̃β that projects
onto the Heegaard splitting of S3. A simple Euler characteristic argu-
ment shows that the genus of the new Heegaard surface S̃ = π−1(S)
is h = mg + (m − 1)(n − 1). Each α and β circle in S bounds a disk
in S3 r K and hence has m distinct preimages in Σm(K). Thus, we

obtain a Heegaard diagram D̃ = (S̃, α̃, β̃, w̃, z̃), where S̃ is a surface

of genus h and α̃, β̃, w̃, z̃ are the inverse images of the corresponding
objects under the covering map.
We may arrange that the Heegaard surface F intersects S in n arcs,

each connecting a z basepoint to a w basepoint. Note that each α
or β circle intersects F algebraically zero times, since, e.g., αi · F =
lk(αi, K) = K ·Dαi

= 0, where Dαi
is a spanning disk for αi. To obtain

the diagram D̃ directly, we may connect m copies of D by using the
arcs of F ∩S as branch cuts. A complex structure on S naturally yields
a complex structure on S̃ that makes the projection π : S̃ → S and the
covering transformation τm : S̃ → S̃ holomorphic.

The generators of the complex ĈFK(D̃) may be described as follows:

Lemma 3.1. Any generator x of ĈFK(D̃) can be decomposed (non-
uniquely) as x = x̃1 ∪ · · · ∪ x̃m, where x1, . . . ,xm are generators of

ĈFK(D), and x̃i is a lift of xi to D̃.

Proof. Given a generator x of ĈFK(D̃), let x̄ be its image under the nat-

ural map Symmn(S̃) → Symmn(S), consisting of mn points of Σ (possi-
bly repeated) such that each α circle and each β circle contains exactly
m points. It is then easy to partition x̄ into m subsets x1, . . . ,xm, each

of which is a generator of ĈFK(D) as required. Note that this choice
of partition is not unique. �

Given a generator x0 of ĈFK(D), let L(x0) denote the generator

of ĈFK(D̃) consisting of all m lifts of each point of x0. Using the
action of the deck transformation τm on D, we may write L(x0) =

x̃0 ∪ τm(x̃0) ∪ · · · ∪ τm−1
m (x̃), where x̃0 is any lift of x0 to D̃.

1In the discussion that follows, we denote the Heegaard surface by S rather than
Σ to avoid confusion with the notation Σm(K).
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Lemma 3.2. All generators of ĈFK(D̃) of the form x = L(x0) are
in the same spinc structure, denoted s0 and called the canonical spinc

structure on Σm(K).

Proof. (Adapted from Grigsby [5].) Let x0 and y0 be generators of

ĈFK(D); we shall show that L(x0) and L(y0) are in the same spinc

structure. Let γx0,y0
be a 1-cycle joining x0 and y0 as above, and let

γ̃x0,y0
be a lift of γx0,y0

to S̃. Then the 1-cycle

γ̃x0,y0
+ τm∗(γ̃x0,y0

) + · · ·+ τm−1
m∗ (γ̃x0,y0

)

connects L(x0) and L(y0). Then ǫ(L(x0), L(y0)) = 0 by Equation 1,
so L(x0) and L(y0) are in the same spinc structure. �

Remark 3.3. When K is a two-bridge knot and m = 2, Grigsby shows
that for a specific diagram D, the map L extends to an isomorphism of

bigraded chain complexes ĈFK(D) → ĈFK(D̃, s0). Therefore, for any

two-bridge knot K, ĤFK(Σ2(K), K̃, s0) ∼= ĤFK(S3, K). In general,
though, L is not even a chain map.

The spinc structure s0 often also admits a more intrinsic character-
ization. Assume m is a prime power. If f : S3 → R is a self-indexing
Morse function for (S3, K) as above, then its pullback f̃ : Σm(K) → R
is τm-invariant. Using a Riemannian metric on Σm(K) that is the pull-

back of a metric on S3, the gradient ~∇f̃ is τm-invariant and projects
onto ~∇f , and the flowlines for f̃ are precisely the lifts of flowlines for
f . If Nx0

is the union of neighborhoods of flowlines through the points

of x0 and w, where x0 is a generator of ĈFK(D), then π−1(Nx0
) is

the union of neighborhoods of flowlines through the points of L(x0)
and can be denoted NL(x0) as in Section 2. By suitably modifying
~∇f̃ on NL(x0), we may obtain a τm-invariant vector field that deter-
mines sw̃(L(x0)) = s0. It follows that s0 is fixed under the action of
τm on Spinc(Σm(K)).2 Now, if s′0 is another spinc structure fixed un-
der the action of τm, then the difference between s0 and s

′
0 is a class

in H1(Σ
m(K);Z) that is fixed by τm, hence equals zero. Thus, s0 is

uniquely characterized by the property that τ ∗m(s0) = s0. For more
about the significance of s0, see [7].

We now consider the Alexander gradings in ĈFK(D̃).

2In general, spinc structures can always be pulled back under a local diffeomor-
phism using the vector field interpretation. Specifically, if F : M → N is a local
diffeomorphism and ξ is a nonvanishing vector field on N that determines a given
spinc structure s ∈ Spinc(N), then F ∗(s) ∈ Spinc(Σm(K)0) is determined by the
vector field (F∗)

−1(ξ). The first Chern class is natural under this pullback.
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Proposition 3.4. If x = x̃1 ∪ · · · ∪ x̃m as in Lemma 3.1, then the
Alexander grading of x (computed with respect to a Seifert surface for

K̃ that is a lift of a Seifert surface for K) is equal to the average of the
Alexander gradings of x1, . . . ,xm.

Proof. We first consider the relative Alexander gradings. Let F ⊂ S3

be a Seifert surface for K, and let F̃ be a lift of F to Σm(K). The
translates F̃ , τm(F̃ ), . . . , τm−1

m (F̃ ) are all Seifert surfaces for K̃. The
relative Alexander grading between two generators does not depend on

the choice of Seifert surface, so for generators x,y of ĈFK(D̃), we have

mA(x,y) = γx,y · F̃ + γx,y · τm(F̃ ) + · · ·+ γx,y · τ
m−1
m (F̃ ),

where γx,y is a 1-cycle connecting x and y as above. The projection
π∗(γx,y) is a 1-cycle in S that goes from x̄ to ȳ along α circles and from
ȳ to x̄ along β circles. Every intersection point of γx,y with one of the
lifts of F corresponds to an intersection point of π∗(γx,y) with F , so

γx,y · F̃ + γx,y · τm(F̃ ) + · · ·+ γx,y · τ
m−1
m (F̃ ) = π∗(γx,y) · F.

The restriction of π∗(γx,y) to any α or β circle consists of m (possibly
constant or overlapping) arcs. By perhaps adding copies of the α or
β circle, we can arrange that these arcs connect a point of x1 with a
point of y1, a point of x2 with a point of y2, and so on. In other words,

π∗(γx,y) ≡ γx1,y1
+ · · ·+ γxm,ym

modulo the α and β circles in D, whose intersection numbers with F
are zero. Therefore,

A(x,y) =
1

m
(γx1,y1

+ . . . ,+γxm,ym) · F

=
1

m
(A(x1,y1) + · · ·+ A(xm,ym)).

