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EXTENDED CESÁRO OPERATORS BETWEEN GENERALIZED

BESOV SPACES AND BLOCH TYPE SPACES IN THE UNIT

BALL

ZEHUA ZHOU∗ AND MIN ZHU

Abstract. Let g be a holomorphic map of B, where B is the unit ball of Cn.
Let 0 < p < +∞,−n − 1 < q < +∞, q > −1 and α > 0. This paper gives some
necessary and sufficient conditions for the Extended Cesáro Operators induced
by g to be bounded or compact between generalized Besov space B(p, q) and α-
Bloch space B

α.

1. Introduction

Let f(z) be a holomorphic function on the unit disc D with Taylor expansion

f(z) =
∞
∑

j=0
ajz

j , the classical Cesáro operator acting on f is

C[f ](z) =
∞
∑

j=0

(

1

j + 1

j
∑

k=0

ak

)

zj .

In the recent years, boundedness and compactness of extended Cesáro operator
between several spaces of holomorphic functions have been studied by many math-
ematicians. It is known that the operator C is bounded on the usual Hardy spaces
Hp(D) for 0 < p < ∞. Basic results facts on Hardy spaces can be found in [Durn].
For 1 ≤ p < ∞, Siskais [Sis1] studied the spectrum of C, as a by-product he obtained
that C is bounded on Hp(D). For p = 1, the boundedness of C was given also by
Sisakis [Sis3] by a particularly elegant method, independent of spectrum theory, a
different proof of the result can be found in [GalM]. After that, for 0 < p < 1,
Miao [Mia] proved C is also bounded. For p = ∞, the boundedness of C was given
by Danikas and Siskais in [DanS]. It has been also shown that the operator C ia
also bounded on the Bergman space (in [Sis4]) as well as on the weighted Bergman
spaces (in [AS] and [BC]). But the operator C is not always bounded, in [ShiR], Shi
and Ren gave a sufficient and necessary condition for the operator C to be bounded
on mixed norm spaces in the unit disc.

The generalized Cesáro operators Cγ acting on f in the unit disc were first intro-
duced in [St] and have been subsequently studied in [And] and [Xia]. The adjoint
operator operator of Cγ was considered in [And], [Gal],[Sis1], [St] and [Xia]. Note
that when γ = 0, C0 = C. Stempak proved that Cγ is bounded on Hp(D) for
0 < p ≤ 2. For 0 < p ≤ 1, his method is similar to that of Miao; for p = 2, it is
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based on the boundedness of an appropriate sequence transformation, and an inter-
polation then yields the result for 1 < p < 2. After that, Andersen [And] and Xiao
[Xia] prove the boundedness of Cγ , on Hp(D) for p > 2 using different methods.

More recently, there have been many papers focused on studying the same prob-
lems for n-dimensional case, for the unit polydisc, we refer the reader to see [CS],
where they prove the boundedness of the generalized Cesáro operator on Hardy
space Hp(Dn) and the generalized Bergman space.

Let dv be the Lebesegue measure on the unit ball B of Cn normalized so that
v(B) = 1. H(B) is the class of all holomorphic functions on B.

A little calculation shows C[f ](z) = 1
z

∫ z

0 f(t)(log 1
1−t

)′dt. From this point of view,

if g ∈ H(B), it is natural to consider the extended Cesáro operator Tg on H(B)
defined by

Tg(f)(z) =

∫ 1

0
f(tz)g(tz)

dt

t
,

where f ∈ H(B), z ∈ B.

It is easy to show that Tg take H(B) into itself. In general, there is no easy way
to determine when a extended Cesáro operator is bounded or compact.

Motivated by [ShiR], Hu gave some sufficient and necessary conditions for the
extended C to be bounded and compact on mixed norm spaces, Bloch space as well
as Dirichlet space in the unit ball (see [Hu1],[Hu2] and [Zha]).

