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ON WELL-POSEDNESS OF THE LINEAR CAUCHY PROBLEM WITH

THE DISTRIBUTIONAL RIGHT-HAND SIDE AND

DISCONTINUOUS COEFFICIENTS

D. KINZEBULATOV

Abstract. The classical result on well-posedness of Cauchy problem for the linear ordinary
differential system with the distributional right-hand side and smooth matrix of coefficients
plays fundamental role in many applications of distribution theory to ordinary and partial
differential equations. In the present paper we generalize this result to the case of system

(0.1) x′
− A(t)x = f,

where f is a distribution, A ∈ G∞, G∞ is the space of functions possessing at most first-kind
discontinuities together with all their derivatives defined almost everywhere. The left-hand
side of system (0.1) contains the product of a distribution and, in general, a discontinuous
function, which is undefined in the classical space D′ of distributions with the smooth test
functions. As a result, the Cauchy problem for (0.1) in general has no solution in D′. In what
follows, we consider system (0.1) in the space R′ of distributions with G∞-test functions,
whose elements admit continuous multiplication by functions in G∞, and show that there
exists the unique solution of the Cauchy problem for (0.1) which depends continuously on
f . The proof of this result requires investigation of structure of the kernel of operator of
restriction of distributions from R to D, of properties of operation of multiplication and of
properties of multi-valued (yet, in a sense, continuous) operation of differentiation in R′.

1. Introduction

The theory of distributions, which made possible to tackle in a systematic and mathemat-
ically rigorous way the discontinuous solutions of ordinary and partial differential equations,
appeared in its finished form in 1950 in the famous monograph by L. Schwartz [Sch50] that
contained, among other fundamental results of the new theory, the result on well-posedness of
the Cauchy problem for the linear differential system with the smooth matrix of coefficients
and distributional right-hand side. It is the generalization of this result to the case of system

(1.1) x′ −A(t)x = f,

where f is a distribution and A may have at most first-kind discontinuities together with all its
derivatives defined almost everywhere, which occupies a central place in the present work.

The linear differential equation (1.1) is an example of an ordinary differential equation whose
left-hand side may contain the product of a distribution and a discontinuous function. The study
of certain classes of such differential equations started shortly after creation of the distribution
theory, and was inspired both by efforts to extend the field of applicability of the theory of
distributions (e.g., the study of linear ordinary differential equations with the distributional
coefficients of the order of singularity 6 1 in [Kur59, Kur58], also, see [Fil88, Tvr02, PT93]) as
well as by numerous problems of optimal control with the unimodal phase restrictions on control,
where the product of a distributional optimal control and the corresponding discontinuous
solution of the differential equation arise (see [Mil93, SZ97, Kin07]).
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2 D. KINZEBULATOV

The major obstacle on the way of construction of systematic theory of such differential
equations in the classical framework of the theory of distributions (by which we mean the
theory of the space of linear continuous functionals defined on a certain space of the smooth
test functions, e.g., the theory of the space D′ [GS64]) – that is, the impossibility of continuous
multiplication of distributions by discontinuous functions (see [DK07a, DK06]) – is closely
related to the requirement of the smoothness of the test functions (which is crucial for the
classical ”(f ′, ϕ) = −(f, ϕ′)” definition of the distributional derivative [GS64]). For example, in
(1.1) the product Ax, determined by the equality (let us consider the scalar case for simplicity)

(1.2) (Ax, ϕ) = (x,Aϕ),

where ϕ is a smooth test function, is undefined, since Aϕ is in general no longer smooth.
Formally, there is no need in use of the equality (1.2) to define the value of the product Ax: there
are various definitions of the product Ax in the spaceD′ such that Ax coincides with the classical
product if A is smooth (see [Sar94, Sar95, Sar03], where the family of distributional products
which are invariant under unimodular transformations and satisfy the Leibniz product rule is
successfully applied to study of certain classes of ordinary and partial differential equations; see
[PT93, Fil88] and further references therein for other definitions of the product of a distribution
and a discontinuous function in the space D′). Nevertheless, the inevitable lack of continuity
in the topology of D′ of any definition of the product of, in particular, Heaviside function
and Dirac delta-function makes every such definition unacceptable for our proof of the well-
posedness of the Cauchy problem for (1.1). It is the space of distributions with the discontinuous
test functions where (1.2) defines the continuous operation of multiplication of distributions by
discontinuous functions which can provide proper meaning for the product Ax and, thus, for
the system (1.1).

The space of distributions with the test functions that are infinitely differentiable outside
the origin where they possess both one-sided limits (together with all their derivatives defined
outside the origin) was introduced in [Kur96] in application to the problems of construction of
self-adjoint operators corresponding to finite-rank perturbations of the n-th derivative operator
with the support at the origin (also, see [KB98]). The generalization to the case of test functions
of several variables possessing, in certain extent, an arbitrary set of points of discontinuity, was
obtained in [DK07b] in order to provide existence of Nash equilibrium for a class of zero-sum
games with first-kind discontinuous payoff functions. Before we define our space of distributions
with discontinuous test functions (in the next section), let us provide certain heuristics on
multiplication of Dirac delta-function by Heaviside function. Let ρ ∈ L(R) be such that

supp(ρ) ⊂ (−1, 1) and

∫

R

ρ(t)dt = 1.

We define delta-family {ρετ}ε>0 by the formula

ρετ (t) =
1

ε
ρ

(

t− τ

ε

)

, t ∈ R,

so that ρετ → δτ in D′ as ε→ 0+. Let θτ be Heaviside function discontinuous at τ . Then

θτρ
ε
τ → αδτ

in D′, where the complex coefficient α ∈ C, as straightforward calculations show, is given by

(1.3) α =

∫ ∞

0

ρ(t)dt.

Thus, in order to avoid multi-valuedness of the product of delta-function and Heaviside function
it is necessary to specify ”additional information” on δτ , which is impossible in the classical
space D′ of distributions with the smooth test functions, but which is, however, possible in the
space R′ of distributions defined on the space of discontinuous test functions – the space of
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functions which have compact support and which are regulated together with their derivatives of
all orders defined almost everywhere (function is called regulated if it possesses both one-sided
limits at every point of the interval [Die69]): there is delta-function defined by the formula

(δατ , ϕ) = αϕ(τ+) + (1− α)ϕ(τ−),

so

θτδ
α
τ = αδ+τ ,

where (δ+τ , ϕ) = ϕ(τ+), and ρετ → δατ if and only if (1.3) holds. In a similar way we may define
the derivatives of the delta-function

(δ(k)ατ , ϕ) = αϕ(k)(τ+) + (1− α)ϕ(k)(τ−),

so that (ρετ )
(k) → δ

(k)α
τ if and only if the equality (1.3) holds.

Now, being extending major constructions of the classical distribution space D′ to the space
R′ of distributions with the discontinuous test functions, one immediately encounters the im-
possibility to employ the classical definition of the derivative

(1.4) (f ′, ϕ) = −(f, ϕ′),

even when ϕ′ is assumed to be defined almost everywhere: first, in this assumption, (1.4) gives
rise to a non-linear operator of differentiation, second, as it follows from the above considera-
tions, each distribution possesses whole family of its derivatives, e.g., fix arbitrary α ∈ C and
consider delta-family {ρετ}ε>0 which corresponds to a locally absolutely continuous function ρ
such that (1.3) holds, to obtain that the delta-function δατ is the derivative of θτ ; moreover, if f
is a distribution, and f ′ is its derivative, then f ′+c(δ1τ−δ

0
τ ) is another derivative of f for every c

and every τ (formally, in [Kur96, KB98] the definition (1.4) with ϕ′ defined outside the origin is
used; however, since the derivatives of the distributions which are considered in [Kur96, KB98]
are specified in accordance with the natural multi-valuedness of the differentiation operator, the
insufficiencies of the definition (1.4) are not crucial for the particular results in [Kur96, KB98];
in [DK07b] the problem of definition of derivative was in fact avoided, since all elements of the
distribution space in [DK07b] are, in a sense, measure-type distributions).

It is natural to require from the definition of the derivative of a distribution to possess the
following property of continuity: if f is the distribution, and g is its derivative, then there exists
a family {fε}ε>0 of locally absolutely continuous functions such that

fε → f, f ′
ε → g

as ε → 0+, and conversely, if fε → f , and there exists a distribution g such that f ′
ε → g, then

the distribution g is the derivative of f (in fact, since this is the only requirement which we
impose on the definition of the derivative, this property is already a definition of the derivative).

Thus, the aims of the present paper are the following.
1) To give the (analytical) definition of the derivative which possesses the aforementioned

property of continuity.
2) To prove the well-posedness of the Cauchy problem for the linear system

x′ −A(t)x = f,

where f is a distribution, and A is regulated together with all its derivatives defined almost
everywhere (and, thus, in general discontinuous).

We would like to emphasize the fact that the operation of differentiation in R′ is multivalued.
The formulations of the statements which imply required well-posedness of Cauchy problem
(Theorems 3.1 – 3.5 below) coincide with the formulations of the analogous statements for the
space D′ in [Shi84] (see [Sch50]), but the aforementioned multi-valuedness of the operation of
differentiation requires new (yet natural) definition of the solution as well as totally new proofs.
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In fact, the formulation of Theorems 3.1 – 3.5 allows us to write down the solution of the
Cauchy problem explicitly, as the following examples show (the proofs of Examples 1.1 and 1.2
are provided in Section 3).

