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Abstract

The purpose of this paper is to give affirmative answers to two open
questions as follows. Let (R,m) be a generalized Cohen-Macaulay Noethe-
rian local ring. Both questions, the first question was raised by M. Rogers
[12] and the second one is due to S. Goto and H. Sakurai [7], ask whether
for every parameter ideal q contained in a high enough power of the max-
imal ideal m the following statements are true: (1) The index of reducibil-
ity NR(q;R) is independent of the choice of q; and (2) I2 = qI , where
I = q :R m.

Key words: index of reducibility, socle, generalized Cohen-Macaulay mod-
ule, local cohomology module.
AMS Classification: Primary 13H45, Secondary 13H10.

1 Introduction

Let R be a commutative Noetherian local ring with the maximal ideal m
and residue field k = R/m, and let M be a finitely generated R-module with
dimM = d. Recall that a submodule of M is called irreducible if it cannot
be written as the intersection of two larger submodules. It is well known that
every submodule N of M can be expressed as an irredundant intersection of
irreducible submodules, and that the number of irreducible submodules appear-
ing in such an expression depends only on N and not on the expression. Thus
for a parameter ideal q of M , the number NR(q;M) of irreducible modules that
appear in an irredundant irreducible decomposition of qM is called the index
of reducibility of q on M . Let N be an arbitrary R-module. We denote by
Soc(N) the socle of N . Since Soc(N) ∼= 0 :N m ∼= Hom(k, N) is a k-vector
space, we set s(N) = dimk Soc(N) the socle dimension of N . Then we have
NR(q;M) = s(M/qM).

∗Email: ntcuong@math.ac.vn
†Email: hltruong@math.ac.vn
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In 1957, D. G. Northcott [9, Theorem 3] proved that the index of reducibility
of any parameter ideal in a Cohen-Macaulay local ring is dependent only on the
ring and not on the choice of the parameter ideal. However, this property of
constant index of reducibility of parameter ideals does not characterize Cohen-
Macaulay modules. The first example of a non-Cohen-Macaulay Noetherian
local ring having constant index of reducibility of parameter ideals was given
by S. Endo and M. Narita [5]. In 1984, S. Goto and N. Suzuki [7] considered
the supremum r(M) of the index of reducibility of parameter ideals of M and
they showed that this number is finite provided M is a generalized Cohen-
Macaulay module. Recall that M is said to be a generalized Cohen-Macaulay
module, if local cohomology modules Hi

m(M) of M with respect the maximal
ideal m is of finite length for i = 0, 1, . . . , d − 1. Moreover, they also proved

that r(M) >
d
∑

i=0

(

d
i

)

s(Hi
m(R)). Later, S. Goto and H. Sakurai in [6, Corollary

3.13] showed that if R is a Buchsbaum ring of positive dimension, then there is
a power of the maximal ideal m inside which every parameter ideal q has the
same index of reducibility. J. C. Liu and M. Rogers [8] refer to this by saying
R has eventual constant index of reducibility of parameter ideals. Therefore
the following question, which was raised first by M. Rogers in [12, Question
1.2] (see also [8, Question 1.3]), is natural: Does a generalized Cohen-Macaulay

rings have eventual constant index of reducibility of parameter ideals?

Partial answers to this question were proved by Rogers [12, Theorem 1.3]
for a generalized Cohen-Macaulay module of dimension d 6 2 and by Liu and
Rogers [8, Theorem 1.4] for a generalized Cohen-Macaulay module M having
Hi

m(M) = 0 for all i with i 6= 0, t, d, where t is some integer with 0 < t < d.
Our first main result in this paper is to provide a completely answer to this

question.

Theorem 1.1. Let M be a generalized Cohen-Macaulay module over a Noethe-

rian local ring (R,m) with dimM = d. Then there is a positive integer n such

that for every parameter ideal q of M contained in mn the index of reducibility

N(q;M) is independent of the choice of q and is given by

N(q;M) =

d
∑

i=0

(

d

i

)

s(Hi
m(M)).