For a ∈ B, let g(z, a) = log |ϕa(z)|
−1 be the Green’s function on B with loga-

rithmic singularity at a, where ϕa is the Möbius transformation of B with ϕa(0) =
a, ϕa(a) = 0, ϕa = ϕ−1

a .
Let 0 < p, s < +∞,−n − 1 < q < +∞ and q + s > −1. We say f ∈ F (p, q, s)

provided that f ∈ H(B) and

‖f‖F (p,q,s) = |f(0)|+ {sup
a∈B

∫

B

|∇f(z)|p(1− |z|2)qgs(z, a)dv(z)}
1

p < +∞,

where

∇f(z) = (
∂f(z)

∂z1
, · · · ,

∂f(z)

∂zn
),

F (p, q, s) is defined first by [Zhao], we also refer the reader to see [ZhoCh].
Let 0 < p < +∞, −n − 1 < q < +∞ and q > −1. We say f ∈ B(p, q) provided

that f ∈ H(B) and

‖f‖(p,q) = {

∫

B

|∇f(z)|p(1− |z|2)qdv(z)}
1

p < +∞,

where

∇f(z) = (
∂f(z)

∂z1
, · · · ,

∂f(z)

∂zn
).

It is obvious that B(p, q) = F (p, q, 0) if we take s = 0. In fact, B(p, q) is also
classical Besov space if we take special parameters of p, q. It is not hard to show
that is a Banach space under the norm ‖f‖B(p,q) = |f(0)| + ‖f‖(p,q), we refer the
reader to see Zhu’s book [Zhu1]. From Exercises 2.2 in [Zhu1] we know that a
holomorphic function f ∈ B(p, q) if and only if

∫

B
|Rf(z)|p(1− |z|2)q < +∞, where

Rf(z) =< ∇f(z), z̄ >=
n
∑

j=1
zj

∂f(z)
∂zj

.

For α ≥ 0, f is said to be in the Bloch space Bα provided that f ∈ H(B) and

‖f‖α = sup
z∈B

(1− |z|2)α|∇f(z)| < +∞.
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As we all know, Bα is a Banach space when α ≥ 1 under the norm ‖f‖Bα =
|f(0)| + ‖f‖α. The spaces B1 and Bα(0 < α < 1) are just the Bloch space and
the Lipschitz spaces L1−α respectively. From [YaOuy] we know that a holomorphic
function f ∈ Bα if and only if supz∈B(1− |z|2)α|Rf(z)| < +∞.

Furthermore, by the Norm Equivalent Theorem we have

‖f‖Bα ≈ |f(0)| + sup
z∈B

(1− |z|2)α|Rf(z)|,

where M ≈ N means the two quantities M and N are comparable, that is there
exist two positive constants C1 and C2 such that C1M ≤ N ≤ C2M .

For p > 0, z ∈ B, denote the function

Gp(z) =











1, 0 < p < 1;
log 2

1−|z|2
, p = 1;

(

1
1−|z|2

)α−1
, p > 1.

In this paper, we discussed the extended Cesáro operator between the generalized
Besov space B(p, q) and Bloch type space Bα on the unit ball, and gave some suf-
ficient and necessary conditions for the operator to be bounded and compact. The
main results of the paper are the following:

Theorem 1. 0 < p < +∞, −n − 1 < q < +∞, q > −1, α ≥ 0, g ∈ H(B), Tg is
bounded from B(p, q) to Bα if and only if

sup
z∈B

(1− |z|2)αGn+1+q

p

(z)|Rg(z)| < ∞.

Theorem 2. For 0 < p < +∞,−n− 1 < q < +∞, q > −1, α ≥ 0, g ∈ H(B), Tg

is compact from B(p, q) to Bα if and only if

(1) If 0 < n+1+q
p

< 1, g ∈ Bα;

(2) If n+1+q
p

≤ 1, lim|z|→1−(1− |z|2)αGn+1+q

p

(z)|Rg(z)| = 0.

2. Some Lemmas

In the following, we will use the symbol c or C to denote a finite positive number
which does not depend on variable z and may depend on some norms and parameters
p, q, n, α, x, f etc, not necessarily the same at each occurrence.