Thus, the Alexander grading of a generator of ĈFK(D̃) is given up to
an additive constant by the average Alexander grading of its parts.
To pin down the additive constant, first note that the branched cover-

ing map π : Σm(K) → S3 extends to an unbranched covering map from
the zero-surgery on K̃ to the zero-surgery on K, π0 : Σm(K)0 → S3

0 .
Since this is a local diffeomorphism, it is possible to pull back spinc

structures. Let x0 be a generator ĈFK(D) in Alexander grading 0,
and let x = L(x0). As in the discussion following Lemma 3.2, we may
find a nonvanishing vector field that determines sw̃(x) = s0 and is τm-
equivariant. The unique extension (up to isotopy) of this vector field
to Σm(K)0 can also be made τm-invariant, so it is the pullback of an
extension to S3

0 of a vector field determining sw(x0). It follows that
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s
w̃,z̃(x) = π∗

0(sw,z(x0)). Now, if ˆ̃F ⊂ Y0(K̃) is obtained by capping off

F̃ in the zero-surgery, then π0∗[
ˆ̃F ] = [F̂ ] in H2(S

0
3 ;Z). Therefore,

AF̃ (x) =
1

2

〈
c1(sw̃,z̃(x)), [

ˆ̃F ]
〉

=
1

2

〈
c1(π

∗
0(sw,z(x0))), [

ˆ̃F ]
〉

=
1

2

〈
c1(sw,z(x0)), π0∗[

ˆ̃F ]
〉

=
1

2

〈
c1(sw,z(x0)), [F̂ ]

〉

= 0 = AF (x0).

Thus, the additive constant C must equal 0. �

Next, we consider the domains in D̃. Any simply-connected elemen-
tary domainD of D that does not contain a basepoint is evenly covered,
so its preimage in D̃ consists of m disjoint domains each diffeomorphic
to D. On the other hand, a domain containing exactly one basepoint
is covered by a single connected domain with m times as many sides
as the original one. In particular, if D is a good diagram, then D̃ is
also good. It follows that the domains that count for the boundary

in ĈFK(D̃) are precisely the lifts of the domains that count for the
boundary of D.
We conclude with a few comments about the symmetries in the case

where m = 2. The order of H1(Σ
2(K);Z) is equal to the determinant

of K, detK = ∆K(−1), which is always odd. As mentioned above, the
non-trivial deck transformation τ2 acts on H1(Σ

2(K);Z) by multipli-
cation by −1. The set Spinc(Σ2(K)) of spinc structures on Σ2(K) is
an affine set for H1(Σ

2(K);Z) and can be identified with the latter by
sending the canonical spinc structure s0 to zero. Under this identifica-
tion, both conjugation (s 7→ s̄) and pullback under τ2 (s 7→ τ ∗2 (s)) are
given by with multiplication by −1, so τ ∗2 (s) = s̄. Since the diagram D̃
is τ2-equivariant, τ2 induces an isomorphism of bigraded groups

ĤFK(Σ2(K), K̃, s) → ĤFK(Σ2(K), K̃, s̄).

On the other hand, it is a standard fact [14, Prop. 3.10] that

ĤFKj(Y,K, s, i) ∼= ĤFKj−2i(Y,K, s̄,−i).

Therefore, to compute ĤFK(Σ2(K), K̃), it suffices to consider only one
out of every pair of conjugate, non-canonical spinc structures, and to
consider only the generators that lie in non-negative Alexander grading.
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Additionally, note that since Σ2(K) is a rational homology sphere, the
Maslov Z-grading lifts to a Q-grading that extends across all spinc

structures.

4. Grid diagrams and cyclic branched covers

As described in Section 1, any oriented knot K ⊂ S3 can be repre-
sented by means of a grid diagram. By drawing the grid diagram on
a standardly embedded torus in S3, we may think of the grid diagram
as a genus 1, multi-pointed Heegaard diagram D = (T 2,α,β,w, z) for
the pair (S3, K), where the α circles are the horizontal lines of the grid,
the β circles are the vertical lines, the w basepoints are in the regions
marked O, and the z basepoints are in the regions marked X .
We label the α circles α0, . . . , αn−1 from bottom to top and the β

circles β0, . . . , βn−1 from left to right. Each α circle intersects each β
circle exactly once: βi ∩ αj = {xij}. Generators of the Heegaard Floer

chain complex ĈFK(D) then correspond to permutations of the index
set {0, . . . , n− 1} via the correspondence σ 7→ (x0,σ(0), . . . , xn−1,σ(n−1)).
The diagram is good, so the differential can be computed combinatori-
ally as described in Section 2. Specifically, the coefficient of y in ∂x is
1 if all but two of the points of x and y agree and there is a rectangle
embedded in the torus with points of x as its lower-left and upper-right
corners, points of y as its lower-right and upper-left corners, and no
basepoints or points of x in its interior, and 0 otherwise.
For each grid point x, let w(x) denote the winding number of the

knot projection around x. Let p1, . . . , p8n (repetitions allowed) denote
the vertices of the 2n squares containing basepoints, and set

a =
1− n

2
+

1

8

8n∑

i=1

w(pi).

According to Manolescu, Ozsváth, and Sarkar [12], the Alexander grad-

ing of a generator x of ĈFK(D) is given by the formula

(2) A(x) = a−
∑

x∈x

w(x).

There is also a formula for the Maslov grading of a generator, but it is
not relevant for our purposes.
A Seifert surface for K may be seen as follows. Isotope K so that

it lies entirely within Hα by letting the arcs of K ∩ Hβ fall onto the
boundary torus. In fact, it lies within a ball contained in Hα since the
knot projection in the grid diagram never passes through the left edge
of the grid. Take a Seifert surface F contained in this ball, and then
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isotope F and K so that K returns to its original position. F then
intersects the Heegaard surface T 2 in n arcs, one connecting the two
basepoints in each column of the grid diagram, and it intersects Hβ in
strips that lie above these arcs. The orientations of K and S3 imply
that the positive side of a bicollar for F lies on the right of one of these
strips when the X is above the O and on the left when the O is above
the X .
By the results of Section 3, it follows that D̃ = (T̃ , α̃, β̃, w̃, z̃),

where T̃ is the surface defined in Section 1 and α̃, β̃, w̃, z̃ are the lifts
of the corresponding objects in D, is a good Heegaard diagram for
(Σm(K), K̃).

For computational purposes, the generators of ĈFK(D̃) can be de-
scribed easily as follows. For any i = 0, . . . , n− 1 and j = 0, . . . , n− 1,
each lift of βi meets exactly one lift of αj. Specifically, let β̃k

j denote

the lift of βj on the kth copy of D (for k = 0, . . . , m−1). Let α̃k
j denote

the lift of αj that intersects the leftmost edge of the kth grid diagram

(β̃k
0 ). Let x̃k

i,j denote the lift of xi,j on the kth diagram. Define a map
g : Z/n × Z/n × Z/m → Z/m by g(i, j, k) = k − w(xi,j) mod m. The

lift of αj that meets a particular β̃k
i is given by the following lemma:

Lemma 4.1. The point x̃k
i,j is the intersection between β̃k

i and α̃
g(i,j,k)
j .