In [6], Goto and Sakurai used the study of the index of reducibility of pa-
rameter ideals in order to investigate when the equality I2 = qI holds for a
parameter ideal q of R, where I = q : m. Note that by results of A. Corso,
C. Huneke, C. Polini and W. V. Vasconcelos [1, 2, 4] this equality holds for
any parameter ideal in a Cohen-Macaulay local ring R which is not regular or
dimensional at least 2 and e(R) > 1, where e(R) is the multiplicity of R with
respect to the maximal ideal m. Goto and Sakurai generalized this and proved
in [6, Theorem 3.11] that if R is a Buchsbaum ring of dimension dimR ≥ 2 or
dimR = 1 and e(R) > 1, then the equality I2 = qI holds true for all param-
eter ideals q contained in a high enough power of the maximal ideal m. From

2



this point of view, it is natural to ask the following question, which is due to
Goto-Sakurai [6, p. 34]: Let R be a generalized Cohen-Macaulay ring with the

multiplicity e(R) > 1. Is there a positive integer n such that I2 = qI for every

parameter ideal q contained in mn?

As a consequence of Theorem 1.1 we obtain the second main result of the
paper, which is an affirmative answer to this question.

Theorem 1.2. Let R be a generalized Cohen-Macaulay ring and assume that

dimR ≥ 2 or dimR = 1, e(R) > 1. Then there exists a positive integer n such

that I2 = qI for every parameter ideal q ⊆ mn, where I = q : m.

Our goal for proving Theorem 1.1 is to show by induction on d = dimM

that there is an enough large integer n such that N(q;M) =
d
∑

i=0

(

d
i

)

s(Hi
m(M))

for every parameter ideal q ⊆ mn. Therefore we give in the Section 2 sev-
eral lemmata on the asymptotic behaviour of parameter ideals in a generalized
Cohen-Macaulay module M in order to prove the following key result in Section
3 (see Theorem 3.3): Let M be a generalized Cohen-Macaulay R-module. Then
there exists a enough large integer k such that

s(Hi
m(

M

(x1, . . . , xj+1)M
) = s(Hi

m(
M

(x1, . . . , xj)M
)) + s(Hi+1

m (
M

(x1, . . . , xj)M
)),

for every parameter ideal q = (x1, . . . , xd) ⊆ mk and for all 0 6 i + j 6 d − 1.
The last Section is devoted to prove the main results and their consequences.

2 Some auxiliary lemmata

Throughout this paper we fix the following standard notations: Let R be a
Noetherian local commutative ring with maximal ideal m, k = R/m the residue
field andM a finitely generated R-module with dimM = d. Let q = (x1, . . . , xd)
be a parameter ideal of module M . We denote by qi the ideal (x1, . . . , xi)R for
i = 1, . . . , d and stipulate that q0 is the zero ideal of R.

An R-module M is said to be a generalized Cohen-Macaulay module if
Hi

m(M) are of finite length for all i = 0, 1, . . . , d− 1 (see [3]). This condition is
equivalent to saying that there exists a parameter ideal q = (x1, . . . , xd) of M
such that qHi

m(
M

qjM
) = 0 for all 0 ≤ i + j < d (see [13]), and such a parameter

ideal was called a standard parameter ideal of M . It is well-known that if M is
a generalized Cohen-Macaulay module, then every parameter ideal of M in a
high enough power of the maximal ideal m is standard. The following lemma
can be easily derived from the basic properties of generalized Cohen-Macaulay
modules.

Lemma 2.1. Let M be a generalized Cohen-Macaulay R-module with dimM =
d ≥ 1. Then there exists a positive integer n1 such that for all parameter ideals

q = (x1, . . . , xd) of M contained in mn1 we have mn1Hi
m(

M
qjM

) = 0 for all

0 ≤ i+ j ≤ d− 1.
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Proof. Since M is a generalized Cohen-Macaulay R-module, there is an integer
l such that mlHi

m(M) = 0 for all 0 ≤ i ≤ d − 1. Let x ∈ ml be a parameter
element of M . Since ℓ(0 :M x) < ∞, we have isomorphisms Hi

m(M) ∼= Hi
m(

M
xM

)
for all i ≥ 1, and so that the sequences

0 // Hi
m(M) // Hi

m(
M
xM

) // Hi+1
m (M) // 0

are exact for all 0 ≤ i ≤ d− 2. Therefore m2lHi
m(

M
xM

) = 0 for all 0 ≤ i ≤ d− 2.
Now, set n1 = 2d−1l. We can use the fact above to prove that for all parameter
ideals q = (x1, . . . , xd) of M contained in mn1 and 0 ≤ i + j ≤ d − 1, it holds
mn1Hi

m(
M

qjM
) = 0.