In order to prove the main result, we will give some Lemmas first.

Lemma 1. If 0 < p < +∞, −n− 1 < q < +∞, q > −1, then B(p, q) ⊂ B
n+1+q

p and

∃ c > 0 s.t. for ∀f ∈ B(p, q),

‖f‖
B

n+1+q
p

≤ c‖f‖B(p,q).

Proof. Suppose f ∈ B(p, q). Fixed 0 < r0 < 1, since (Rf) ◦ ϕa ∈ H(B), so
|(Rf) ◦ ϕa|

p is subharmonic in B. That is

|Rf(a)|p = |(Rf) ◦ ϕa(0)|
p

≤
1

r2n0

∫

r0B

|(Rf) ◦ ϕa(ω)|
pdv(ω)

=
1

r2n0

∫

ϕa(r0B)
|(Rf(z))|p

(1− |a|2)n+1

|1− < z, a > |(2n+2)
dv(z).
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From (5) in [ZhuOuy], we have

1− r0

1 + r0
(1− |a|2) ≤ (1− |z|2) ≤

1 + r0

1− r0
(1− |z|2)

as z ∈ ϕa(r0B). Thus

(1− |a|2)n+1

|1− < z, a > |2n+2(1− |z|2)q
≤

4n+1

(1− |a|2)n+1+q
(
1 + r0

1− r0
)|q|.

Therefore, we get

|Rf(a)|p ≤ 1
r2n
0

∫

ϕa(r0B) |Rf(z)|p (1−|a|2)n+1

|1−<z,a>|2n+2dv(z)

= 1
r2n
0

∫

ϕa(r0B) |Rf(z)|p(1− |z|2)q (1−|a|2)n+1

|1−<z,a>|2n+2(1−|z|2)q
dv(z)

≤
4n+1r−2n

0

(1−|a|2)n+1+q (
1+r0
1−r0

)|q|‖f‖p
B(p,q).

This shows that f ∈ B
n+1+q

p and ‖f‖
B

n+1+q
p

≤ c‖f‖B(p,q).

Lemma 2. Let p > 0, then there is a constant c > 0, for ∀f ∈ Bp and ∀z ∈ B, the

estimate

|f(z)| ≤ cGp(z)‖f‖Bp ,

holds, where Gp(z) is the function defined in Introduction.

Proof. This Lemma can be easily obtained by some integral estimates. For the
convenience of the reader, we will still give the proof here.

For ∀f ∈ βp(Bn), since ||f ||βp = |f(0)|+ sup
z∈Bn

(1− |z|2)p|∇f(z)|, we have

|f(0)| ≤ ||f ||βp , and |∇f(z)| ≤
||f ||βp

(1− |z|2)p
.

but

f(z) = f(0) +

∫ 1

0
< z,∇f(tz) > dt.

therefore

|f(z)| ≤ |f(0)|+

∫ 1

0
|z| |∇f(tz)|dt

≤ ||f ||βp + ||f ||βp

∫ 1

0

1

(1− |tz|2)p
dt ≤ ||f ||βp

(

1 +

∫ |z|

0

dt

(1− t2)p

)

.

when p = 1,

∫ |z|

0

dt

1− t2
=

1

2
ln

1 + |z|

1− |z|
≤

1

2
ln

4

1− |z|2
, therefore

|f(z)| ≤
(

1 +
1

2
ln

4

1− |z|2

)

||f ||βp .

If p 6= 1, then
∫ |z|

0

dt

(1− t2)p
=

∫ |z|

0

dt

(1− t)p(1 + t)p
≤

∫ |z|

0

dt

(1− t)p
=

1− (1− |z|)1−p

1− p
,

therefore when 0 < p < 1, notice that

∫ |z|

0

dt

(1− t2)p
≤

1

1− p
we get

|f(z)| ≤
(

1 +
1

1− p

)

||f ||βp .
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and when p > 1

∫ |z|

0

dt

(1− t2)p
≤

1− (1− |z|)1−p

1− p

=
1− (1− |z|)p−1

(p − 1)(1− |z|)p−1
≤

2p−1

(p − 1)(1− |z|2)p−1

so

|f(z)| ≤
(

1 +
2p−1

(p − 1)(1 − |z|2)p−1

)

||f ||βp .