Proof. We induct on i. For i = 0, we have w(x0,j) = 0, and by construc-

tion α̃k
j meets β̃k

0 . For the induction step, let −−−−−→xi,jxi+1,j be the segment
of αj from xi,j to xi+1,j . Note that w(xi+1,j) is equal to w(xi,j) + 1 if
−−−−−→xi,jxi+1,j passes below the X and above the O in its column, w(xi,j)−1
if it passes above X and below O, and w(xi,j) otherwise. Similarly, if
x̃k
i,j lies on α̃l

j , then by the previous discussion, x̃k
i+1,j lies on α̃l−1

j in the

first case, on α̃l+1
j in the second, and on α̃l

j in the third (upper indices
modulo m). This proves the induction step. �

We may then identify the generators of ĈFK(D̃) with the set of
m-to-one maps

φ : {0, . . . , n− 1} × {0, . . . , m− 1} → {0, . . . , n− 1}

such that for each j = 0, . . . , n − 1, the function g(·, j, ·) assumes all
m possible values on φ−1(j). In other words, if we shade the m lifts
of each α with different colors as in Figure 1 and arrange the copies
of T horizontally, a generator is a selection of mn grid points so each
column contains one point and each row contains m points, one of each
color. It is not difficult to enumerate such maps algorithmically.
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The differentials in ĈFK(D̃) are easy to compute. Since all of the

regions of D̃ that do not contain basepoints are rectangles, the only do-
mains that count for the differential are rectangles, as described above.
These are precisely the lifts of the domains in D that count for the

differential of ĈFK(D). This proves Theorem 1.
To compute the Alexander grading of a generator x, we decompose

it into x̃1 ∪ · · · ∪ x̃m using Lemma 3.1, and then use Proposition 3.4
and Equation 2 to write:

AF̃ (x) =
1

m
(AF (x1) + · · ·+ AF (xm))

=
1

m

m∑

k=1

(
a−

∑

x∈xk

w(x)

)

= a−
1

m

m∑

k=1

∑

x∈x̃k

w(π(x))

= a−
1

m

∑

x∈x

w(π(x)).

To split up the generators of ĈFK(D̃) according to spinc structures,
we simply need to be able to express ǫ(x,y) in terms of a presentation
H1(Σ

m(K);Z). Since

H1(Σ
m(K);Z) ∼= H1(T̃ )/ Span([α̃

k
i ], [β̃

k
i ] | i ∈ Z/n, k ∈ Z/m),

we can obtain such a presentation by taking a basis for H1(S̃) and

imposing relations obtained by expressing α̃ and β̃ curves in terms of
that basis.
In the case where m = 2, we may view T̃ as the union of two n-

times-punctured tori T0, T1, glued along their boundaries. It is then
easy to write down a symplectic basis for H1(T̃ ;Z). Specifically, let
(ai, bi) (i = 0, 1) be the standard basis for H1(Ti;Z), where ai is the
bottom edge of the grid diagram (oriented to the right) and bi is the left
edge (oriented upwards), so that ai · bi = 1. Let cj (j = 0, . . . , n−2) be
a loop in T1 that goes once counterclockwise around the jth branch cut
(counted from the left), and let dj be a loop that passes from the right
side of the (n− 1)th branch cut to the left side of the jth branch cut in
T0 and from the right side of the jth branch cut to the left side of the
(n− 1)th branch cut in T1, passing below all of the other branch cuts.
(See Figure 4.) Then cj · dj = 1, and all other intersection numbers are
zero. It is not hard to see that the ai, bi, and cj are all killed in H1(Y ),
and the remaining relators are alternating sums of dj given by the α̃0

i
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1
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0 1

d d
2

d
3

Figure 2. A symplectic basis for H1(T̃ ;Z).

circles. This presentation can then be reduced to Smith normal form
for easy use. For instance, in the right-handed trefoil example shown
in Figure 4,

H1(Σ
2(K);Z) ∼= Z4 〈d0, . . . , d3〉 /(d0 − d3, d0 − d2 + d3, d0 − d1 + d2, d1)

∼= Z/3.

Computing ǫ(x,y) is then just a matter of counting how many times
a 1-cycle representative γx,y passes through the branch cuts, weighting
the cuts appropriately.
The relative Maslov grading between two generators (an integer if

they are in the same spinc structure, and a rational number otherwise)
can be computed as described in Section 2. Because all the basepoints
in the Heegaard diagrams used in this paper are contained in octagonal
regions, it is not possible to compute the absolute Maslov gradings or

the spectral sequence from ĤFK(Σ2(K), K̃) to ĤF(Σ2(K)) combinato-

rially. However, in many instances, the groups ĤF(Σ2(K)), or at least
the correction terms d(Σ2(K), s), can be computed via other means
[8, 17]. In such cases, it is often possible to pin down the absolute

Maslov gradings for ĤFK(Σ2(K), K̃). Specifically, the relative Maslov
Q-grading and the action of H1(Σ

2(K)) on Spinc(Σ2(K)) usually pro-

vide enough information to match the groups ĤFK(Σ2(K), K̃, s) up
with the rational numbers d(Σ2(K), s) that are computed via some

other means. If there is a spinc structure s in which ĤFK(Σ2(K), K̃, s)
has rank 1, then the absolute Maslov grading of that group equals the
corresponding d invariant, and the rest of the absolute gradings are
completely determined.
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5. Results

The tables that follow list the ranks for ĤFK(Σ2(K), K̃;Z/2) by
means of the Poincaré polynomials:

ps(q, t) =
∑

i,j

dimZ/2 ĤFKj(Σ
2(K), K̃, s, i;Z/2)tiqj.

The Maslov Q-gradings are normalized so that in the canonical spinc

structure s0, the nonzero elements in Alexander grading g(K) have
Maslov grading g(K). For each knot, the first line gives ps0(q, t), and
each subsequent line gives ps(q, t) for a pair of conjugate spinc struc-
tures. We identify spinc structures with elements of H1(Σ

2(K);Z),
which is either a cyclic group or the sum of two cyclic groups, taking s0

to 0. (Of course, the choice of basis for H1(Σ
2(K);Z) is not canonical.)