Example 1.1. Let us consider in the space R′ the following Cauchy problems:

(1.5) x′ = aθτx+ bδατ , x = 0 if t < t0,

(1.6) x′ = aθτx+ bδ′ατ , x = 0 if t < t0,

(1.7) x′ = aθτx+ bδ′′ατ , x = 0 if t < t0,

where a, b ∈ C, τ , t0 ∈ I, t0 < τ . Let us define ζτ (t) = t − τ for t > τ , ζτ (t) = 0 for t < τ .
We call the solution of the differential equation (1.5), (1.6), (1.7) the distribution x ∈ R′ which
possesses the derivative x′ ∈ R′ such that after the substitution of x′ and x in (1.5), respectively,
in (1.6), (1.7), the equation becomes the identity R′. Using Theorem 3.2 below, we find that
the solution of the Cauchy problem (1.5) is the ordinary function given by the formula

x = beaζτ θτ

(note that right-hand side of (1.5) does not contain the product of a singular distribution and
a discontinuous function, and the solution of the Cauchy problem does not depend on α ∈ C).
Further, the solution of the Cauchy problem (1.6) is the distribution given by the formula

x = eaζτ (abαθτ − bδατ ),

and the distribution
x = eaζτ (αa2bθτ − 2αabδ+τ + bδ′ατ )

is the solution of the Cauchy problem (1.7). Note that the solutions of the Cauchy problems
(1.6) and (1.7) depend on the value of α ∈ C.

Example 1.2. Suppose that I = R, and we are given a countable set Υ ⊂ (0,∞). Let {aγ}γ∈Υ,
{bγ}γ∈Υ ⊂ C be such that

∑

γ∈Υ |aγ |,
∑

γ∈Υ |bγ | <∞. We define

a =
∑

γ∈Υ

aγθγ , b =
∑

γ∈Υ

bγθγ .

Let us consider the following Cauchy problem

(1.8) x′ = a(t)x+ b′′, x = 0 for t < 0,

the second derivative of b is specified by the formula b′′ =
∑

γ∈Υ bγδ
′α(γ)
γ , where α : I 7→ C is a

bounded continuous function (Cauchy problem (1.6) is a special case of Cauchy problem (1.8)).
The solution of the Cauchy problem (1.8) is the distribution given by the formula

x =
∑

γ∈Υ

bγ exp

(∫ t

γ

a(s)ds

)

(

(

α(γ)a(γ+) +
(

1− α(γ)
)

a(γ−)
)

θγ − δα(γ)γ

)

.

Observe that x does not depend on values of α at the points of Υ where bγ 6= 0 if and only if a
is continuous on Υ∩{γ : bγ 6= 0} (e.g., when Υ is the Cantor set, and a is the Cantor function).

As follows from Theorem 3.5 below, the solutions of the Cauchy problems (1.5)–(1.8) can also
be obtained if the delta-functions and their derivatives in the-right hand sides of the differential
equations in (1.5)–(1.8) are replaced by converging families of locally-summable functions.

We also consider linear differential equations of higher orders, that is,

(1.9) X(m) −Am−1X
(m−1) − · · · −A0X = F,

where Ai are the matrix-valued functions which are regulated (together with their derivatives
of all orders defined almost everywhere) and F is a matrix-valued distribution in R′. We prove
the well-posedness of the Cauchy problem for (1.9) (Theorems 3.3’–3.5’), and so, is a sense,
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generalize the result in [Der86] where the technique of quasidifferential equations is used to
obtain the sufficient conditions on distribution F ∈ D′ and coefficients Ak for existence and
uniqueness of the locally-summable solution of the Cauchy problem for (1.9).

In what follows, we show that every distribution in D′ admits a linear continuous extension
from D to R (Theorem 2.8). Using Gelfand homomorphism induced by Banach algebra of reg-
ulated functions, we show that the space of distributions R′ is isomorphic to the space D′(I∗) of
distributions with the smooth test functions defined on a totally-disconnected Hausdorff space
(Theorem 2.19), so in this sense the use of the term ”discontinuous test functions” is purely
conventional (nevertheless, the space of distributions D′(I∗) seems to be not studied before).

Acknowledgments. The author would like to thank Professor V. Derr for his valuable com-
ments, his support and his continuing interest in this work.

2. Distributions

Let us start with the definitions of functions spaces and functions algebras which are used
throughout this paper. We denote by Lloc = Lloc(I) the linear space of locally-summable
functions I 7→ C, where I = (a, b) ⊂ R is an open interval (in particular, I = R). Let
L∞ = L∞(I) be the algebra of functions essentially bounded on I, endowed with the norm

‖g‖L∞
= esssupt∈I |g(t)|.

In what follows, we denote by G ⊂ L∞ the algebra of regulated functions, that is, the algebra
of functions g : I 7→ C possessing both one-sided limits

g(t−) := esslims→t−g(s), g(t+) := esslims→t+g(s)

for every t ∈ I (equivalently, possessing at most first-kind discontinuities on I). As is well-
known, G is a Banach algebra [Die69].

Theorem 2.1 ([Der02]). For every g ∈ G the set of points of discontinuity T (g) := {t ∈ I :
σt(g) := g(t+)− g(t−) 6= 0} is at most countable.

We define support of the function g ∈ G to be the set

supp(g) = cl{t ∈ I : g(t−) 6= 0 or g(t+) 6= 0},

where cl stands for the closure in I.
Further, let us denote by G∞ ⊂ L∞ the subalgebra of functions g ∈ G such that for every

k ∈ N there exists a regulated function g(k) ∈ G (called the k-th derivative of g) such that

g(k)(t±) = esslim
s→t±, s6=t

(

g(k−1)(s)− g(k−1)(t±)

s− t

)

, t ∈ I,

where g(0) := g. As follows from the remark above, for every g ∈ G∞, k ∈ N0, the set of points
of discontinuity of the k-th derivative T (g(k)) := {t ∈ I : σt(g

(k)) 6= 0} is at most countable.
We endow algebra G∞ with the countable family of norms

‖g‖k = max
06i6k

‖g(i)‖L∞
, k ∈ N0 := N ∪ {0}.

If we denote by C ⊂ L∞ the algebra of bounded continuous functions I 7→ C, then C is a
proper subalgebra of G. Furthermore, if C∞ ⊂ L∞ is the algebra of bounded infinitely (contin-
uously) differentiable functions, then C∞ is a proper subalgebra of G∞ (we add ”continuously”
here since the elements of algebra G∞ are also ”infinitely differentiable” in the above sense).

In what follows, we denote by D = D(I) the classical space of C∞-test functions. Let
D′ = D′(I) be the space of linear continuous functionals D 7→ C (called distributions), endowed
with weak* topology (see [GS64, Shi84]).

We proceed now to the definition of the space of G∞-test functions, containing as a subspace
the classical space of C∞-test functions. Namely, let J = {J} be the family of all subintervals
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in R such that J̄ ⊂ I. Every ϕ ∈ G∞(J), J ∈ J, can be extended to I by assigning zero values
on I \ J , so we may define

R =
⋃

J∈J

G
∞(J)

– the linear space consisting of functions ϕ ∈ G∞ possessing compact support in I. We endow
R = R(I) with the locally-convex topology of inductive limit of countably-normed spaces
G

∞(J), J ∈ J, and call its elements analogously as test functions.
The following theorem gives the description of the topology in R in terms of convergent

sequences (its proof, as well as the proof of Lemma 2.8 and the proof of Theorem 2.5, is
provided in the last section).

Lemma 2.2. Given {ϕk}
∞
k=1 ⊂ R and ϕ ∈ R, we have that ϕk → ϕ in R if and only if ϕk → ϕ

in G∞ and there exists J ∈ J such that supp(ϕk) ⊂ J for all k ∈ N.

As one of the consequences of the characterization of topology in R given in Lemma 2.2 we
obtain that the classical space D of the smooth test functions is a subspace of R.

Let R′ = R′(I) be the space of linear continuous functionals R 7→ C, endowed with weak*
topology, whose elements are called analogously as distributions. By definition of the inductive
limit topology [RR64], a linear functional f : R 7→ C is a distribution if and only if given any
J ∈ J its restriction f |G∞(J) is continuous.

As an example, given f ∈ Lloc, we may define distribution f ∈ R′ whose value on the test
function ϕ ∈ R is determined by the formula

(f, ϕ) =

∫

I

f(t)ϕ(t)dt.

Note that the map Lloc 7→ R′ defined above is injective, since D is a subspace of R, and
analogous statement is true in D′.

Let us consider some other examples of distributions in R′.

Example 2.3 ([DK07b]). Given τ ∈ I, we define the right and the left delta-functions

(δ+τ , ϕ) := ϕ(τ+), (δ−τ , ϕ) := ϕ(τ−),

where ϕ ∈ R. In general, given α ∈ C, we define

δατ := αδ+τ + (1− α)δ−τ .