In order to prove the next lemma, we need a result of W. V. Vasconcelos
on the reduction number of an ideal in local rings. Let J and K be two ideals
of R with J ⊆ K. The ideal J is called a reduction of K with respect to M if
Kr+1M = JKrM for some integer r, and the least of such integers is denoted
by rJ (K,M). Then the big reduction number bigr(K) of K with respect to M
was defined by

bigr(K) = sup{rJ(K,M)| J is a reduction of K with respect to M}.

It is known that there always exists a reduction ideal for any ideal K provided
the residue field k of R is infinite. Especially, ifK is m-primary then any minimal
reduction ideal of K with respect to M is a parameter ideal of M . Moreover, it
was shown by Vasconcelos [14] that bigr(K) is finite for any ideal K.

Lemma 2.2. Let M be a generalized Cohen-Macaulay R-module with dimM =
d ≥ 1. Then there exists a positive integer n2 such that for all parameter ideals

q = (x1, . . . , xd) of M contained in mn2 and 0 ≤ j < d we have

mn2
M

qjM
∩H0

m(
M

qjM
) = 0.

Proof. Note first that by the faithfully flat homomorphism R → R[X ]mR[X] as a
basic change, we can assume without any loss of generality that the residue field
k of R is infinite. By Lemma 2.1 there is an integer n1 such that H0

m(
M

qjM
) =

0 : M
qjM

mn1 for all parameter ideals q contained in mn1 and j < d. Set K = mn1

and n2 = (bigr(K) + 1)n1. Then for any parameter ideal q = (x1, . . . , xd) of M
contained inmn2 and any 0 ≤ j < d, there is a parameter ideal a = (aj+1, . . . , ad)
of M

qjM
contained in K, which is a reduction of K with respect to M

qjM
, such

that

aK
ra(K, M

qjM
) M

qjM
= K

ra(K, M
qjM

)+1 M

qjM
.

Since ra(K, M
qjM

) ≤ ra(K,M) ≤ bigr(K) < ∞, we have

mn2
M

qjM
∩H0

m(
M

qjM
) = aKbigr(K) M

qjM
∩H0

m(
M

qjM
) ⊆ a

M

qjM
∩H0

m(
M

qjM
).
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Therefore it is enough to prove that a M
qjM

∩ H0
m(

M
qjM

) = 0. In fact, let m ∈

a M
qjM

∩H0
m(

M
qjM

). Write m = aj+1mj+1 + . . .+ admd, where mi ∈
M

qjM
for all

i = j + 1, . . . , d. Since M
qjM

is a generalized Cohen-Macaulay module and a a

standard parameter ideal of M
qjM

by Lemma 2.1, we get that

md ∈ (aj+1, . . . , ad−1)
M

qjM
: a2d = (aj+1, . . . , ad−1)

M

qjM
: ad.

It follows that

a
M

qjM
∩H0

m(
M

qjM
) ⊆ (aj+1, . . . , ad−1)

M

qjM
∩H0

m(
M

qjM
).

If j + 1 < d − 1, we can continue the procedure above again so that after
(d− j)-times we obtain

a
M

qjM
∩H0

m(
M

qjM
) ⊆ aj+1

M

qjM
∩H0

m(
M

qjM
) ⊆ aj+1

M

qjM
∩ (0 : M

qjM
aj+1) = 0

as required.

Lemma 2.3. Let M be a finitely generated R-module with dimM = d ≥ 1. Let
k and ℓ be two positive integers. Then there exists an integer n3 > ℓ such that

(mn3 +H0
m(M)) : mk ⊆ mℓM +H0

m(M).