In each spinc structure, most of the nonzero groups lie along a single
diagonal; the terms corresponding to the groups not on that diagonal
are underlined.
These results were computed using a program written in C++ and

Mathematica, based on Baldwin and Gillam’s program [1] for comput-

ing ĤFK(S3, K). Most of the grid diagrams were obtained using Marc
Culler’s program Gridlink [3]. Using available computer resources, it

was possible to compute ĤFK(Σ2(K), K̃) for all the three-bridge knots
with up to eleven crossings and arc index ≤ 9, and for many knots
with arc index 10. (Grigsby [6] has a much more efficient algorithm for

computing ĤFK(Σ2(K), K̃) when K is two-bridge, so we do not list
those knots here.)
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ
2(K), K̃, s, i;Z/2)tiqj

85 Z/21 0 q−3t−3 + 3q−2t−2 + 4q−1t−1 + 5 + 4qt+ 3q2t2 + q3t3

±1 q5/21(q−2t−2 + 3q−1t−1 + 3 + 3qt + q2t2)

±2 q20/21

±3 q8/7

±4 q17/21(q−1t−1 + 1 + qt)

±5 q20/21

±6 q4/7

±7 q2/3(q−1t−1 + 3 + qt)

±8 q5/21(q−2t−2 + 3q−1t−1 + 3 + 3qt + q2t2)

±9 q2/7(q−2t−2 + 2q−1t−1 + 3 + 2qt+ q2t2)

±10 q17/21(q−1t−1 + 1 + qt)

810 Z/27 0 q−3t−3 + 3q−2t−2 + 6q−1t−1 + 7 + 6qt+ 3q2t2 + q3t3

±1 q7/27(q−2t−2 + 3q−1t−1 + 5 + 3qt + q2t2)

±2 q1/27

±3 q1/3

±4 q4/27(q−1t−1 + 1 + qt)

±5 q13/27

±6 q1/3

±7 q−8/27(q−1t−1 + 1 + qt)

±8 q−11/27(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)
±9 q−1t−1 + 1 + qt

±10 q25/27

±11 q10/27(2q−1t−1 + 3 + 2qt)

±12 q1/3(q−2t−2 + 2q−1t−1 + 3 + 2qt+ q2t2)

±13 q22/27(q−1t−1 + 1 + qt)

815 Z/33 0 3q−2t−2 + 8q−1t−1 + 11 + 8qt + 3q2t2

±1 q13/33(2q−1t−1 + 3 + 2qt)

±2 q−14/33(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±3 q6/11

±4 q10/33

±5 q−5/33(q−1t−1 + 1 + qt)

±6 q2/11

±7 q10/33

±8 q7/33(q−1t−1 + 1 + qt)

±9 q10/11

±10 q13/33(2q−1t−1 + 3 + 2qt)

±11 q2/3

±12 q−3/11(q−1t−1 + 1 + qt)

±13 q−14/33(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±14 q7/33(q−1t−1 + 1 + qt)

±15 q−4/11(q−2t−2 + 2q−1t−1 + 3 + 2qt + q2t2)

±16 q−5/33(q−1t−1 + 1 + qt)

816 Z/35 0 q−3t−3 + 4q−2t−2 + 8q−1t−1 + 9 + 8qt+ 4q2t2 + q3t3

±1 q16/35(q−1t−1 + 1 + qt)

±2 q29/35

±3 q4/35(q−1t−1 + 1 + qt)

±4 q11/35(q−2t−2 + 3q−1t−1 + 5 + 3qt+ q2t2)

±5 q3/7(q−1t−1 + 3 + qt)

±6 q16/35(q−1t−1 + 1 + qt)

±7 q2/5(2q−1t−1 + 3 + 2qt)

±8 q9/35

±9 q1/35

±10 q5/7(q−1t−1 + 3 + qt)

±11 q11/35(q−2t−2 + 3q−1t−1 + 5 + 3qt+ q2t2)

±12 q29/35

±13 q9/35

±14 q3/5

±15 q6/7(q−1t−1 + 1 + qt)

±16 q1/35

±17 q4/35(q−1t−1 + 1 + qt)
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ
2(K), K̃, s, i;Z/2)tiqj

817 Z/37 0 q−3t−3 + 4q−2t−2 + 8q−1t−1 + 11 + 8qt+ 4q2t2 + q3t3

±1 q2/37

±2 q8/37(q−1t−1 + 3 + qt)

±3 q18/37

±4 q−5/37(q−1t−1 + 1+ qt)

±5 q13/37(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±6 q−2/37

±7 q−13/37(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±8 q17/37(q−1t−1 + 1 + qt)

±9 q14/37

±10 q−22/37

±11 q−17/37(q−1t−1 + 1 + qt)

±12 q−8/37(q−1t−1 + 3+ qt)

±13 q5/37(q−1t−1 + 1 + qt)

±14 q22/37

±15 q6/37

±16 q−6/37

±17 q−14/37

±18 q−18/37

818 Z/3⊕ Z/15 (0, 0) q−3t−3 + 5q−2t−2 + 10q−1t−1 + 13 + 10qt + 5q2t2 + q3t3

±(0, 1) q7/15(q−1t−1 + 1 + qt)

±(0, 2) q−2/15

±(0, 3) q1/5(q−1t−1 + 1 + qt)

±(0, 4) q7/15(q−1t−1 + 1 + qt)

±(0, 5) q−2/3

±(0, 6) q−1/5(q−1t−1 + 1 + qt)

±(0, 7) q−2/15

±(1, 0) q−2/3

±(1, 1) q7/15(q−1t−1 + 1 + qt)

±(1, 2) q−7/15(q−1t−1 + 1+ qt)

±(1, 3) q−7/15(q−1t−1 + 1+ qt)

±(1, 4) q7/15(q−1t−1 + 1 + qt)

±(1, 5) q−2/3

±(1, 6) q2/15

±(1, 7) q−2/15

±(1, 8) q−7/15(q−1t−1 + 1+ qt)

±(1, 9) q2/15

±(1, 10) q2/3

±(1, 11) q2/15

±(1, 12) q−7/15(q−1t−1 + 1+ qt)

±(1, 13) q−2/15

±(1, 14) q2/15

819 Z/3 0 q−3t−3 + q−2t−2 + q + q2t2 + q3t3

±1 q2/3(q−1t−1 + 1 + qt)

820 Z/9 0 q−2t−2 + 2q−1t−1 + 3 + 2qt + q2t2

±1 q7/9(q−1t−1 + 1 + qt)

±2 q1/9(q−1t−1 + 1 + qt)
±3 1

±4 q4/9

821 Z/15 1 q−2t−2 + 4q−1t−1 + 5 + 4qt + q2t2

±1 q−2/15(q−1t−1 + 1+ qt)

±2 q7/15

±3 q−1/5(q−1t−1 + 3 + qt)

±4 q−2/15(q−1t−1 + 1+ qt)

±5 q−1/3

±6 q1/5

±7 q7/15
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ
2(K), K̃, s, i;Z/2)tiqj

942 Z/7 0 q−2t−2 + 2q−1t−1 + 2 + q + 2qt+ q2t2

±1 q3/7

±2 q5/7(q−1t−1 + 3 + qt)

±3 q6/7(q−1t−1 + 1 + qt)

943 Z/13 0 q−3t−3 + 3q−2t−2 + 2q−1t−1 + 1 + 2qt+ 3q2t2 + q3t3

±1 q10/13(q−1t−1 + 3 + qt)

±2 q1/13(q−1t−1 + 1 + qt)

±3 q12/13

±4 q4/13(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±5 q16/13

±6 q9/13(q−1t−1 + 1 + qt)

944 Z/17 0 q−2t−2 + 4q−1t−1 + 7 + 4qt+ q2t2

±1 q−8/17

±2 q−15/17(q−1t−1 + 1 + qt)