Clearly, if ϕ ∈ D, then (δατ , ϕ) = ϕ(τ), so δατ ∈ R′ is the extension of the classical delta-function
δτ ∈ D′ from D to R. Let us note that together with the family of delta-functions concentrated
at τ ∈ I there exists the family of corresponding delta-sequences: if χS is the characteristic
function of the set S, then

fα
k = k

(

αχ(τ,τ+ 1

2k
) + (1− α)χ(τ− 1

2k
,τ)

)

→ δατ

in R′. Also, note that f1
k − f0

k → δ+τ − δ−τ in R′, while f1
k − f0

k → 0 in D′.

Example 2.4. Let k ∈ N0, α ∈ C. Let us define the following distributions:

(δ(k)+τ , ϕ) := (−1)kϕ(k)(τ+), (δ(k)−τ , ϕ) := (−1)kϕ(k)(τ−), ϕ ∈ R,

and, in general,

(2.1) δ(k)ατ := αδ(k)+τ + (1 − α)δ(k)−τ ,

which we call the k-th derivatives of the delta-functions. In fact, we haven’t defined the deriv-
ative of a distribution yet. As it will be shown below, the distributions defined by (2.1) are
indeed the derivatives of the delta-functions in R′.
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Suppose that g ∈ G∞, f ∈ R′. We define the product gf ∈ R′ by the formula (see [DK07b])

(2.2) (gf, ϕ) = (fg, ϕ) := (f, gϕ), ϕ ∈ R,

where gϕ ∈ R. The operation of multiplication defined by (2.2) is associative in the sense that
the equality (gh)f = g(hf) holds for any g, h ∈ G∞, f ∈ R′, and, clearly, coincides with the
ordinary one for the regular distributions. Furthermore, as follows from the next theorem, the
operation of multiplication in R′ is continuous.

Theorem 2.5. Given gk → g in G∞, fk → f in R′, we have gkfk → gf in R′.

Example 2.6. Let us find the product of the Heaviside function θτ ∈ G∞ and the delta-function
δατ ∈ R′. According to definition (2.2) we have

(θτδ
α
τ , ϕ) = (δατ , θτϕ) = αθτ (τ+)ϕ(τ+) + (1− α)θτ (τ−)ϕ(τ−) = αϕ(τ+),

where ϕ ∈ R, so

θτδ
α
τ = αδ+τ .

Analogously, we have the following identities:

θτδ
′α
τ = αδ′+τ , ζτ δ

α
τ = 0, ζτ δ

′α
τ = −αδ+τ .

2.1. Properties of restriction and differentiation operators. Let

Γ : R′ 7→ D′

be the linear and, clearly, continuous operator of restriction from R to D.

Theorem 2.7. The operator Γ is surjective, that is, every distribution in D′ has a linear
continuous extension from D to R.

Proof. Indeed, since R is a locally-convex topological linear space, and D is a subspace of R,
the required extension exists by Hahn-Banach Theorem [KA82]. �

As follows from the examples provided, such extension is always non-unique (e.g., f , f +
(δ+τ − δ−τ ) ∈ R′ are two different extensions of the same distribution in D′). Denote

ker(Γ) = {f ∈ R′ : Γ(f) = 0}.

As follows from Example 2.3, ker(Γ)\ {0} 6= ∅. Furthermore, ker(Γ) is a closed subspace of R′.
In order to formulate the next theorem, which describes the structure of ker(Γ) and plays

crucial role in our further considerations, we will need one definition and one supplementary
statement.

First, given f ∈ R′, we define the support supp(f) ⊂ I to be the minimal closed set such
that for every ϕ ∈ R satisfying supp(ϕ) ∩ supp(f) = ∅ we have (f, ϕ) = 0.

Second, given k ∈ N0, we define Fk ⊂ G∞ to be the subspace consisting of functions g such
that g(i) ∈ C for all i 6= k, g(k) is piece-wise continuous. Let F ⊂ G

∞ be the linear space spanned
by Fk, k ∈ N0. Let RF := R∩ F be endowed with the topology induced by the topology of R,
so that RF is a subspace of R. The following statement is technical but essential.

Lemma 2.8. The subspace RF is dense in R. Furthermore, for every τ ∈ I, ϕ ∈ R there

exists a sequence {ϕl}
∞
l=1 ⊂ RF such that ϕl → ϕ in R, ϕ

(j+1)
l is continuous in t = τ for all

j > l, l ∈ N, and

|ϕ
(j)
l (τ±) − ϕ(j)(τ±)| < l−1,

where l > j, j ∈ N0



8 D. KINZEBULATOV

Theorem 2.9. 1) Let f ∈ ker(Γ). Then there exist uniquely determined functions t 7→ ckf (t),
k ∈ N0, such that for every ϕ ∈ R

(2.3) (f, ϕ) =
∑

k∈N0

∑

t∈I

ckf (t)σt
(

ϕ(k)
)

where the distribution

(2.4) R ∋ ϕ 7→
∑

k∈N0

∑

t∈I

ckf (t)σt
(

ϕ(k)
)

is defined to be the extension of the functional

(2.5) RF ∋ ϕ 7→
∑

k∈N0

∑

t∈I

ckf (t)σt
(

ϕ(k)
)

from RF to R.
2) If f ∈ ker(Γ), t ∈ I, then ckf (t) = 0 starting with certain k.

3) If f ∈ ker(Γ), t ∈ I \ supp(f), then ckf (t) = 0 for all k ∈ N0.

Remark 2.10. Observe that every ϕ ∈ RF has continuous derivatives starting with certain
K ∈ N0, and the sets of points of discontinuity T (ϕ(k)) (0 6 k 6 K) are finite, so in (2.5) there
is only finite number of non-zero summands. Also, note that the extension of (2.5) exists (take
f) and unique, since RF is dense in R (Lemma 2.8).

Proof. 1) Let us show that the equality (2.3) holds for every ϕ ∈ RF . Let RF (k, τ) be the
subspace of RF consisting of all test functions ϕ such that ϕ(i) ∈ C for all i ∈ N0, i 6= k, and
ϕ(k) may have discontinuity only at τ ∈ I. Let us show that for any k ∈ N0 and τ ∈ I we may
find a ∈ C such that

(f, ϕ) = aστ (ϕ
(k)), ϕ ∈ RF (k, τ).

Suppose that ϕ0 ∈ RF (k, τ) is such that στ (ϕ
(k)
0 ) = 1. We define:

a := (f, ϕ0).

Let us show that the value of a does not depend on choice of ϕ0. Indeed, suppose that ϕ1 ∈

RF (k, τ), στ (ϕ
(k)
1 ) = 1; then ϕ0 − ϕ1 ∈ D and, since f ∈ ker(Γ), we obtain that (f, ϕ0 − ϕ1) =

0, i.e., (f, ϕ1) = a. Now let ϕ ∈ RF (k, τ) be arbitrary. Then ϕ = στ (ϕ)ϕ2 for certain

ϕ2 ∈ RF (k, τ) such that στ (ϕ
(k)
2 ) = 1, so due to linearity of f we have

(f, ϕ) = στ (ϕ)(f, ϕ2) = aστ (ϕ).

Let us define:

ckf (t) := a.

Suppose that ϕ ∈ RF . According to Remark 2.10 there exist a number K ∈ N0 and the
functions ϕik ∈ RF (k, τik), where {τik}

mk

i=1 = T (ϕ(k)), 0 6 k 6 K, such that

ϕ−

K
∑

k=0

mk
∑

i=1

ϕik ∈ D,

so στi(ϕ
(k)) = στi(ϕik), 1 6 i 6 mk, 0 6 k 6 K. Consequently, we have

(f, ϕ) =

K
∑

k=0

mk
∑

i=1

(f, ϕik) =

K
∑

k=0

mk
∑

i=1

ckf (τi)στi(ϕ
(k)) =

∑

k∈N0

∑

t∈I

ckf (t)σt(ϕ
(k)),

where the latter equality is obtained by adding the zero summands.
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2) Suppose the contrary. Given t ∈ I, we denote ak = ckf (t). First, suppose that the sequence

{ak}
∞
k=1 is bounded. Without loss of generality we may assume that ak 6= 0, k ∈ N0. According

to [Shi84] there is the test function ϕ ∈ D such that

|ϕ(k)(t)| > |ak|
−1, k ∈ N0.

Let θt be the Heaviside function which is discontinuous at t. Clearly, θt ∈ G
∞. Then θϕ ∈ R,

and we have

|(θtϕ)
(k)(t+)| > |ak|

−1, (θtϕ)
(k)(t−) = 0, k ∈ N0.

According to Lemma 2.8 there exists the sequence {ψl}
∞
l=1 ⊂ R such that ψ

(j+1)
l is continuous

at t for all j > l, ψl → θϕ in R, and

|ψ
(j)
l (t+)− (θtϕ)

(j)(t+)| < l−1, |ψ
(j)
l (t−)− (θtϕ)

(j)(t−)| < l−1

for all l > j, j ∈ N0, so

|ψ
(j)
l (t+)| > |al|

−1 − l−1, |ψ
(j)
l (t−)| < l−1,

for all l > j, j ∈ N0. Without loss of generality we may assume that ψ
(j)
l is continuous on

I \ {t}, j ∈ N0. Due to continuity of f there exists the limit

lim(f, ψl) = (f, θϕ).

