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COMPOSITION OPERATORS IN THE LIPSCHITZ
SPACE OF THE POLYDISCS

ZHONGSHAN FANG AND ZEHUA ZHOU*

ABSTRACT. In 1987, Shapiro shew that composition operator in-
duced by symbol ¢ is compact on the Lipschltz space if and only
if the infinity norm of ¢ is less than 1 by a spectral-theoretic argu-
ment, where @ is a holomorphic self-map of the unit disk. In this
paper, we shall generalize Shapiro’s result to the n-dimensional
case.

1. INTRODUCTION

Let U™ be the unit polydiscs of n-dimensional complex spaces C"
with boundary OU™, the class of all holomorphic functions on domain
U™ will be denoted by H(U™). Let ¢(z) = (¢1(2), -+ ,¢n(z)) be a
holomorphic self-map of U™, composition operator is defined by

Co(f)(2) = F(2))

for any f € H(U") and z € U™.

In the past few years, boundedness and compactness of composition
operators between several spaces of holomorphic functions have been
studied by many authors: by Jarchow and Ried [4] between generalized
Bloch-type spaces and Hardy spaces, between Bloch spaces and Besov
spaces and BMOA and VMOA in Tian’s thesis [10].

More recently, there have been many papers focused on studying the
same problems for n-dimensional case : by Zhou and Shi[15][16][17]
on the Bloch space in polydisk or classical symmetric domains, Gorkin
and MacCluer [3] between hardy spaces in the unit ball.

For the Lipschitz case, the compactness of C, is characterized by
little-oh” version of Madigan’s [6] the bounedness condition, the same
results in polydisc were obtained by Zhou [I1] and by Zhou and Liu
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[14]. In all these works the main goal is to relate function theoretic
properties of ¢ to boundedness and compactness of Cy.

To our surprise, by a spectral-theoretic argument, Shapiro [9] ob-
tained the following fact: C,, is compact on the Lipschltz space L, (D)
if and only if ||¢||e < 1. In this paper, we shall generalize Shapiro’s
result to the unit polydisc.

2. NOTATION AND BACKGROUND

Throughout the paper, D is the unit disk in one dimensional complex
plane, and |||z||| = max{\zj|} stands for the sup norm on the unit

polydisc. Define Rf(z ) =< Vf(z),zZ > where z = (21,---,2,) € U,
and H (U™, D) for the class of the holomorphic mappings from U™ to
D. For 0 < a < 1, it is well known that the Lipschitz space Li_,(U"™)
is equivalent to o« — Bloch space, which is defined to be the space of
holomorphic functions f € U™ such that

||f||1a—Supzl—|]| ()|<OO

Here, Lipschitz space Ll_a(U ") is a Banach space with the equivalent
norm

AT = 1O+ 1 f]l1-a
The Kobayashi distance ky» of U™ is given by
L 14 [l (w)ll]
]fUn(Z,’LU) 10 9
ST Tlle- ()l
where ¢, : U™ — U™ is the automorphlsm of U™ given by
o w1 — 21 Wy — Zn
¢Z(w)—(1—z_1U)17 71_an)

t

Since the map ¢ — log 1=% is strictly increasing on [0, 1), it follows that

+ |25
1zJ

1 7_@} = max {p(z;,w,)},

kun(z,w) = max{— og

1<j<n 1<j<n

|1 Zjw;
where p is the Poincaré distance on the unit disk D C C.

Following [1], the horosphere E(z, R) of center € U™ and radius
R and the Koranyi region H(x, M) of vertex x and amplitude M are
defined by

1
E(z,R) ={z € U" : limsup|kyn (2, w) — ky=(0,w)] < 5 log R}

w—T
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and
H(z, M) ={z € U" : limsuplkyn (2, w)—kyn (0, w)]+ky=(0, z) < log M}.

w—x

We say that f has K —limit L € C at v if f(z) — L as z — x inside

any Koranyi region H(x, M), we shall write K — lim f(z) = L.
Z—T
Let f € H({U™, D) and x € OU™. If there is ¢ such that

1—

lim inf L= [ A{w))

wor 1 —[[wl]]

we call fis 0 — Julia at z. If there exists 7 € QU™ such that

f(E(x, R)) € E(7,0R)

for all R, we call this 7 is the restricted E-limit of f at x.
It should be noticed that 6 > 0. In fact,

p(0, f(w)) < p(0, f(0)) + p(f(0), f(w)) < p(0, £(0)) + kv (0, w);

i) < 1-1f(0)]
il = 205700 > Y-

=0 < o0,

therefore

3. SOME LEMMAS

Lemma 1. (Julia- Wolff-Carathéodory Theorem, Theorem 4.1 in [1])
Let f € H{U™, D) be 6—Julia atx € OU™, and T € OU be the restricted
E-limit of f at x, then
K — lim a—f(z) = 0T.

z—x O
Lemma 2. (Theorem 1 in [I1] or Corollary 4.1 in [14]) Composition
operator C, is bounded on the Lipschitz space Li_o(U") if and only if
there is a constant M > 0 such that

"\ |0¢y 1 — |z ? )a
(1—|¢;<z>|2 =M
for z e U™.