±3 q−4/17

±4 q8/17

±5 q4/17

±6 q−16/17

±7 q−1/17(q−1t−1 + 1 + qt)

±8 q−2/17(q−1t−1 + 3 + qt)

945 Z/23 0 q−2t−2 + 6q−1t−1 + 9 + 6qt+ q2t2

±1 q−8/23(2q−1t−1 + 3 + 2qt)

±2 q−9/23

±3 q−3/23(q−1t−1 + 3 + qt)

±4 q−13/23

±5 q7/23

±6 q11/23

±7 q−1/23

±8 q−6/23(q−1t−1 + 1 + qt)

±9 q−4/23(2q−1t−1 + 3 + 2qt)

±10 q−18/23(q−1t−1 + 1 + qt)

±11 q−2/23(q−1t−1 + 1 + qt)

946 Z/3⊕ Z/3 (0, 0) 2q−1t−1 + 5 + 2qt

±(0, 1) q−2/3(q−1t−1 + 3 + qt)
±(1, 0) 1
±(1, 1) 1

±(1, 2) q−4/3

947 Z/3⊕ Z/9 (0, 0) q−3t−3 + 4q−2t−2 + 6q−1t−1 + 5 + 6qt+ 4q2t2 + q3t3

±(0, 1) q−1/9(q−1t−1 + 3 + qt)

±(0, 2) q−4/9(q−1t−1 + 1 + qt)
±(0, 3) q−1t−1 + 1 + qt

±(0, 4) q−7/9

±(1, 0) q−1/3

±(1, 1) q−1/9(q−1t−1 + 3 + qt)

±(1, 2) q−1/9(q−1t−1 + 3 + qt)

±(1, 3) q−1/3

±(1, 4) q−7/9

±(1, 5) q−4/9(q−1t−1 + 1 + qt)

±(1, 6) q−1/3

±(1, 7) q−4/9(q−1t−1 + 1 + qt)

±(1, 8) q−7/9
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ
2(K), K̃, s, i;Z/2)tiqj

948 Z/3 ⊕ Z/9 (0, 0) q−2t−2 + 7q−1t−1 + 11 + 7qt+ q2t2

±(0, 1) q−4/9(q−1t−1 + 1 + qt)

±(0, 2) q2/9(2q−1t−1 + 3 + 2qt)
±(0, 3) q−1t−1 + 1 + qt

±(0, 4) q−1/9

±(1, 0) q1/3

±(1, 1) q2/9(2q−1t−1 + 3 + 2qt)

±(1, 2) q2/9(2q−1t−1 + 3 + 2qt)

±(1, 3) q1/3

±(1, 4) q−4/9(q−1t−1 + 1 + qt)

±(1, 5) q−1/9

±(1, 6) q1/3

±(1, 7) q−1/9

±(1, 8) q−4/9(q−1t−1 + 1 + qt)

949 Z/5 ⊕ Z/5 (0, 0) 3q−2t−2 + 6q−1t−1 + 7 + 6qt+ 3q2t2

±(0, 1) q−2/5(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±(0, 2) q2/5

±(1, 0) q−2/5(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±(1, 1) q−1/5(q−1t−1 + 1 + qt)

±(1, 2) q1/5(2q−1t−1 + 3 + 2qt)

±(1, 3) q1/5(2q−1t−1 + 3 + 2qt)

±(1, 4) q−2/5(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±(2, 0) q2/5

±(2, 1) q1/5(2q−1t−1 + 3 + 2qt)

±(2, 2) q−1/5(q−1t−1 + 1 + qt)

±(2, 3) q2/5

±(2, 4) q−1/5(q−1t−1 + 1 + qt)

10124 {0} 0 q−4t−4 + q−3t−3 + t−1 + q + q2t + q3t3 + q4t4

10128 Z/11 0 2q−3t−3 + 3q−2t−2 + q−1t−1 + q + qt+ 3q2t2 + 2q3t3

±1 q8/11(2q−1t−1 + 3 + 2qt)

±2 q10/11(q−1t−1 + 1 + qt)

±3 q6/11(q−1t−1 + 1 + qt)

±4 q−4/11(q−2t−2 + q−1t−1 + q + qt+ q2t2)

±5 q2/11(q−1t−1 + 1 + qt)

10129 Z/25 0 2q−2t−2 + 6q−1t−1 + 9 + 6qt+ 2q2t2

±1 q−8/25(q−2t−2 + 2q−1t−1 + 3 + 2qt+ q2t2)

±2 q−7/25(q−1t−1 + 1 + qt)

±3 q3/25(2q−1t−1 + 3 + 2qt)

±4 q−3/25(q−1t−1 + 1 + qt)
±5 1

±6 q12/25

±7 q8/25

±8 q−12/25

±9 q2/25(q−1t−1 + 3 + qt)
±10 1

±11 q7/25(q−1t−1 + 1 + qt)

±12 q23/25(q−1t−1 + 1 + qt)

10130 Z/17 0 2q−2t−2 + 4q−1t−1 + 5 + 4qt+ 2q2t2

±1 q4/17(q−2t−2 + 2q−1t−1 + 3 + 2qt+ q2t2)

±2 q16/17

±3 q19/17(q−1t−1 + 1 + qt)

±4 q13/17(2q−1t−1 + 3 + 2qt)

±5 q15/17(q−1t−1 + 1 + qt)

±6 q8/17

±7 q9/17(q−1t−1 + 1 + qt)

±8 q1/17(q−1t−1 + 1 + qt)
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ
2(K), K̃, s, i;Z/2)tiqj

10131 Z/31 0 2q−2t−2 + 8q−1t−1 + 11 + 8qt+ 2q2t2

±1 q−18/31(q−1t−1 + 1 + qt)

±2 q−10/31(q−1t−1 + 1 + qt)

±3 q−7/31(q−1t−1 + 3 + qt)

±4 q−9/31

±5 q15/31

±6 q3/31

±7 q−14/31(q−1t−1 + 1 + qt)

±8 q−5/31(2q−1t−1 + 5 + 2qt)

±9 q−1/31

±10 q−2/31(q−1t−1 + 1 + qt)

±11 q−8/31(q−2t−2 + 4q−1t−1 + 5 + 4qt+ q2t2)

±12 q−19/31(q−1t−1 + 3 + qt)

±13 q−4/31(2q−1t−1 + 3 + 2qt)

±14 q−25/31

±15 q11/31

10132 Z/5 0 q−2t−2 + (2q−1 + 1)t−1 + (2 + q) + (2q + q2)t + q2t2

±1 q2/5

±2 q3/5(q−1t−1 + 1 + qt)

10133 Z/19 0 q−2t−2 + 5q−1t−1 + 7 + 5qt + q2t2

±1 q−3/19

±2 q−12/19(q−1t−1 + 1 + qt)

±3 q−8/19(q−1t−1 + 1 + qt)

±4 q9/19

±5 q1/19

±6 q−13/19(q−1t−1 + 3 + qt)

±7 q5/19

±8 q−2/19(2q−1t−1 + 3 + 2qt)