Along with that, we have the equality

(f, ψl) =

l
∑

j=0

ajσt(ψ
(j)
l ),

and

|(f, ψl+1)− (f, ϕl)| =
∣

∣al+1σt
(

ψ
(l+1)
l+1

)∣

∣ > |al+1|
(

|al+1|
−1 − 2l−1

)

= 1− 2|al+1|l
−1 → 1,

so the limit lim(f, ψl) does not exists, which contradicts to our assumption.
Second, suppose that the sequence {ak}

∞
k=1 is unbounded. Then we may choose the test

function ϕ ∈ D such that |ϕ(k)(t)| > 1, k ∈ N0, and repeat the previous argument. Then

|(f, ψl+1)− (f, ϕl)| =
∣

∣al+1σt
(

ψ
(l+1)
l+1

)∣

∣ > |al+1|
(

1− 2l−1
)

,

so the limit lim(f, ψl) does not exist, which again leads to contradiction.
3) Since supp(f) is a closed set, given any k ∈ N0 there exists the test function ϕ ∈ RF (k, t)

such that σt(ϕ
(k)) = 1 and supp(ϕ) ∩ supp(f) = ∅. Then

ckf (t) = (f, ϕ),

but (f, ϕ) = 0, so ckf (t) = 0. �

Example 2.11. Suppose that in (2.3) ckf (t) = 0 for k > 0, t ∈ I and for k = 0, t 6= τ , while

c0f (τ) = a. Then

(2.6) f = a(δ+τ − δ−τ ).

Suppose that in (2.3) ckf (t) = 0 if k 6= m, t ∈ I, and cmf (t) = 1 if t ∈ I, m ∈ N0. Then

(2.7) (f, ϕ) =

∫

I

ϕ(m+1)(t)dt, ϕ ∈ R.

Clearly, both distributions (2.6), (2.7) are in ker(Γ).
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Let ∆ ⊂ ker(Γ) be the subspace consisting of the test functions of the form

ϕ 7→
∑

t∈I

c(t)σt(ϕ), ϕ ∈ R,

where I ∋ t 7→ c(t) ∈ C (equivalently, ∆ consists of the elements f ∈ ker(Γ) such that ckf ≡ 0 if

k > 1). Suppose that {fk} is a sequence of locally absolutely continuous functions I 7→ C such
that

fk → 0, f ′
k → g

in R′. Then it is natural to consider distribution g ∈ R′ as the derivative of the zero distribution
in R′. Let us show that g ∈ ∆. Observe first that g ∈ ker(Γ) ⊃ ∆, since f ′

k → 0 in D′. Further,
let ϕ ∈ RF (0, τ), τ ∈ I. Then

(g, ϕ) = lim

∫

I

f ′
k(t)ϕ(t)dt = lim

(

∫ τ

a

f ′
k(t)ϕ(t)dt +

∫ b

τ

f ′
k(t)ϕ(t)dt

)

=

= lim

(

−fk(τ)στ (ϕ)−

∫

I

fk(t)ϕ
′(t)

)

= −στ (ϕ) lim fk(τ),

where lim fk(τ) exists since the value (g, ϕ) is defined. Let c(t) := − lim fk(τ). Suppose that
we are given ϕ ∈ RF (j, τ), j > 1. Then

(g, ϕ) = lim

∫

I

f ′
k(t)ϕ(t)dt = − lim

∫

I

fk(t)ϕ
′(t)dt = 0

for every τ ∈ I. Consequently, if ϕ ∈ RF , then

(2.8) (g, ϕ) =
∑

t∈T (ϕ)

c(t)σt(ϕ) =
∑

t∈I

c(t)σt(ϕ),

where the latter equality is obtained by adding zero summands. The distribution (2.8) can be
extended uniquely to R, by the definition g ∈ ∆.

Conversely, let us show that given a distribution g ∈ ∆ and a sequence of locally summable
functions {gk}

∞
k=1 such that gk → g in R′, in assumption that the sequence of functions (i.e.,

primitives) {fk}
∞
k=1 defined by the formula

t 7→ fk(t) :=

∫ t

t0

gk(s)ds (t0 ∈ I)

tends to a regular distribution f ∈ R′, we have that f , as an ordinary function, is identically
equal to a constant. If we show that there exists r ∈ C such that

(fk, ϕ) → r

∫

I

ϕ(t)dt,

for every ϕ ∈ R, then the proof would be complete. Indeed, given ϕ ∈ R (suppose that
supp(ϕ) ⊂ [u, v] ⊂ I), we have

∫

I

fk(t)ϕ(t)dt =

∫ v

u

(∫ t

t0

gk(s)ds

)

d

∫ t

u

ϕ(s)ds =

=

(∫ v

t0

gk(s)ds

)∫ v

u

ϕ(s)ds −

∫ v

u

(∫ t

u

ϕ(s)ds

)

gk(t)dt →

→
(

g, χ(t0,v)

)

∫ v

u

ϕ(s)ds −

(

g,

∫ t

u

ϕ(s)dsχ(u,v)(t)

)

=

=
(

cg(v)− cg(t0)
)

∫

I

ϕ(s)ds− cg(v)

∫

I

ϕ(s)ds = −cg(t0)

∫

I

ϕ(s)ds,

so we may put r := −cg(t0). The proof is complete.
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Taking into account the above considerations, we define the derivative of the distribution
f ∈ R′ to be any distribution f ′ ∈ R′ such that

(2.9) f ′ ∈
df

dt
+∆, where

(

df

dt
, ϕ

)

:= −(f, ϕ′), ϕ ∈ R,

where ϕ′ is assumed to be defined almost everywhere. We denote by D(f) ⊂ R′ the family of
all derivatives of the distribution f ∈ R′. As it immediately follows from the definition, the
operator of differentiation f 7→ D(f) is multi-valued.

We define the derivatives of higher orders inductively.

Example 2.12. Let θτ be Heaviside function. Then
(

dθτ

dt
, ϕ

)

= −

∫ b

τ

ϕ′(t)dt = ϕ(τ+),

so (dθτ
dt
, ϕ) = δ+τ . Consequently, for every α ∈ C delta-function δατ is the derivative of θτ .

Example 2.13. As follows from definition (2.9) the distribution (2.1) is indeed the k-th deriv-
ative of δατ . Furthermore,

δ′ατ + β(δ+ξ − δ−ξ )

is the derivative of δατ for any β ∈ C, ξ ∈ I,

δ′ατ + β(δ′+ξ − δ′−ξ )

is the derivative of δατ + β(δ+ξ − δ−ξ ), and

δατ + β(δ+ξ − δ−ξ )

is the derivative of θτ for any β ∈ C, ξ ∈ I.

Example 2.14. Let f : I 7→ C be a locally absolutely continuous function. Then

(2.10) (f ′, ϕ) =

∫

I

f ′(t)ϕ(t)dt =

∫

I

ϕ(t)df(t) =

= −

∫

I

f(t)dϕ(t) = −

∫

I

f(t)ϕ′(t)dt −
∑

t∈I

f(t)σt(ϕ), ϕ ∈ R

where, as usual, the latter sum is defined to be the extension of the corresponding functional
from RF to R. Since

∑

t∈I f(t)σt(ϕ) ∈ ∆, we have

f ′ +∆ = D(f),

where f ′ is defined by (2.10).

Theorem 2.15. Suppose that f ∈ R′, and we are given its m-th derivative f (m) ∈ R′. Then
the intermediate derivatives f (k), 0 6 k 6 m− 1, are determined uniquely.

Proof. We will prove this result by induction over k. By definition f (0) = f is determined
uniquely. Suppose that f (i) are uniquely determined for 0 6 i 6 k − 1. Then, since the
primitive of a distribution is defined uniquely up to a constant summand, we have that f (k) is

defined uniquely by f (m) up to a polynomial of degree m− k− 1. Along with that, if f
(k)
1 , f

(k)
2

are two different derivatives of f (k−1), then

f
(k)
1 − f

(k)
2 ∈ ∆.

Now since ∆ does not contain polynomials except the one identically equal to zero, we have
that f (k) is uniquely determined. �
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2.2. Theorems on structure of distributions. The following statement is a generalization
of well-known result on structure of distributions in D′ [Shi84].

Theorem 2.16. Let f ∈ R′. Then there exist functions fk ∈ Lloc and functions ck : I 7→ C,
k ∈ N0, such that

(2.11) (f, ϕ) =
∑

k∈N0

(−1)k
∫

I

fk(t)ϕ
(k)(t)dt+

∑

k∈N0

∑

t∈I

ck(t)σt(ϕ
(k)), ϕ ∈ R.

If f = 0 for t < t0, that is, for every test function ϕ ∈ R such that supp(ϕ) ⊂ (a, t0) we have
(f, ϕ) = 0, then there exist fk such that fk = 0 for t < t0.

Proof. According to [Shi84] there exist functions fk ∈ Lloc, k ∈ N0, such that

(2.12) (f, ϕ) =
∑

k∈N0

(−1)k
∫

I

fk(t)ϕ
(k)(t)dt, ϕ ∈ D.