> |5

k=1 0z,
Lemma 3. (Theorem 2 in [I1] or Corollary 4.2 in [14]) Composition
operator C, is compact on the Lipschitz space L1_o(U™) if and only if

n 1 — 2\«
lim sup %( )| (1 — el )2 — =
020 dist(p(2),0U™) <6 7} Oz, (1= |eu(2)]?)
Lemma 4. (Lemma 3.2 in [1]) Let f € H({U™, D) and x € OU™. Then
1—|f(w)] 1 — 1/ (pa(t))]

S e (oI B—
W T el T et T 1

where @, (2) = zx for any z € D.
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4. MAIN THEOREM

Theorem 1. Suppose C,, is bounded on Li_,(U™), then for every 1 <
Il <n and & € U™ with |o(§)| =1, ¢ 1s § — Julia at €.

Proof. For every 1 <1 < n and £ € U™ with ¢;(£)] = n and 1 = e%,
we will show that ¢; is 6 — Julia at £ according to the following cases.

Case 1: £ = (&, €),& = ¢ and [[|¢]]| < 1.

First we consider the special case for £ = e; = (1,0,---,0) and
n=1.

For r € (1/2,1) , define o(r) = (r,0,---,0) = re; such that

Tim @i(o(r)) = 1.

Setting g(r) = ¢;(rey), then ¢'(r) = g“”l (rep). It follows from Lemma

2 that the boundedness of C, implies that

1—r 1—r

h(r) = sz(rel)(m)a - 7“g,(r)(l —g(r)

)O!

is bounded.
Putting u(r) = %@, it is easy to see that ¢'(r) = —(1—r)u/(r)+u(r)
and

h(r) = ru(r)=*[=(1 = r)u/(r) + u(r)].
If we write v(r) = u(r)!=®, then
L)+ o) = M

1l—«a r

the general solution of this differential equation is
-« " h(s) C
=— d :
o) <1—mkﬂﬁfdl—@as+<r—mka

Since h is bounded, the first term in the right above is a bounded
function of r, and moreover v(r) is of the order O(W) asr — 17,

so we have C' = 0. Hence v, and moreover u is also bounded, according
to Lemma 4, for some 9, ¢; is 6 — Julia at e;.

Now we return to the proof in case 1. Considering the mapping
@ U™ — U™, where

Gu(21,2) = e (e 21, der(2))

for = = (z,2') € U". It is easy to check that Cg, is bounded on
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By the above argument, we get lim inf % = 0 < 400, that is
t—1—

1 —J@u(t&1, )| — (&, )|

lim inf = liminf lim
t—1— 1—1¢ t—1— r—l1- 1—1t¢
. /
t—1— 1—1t¢

It follows from Lemma 4 that

N N 23]
liminf —————2% = § < +00.

wot 1 —|[[€]]]
Case2: 5 = (5175275/)751 = 601752 = 602 and H‘g/‘” <L

Now assume ¢;(1,1,0,---,0) = 1, and set g(r) = gol(r r,0,---,0)
for r € (1/2,1). then ¢'(r) = gf’ (ryr,0,--+,0)+ gfl (r,r,0,---,0), and
so Ryy(r,r,0,--+,0) = rg'(r), we can deal with it as in the case 1, and

we can get u is bounded, furthermore

fo g L= 916

——— =0 < +o00.
w=e 1= |[[E]]]

Case 3: For the case ¢;(¢) = 1 with £ = Z Brer, where 5, = 0
=
or 1, and ¢, = (0,,0,---,1,0,---,0) with the k: — th component is 1,

otherwise 0; and even more general case, in a similar argument Wlth
the cases 1 and 2, we can also show

R e (21(9]
liminf ————> = § < +©
w=é 1 —[|¢]]]
This completes the proof of this theorem. O

Theorem 2. C, is compact on Ly_o(U") if and only if ¢ € Ly—o(U")
and ||¢jlleo < 1 for each j =1,2,--- n

Proof. Sufficiency is obvious. Now we just turn to the necessity. Sup-
pose to the contrary that there exists [ (1 <[ < n) satisfying |p;(§)| = 1
for some ¢ € OU™. 1Tt follows from Theorem 1 that ¢; is 6 — Julia at &,
therefore by Lemma 1, we have Ry;(z) has K — limit at £&. Hence

3901 (1 — |z}~
> 1526 (e

k=1
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o1,y (= lIEIP)F
>
> le'azk 1—|sol< BE
- 0 1—|]|2]]]*)°
e $ o 28y LY

e = lel2)P)P

A~ =l
- CZ'R e

Z C(Sla

as z — £ inside any Koranyi region, where we can take C' = 2% It is
a contradiction to the compactness of C,, by Lemma 3. Now the proof
of Theorem 2 is completed. O
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