Lemma 3. Let 0 < p < 1, {fj} is any bounded sequence in Bp and fj(z) → 0 on

any compact subset of B. Then

lim
j→∞

sup
z∈B

|fj(z)| = 0.

Proof. This lemma has been given by [Zha].

Lemma 4. There is a constant c > 0 such that for ∀ t > −1 and z ∈ B,

∫

B

| log
1

1− < z,w >
|2

(1− |w|2)t

(1− < z,w >)n+1+t
dv(w) ≤ C

(

log
1

1− |z|2
)2
.

Proof. This Lemma can be proved by Stirling formula and some complex integral
estimates. For the convenience of the reader, we will still give the proof here.

Denote the right term as It and let 2λ = t+ n+ 1. By Taylor expansion

| log
1

1− < z,w >
|2 =

+∞
∑

u,v=1

< z,w >u< w, z >v

uv

and

1

|1− < z,w > |2λ
=

+∞
∑

k,l=0

Γ(λ+ k)Γ(λ+ l)

k!l!Γ(λ)2
< z,w >k< w, z >l,

therefore

It =
∫

B

+∞
∑

u,v=1

+∞
∑

k,l=0

Γ(λ+k)Γ(λ+l)
uvk!l!Γ(λ)2

< z,w >k+u< w, z >l+v (1− |w|2)tdv(w)

=
+∞
∑

u=1

+∞
∑

k=0

u+k−1
∑

l=0

Γ(λ+k)Γ(λ+l)
u(u+k−l)k!l!Γ(λ)2

∫

B
| < z,w > |2(u+k)(1− |w|2)tdv(w)

without lost of generality, let z = |z|e1, then

∫

B
| < z,w > |2(u+k)(1− |w|2)tdv(w)

=
∫

B
(|z|w1)

2(u+k)(1− |w|2)tdv(w)

= 2n
∫ 1
0

∫

∂B
ρ2n−1|z|2(u+k)|ρξ1|

2(u+k)(1− ρ2)tdρdδn(ξ)

= 2n|z|2(u+k)
∫ 1
0 ρ2(u+k+n−1)+1(1− ρ2)tdρ

∫

∂B
|ξ1|

2(u+k)dδ(ξ)

= n|z|2(u+k) Γ(u+k+n)Γ(t+1)
Γ(u+k+n+t+1)

(n−1)!(u+k)!
(u+k+n−1)!

= Γ(t+1)Γ(u+k+1)n!
Γ(2λ+u+k) |z|2(u+k),
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so

It =
+∞
∑

u=1

+∞
∑

k=0

u+k−1
∑

l=0

Γ(λ+k)Γ(λ+l)
u(u+k−l)k!l!Γ(λ)2

Γ(t+1)Γ(u+k+1)n!
Γ(2λ+u+k) |z|2(u+k)

=
+∞
∑

u=1

+∞
∑

k=0

n!Γ(t+1)Γ(λ+k)Γ(u+k+1)
uk!Γ(λ)2Γ(2λ+u+k)

u+k−1
∑

l=0

Γ(λ+l)
(u+k−l)l! |z|

2(u+k)

=
+∞
∑

u=1

+∞
∑

k=1

n!Γ(t+1)Γ(λ+k)Γ(u+k+1)
uk!Γ(λ)2Γ(2λ+u+k)

u+k−1
∑

l=0

Γ(λ+l)
(u+k−l)l! |z|

2(u+k)

+
+∞
∑

u=1

n!Γ(t+1)Γ(u+1)
uΓ(λ)Γ(2λ+u)

u−1
∑

l=0

Γ(λ+l)
(u−l)l! |z|

2u

= I1 + I2,

by Stirling formula, there is an absolute constant C1 s.t.