(if f = 0 for t < t0, then there exist fk such that fk = 0 for t < t0). If we consider in (2.12)
the test functions ϕ ∈ R, then we get certain extension of Γ(f) from D to R. According to
Theorem 2.9 the family of all extensions of Γ(f) from D to R consists of all distributions of
form (2.11). Since f is one of such extensions, there exist locally-summable functions ck such
that (2.11) is true. �

Theorem 2.17. Let f ∈ R′, supp(f) ⊂ {τ}. Then

(2.13) f =
K
∑

k=0

akδ
(k)αk
τ +

M
∑

k=0

bk

(

δ(k)+τ − δ(k)−τ

)

for certain K, M ∈ N0, ak, bk ∈ C, αk ∈ C.

As it follows from Theorem 2.17, in R′ there are no other extensions of delta-function and its
derivatives from D to R, concentrated at a single point, except defined in the examples above.

Proof. If supp(f) = ∅, then f = 0, and the proof is complete. So, we may suppose that
supp(f) = {τ}. As follows from the definition of support, we have the inclusion supp

(

Γ(f)
)

⊂
{τ}. According to [Shi84] there exist K ∈ N0, ak ∈ C, 0 6 k 6 K, such that

Γ(f) =

K
∑

k=0

akδ
(k)
τ .

Let αk ∈ C, 0 6 k 6 K. Then

ϕ 7→
K
∑

k=0

akδ
(k)αk
τ

is an extension of Γ(f) from D to R. According to Theorem 2.9 any extension of Γ(f), concen-
trated at τ , has form (2.13) for certain M ∈ N0, ak, bk ∈ C, αk ∈ C. Since f is one of such
extensions, we obtain the statement of the theorem. �

Let us show that the space of distributions R′ = R′(I) is isomorphic (as a topological linear
space) to the space of distributions with the smooth test functions defined on a certain totally
disconnected set. Namely, let I∗ be the maximal ideal space of the Banach algebra G = G(I),
that is, the space of all continuous algebra homomorphisms G 7→ C, endowed with weak*
topology [Gam69]. As is shown in [BK07], I∗ is a totally disconnected Hausdorff space which
consists of homomorphisms of the form

g 7→ g(t−), g 7→ g(t+),
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where g ∈ G, t ∈ I. We denote these homomorphisms by t− and t+, respectively, and use
notations g(t−) for (t−)(g) and g(t+) for (t+)(g), g ∈ G. So, as the set, I∗ is in one-to-
one correspondence with I × {−1, 1}, where −1 stands for the left hand-side limit evaluation
homomorphism, and 1 stands for the right hand-side limit evaluation homomorphism. In what
follows, we put [t+] = [t−] := t. Since algebra G is regular and symmetric, i.e.,

‖g2‖L∞
= ‖g‖2L∞

and ḡ ∈ G for every g ∈ G, we have that G is isometrically isomorphic to C(I∗) [Gam69]. Let
C∞(I∗) be the algebra consisting of infinitely continuously differentiable functions g ∈ C(I∗),
that is, the functions such that for every k ∈ N, t· ∈ I∗ there exists the limit

g(k)(t·) = lim
r→t·, r 6=t·

(

g(k−1)(r) − g(k−1)(t·)

[r] − t

)

and g(k) ∈ C(I∗) (by definition, g(0) := g). We introduce in C∞(I∗) the countable family of
norms

‖g‖k = max
06i6k

sup
t·∈I∗

|g(i)(t·)|, g ∈ C
∞(I∗), k ∈ N0.

Lemma 2.18. G∞(I) is isometrically isomorphic to C∞(I∗).

Proof. Suppose that f ∈ G(I). In what follows, we denote the image of f in C∞(I∗) under the
map defined above by f∗. Let g ∈ G∞(I). Show that for every k ∈ N0

(2.14) (g(k))∗ = (g∗)
(k).

Let us prove this statement inductively by k. Clearly,

(g(0))∗ = (g∗)
(0).

Suppose that m ∈ N, and (2.14) is true for k = m − 1. We have to show now that (2.14) is
true for k = m. Observe that due to the fact that the set of points of discontinuity T (g(m)) has
zero measure, we have the equality

g(m)(t±) = esslim
s→t±, s6=t

(

g(m−1)(s)− g(m−1)(t±)

s− t

)

= lim
s→t±, s6=t

(

g(m−1)(s·)− g(m−1)(t±)

s− t

)

As it follows from our assumption and from the definition of the topology in I∗, the latter is
equal to

lim
r→t±, r 6=t

(

g
(m−1)
∗ (r) − g

(m−1)
∗ (t±)

[r]− t

)

= g
(m)
∗ (t±)

for every t ∈ I, so the equality (2.14) holds for k = m, so G∞(I) is isomorphic to C∞(I∗).
Further, as follows from (2.14), we have that

‖g‖k = ‖g∗‖k, k ∈ N0,

so G∞(I) is isometrically isomorphic to C∞(I∗). �

Let D(I∗) be the space consisting of elements ϕ ∈ C∞(I∗) such that there exist cϕ, dϕ ∈ I

possessing the property ϕ(t·) = 0 if t < cϕ, ϕ(t·) = 0 if t > dϕ, endowed with the convergence:
ϕk → ϕ in D(I∗) if and only if ϕk → ϕ in C∞(I∗) and there exist c, d ∈ I such that ϕk(t·) = 0
if t < cϕ, ϕk(t·) = 0 if t > dϕ for all k ∈ N. Let D′(I∗) be the space of all continuous linear
functionals D(I∗) 7→ C. As a simple corollary of the results above, we obtain the following
statement.

Theorem 2.19. R′(I) is isomorphic to D′(I∗).
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3. Linear differential equations

Let Rn′ be the space of vector-valued distributions R 7→ Cn with the operations and conver-
gence defined componentwise. We introduce analogous notations for the spaces of vector-valued
and matrix-valued distributions and functions I 7→ Cn and I 7→ Cn×m, respectively.

Let us consider in the space Rn′ the following linear differential equation

(3.1) x′ −A(t)x = 0

with the matrix of coefficients A ∈ G∞
n×n. Analogously, the solution of the differential equation

(3.1) is the distribution x ∈ Rn′ which possesses a derivative x′ ∈ Rn′ such that after the
substitution of x and x′ in (3.1) we obtain the identity (x′, ϕ) = (A(t)x, ϕ) for all ϕ ∈ R.

Theorem 3.1. There are no other solutions in the space Rn′ of the differential equation (3.1)
except the classical ones.

Proof. Without loss of generality we conduct our proof for the case n = 1. First, let us show
that there are no other solutions of equation (3.1) being considered on the space of smooth test
functions D except the classical ones. Let x ∈ R′ be a solution of equation (3.1). By definition,
the derivatives of x coincide on D ⊂ R, so (x′, ϕ) = −(x, ϕ′). Also note that if we are given
a distribution h ∈ R′ and a function g ∈ G∞ which is continuous (and, thus, differentiable),
then we have ((gh)′, ϕ) = −(gh, ϕ′) = −(h, gϕ′) = (h,−(gϕ)′ + g′ϕ) for all ϕ ∈ D, that is, we
have the identity (gh)′ = h′g + hg′ on D. Now let us represent x in the form x = eBy, where
B ∈ G

∞ is a (continuous) primitive of A, and y ∈ R′. Then

x′ = (eB)′y + eBy′,

on D, so our equation is equivalent to

AeBy + eBy′ = AeBy,

which is, in turn, implies that (eBy′, ϕ) = 0 for all ϕ ∈ D. We may multiply both parts of this
equality by e−By to get the identity (y′, ϕ) = 0 for all ϕ ∈ D. According to [Shi84] y ≡ const.
Thus, x restricted to D can be only an ordinary function (that is, regular distribution).

We obtained that if x is the solution of (3.1) in R′, then

x = x0 + y,

where x0 is the classical solution, y ∈ ker(Γ). Clearly, y is also a solution of equation (3.1), i.e.,

∑

k∈N0

∑

t∈I

cky(t)σt(ϕ
(k+1)) + (z, ϕ) =

∑

k∈N0

∑

t∈I

cky(t)σt

(

(Aϕ)(k)
)

, ϕ ∈ R,

where z ∈ ∆. Let us choose certain τ ∈ I, ϕ ∈ R(k, τ). Then, since cky(τ) = 0 starting with
certain K according to Theorem 2.9, we have the equality

(3.2)

K
∑

k=0

cky(τ)στ (ϕ
(k+1)) + cz(τ)στ (ϕ) =

K
∑

k=0

cky(τ)στ

(

(Aϕ)(k)
)

.

Since σ(ϕ(K+1)) is not contained in the right-hand side of (3.2), we find that cKy (τ) = 0.
Consequently, the right-hand side of (3.2) does not contain the summand corresponding to
k = K. Then στ (ϕ

(K)) is not contained in the right-hand side of (3.2), so cK−1
y (τ) = 0. We

may continue this process to obtain that c1y(τ) = 0. Then the right-hand side of (3.2) does

not contain στ (ϕ
′) and, as a result, we get c0y(τ) = 0 (and also cz(τ) = 0). Now since τ ∈ I

was chosen arbitrarily, we obtain that cky(t) = 0 for all t ∈ I, k ∈ N0. Consequently, the only
solution of differential equation (3.1) in ker(Γ) is the zero solution, so x = x0. �
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Further, let us consider in the space R′ the differential equation

(3.3) x′ = f,

where f ∈ R′. In what follows, we assume that f = 0 if t < t0. Analogously, we call the
solution of the differential equation (3.3) the distribution x ∈ R′ which possesses a derivative
x′ ∈ R′ such that after substitution of x′ in (3.3) the equation (3.3) becomes the identity
(x′, ϕ) = (f, ϕ), ϕ ∈ R.