Proof. Let M = M
H0

m
(M) . Then there is an M -regular element a contained in

mk. By the Artin-Rees Lemma, there exists a positive integer m such that
mℓ+mM ∩ aM = mℓ(mmM ∩ aM). Set n3 = ℓ+m. We have

a(mn3M : mk) ⊆ a(mn3M : a) = mn3M ∩ aM = mℓ(mmM ∩ aM),

so that a(mn3M : mk) ⊆ amℓM . It follows from the regularity of a that mn3M :
mk ⊆ mℓM . Hence (mn3M +H0

m(M)) : mk ⊆ mℓM +H0
m(M) as required.

Lemma 2.4. Let M be a finitely generated R-module with dimM = d ≥ 1.
Then there exists a positive integer n4 such that for all ideals K ⊆ mn4 we have

(KM +H0
m(M)) : m = KM : m+H0

m(M).

Proof. SinceH0
m(M) have finite length, there exists an integer ℓ such thatmℓM∩

H0
m(M) = 0. By Lemma 2.3, there is an integer n4 > ℓ such that for all ideals

K ⊆ mn4 we have

(KM +H0
m(M)) : m ⊆ (mn4M +H0

m(M)) : m ⊆ mℓM +H0
m(M).

Let b ∈ (KM +H0
m(M)) : m. Write b = α+ β with α ∈ mℓM and β ∈ H0

m(M).
Then, since K ⊆ mn4 ⊆ mℓ+1,

mα ⊆ mℓ+1M ∩ (KM +H0
m(M)) = KM +mℓ+1M ∩H0

m(M) = KM.

Thus α ∈ KM : m and so that (KM +H0
m(M)) : m = KM : m+H0

m(M).
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Lemma 2.5. Let M be a generalized Cohen-Macaulay R-module with dimM =
d ≥ 1. Then there exists a positive integer n5 such that for all parameter ideals

q = (x1, . . . , xd) of M contained in mn5 and 0 ≤ j < i ≤ d we have

[
qiM

qjM
+H0

m(
M

qjM
)] : m =

qiM

qjM
: m+H0

m(
M

qjM
).

.

Proof. Let n1 and n2 be two integers as in Lemma 2.1 and Lemma 2.2, re-
spectively. By Lemma 2.3, there always exists an integer n5 > n2 such that
(mn5M + H0

m(M)) : mn1+1 ⊆ mn2M + H0
m(M) . Let q = (x1, . . . , xd) be a

parameter ideal of M contained in mn5 . For all 0 ≤ j < i ≤ d, we have
H0

m(
M

qjM
) = 0 : M

qjM
mn1 by Lemma 2.1, and so that

(
qiM

qjM
+H0

m(
M

qjM
)) : m ⊆

mn5M

qjM
: mn1+1

=
mn5M : mn1+1

qjM
⊆

mn2M

qjM
+H0

m(
M

qjM
).

Let b ∈ ( qiM
qjM

+ H0
m(

M
qjM

)) : m. Write b = α + β with α ∈ mn2M
qjM

and β ∈

H0
m(

M
qjM

). Since qi ⊆ mn5 ⊆ mn2+1, we get by Lemma 2.2 that

mα ⊆
mn2+1M

qjM
∩ (

qiM

qjM
+H0

m(
M

qjM
)) =

qiM

qjM
+

mn2+1M

qjM
∩H0

m(
M

qjM
) =

qiM

qjM
.

Therefore α ∈ qiM
qjM

: m, and so that

(
qiM

qjM
+H0

m(
M

qjM
)) : m =

qiM

qjM
: m+H0

m(
M

qjM
)

as required.

3 The socle dimension of local cohomology mod-

ules

Let q = (x1, . . . , xd) be a parameter ideal of the module M . For each positive
integer n, we denote by q(n) the ideal (xn

1 , . . . , x
n
d ). Let K∗(q(n)) be the Koszul

complex of R with respect to the ideal q(n) and

H∗(q(n);M) = H∗(Hom(K∗(q(n),M))

the Koszul cohomology module of M . Then the family {Hi(q(n);M)}n≥1 nat-
urally forms an inductive system of R-modules for every i ∈ Z, whose inductive
limit is just the i-th local cohomology module

Hi
m(M) = Hi

q(M) = lim
−→
n

Hi(q(n);M).