±9 q−15/19

10134 Z/23 0 2q−3t−3 + 4q−2t−2 + 4q−1t−1 + 3 + 4qt+ 4q2t2 + 2q3t3

±1 q8/23(q−1t−1 + 1 + qt)

±2 q9/23(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±3 q3/23(q−2t−2 + 2q−1t−1 + 3 + 2qt+ q2t2)

±4 q−10/23(q−3t−3 + q−2t−2 + q + q2t2 + q3t3)

±5 q16/23(q−1t−1 + 1 + qt)

±6 q12/23(q−1t−1 + 1 + qt)

±7 q1/23(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±8 q29/23

±9 q4/23(q−1t−1 + 1 + qt)

±10 q18/23(2q−1t−1 + 3 + 2qt)

±11 q25/23

10135 Z/37 0 3q−2t−2 + 9q−1t−1 + 13 + 9qt+ 3q2t2

±1 q14/37

±2 q−18/37

±3 q15/37(2q−1t−1 + 3 + 2qt)

±4 q2/37

±5 q17/37(q−1t−1 + 1 + qt)

±6 q−14/37(q−2t−2 + 2q−1t−1 + 3 + 2qt + q2t2)

±7 q−17/37(q−1t−1 + 1 + qt)

±8 q8/37(q−2t−2 + 3q−1t−1 + 5 + 3qt+ q2t2)

±9 q−13/37(q−1t−1 + 1 + qt)

±10 q−6/37

±11 q29/37(q−1t−1 + 1 + qt)

±12 q18/37

±13 q−2/37

±14 q6/37(q−2t−2 + 2q−1t−1 + 3 + 2qt+ q2t2)

±15 q5/37(2q−1t−1 + 3 + 2qt)

±16 q−5/37(q−1t−1 + 1 + qt)

±17 q13/37(q−1t−1 + 1 + qt)

±18 q22/37
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ2(K), K̃, s, i;Z/2)tiqj

10136 Z/15 1 q−2t−2 + 4q−1t−1 + 6 + q + 4qt+ q2t2

±1 q7/15

±2 q13/15(q−1t−1 + 3 + qt)

±3 q1/5

±4 q7/15

±5 q2/3(q−1t−1 + 1 + qt)

±6 q4/5(2q−1t−1 + 3 + 2qt)

±7 q13/15(q−1t−1 + 3 + qt)

10139 Z/3 0 q−4t−4 + q−3t−3 + 2qt−1 + 3q + 2q3t+ q3t3 + q4t4

±1 q5/3(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

10140 Z/9 0 q−2t−2 + 2q−1t−1 + 3 + 2qt+ q2t2

±1 q11/9(q−1t−1 + 1 + qt)

±2 q8/9

±3 1

±4 q5/9(q−1t−1 + 1 + qt)

10142 Z/15 0 q−3t−3 + 3q−2t−2 + 2q−1t−1 + 1 + 2qt+ 3q2t2 + 2q3t3

±1 q1/15(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±2 q4/15(q−1t−1 + 1 + qt)

±3 q−2/5(q−3t−3 + q−2t−2 + q + q2t2 + q3t3)

±1 q1/15(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±6 q2/3(2q−1t−1 + 3 + 2qt)

±2 q7/5

±2 q4/15(q−1t−1 + 1 + qt)

10145 Z/3 0 q−2t−2 + (q−1 + 2q)t−1 + q + 4q2 + (q + 2q3)t+ q2t2

±1 q4/3(2q−1t−1 + 3 + 2qt)

10147 Z/27 0 2q−2t−2 + 7q−1t−1 + 9 + 7qt+ 2q2t2

±1 q7/27(q−1t−1 + 3 + qt)

±2 q1/27

±3 q1/3(2q−1t−1 + 5 + 2qt)

±4 q4/27(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±5 q13/27

±6 q1/3

±7 q19/27(q−1t−1 + 3 + qt)

±8 q16/27(q−1t−1 + 1 + qt)
±9 q−1t−1 + 1 + qt

±10 q25/27

±11 q37/27

±12 q1/3

±13 q22/27(2q−1t−1 + 3 + 2qt)
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ
2(K), K̃, s, i;Z/2)tiqj

10158 Z/45 0 q−3t−3 + 4q−2t−2 + 10q−1t−1 + 15 + 10qt + 4q2t2 + q3t3

±1 q8/45(q−1t−1 + 3 + qt)

±2 q−13/45(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±3 q−2/5

±4 q38/45

±5 q4/9(q−1t−1 + 3 + qt)

±6 q−2/5

±7 q−13/45(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±8 q17/45(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±9 q2/5(2q−1t−1 + 5 + 2qt)

±10 q−2/9(2q−1t−1 + 5 + 2qt)

±11 q−22/45

±12 q−2/5

±13 q−2/45

±14 q38/45

±15 q−1t−1 + 3 + qt

±16 q−22/45

±17 q17/45(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±18 q−2/5

±19 q8/45(q−1t−1 + 3 + qt)

±20 q1/9(q−1t−1 + 1 + qt)

±21 q2/5

±22 q2/45

10160 Z/21 0 q−3t−3 + 4q−2t−2 + 4q−1t−1 + 3 + 4qt+ 4q2t2 + q3t3

±1 q1/21(q−1t−1 + 1 + qt)

±2 q4/21(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±3 q3/7(q−1t−1 + 1 + qt)

±4 q16/21

±5 q4/21(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±6 q5/7(2q−1t−1 + 3 + 2qt)

±7 q4/3

±8 q1/21(q−1t−1 + 1 + qt)

±9 q6/7(q−1t−1 + 3 + qt)

±10 q16/21

10161 Z/5 0 q−3t−3 + (q−2 + 1)t−2 + 2qt−1 + 3q2 + 2q3t+ (q2 + q4)t2 + q3t3

±1 q9/5(2q−1t−1 + 3 + 2qt)

±2 q6/5(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

10164 Z/45 0 3q−2t−2 + 11q−1t−1 + 17 + 11qt+ 3q2t2

±1 q17/45(q−1t−1 + 1 + qt)

±2 q−22/45

±3 q2/5

±4 q2/45

±5 q4/9(q−1t−1 + 3 + qt)

±6 q−2/5

±7 q−2/45

±8 q8/45(q−2t−2 + 3q−1t−1 + 5 + 3qt + q2t2)

±9 q−2/5(q−2t−2 + 2q−1t−1 + 3 + 2qt+ q2t2)

±10 q−2/9

±11 q−13/45(q−1t−1 + 1 + qt)

±12 q2/5

±13 q38/45

±14 q2/45

±15 q−1t−1 + 3 + qt

±16 q−13/45(q−1t−1 + 1 + qt)

±17 q8/45(q−2t−2 + 3q−1t−1 + 5 + 3qt + q2t2)

±18 q2/5

±19 q17/45(q−1t−1 + 1 + qt)

±20 q1/9(2q−1t−1 + 3 + 2qt)

±21 q−2/5

±22 q38/45
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ2(K), K̃, s, i;Z/2)tiqj