Theorem 3.2. There exists solution x of equation (3.3) such that x = 0 if t < t0.

The solution x of equation (3.3) is called the primitive of distribution f .

Proof. According to Theorem 2.16 there exist the locally-summable functions fk which are
equal to 0 for t < t0, and functions ck, k ∈ N0 such that (2.11) holds. Let us define (let t1 < t0,
t1 ∈ I):

(3.4) (x, ϕ) := −

∫

I

(∫ t

t1

f0(s)ds

)

ϕ′(t)dt+

+
∑

k∈N0

(−1)k
∫

I

fk+1(t)ϕ
(k)(t)dt −

∑

k∈N0

∑

t∈I

ck+1(t)σt(ϕ
(k)), ϕ ∈ R.

Now we may define the derivative

(3.5) (x′, ϕ) =

∫

I

f0(t)ϕ(t)dt +
∑

k∈N0

(−1)k+1

∫

I

fk+1(t)ϕ
(k+1)(t)dt+

+
∑

k∈N0

∑

t∈I

ck+1(t)σt(ϕ
(k+1)) + z,

where z ∈ ∆,

(3.6) z =
∑

t∈I

c0(t)σt(ϕ) +
∑

t∈I

(∫ t

t1

f0(s)ds

)

σt(ϕ), ϕ ∈ R.

As follows from Example 2.14, the distribution defined by (3.5), (3.6) is indeed in D(x), and
x′ = f . From (3.4) we have that x = 0 for t < t0, and the proof is complete. �

Let us consider in the space Rn′ the linear differential equation of the general form

(3.7) x′ −A(t)x = f

where A ∈ G∞
n×n, f ∈ Rn′. The linear systems of form (3.7) were considered in [Shi84] in the

classical space of distributions D′ in assumption that A ∈ C∞
n×n.

We call the solution of the differential equation (3.7) the distribution x ∈ Rn′ which possesses
the derivative x′ ∈ Rn′ such that after substitution of x and x′ in (3.7) equation (3.7) becomes
the identity

(x′ −A(t)x, ϕ) = (f, ϕ), ϕ ∈ R.

Let us note that the left-hand side of differential equation (3.7) contains the product of a
function from G∞

n×n (generally discontinuous) and a distribution, which is correctly defined in
the space R′, but in general is undefined in the classical space D′.

Let t0 ∈ I. In what follows, we suppose that f = 0 if t < t0. Let us consider Cauchy problem
for the differential equation (3.7) with the initial condition

(3.8) x = 0 if t < t0

(we will consider Cauchy problem with the initial condition of the general form below).
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Theorem 3.3. There exists the unique solution x of Cauchy problem (3.7), (3.8). Furthermore,
x = Xy, where X is the fundamental solution of the corresponding homogeneous system, y is
the primitive of the distribution X−1f equal to 0 if t < t0.

Proof. Without loss of generality we conduct our proof for the case n = 1. If X is the funda-
mental solution of the corresponding homogeneous system, then, clearly, X ∈ G∞ and there
exists X−1 ∈ G∞, so the product X−1f ∈ R′. According to Theorem 3.2 there exists the
primitive of X−1f which is equal to zero if t < t0. Let us denote this primitive by y. Now let
us determine one of the derivatives of y by the equality

(y′, ϕ) := (X−1f, ϕ), ϕ ∈ R.

We multiply both sides of y′ = X−1f by X :

(Xy′, ϕ) = (f, ϕ),

so Xy′ = f . Let us note that according to the definition of the derivative we have y′ = dy
dt

+ z,
where z ∈ ∆. Let us show that Xz ∈ ∆. Indeed, since X is continuous, we have that if

(z, ϕ) =
∑

t∈I

cz(t)σt(ϕ),

then
(Xz, ϕ) = (z,Xϕ) =

∑

t∈I

cz(t)X(t)σt(ϕ),

i.e., cXz(t) := cz(t)X(t), t ∈ I. Further, let us choose a particular derivative of the distribution
Xy. We have:

(

d

dt
(Xy), ϕ

)

= −(Xy, ϕ′) = −(y,Xϕ′) = −(y, (Xy)′ −X ′ϕ) =

(

X
dy

dt
, ϕ

)

+ (X ′y, ϕ),

where X ′ ∈ G
∞. Since X dy

dt
= f −Xz, and Xz ∈ ∆, we may define the derivative

(Xy)′ :=
d

dt
(Xy) +Xz.

Then
(Xy)′ = f +AXy,

so x = Xy is the solution of the differential equation (3.7). Further, since y = 0 for t < t0, then
x = 0 for t < t0: ifϕ ∈ R, supp(ϕ) ⊂ (a, t0), then Xϕ ∈ R, supp(Xϕ) ⊂ (a, t0) and

(x, ϕ) = (Xy, ϕ) = (y,Xϕ) = 0.

Consequently, x is the solution of the Cauchy problem (3.7), (3.8).
Finally, let us show that x defined above is the only solution of the Cauchy problem. Indeed,

if x1 and x2 are two solutions of (3.7), (3.8), then x1−x2 is the solution of Cauchy problem (3.1),
(3.8). According to Theorem 3.1 the difference x1 −x2 is the ordinary solution of system (3.1),
which is identically equal to zero according to classical uniqueness theorem due to condition
(3.8), so x1 = x2. �

Now let us consider Cauchy problem for the differential equation (3.7) with the initial con-
dition of the general form

(3.9) x = x0 if t < t0,

where x0 ∈ Cn. Consider the following differential equation:

(3.10) y′ −A(t)y = f + x0δ
α
t0
,

where δαt0 ∈ R, α ∈ C is arbitrary. Clearly, we have f + x0δ
α
t0

∈ Rn′, so by Theorem 3.3 the
solution y of Cauchy problem (3.10), (3.8) exists in Rn′ and unique. We call y the solution of
Cauchy problem (3.7), (3.9).
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The next statement shows that this definition agrees with the classical one.

Theorem 3.4. The following statements are true:
1) The solution of the Cauchy problem (3.7), (3.9) does not depend on choice of α in (3.10).
2) If f is a regular distribution, then the solution of Cauchy problem (3.7), (3.9) coincides

for t > t0 with the solution of the corresponding ordinary Cauchy problem

x′ −A(t)x = f(t), t > t0, x(t0+) = x0.

Proof. Let y be the solution of Cauchy problem (3.10), (3.8) (i.e., the solution of Cauchy
problem (3.7), (3.9) according to our definition). Evidently, if y1 is the solution of Cauchy
problem (3.7), (3.8), and y2 is the solution of Cauchy problem for the differential equation

y′2 −A(t)y2 = x0δ
α
t0

with initial condition (3.8), then by uniqueness of solution y = y1 + y2. Note that y1 does
not depend on value of α ∈ C, so in order to complete the proof it suffices to show that y2
does not depend on α. By Theorem 3.3 y2 = Xy3, where X is the fundamental solution of the
corresponding homogeneous system, and y3 is the primitive of distribution X−1x0δ

α
t0
. Clearly,

X−1 is continuous on I, hence (without loss of generality, n = 1)

(X−1x0δ
α
t0
, ϕ) = (δαt0 , X

−1x0ϕ) = X−1(t0)x0ϕ(t0),

and the proof of the first statement is complete.
In order to prove the second statement, first observe that given regular f , the solution x of

Cauchy problem (3.7), (3.9) is a regular distribution. Second, since x0δ
α
t0
coincides with the zero

distribution on I\{t0}, x coincides with solutions x1, x2 of differential equation x
′ = A(t)x+f(t)

on (a, t0) and (t0, b), respectively. By definition, x = x1 = 0 on (a, t0). Further, since A is in
G∞

n×n and, thus, locally-summable on I together with f , there exists the limit x(t0+). Finally,
since for every α delta-function δαt0 is the derivative in R′ of Heaviside function θt0 discontinuous
at t0, we have that

x(t0+)− x(t0−) = x0
(

θt0(t0+)− θt0(t0−)
)

,

so x(t0+) = x0. �

Theorem 3.5. The solution of the Cauchy problem (3.7), (3.9) depends continuously on f ∈
Rn′ and x0 ∈ Cn.

Proof. By definition, the solution of Cauchy problem (3.7), (3.9) is the solution of Cauchy
problem (3.10), (3.8). Note that the continuous dependence of the solution on the initial value
x0 will follow from the continuous dependence on f , so we may restrict ourselves to the proof of
the first statement. Now, as follows from the decomposition obtained in the proofs of Theorem
3.2 (see (3.4), (3.5)), given distribution in R′, its primitive, equal to 0 for t < t0, depends
continuously on this distribution. Thus, since all operations in R′ which arise in construction
of the solution of the Cauchy problem (3.7), (3.8) (in particular, (3.10), (3.8)) in Theorem 3.3
are continuous (including the operation of multiplication, which is continuous by Theorem 2.5),
the solution depends continuously on f ∈ R′. �

3.1. Linear differential equations of higher orders. Let us consider in Rn×n′ the following
linear differential equation of order m:

(3.11) X(m) −Am−1X
(m−1) − · · · −A0X = F,

where Ai ∈ G∞
n×n, (0 6 i 6 m), F ∈ Rn×n′.