The following result is due to Goto and Suzuki.
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Lemma 3.1 ([7], Lemma 1.7). Let M be a finitely generated R-module, x an

M -regular element and q = (x1, . . . , xr) an ideal of R with x1 = x. Then there

exists a splitting exact sequence for each i ∈ Z,

0 → Hi(q;M) → Hi(q;
M

xM
) → Hi+1(q;M) → 0.

The next result is due to Goto and Sakurai.

Lemma 3.2 ([6] Lemma 3.12). Let R be a Noetherian local ring with the maxi-

mal ideal m and r = dimR ≥ 1. Let M be a finitely generated R-module. Then

there exists a positive integer ℓ such that for all parameter ideals q = (x1, . . . , xd)
of M contained in mℓ and all i ∈ Z, the canonical homomorphisms on socles

Soc(Hi(q,M)) → Soc(Hi
m(M))

are surjective.

The following theorem is the key to proofs of main results of the paper.

Theorem 3.3. Let M be a generalized Cohen-Macaulay R-module with dimM =
d ≥ 1. There there exists a positive integer k such that for all parameter ideal q

of M contained in mk and d > i+ j ≥ 0 we have

s(Hi
m(

M

qj+1M
)) = s(Hi

m(
M

qjM
)) + s(Hi+1

m (
M

qjM
)),

where s(N) = dimk Soc(N) the socle dimension of the R-module N .

Proof. We set k = max{n1, n2, n5, ℓ} + 1, where n1, n2, n5 and ℓ are integers
as in Lemma 2.1, 2.2 , 2.5, and 3.2, respectively. It will be shown that this
integer k is just the required integer of the theorem. Let q = (x1, . . . , xd) be a
parameter ideal of M contained in mk. We denote by Mj the module M

qjM
and

M j the module
Mj

H0
m
(Mj)

. It should be noted here thatMj andM j are generalized

Cohen-Macaulay modules having (xj+1, . . . , xd) as a standard parameter ideal
by Lemma 2.1. Then the proof of Theorem 3.3 is divided into two cases.

First case: i = 0. Because of the choose of k, the ideal q is a standard parameter
ideal of M and so that xj+1H

1
m(M j) = 0 for all 0 ≤ j < d. Thus we have

H1
m(Mj) ∼= H1

m(M j) ∼= H0
m(

M j

xj+1M j

).

Therefore, we get by Lemma 2.5 that

s(H1
m(Mj)) = s(H0

m(
M j

xj+1M j

)) = ℓ(
(qj+1Mj +H0

m(Mj)) : m

qj+1Mj +H0
m(Mj)

)

= ℓ(
qj+1Mj : m+H0

m(Mj)

qj+1Mj +H0
m(Mj)

)

= ℓ(
qj+1Mj : m

(qj+1Mj : m) ∩ (qj+1Mj +H0
m(Mj))

)

= ℓ(
qj+1Mj : m

qj+1Mj + (qj+1Mj : m) ∩H0
m(Mj)

).

7



Let a ∈ (qj+1Mj : m) ∩H0
m(Mj). We see by Lemma 2.2 that

ma ∈ qj+1Mj ∩H0
m(Mj) = 0.

Therefore (qj+1Mj : m) ∩H0
m(Mj) = 0 :Mj

m, and so that

s(H1
m(Mj)) = ℓ(

qj+1Mj : m

qj+1Mj + 0 :Mj
m
)

= ℓ(
qj+1Mj : m

qj+1Mj

)− ℓ(
qj+1Mj + 0 :Mj

m

qj+1Mj

)

= ℓ(
qj+1Mj : m

qj+1Mj

)− ℓ(0 :Mj
m)

= s(H0
m(Mj+1))− s(H0

m(Mj)).

Hence, we have s(H0
m(Mj+1)) = s(H0

m(Mj)) + s(H1
m(Mj)) for all 0 ≤ j < d.