11n12 Z/13 0 q−2t−2 + (q−2 + 4q−1)t−1 + q−1 + 6 + (1 + 4q)t + q2t2

±1 q−2/13

±2 q−8/13(q−1t−1 + 3 + qt)

±3 q−18/13

±4 q−6/13

±5 q−11/13(2q−1t−1 + 3 + 2qt)

±6 q−7/13(q−1t−1 + 1 + qt)

11n19 Z/5 0 q−3t−3 + 2q−2t−2 + (q−1 + 1)t−1 + q + (q + q2)t + 2q2t2 + q3t3

±1 q4/5(q−2t−2 + q−1t−1 + 1 + qt + q2t2)

±2 q6/5(q−1t−1 + 3 + qt)

11n20 Z/23 0 2q−2t−2 + 6q−1t−1 + 8 + q + 6qt+ 2q2t2

±1 q17/23(q−1t−1 + 3 + qt)

±2 q−1/23

±3 q−8/23q−2t−2 + 2q−1t−1 + 2 + q + 2qt+ 1q2t2

±4 q19/23(2q−1t−1 + 5 + 2qt)

±5 q11/23

±6 q14/23(q−1t−1 + 1 + qt)

±7 q5/23(q−1t−1 + 3 + qt)

±8 q7/23

±9 q20/23(2q−1t−1 + 3 + 2qt)

±10 q21/23(q−1t−1 + 3 + qt)

±11 q10/23(q−1t−1 + 1 + qt)

11n38 Z/3 0 q−2t−2 + (2q−1 + 1)t−1 + 2 + 3q + (2q + q2)t+ q2t2

±1 q4/3(q−1t−1 + 1 + qt)

11n49 {0} 0 q−2t−2 + (4q−3 + 2q−1)t−1 + 9q−2 + 2 + (4q−1 + q)t+ q2t2

11n95 Z/33 0 q−3t−3 + 5q−2t−2 + 7q−1t−1 + 7 + 7qt+ 5q2t2 + q3t3

±1 q−13/33(q−1t−1 + 1 + qt)

±2 q14/33

±3 q5/11(q−1t−1 + 1 + qt)

±4 q−10/33(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±5 q5/33(2q−1t−1 + 3 + 2qt)

±6 q−2/11(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±7 q−10/33(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±8 q26/33

±9 q1/11(q−1t−1 + 1 + qt)

±10 q−13/33(q−1t−1 + 1 + qt)

±11 q1/3(q−1t−1 + 1 + qt)

±12 q3/11(2q−1t−1 + 3 + 2qt)

±13 q14/33

±14 q26/33

±15 q4/11(q−1t−1 + 3 + qt)

±16 q5/33(2q−1t−1 + 3 + 2qt)

11n102 Z/3 0 q−2t−2 + (5q−1 + 2q)t−1 + 7 + 4q2 + (5q + 2q3)t+ q2t2

±1 q1/3(2q−1t−1 + 5 + 2qt)

11n116 {0} 0 q−2t−2 + (4q−3 + 2q−1)t−1 + 9q−2 + 2 + (4q−1 + q)t+ q2t2
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ
2(K), K̃, s, i;Z/2)tiqj

11n117 Z/35 0 3q−2t−2 + 9q−1t−1 + 11 + 9qt + 3q2t2

±1 q9/35(2q−1t−1 + 5 + 2qt)

±2 q1/35

±3 q11/35(q−1t−1 + 3 + qt)

±4 q4/35(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±5 q3/7(q−1t−1 + 3 + qt)

±6 q9/35(2q−1t−1 + 5 + 2qt)

±7 q−2/5(q−2t−2 + 2q−1t−1 + 2 + q + 2qt + q2t2)

±8 q16/35(q−1t−1 + 1 + qt)

±9 q29/35

±10 q5/7(2q−1t−1 + 5 + 2qt)

±11 q4/35(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±12 q1/355

±13 q16/35(q−1t−1 + 1 + qt)

±14 q7/5

±15 q6/7(2q−1t−1 + 3 + 2qt)

±16 q29/35

±17 q11/35(q−1t−1 + 3 + qt)

11n118 Z/21 0 q−3t−3 + 4q−2t−2 + 4q−1t−1 + 3 + 4qt+ 4q2t2 + q3t3

±1 q5/21(q−1t−1 + 1 + qt)

±2 q20/21

±3 q1/7(2q−1t−1 + 3 + 2qt)

±4 q−4/21(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

±5 q20/21

±6 q4/7

±7 q−1/3(q−1t−1 + 1+ qt)

±8 q5/21(q−1t−1 + 1 + qt)

±9 q2/7(q−1t−1 + 3 + qt)

±10 q−4/21(q−2t−2 + q−1t−1 + 1 + qt+ q2t2)

11n122 Z/27 0 2q−2t−2 + 7q−1t−1 + 9 + 2qt + 2q2t2

±1 q13/27

±2 q−2/27(2q−1t−1 + 3 + 2qt)

±3 q1/3(2q−1t−1 + 5 + 2qt)

±4 q−8/27(q−1t−1 + 1 + qt)

±5 q1/27

±6 q1/3

±7 q−11/27

±8 q−5/27(q−1t−1 + 3 + qt)
±9 q−1t−1 + 1 + qt

±10 q−23/27

±11 q−20/27(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±12 q1/3

±13 q−17/27(q−1t−1 + 3 + qt)

11n138 Z/15 0 2q−2t−2 + 4q−1t−1 + (q−1 + 4) + 4qt+ 2q2t2

±1 q−7/15

±2 q−13/15(q−1t−1 + 3 + qt)

±3 q−1/5((q−2 + 2q−1)t−1 + (q−1 + 4) + (1 + 2q)t)

±4 q−7/15

±5 q−2/3(q−2t−2 + 3q−1t−1 + 3 + 3qt+ q2t2)

±6 q−9/5

±7 q−13/15(q−1t−1 + 3 + qt)

11n139 Z/9 0 2q−1t−1 + 5 + 2qt

±1 q−4/9

±2 q−16/9

±3 1

±4 q−10/9(q−1t−1 + 3 + qt)
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K H1(Σ2(K);Z) s

P

i,j dimZ/2 ĤFKj(Σ
2(K), K̃, s, i;Z/2)tiqj

11n141 Z/21 0 5q−1t−1 + 11 + 5qt

±1 q−10/21

±2 q2/21(2q−1t−1 + 5+ 2qt)

±3 q−2/7(2q−1t−1 + 5 + 2qt)

±4 q8/21(q−1t−1 + 3 + qt)

±5 q2/21(2q−1t−1 + 5+ 2qt)

±6 q6/7

±7 q2/3(2q−1t−1 + 5 + 2qt)

±8 q−10/21

±9 q10/7

±10 q8/21(q−1t−1 + 3 + qt)

11n142 Z/33 0 q−2t−2 + 8q−1t−1 + 15 + 8qt + q2t2

±1 q2/33(q−1t−1 + 3 + qt)

±2 q8/33(2q−1t−1 + 5+ 2qt)

±3 q6/11(q−1t−1 + 3 + qt)