Γ(λ+ l)

l!
≤ C1l

λ−1,
Γ(u+ k + 1)

Γ(2λ+ u+ k)
≤ C1(u+ k)1−2λ,

Γ(u+ k + 1)

Γ(2λ+ u)
≤ C1u

1−2λ,
Γ(λ+ k)

k!
≤ C1k

λ−1

for all l, u, k ≥ 1, then

I1 ≤ C3
1

+∞
∑

u=1

+∞
∑

k=1

n!Γ(t+ 1)kλ−1(u+ k)1−2λ

uΓ(λ)2

u+k−1
∑

l=1

lλ−1

(u+ k − l)
|z|2(u+k)

and

I2 ≤ C2
1

+∞
∑

u=1

n!Γ(t+ 1)u1−2λ

uΓ(λ)

u−1
∑

l=1

lλ−1

(u− l)
|z|2u.

Notice that
M−1
∑

l=1

l(λ−1)

M − l
≈ Mλ−2 logM

for any M ≥ 2, then there is constant C, s.t.

I1 ≤ C
+∞
∑

u=1

+∞
∑

k=1

n!Γ(t+1)kλ−1(u+k)1−2λ

Γ(λ)2u
(u+ k)λ−2 log(u+ k)|z|2(u+k)

= C
+∞
∑

u=1

+∞
∑

k=1

n!Γ(t+1)
Γ(λ)2

kλ

(u+k)λ
log(u+k)

u+k
1
uk
|z|2(u+k)

≤ C
+∞
∑

u=1

+∞
∑

k=1

1
uk
|z|2(u+k) = C

(

log 1
1−|z|2

)2

and

I2 ≤ C
+∞
∑

u=1

n!Γ(t+1)u1−2λ

Γ(λ)u uλ−2 log u|z|2u

= C
+∞
∑

u=1

n!Γ(t+1)
Γ(λ)

1
uλ+1

log u
u

|z|2u,

then it is clearly that I2 can be control by
(

log 1
1−|z|2

)2
. This ends the proof of the

lemma.

Lemma 5. Let g be a holomorphic self-map of B, K is an arbitrary compact subset

of B. Then Tg : B(p, q) → Bα is compact if and only if for any uniformly bounded

sequence {fj}(j ∈ N) in B(p, q) which converges to zero uniformly for z on K when

j → ∞, ‖Tgfj‖Bα → 0 holds.
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Proof. Assume that Tg is compact and suppose {fj} is a sequence in B(p, q)
with supj∈N ‖fj‖B(p,q) < ∞ and fj → 0 uniformly on compact subsets of B. By the
compactness of Tg we have that {Tgfj} has a subsequence {Tgfjm} which converges
in βα, say, to h. By Lemma 2 we have that for any compact set K ⊂ B, there is a
positive constant CK independent of f such that

|Tgfj(z)− h(z)| ≤ CK‖Tgfj − h‖βα

for all z ∈ K. This implies that Tgfj(z) − h(z) → 0 uniformly on compact sets of
B. Since K is a compact subset of B, by the hypothesis and the definition of Tg,
Tgfj(z) converges to zero uniformly on K. It follows from the arbitrary of K that
the limit function h is equal to 0. Since it’s true for arbitrary subsequence of {fj},
we see that Tgfj → 0 in βα.

Conversely, {fj} ∈ Kr = BB(p,q)(0, r), where BB(p,q)(0, r) is a ball in B(p, q), then
by Lemma 2, {fj} is uniformly bounded in arbitrary compact subset M of B. By
Montel′s Lemma, {fj} is a normal family , therefore there is a subsequence {fjm}
which converges uniformly to f ∈ H(B) on compact subsets of B. It follows that
∇fjm → ∇f uniformly on compact subsets of B.