Second case: i ≥ 1. We first claim by induction on j that for all i ≥ 1 and
d > i+ j ≥ 1, the canonical homomorphisms on socles

αi
j : Soc(H

i(q,M j)) → Soc(Hi
m(M j))

are surjective. For the case j = 0, we consider the following commutative
diagram

Hi(q;M)

fi

��

// Hi(q,M0)

gi

��

Hi
m(M)

πi
// Hi

m(M0),

where πi are isomorphisms for all i ≥ 1. By Lemma 3.2, the homomorphism
fi induces a surjective homomorphism Soc(Hi(q,M)) → Soc(Hi

m(M)) on the
socles. Therefore we get by applying the functor Hom(k, ∗) to the diagram above
that

αi
0 : Soc(Hi(q,M0)) → Soc(Hi

m(M0))

are surjective for all i ≥ 1. Now assume that j ≥ 1. Since (xj+1, . . . , xd) is a
standard parameter ideal of M j and xj+1 an M j-regular element, we have for
all d > i+ j ≥ 1 the following commutative diagram

0 // Hi(q;M j)

��

// Hi(q;
Mj

xj+1Mj
) //

��

Hi+1(q;M j) //

��

0

0 // Hi
m(M j) // Hi

m(
Mj

xj+1Mj
) // Hi+1

m (M j) // 0

with exact rows, where the upper row is split exact by Lemma 3.1. Therefore, by
applying the functor Hom(k, ∗), we obtain for all d > i+ j ≥ 1 the commutative

8



diagram

0 → Soc(Hi(q;M j))

αi
j

��

// Soc(Hi(q;
Mj

xj+1Mj
)) //

βi
j+1

��

Soc(Hi+1(q;M j)) → 0

α
i+1

j

��

0 → Soc(Hi
m(M j)) // Soc(Hi

m(
Mj

xj+1Mj
)) // Soc(Hi+1

m (M j))

with exact rows. By the inductive hypothesis, the homomorphisms αi
j and αi+1

j

are surjective for all i ≥ 1. Thus βi
j+1 are surjective for all i ≥ 1. Since M j is

generalized Cohen-Macaulay, it is easy to check that Hi
m(

Mj

xj+1Mj
) ∼= Hi

m(M j+1)

for all i ≥ 1. It follows from the commutative diagram

SocHi(q;
Mj

xj+1Mj
)

βi
j+1

��

// SocHi(q,M j+1)

αi
j+1

��

SocHi
m(

Mj

xj+1Mj
)

∼=
// SocHi

m(M j+1)

that the homomorphism αi
j+1 : Soc(Hi(q,M j+1)) → Soc(Hi

m(M j+1)) are sur-
jective for all d > i + j ≥ 1, and the claim is proved. Next, from the proof of
the claim we obtain exact sequences

0 → Soc(Hi
m(M j)) // Soc(Hi

m(
Mj

xj+1Mj
)) // Soc(Hi+1

m (M j)) → 0 ,

and so that s(Hi
m(

Mj

xj+1Mj
)) = s(Hi

m(M j)) + s(Hi+1
m (M j)) for all i ≥ 1 and

d > i+ j ≥ 0. Therefore, since Hi
m(M j) ∼= Hi

m(
M

qjM
) for all i ≥ 1, we have

s(Hi
m(

M

qj+1M
)) = s(Hi

m(
M

qjM
)) + s(Hi+1

m (
M

qjM
))

for all i ≥ 1 and d > i+ j ≥ 1, and the proof of Theorem 3.3 is complete.

4 Proofs of main results

Theorem 1.1 is now an easy consequence of Theorem 3.3.

Proof of Theorem 1.1. By virtue of Theorem 3.3 we can show by induction on d
that there exists an integer n such that for every parameter ideal q = (x1, . . . , xd)
of M contained in mn we have

N(q;M) = s(H0
m(

M

qM
)) =

d
∑

i=0

(

d

i

)

s(Hi
m(M)).