±4 q32/33

±5 q−16/33

±6 q2/11(q−1t−1 + 3 + qt)

±7 q32/33

±8 q−4/33

±9 q10/11(q−1t−1 + 3 + qt)

±10 q2/33(q−1t−1 + 3 + qt)

±11 q4/3

±12 q8/11(2q−1t−1 + 5+ 2qt)

±13 q8/33(2q−1t−1 + 5+ 2qt)

±14 q−4/33

±15 q−4/11(2q−1t−1 + 5 + 2qt)

±16 q−16/33

11n143 Z/9 0 q−3t−3 + (q−4 + 3q−2)t−2 + (2q−3 + 3q−1)t−1 + (2q−2 + 3)

+(2q−1 + 3q)t + (1 + 3q2)t2 + q3t3

±1 q−10/9((q−1 + 1)t−1 + (2 + q) + (1 + q2)t)

±2 q−4/9

±3 1

±4 q−7/9(q−2t−2 + 3q−1t−1 + 3 + 3qt + q2t2)

11n145 Z/9 0 q−3t−3 + (2q−2 + 1)t−2 + (q−1 + 4q)t−1 + 7q2 + (q + 4q3)t

+(2q2 + t4)t2 + q3t3

±1 q10/9(q−2t−2 + 3q−1t−1 + 5 + 3qt+ q2t2)

±2 q22/9

±3 q2

±4 q16/9(q−2t−2 + 3q−1t−1 + 5 + 3qt+ q2t2)

6. Observations

Grigsby [5] showed that when K ⊂ S3 is a two-bridge knot, the

Heegaard Floer knot homology of K̃ ⊂ Σ2(K) in the canonical spinc

structure is isomorphic as a bigraded Z/2-vector space to that of K ⊂

S3: i.e., ĤFK(Σ2(K), K̃, s0) ∼= ĤFK(S3, K), up to an overall shift in
the Maslov grading. Our results suggest that the same is true for a
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wider class for knots. Specifically, we say that ĤFK(S3, K) is perfect
if it is supported along a single diagonal, i.e., there exists a constant C

such that ĤFKj(S
3, K, i) = 0 when j − i 6= C. We conjecture:

Conjecture 6.1. Let K ⊂ S3 be a knot such that ĤFK(S3, K) is

supported along a single diagonal, i.e., Then ĤFK(Σ2(K), K̃, s0) ∼=

ĤFK(S3, K) as bigraded groups, up to a possible shift in the absolute
Maslov grading.

It is well-known [15, 19] that ĤFK(S3, K) is perfect whenever K is
alternating (and hence for all two-bridge knots). More generally, let Q
be the smallest set of link types such that:

• The unknot is in Q.
• Suppose L admits a projection such that the two resolutions at
some crossing, L0 and L1, are both in Q and satisfy det(L0) +
det(L1) = det(L). Then L is in Q.

The links inQ are called quasi-alternating ; for instance, any alternating
link is quasi-alternating. Manolescu and Ozsváth [11] have shown that

whenever L is quasi-alternating, both ĤFK(S3, L) and the Khovanov
homology of L are perfect. (Additionally, Ozsváth and Szabó [16] have
shown that the branched double cover of any quasi-alternating link

L is an L-space, meaning that ĤF(Σ2(L), s) has rank 1 in each spinc

structure.) Conjecture 6.1 would then imply that ĤFK(Σ2(K), K̃, s0)
is perfect whenever K is quasi-alternating.

One can also ask under what conditions ĤFK(Σ2(K), K̃, s) is perfect
when s 6= s0. The knots 10134 and 11n117 have the property that both

ĤFK(S3, K) and ĤFK(Σ2(K), K̃, s0) are perfect and isomorphic, but

there is a spinc structure s in which ĤFK(S2(K), K̃, s) is not perfect.
It is not known, however, whether these knots are quasi-alternating.

On the other hand, when ĤFK(S3, K) is not perfect, the isomor-

phism between ĤFK(S3, K) and ĤFK(Σ2(K), K̃, s0) fails. A few pat-

terns are worth mentioning. If ĤFK(S3, K, g) (where g = g(K)) is
supported in a single Maslov grading g + c, define the main diagonal

of ĤFK(S3, K) as the groups ĤFKi+c(S
3, K, i). (This assumption fails

when the rank of ∆K is less than twice g(K), for instance.) In every
example considered here, the remaining nonzero groups lie either all
above (M > A+ c) or all below (M < A+ c) the main diagonal. (See

[1] for the values of ĤFK(S3, K) for all non-alternating knots with ≤ 12
crossings.)
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In most of our examples, the main diagonal of ĤFK(Σ2(K), K̃, s0) is

isomorphic to that of ĤFK(S3, K), while the Maslov gradings of the off-
diagonal groups may be shifted by an overall constant. That constant is
sometimes odd, implying that the Maslov Z/2-gradings need not be the
same. For instance, when K is the knot 10161, the off-diagonal groups
are shifted by three. However, there are also instances where the main

diagonals of ĤFK(S3, K) and ĤFK(Σ2(K), K̃, s0) are not isomorphic.

When K = 10145, the matrices of the ranks of ĤFKj(S
3, K, i) and

ĤFKj(Σ
2(K), K̃, i)) are, respectively,




0 0 0 0 1

0 0 0 1 0
0 0 1 2 0
0 1 4 0 0
1 2 0 0 0




and




0 0 0 2 0
0 0 4 0 1

0 2 1 1 0
0 0 0 0 0
0 1 0 0 0
1 0 0 0 0




(where the Alexander grading is on the horizontal axis, the Maslov
grading is on the vertical axis, and the main diagonal is shown in bold).

Here, one of the groups on the main diagonal in ĤFK(S3, K) is shifted
upward by one. In this case, the total rank in each Alexander grading
is still the same, but there are also instances where that statement fails
to hold. For the knots 11n49 and 11n116, which have determinant 1
and identical Heegaard Floer homology both downstairs and upstairs,

the ranks of ĤFKj(S
3, K, i) and ĤFKj(Σ

2(K), K̃, s0, i) (in the unique
spinc structure) are given by




0 0 0 2 1

0 0 5 2 0
0 2 2 0 0
0 2 0 0 0
1 0 0 0 0




and




0 0 0 0 1

0 0 0 2 0
0 0 2 0 0
0 2 0 4 0
1 0 9 0 0
0 4 0 0 0




.

Another example in which the total ranks of ĤFK(S3, K) and ĤFK(Σ2(K), K̃, s0)
are different is the knot 11n102, for which the ranks are




0 0 0 2 1

0 0 4 3 0
0 2 3 0 0
0 3 0 0 0
1 0 0 0 0




and




0 0 0 2 0
0 0 4 0 1

0 2 0 5 0
0 0 7 0 0
0 5 0 0 0
1 0 0 0 0




.
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Finally, note that the pretzel knots 820 = P (3,−3, 2) and 10140 =
P (4, 3,−3) have identical knot Floer homology but can be distinguished

by ĤFK(Σ2(K), K̃). The relative Maslov gradings between spinc struc-
tures are necessary in this case. For another such example, see [5].
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