Denote Bk = B(0, 1 − 1
k
) ⊂ Cn, then

∫

B
|∇f |p(1− |z|2)qdv(z)

= lim
k→+∞

∫

Bk
lim

m→+∞
|∇fjm |

p(1− |z|2)qdv(z)

≤ lim
k→+∞

lim
m→+∞

∫

Bk
|∇fjm |

p(1− |z|2)qdv(z).

But {fjm} ⊂ BB(p,q)(0, r), then
∫

Bk

|∇fjm |
p(1− |z|2)qdv(z) < rp,

therefore
∫

B

|∇f |p(1− |z|2)qdv(z) ≤ rp.

So ‖f‖B(p,q) ≤ r, and f ∈ B(p, q). Hence the sequence {fjm − f} is such that
‖fjm − f‖ ≤ 2r < ∞ and converges to 0 on compact subsets of B, by the hypothesis
of this lemma, we have that

Tgfjm → Tgf

in Bα. Thus the set Tg(Kr) is relatively compact, finishing the proof.

Lemma 6. Let g ∈ H(B), then

R[Tgf ](z) = f(z)Rg(z)

for any f ∈ H(B) and z ∈ B.

Proof. Suppose the holomorphic function fRg has the Taylor expansion

(fRg)(z) =
∑

|α|≥1

aαz
α.

Then we have

R(Tgf)(z) = R

∫ 1

0
f(tz)R(tz)

dt

t
= R

∫ 1

0

∑

|α|≥1

aα(tz)
α dt

t

= R[
∑

|α|≥1

aαz
α

|α|
] =

∑

|α|≥1

aαz
α = (fRg)(z).
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3. The Proof Of Theorem 1

Suppose supz∈B(1− |z|2)αGn+1+q

p

(z)|Rg(z)| < ∞. ∀f ∈ H(B) then by Lemma 1,

Lemma 2 and Lemma 6, we have

(1− |z|2)α|R[Tgf ](z)|

= (1− |z|2)α|f(z)||Rg(z)|

≤ c(1 − |z|2)αGn+1+q

p

(z)|Rg(z)|

≤ c‖f‖B(p,q)(1− |z|2)αGn+1+q

p

(z)|Rg(z)|

≤ c‖f‖B(p,q).

Therefore, Tg is bounded .
On the other hand, suppose Tg is bounded, with

‖Tgf‖Bα ≤ c‖f‖B(p,q).

(1) If 0 < n+1+q
p

< 1 , it’s very easy to show that the function f(z) = 1 are in

B(p, q), therefore Tgf must be in Bα,
namely

sup
z∈B

(1− |z|2)α|RTgf(z)|

= sup
z∈B

(1− |z|2)α|Rg(z)| < ∞.

(2) If n+1+q
p

> 1 , we need to prove that supz∈B(1−|z|2)α( 1
1−|z|2

)
n+1+q

p
−1|Rg(z)| <

∞.
For w ∈ B, take the test function

fw(z) =
1− |w|2

(1− < z,w >)
n+1+q

p

.

It is easy to see that
∫

B

(1− |z|2)q|∇fw(z)|
pdv(z) ≤ c(1 − |w|2)p

∫

B

(1− |z|2)q

|1− < z,w > |n+1+q+p
dv(z) ≤ c.

The last inequality follws from [Zhu1], so fw ∈ B(p, q) for any w ∈ B. With the
boundedness of Tg, we get

(1− |z|2)α(
1

1− |z|2
)
n+1+q

p
−1

|Rg(z)|

= (1− |z|2)α|fz(z)||Rg(z)|

= (1− |z|2)α|R(Tgfz)(z)|

≤ ‖Tgfz‖Bα ≤ c‖Tg‖ < ∞.

(3) If n+1+q
p

= 1, namely p = n+ 1 + q, we need to prove

sup
z∈B

(1− |z|2)α log
2

1− |z|2
|Rg(z)| < ∞.