9



Corollary 4.1. Let M be a generalized Cohen-Macaulay R-module. Then

sup{N(q;M)|q is a standard parameter ideal of M} =

d
∑

i=0

(

d

i

)

s(Hi
m(M)).

Proof. Let q = (x1, . . . , xd) be a standard parameter ideal of M . By basic
properties of the theory of generalized Cohen-Macaulay modules we can show
by induction on t that

s(Hi
m(

M

(x1, . . . , xt)M
)) ≤

t
∑

j=0

(

t

j

)

s(Hj+i
m (M)).

for all d ≥ i+ t ≥ 0. Therefore the Corollary follows by the inequality above in
the case t = d, i = 0 and Theorem 1.1.

In the rest of this paper, we denote

S(M) =
d

∑

i=0

(

d

i

)

s(Hi
m(M)).

Proof of Theorem 1.2. Let n = max{n1, n4, k}, where n4 and k are integers in
Lemma 2.1, Lemma 2.4 and Theorem 3.3 (for the caseM = R), respectively. We
will prove that I2 = qI for all parameter ideals q = (x1, . . . , xd) of R contained
in mn, where I = q :R m. Let dimR = d and R = R

H0
m
(R) . Then by Lemma 2.4

we have
(q +H0

m(R)) :R m = q :R m+H0
m(R),

and so that IR = qR : mR.

Case 1: e(R) = 1 and d ≥ 2. Since R is unmixed, it is well-known in this case
hat R is a regular local ring of dimension d ≥ 2. We have (IR)2 = qRIR by
Theorem 2.1 in [4]. Therefore I2 ⊆ qI+H0

m(R) and so that I2 ⊆ qI+I2∩H0
m(R).

But, I2 ∩H0
m(R) ⊆ q ∩H0

m(R) = 0 by Lemma 2.2. Thus I2 = qI in this case.

Case 2: e(R) > 1. By the choose of n, the parameter ideal q is standard Lemma
2.1 and N(q;R) = S(R) by Theorem 1.1. Thus, it is enough for us to prove
that if N(q;R) = S(R) for some standard parameter ideal q = (x1, . . . , xd)
of R contained in mn then I2 = qI. Indeed, we argue by induction d. Let
d = 1. Then R is a non-regular Cohen-Macaulay ring, and the conclusion
follows with the same method as used in the proof of case 1. Now assume that
d ≥ 2. Set R′ = R

(x1)
. By Theorem 3.3, we have S(R) = S(R′), and so that

N(qR′;R′) = S(R′). Therefore (IR′)2 = qR′IR′ by the inductive hypothesis. It
follows that I2 ⊆ (x2, . . . , xd)I+(x1), and so that I2 ⊆ (x2, . . . , xd)I+(x1)∩I2.
Let a ∈ (x1) ∩ I2 and we write a = x1b with b ∈ R. Since e(R) > 1, by
Proposition (2.3) in [6], we have mI2 = mq2. Therefore ma = x1mb ⊆ (x1)∩ q2.
Since the parameter ideal q is standard, (x1)∩ q2 = x1q and H0

m(M) = 0 :R x1.

10



Thus mb ⊆ (x1q) :R x1 = q+ 0 :R x1, and so that b ∈ (q + 0 :R x1) :R m = q :R
m + 0 :R x1 by Lemma 2.4. Therefore a ∈ x1I, and so that (x1) ∩ I2 = x1I.
Hence I2 = qI as required.

Corollary 4.2. Let R be a generalized Cohen-Macaulay local ring with multi-

plicity e(R) > 1. Then for sufficiently large n, we have

µ(I) = d+ S(R)

for all parameter ideals q contain in mn, where µ(I) is the minimal number of

generators of the ideal I = q : m.

Proof. Choose the integer n as in Theorem 1.1 (for the case M = R). Then

I

q
∼= Hom(k,

R

q
) ∼= kS(R)

by Theorem 1.1. Since e(R) > 1, by Proposition 2.3 in [6], we get that mI = mq.
Therefore

µ(I) = ℓ(
I

mI
) = ℓ(

I

mq
) = ℓ(

I

q
) + ℓ(

q

mq
) = S(R) + d

as required.
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