The solution of differential equation (3.11) is the distribution X ∈ Rn×n′ which possesses its
m-th derivative X(m) such that after substitution of X , X ′, . . . , X(m) in (3.11) we obtain the
equality

(X(m) −Am−1X
(m−1) − · · · −A0X,ϕ) = (F, ϕ)
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for all ϕ ∈ R. This definition is correct according to Theorem 2.15: it is sufficient to assume that
only X and X(m) are specified in order to have all intermediate derivatives X(k), 1 6 k 6 m−1,
uniquely determined.

First, let us consider the Cauchy problem for equation (3.11) with the homogeneous initial
conditions

(3.12) X(k) = 0, t < t0, 0 6 k 6 m− 1,

where t0 ∈ I.

Theorem 3.3’. There exists the unique solution X of Cauchy problem (3.11), (3.12). Fur-
thermore, X =

∑m
i=1XiTi, where {Xi}

m
i=1 is the fundamental system of solutions of the corre-

sponding homogeneous differential equation, Ti is the primitive of distribution ZiF equal to 0
if t < t0, and Zi is the i-th element of the first column of R−1, where

R =





X1 . . . Xm

. . .

X
(m−1)
1 . . . X

(m−1)
m



 .

Proof. Following standard scheme, we can make a substitution Yk = X(k−1), 1 6 k 6 m, to
reduce differential equation (3.11) to the linear system of the form (3.7),

(3.13)









Y ′
m

Y ′
m−1

. . .

Y ′
1









=









Am−1 Am−2 . . . A1 −A0

1 0 . . . 0 0
. . .

0 0 . . . 1 0

















Ym
Ym−1

. . .

Y1









+









F

0
. . .

0









As it immediately follows from the definition, every solution of differential equation (3.11) is
the solution of system (3.13) (see above), and vice versa. The homogeneous initial conditions
(3.12), being rewritten for system (3.13), coincide with the homogeneous initial conditions

(3.14) Yk = 0, t < t0, 1 6 k 6 m,

so it suffices to apply Theorem 3.3 to prove the existence and uniqueness of the solution of
Cauchy problem (3.11), (3.12). Further, if {Xi}

m
i=1 is the fundamental system of solutions of

the corresponding homogeneous linear differential equation, then R is the fundamental matrix
of the homogeneous system corresponding to (3.13). According to Theorem 3.3 the solution
of Cauchy problem (3.13), (3.14) admits representation in the form of the product RT , where
T = (Ti)

m
i=1 is the primitive of the distribution R−1(F, 0, . . . , 0)⊤ which is equal to 0 for t < t0.

Since X = Y1, we have that X =
∑m

i=1XiTi. The representation of Ti is straightforward. The
proof is complete. �

Now consider Cauchy problem for the differential equation (3.11) with the initial conditions
of the general form, that is,

(3.15) X(k) = Xk, t < t0, 0 6 k 6 m− 1,

where Xk ∈ Cn×n. We need to define the solution of Cauchy problem (3.11), (3.15). For this
purpose we consider the Cauchy problem for the differential equation of the form (3.11),

(3.16)

m
∑

k=0

Ak



Z(k) −

k−1
∑

j=0

Xjδ
(k−j−1)α
t0



 = F,

where α ∈ C is arbitrary, Am is defined to be the identity matrix, with the homogeneous initial
conditions

(3.17) Z(k) = 0, t < t0, 0 6 k 6 m− 1,
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that was already considered above. So, if Z is the solution of problem (3.16), (3.17), which
always exists and unique in virtue of Theorem 3.3’, then we call Z the solution of the Cauchy
problem (3.11), (3.15). The following result shows that this definition is quite natural.

Theorem 3.4’. The following statements are true:
1) The solution of the Cauchy problem (3.11), (3.15) does not depend on α in (3.16).
2) If F is a regular distribution, then the solution of the Cauchy problem (3.11), (3.15)

coincides for t > t0 with the solution of the corresponding ordinary Cauchy problem

X(m) −Am−1X
(m−1) − · · · −A0X = F, X(k)(t0+) = Xk, 0 6 k 6 m− 1.

Proof. Let us consider Cauchy problem for the linear system

(3.18)









Y ′
m

Y ′
m−1

. . .

Y ′
1









=









Am−1 . . . A1 A0

1 . . . 0 0
. . .

0 . . . 1 0

















Ym
Ym−1

. . .

Y1









+









F +Xm−1δ
α
t0

Xm−2δ
α
t0

. . .

X0δ
α
t0









,

with the initial conditions as in (3.14). As it follows from Theorems 3.3 and 3.3’, the solutions
of Cauchy problems (3.18), (3.14) and (3.11), (3.15), respectively, exist and unique. So, in order
to prove this theorem we have to show that Y1 = Z, the rest will follow from Theorem 3.4 being
applied to system (3.18). Suppose that Z is the solution of (3.11), (3.15). Let us put

Yk = Z(k−1) −

k−2
∑

j=0

Xjδ
(k−j−2)α
t0

, 2 6 k 6 m, Y1 = Z

(note that Z(k), 1 6 k 6 m, are uniquely determined, see above). Let us show that (Yk)
m
k=1 is

the solution of the Cauchy problem (3.18), (3.14). Clearly, the initial conditions are satisfied.
Let us specify the derivatives Y ′

k. We define

Y ′
k := Z(k) −

k−2
∑

j=0

Xjδ
(k−j−1)α
t0

, 1 6 k 6 m.

Observe that Y ′
k is indeed the derivative of Yk. Now for every 1 6 k 6 m− 1 we have

Y ′
k − Yk+1 = Xk−1δ

α
t0
.

Further,

Y ′
m −

m−1
∑

k=0

AkYk+1 = Z(m) −

m−2
∑

j=0

Xjδ
(m−j−1)α
t0

−

m−1
∑

k=0

Ak



Z(k) −

k−1
∑

j=0

Xjδ
(k−j−1)α
t0



 =

=

m
∑

k=0

Ak



Z(k) −

k−1
∑

j=0

Xjδ
(k−j−1)α
t0



+Xm−1δ
α
t0

= F +Xm−1δ
α
t0
,

so (Yk)
m
k=1 is the solution of the Cauchy problem (3.18), (3.14), as required. �

The next statement is an analogue of Theorem 3.5.

Theorem 3.5’. The solution of the Cauchy problem (3.11), (3.15) depends continuously on
F ∈ Rn×n′ and Xk ∈ Cn×n.

Proof. The proof follows from the possibility of reduction of linear differential equation (3.11)
to linear system (3.18) as in the proof of Theorem 3.4’ and from the statement of Theorem 3.5
applied to system (3.18). �
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Proof of Example 1.1. Let us find the solution of Cauchy problem (1.6) (the solutions of Cauchy
problems (1.5) and (1.7) can be found similarly). According to Theorem 3.3, if x is the solution
of Cauchy problem (1.5), then x admits the representation

x = eaζτ y,

where eaζτ (t) is the fundamental solution of the corresponding homogeneous equation, and y is
the primitive of the distribution e−aζτ bδ′ατ which is equal to 0 for t < t0, so

(e−aζτ bδ′ατ , ϕ) = (δ′ατ , be
−aζτϕ) =

= −αb
(

−ae−ζτ(τ+)θτ (τ+)ϕ(τ+) + e−ζτ (τ+)ϕ′(τ+)
)

−

− (1 − α)b
(

−ae−ζτ (τ−)θτ (τ−)ϕ(τ−) + e−ζτ (τ−)ϕ′(τ−)
)

=

= αb(aϕ(τ+) − ϕ′(τ+)) − (1− α)bϕ′(τ−),

so e−ζτ bδ′ατ = abαδ+τ − bδ′ατ , and the required primitive is abαθτ − bδατ . �

Proof of Example 1.2. First note that a ∈ G∞, and b ∈ Lloc, so b ∈ R′. As it follows from

Theorem 3.3, we have to find the primitive of the distribution e−
R

t

0
a(a)dsb′′ which is equal to

zero for t < 0. Due to absolute convergence of the series
∑

γ∈Υ bγ , we have the following chain
of equalities:
(

exp

(

−

∫ t

0

a(a)ds

)

b′′, ϕ

)

=

=



exp

(

−

∫ t

0

a(a)ds

)

∑

γ∈Υ

bγδ
′α(γ)
γ , ϕ



 =
∑

γ∈Υ

bγ(δ
′α(γ)
γ , e−

R

t

0
a(a)dsϕ) =

= −
∑

γ∈Υ

bγe
−

R

γ

0
a(a)ds

(

α(γ)ϕ′(γ+) +
(

1− α(γ)
)

ϕ′(γ−)−

− α(γ)a(γ+)ϕ(γ+)−
(

1− α(γ)
)

a(γ−)ϕ(γ−)
)

,

so the required primitive is
∑

γ∈Υ

bγ exp

(

−

∫ γ

0

a(a)ds

)

(

(

α(γ)a(γ+) +
(

1− α(γ)
)

a(γ−)
)

θγ − δα(γ)γ

)

,

the rest of the proof is straightforward. �

4. Proofs of Lemmas 2.2, 2.8 and Theorem 2.5

Proof of Lemma 2.2. By definition, given an absolutely convex set U ⊂ R, we have that U is a
neighbourhood in R if and only if U ∩ G∞(J) is a neighbourhood in G∞(J), for every J ∈ J.
Suppose that ϕk → ϕ in G∞ and there exists J0 ∈ J such that supp(ϕk) ⊂ J0 for all k ∈ N.
Now, given a neighbourhood of zero U ⊂ R and arbitrary J ∈ J, we have that

(ϕk − ϕ)|J ∈ U ∩G
∞(J)

starting with certain k, since U∩G∞(J) is a neighbourhood of zero inG∞(J), and (ϕk−ϕ)|J → 0
in G

∞(J). The latter follows from the fact that every neighbourhood of zero UJ ⊂ G
∞(J) can

be extended to a neighbourhood of zero UI ⊂ G∞, so that UI ∩G∞(J) = UJ , while ϕk −ϕ→ 0
in G∞. By definition, since J ∈ J was arbitrary, this implies that ϕk → ϕ in R.