For w ∈ B, take the test function

fw(z) = (log
1

1− |w|2
)−

2

p (log
1

1− < z,w >
)1+

2

p .
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It is easy to show that fw ∈ B(p, q) from Lemma 4. The same discussion as the
case (2) gives the needed result, and we omit it here. So, the proof of Theorem 1 is
completed.

4. The Proof Of Theorem 2

{fj} is an uniformly bounded sequence in B(p, q) which converges to zero uni-
formly on any compact subset of B when j → ∞.

(1) If Tg is compact, we have got that g ∈ Bα.
On the other hand, from Lemma 1, we know that ‖fj‖

B
n+1+q

p
≤ c‖fj‖B(p,q), thus

{fj} is unformly bounded in B
n+1+q

p . Then by the hypothesis and Lemma 3, we get
that

lim
j→∞

sup
z∈B

|fj(z)| = 0.

Therefore

‖Tgfj‖Bα ≤ c sup
z∈B

(1− |z|2)α|fj(z)Rg(z)| ≤ c‖g‖Bα sup
z∈B

|fj(z)|.

Then when j → ∞, ‖Tgfj‖Bα → 0. So Tg is compact from Lemma 5.
(2) If lim|z|→1−(1 − |z|2)αGn+1+q

p

(z)|Rg(z)| = 0, then ∀ε > 0, ∃r ∈ (0, 1), such

that

(1− |z|2)αGn+1+q

p

(z)|Rg(z)| < ε, r < |z| < 1.

Then

‖Tgfj‖Bα ≤ c sup
|z|≤r

(1− |z|2)α|fj(z)Rg(z)| + c sup
r<|z|<1

(1− |z|2)α|fj(z)Rg(z)|

≤ c sup
|z|≤r

(1− |z|2)α|Rg(z)||fj(z)| + c sup
r<|z|<1

(1− |z|2)αGn+1+q

p

(z)|Rg(z)|‖fj‖B(p,q)

≤ c sup
|z|≤r

(1− |z|2)α|Rg(z)||fj(z)| + cε‖fj‖B(p,q)

≤ cε,

if j is sufficiently large. This means ‖Tgfj‖Bα → 0 as j tends to ∞.

On the other hand, if n+1+q
p

= 1, it is sufficient to prove

lim
|z|→1

(1− |z|2)α|Rg(z)| log
1

1− |z|2
= 0.

Suppose that lim|z|→1(1 − |z|2)α|Rg(z)| log 1
1−|z|2

6= 0, then there exists ε0 > 0,

{zj} ∈ B, such that

(1− |zj |2)α|Rg(zj)| log
1

1− |zj |2
≥ ε0.

Let

fj(z) = (log
1

1− |zj |2
)−

2

p (log
1

1− < z, zj >
)1+

2

p .
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We have shown that fj ∈ B(p, q) with ‖fj‖B(p,q) ≤ c , and it is obvious that
fj → 0 uniformly on any compact subset of B as j → ∞. While

‖Tgfj‖Bα

≥ (1− |zj |2)α|fj(z
j)||Rg(zj)|

= {(1− |zj |2)α|Rg(zj)| log
1

1− |zj |2
}|fj(z

j)|(log
1

1− |zj |2
)−1

≥ ε0|fj(z
j)|(log

1

1− |zj |2
)−1

= ε0,

then ‖Tgfj‖Bα doesn’t tend to 0 when j → ∞. It’s a contraction. So

lim
|z|→1

(1− |z|2)α|Rg(z)| log
1

1− |z|2
= 0.

Meanwhile, as lim|z|→1 log
1

1−|z|2
= ∞, it is easy to see that lim|z|→1(1−|z|2)α|Rg(z)| =

0.
Therefore, we have

lim
|z|→1

(1− |z|2)α|Rg(z)| log
2

1− |z|2
= 0.

If n+1+q
p

> 1, just let

fj(z) =
1− |zj |2

(1− < z, zj >)
n+1+q

p

,

and use the same method as the situation of n+1+q
p

= 1, we can also prove that

the theorem holds. So, the proof of Theorem 2 is completed.
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