Conversely, suppose that ϕk → ϕ in R. First, observe that ϕk → ϕ in G∞, since given any
neighbourhood UI ⊂ G∞, UI ∩ G∞(J) is a neighbourhood in G∞(J) for every J ∈ J, so UI is
a neighbourhood in R, and, as a result, ϕk − ϕ ∈ UI starting with certain k. Second, suppose
that there is no such J0 ∈ J, and there exists a sequence of subintervals

{Jk}
∞
k=1, Jk ⊂ Jk+1, Jk+1 \ Jk 6= ∅, ∩∞

k=1Jk = I,
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such that ϕk−ϕ 6∈ G∞(Jk) for all k ∈ N. The latter may be possible if and only if supp(ϕk−ϕ) 6⊂
J̄k. Then we may specify a neighbourhood of zero U ⊂ R such that ϕk − ϕ 6∈ U for every
k ∈ N, so ϕ 6→ ϕ in R, a contradiction. Indeed, let us denote L−

k and L+
k the left-hand side

and the right-hand side half-open components of Jk+1 \ Jk. Assume without loss of generality
that L−

k 6= ∅. Let us define tk ∈ L−
k to be such that |ϕk(tk−) − ϕ(tk−)| > 0. By definition,

sequence {tk}
∞
k=1 tends to the left end-point of the interval I. Further, define the monotonically

decreasing sequence {rk}
∞
k=1 such that

0 < rk < |ϕk(tk−)− ϕ(tk−)|, k ∈ N,

and rk → 0. Now let r ∈ C be a function such that r(t) > 0 for all t ∈ I, and r(tk) = rk.
Finally, we may define the required neighbourhood by

U = {ψ ∈ R : |ψ(t)| < r(t), t ∈ I}.

For any J ∈ J maxt∈J̄ |r(t)| > 0, so U ∩G∞(J) is a neighbourhood in G∞(J). �

In order to prove Theorem 2.5 we will need the following lemma, whose proof is identical to
the proof of the analogous statement for the space D′ in [Shi84].

Lemma 4.1. Given {fk}
∞
k=1 ⊂ R′, {ϕk}

∞
k=1 ⊂ R such that ϕk → 0 in R and for every ϕ ∈ R

there exists lim(fk, ϕ) ∈ C, we have that (fk, ϕk) → 0.

Proof. Suppose the contrary. Then we may assume (consider a subsequence, if necessary, ) that
there exists c > 0 such that |(fk, ϕk)| > c, k ∈ N. Since ϕk → 0 in R, we may suppose that

‖ϕ
(j)
k ‖L∞

6
1

4k

for all j 6 k. Let us put ψk = 2kϕk. Then

(4.1) ‖ψ
(j)
k ‖L∞

6
1

2k
,

for all j 6 k, so ψk → 0 in R, though

|(fk, ψk)| = 2k|(fk, ϕk)| > 2kc→ ∞.

Now let us choose fk1
, ψk1

such that |(fk1
, ψk1

)| > 1. Suppose that fkj
, ψkj

are defined,
1 6 j 6 l − 1. Suppose that for every k > k′ we have

|(fkj
, ψk)| <

1

2l−j

for 1 6 j 6 l − 1. Then there exists kl > k′ such that

(4.2) |(fkl
, ψkl

)| >

l−1
∑

j=1

|(fkl
, ζkj

)|+ l

since |(fk, ψk)| → ∞, we have that (fk, ψkj
) → 0 as k → ∞. Suppose that the sequence

{ψkl
}∞l=1 is constructed. Let us define ψ =

∑∞
j=1 ψkj

, where the series converges due to (4.1),
so ψ ∈ R. Consequently,

(fkl
, ψ) =

l−1
∑

j=1

(fkl
, ψkj

) + (fkl
, ψkl

) +

∞
∑

l+1

(fkl
, ψkj

).

Since (4.2) and
∞
∑

j=l+1

(fkl
, ψnj

) <

∞
∑

j=l+1

1

2j−l
= 1,

we obtain that |(fkl
, ψ)| > l − 1. This contradicts to the equality lim(fk, ψ) = (f, ψ), where

f = lim fk, so the proof is complete. �
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Proof of Theorem 2.5. Note that gkϕ→ gϕ in R for every ϕ ∈ R(Ω), so

|(gkfk, ϕ)− (gf, ϕ)| = |(fk, gkϕ)− (f, gϕ)| 6

6 |(fk, gkϕ)− (fk, gϕ)|+ |(fk, gϕ)− (f, gϕ)| 6

6 |(fk, gkϕ− gϕ)|+ |(fk, gϕ)− (f, gϕ)| → 0

according to Lemma 4.1 and due to the fact that fk → f in R′. �

Let PC ⊂ G be the space of piece-wise constant functions I 7→ C.

Lemma 4.2 ([Die69]). PC is dense in G.

Lemma 4.3. The subspace F is dense in G∞. Furthermore, for every f ∈ G∞ there exists a

subsequence {fl}
∞
l=1 ⊂ F such that fl → f in G∞, f

(l+1)
l ∈ C∞, l ∈ N, and

‖f
(j)
l − f (j)‖L∞

< l−1

for all l > j, j ∈ N0.

Proof. Let f ∈ G. First, for every k ∈ N0 we define the subsequence {flk}
∞
l=1 ⊂ F such that

f
(j)
lk → f (j)

in L∞ for all 0 6 j 6 k. Let us note that the algebra PC ⊂ F is closed under the operations
of integration and differentiation almost everywhere. According to Lemma 4.2 there exists a
subsequence {pkl }

∞
l=1 ⊂ PC such that pkl → f (k) in L∞, so

∫ t

a

pkl (s)ds→

∫ t

a

f (k)(s)ds

in L∞. Let

pk−1
l (t) =

∫ t

a

pkl (s)ds+ qk−1
l (t), {qk−1

l }∞l=1 ⊂ P, qk−1
l → fk−1 −

∫ t

a

f (k)(s)ds

in L∞, so pk−1
l → fk−1 in L∞, (pk−1

l )′ = pkl . Further, let us define {pk−2
l }∞l=1,

pk−2
l (t) =

∫ t

a

pk−1
l (s)ds+ qk−2

l (t), {qk−2
l }∞l=1 ⊂ P, qk−2

l → fk−2 −

∫ t

a

f (k−1)(s)ds

in L∞, so pk−2
l → fk−2 in L∞, (pk−2

l )′ = pk−1
l . We may continue this process, and find p0l ∈ F.

Let us define flk := p0l . Then f
(j)
lk = p

j
l ∈ F, and

f
(j)
lk → f (j)

in L∞, where 0 6 j 6 k. We may assume that

‖f
(j)
lk − f (j)‖L∞

<
1

l
, l ∈ N, 0 6 j 6 k.

Now define fl := fll ∈ F (l ∈ N). Then ‖f
(j)
l − f (j)‖L∞

< 1
l
, l > j, j ∈ N0, so fl → f in G

∞.

The sequence {fl}
∞
l=1 constructed above is the one required, since f

(l+1)
l ≡ 0. �

Proof of Lemma 2.8. Let ϕ ∈ R. According to Lemma 4.3 there exists {fk}
∞
k=1 ⊂ PC such

that fk → ϕ in G∞. Clearly, there exists a test function ξ ∈ D such that ξ ≡ 1 in certain open
neighbourhood of supp(ϕ), ξ ≡ 0 in certain (larger) open neighbourhood of supp(ϕ), which
possesses the compact closure in I. Then ξfk ∈ RF , ξϕ = ϕ, and ξfk → ξϕ in R. Since ϕ ∈ R
was chosen arbitrarily, the subspace RF is dense in R.

If {fk}
∞
k=1 is chosen as in the statement of Lemma 4.3, and we have chosen ξ ≡ 1 in certain

neighbourhood t, then {ξfk}
∞
k=1 ⊂ RF is the sequence required in the last statement. �
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