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Approximation of complex algebraic numbers

by algebraic numbers of bounded degree

YANN BUGEAUD (Strasbourg) & JAN-HENDRIK EVERTSE (Leiden)

Abstract. To measure how well a given complex number ξ can be ap-
proximated by algebraic numbers of degree at most n one may use the
quantities wn(ξ) and w

∗
n(ξ) introduced by Mahler and Koksma, respec-

tively. The values of wn(ξ) and w∗
n(ξ) have been computed for real al-

gebraic numbers ξ, but up to now not for complex, non-real algebraic
numbers ξ. In this paper we compute wn(ξ), w

∗
n(ξ) for all positive in-

tegers n and algebraic numbers ξ ∈ C \R, except for those pairs (n, ξ)
such that n is even, n ≥ 6 and n + 3 ≤ deg ξ ≤ 2n − 2. It is known
that every real algebraic number of degree > n has the same values
for wn and w∗

n as almost every real number. Our results imply that for
every positive even integer n there are complex algebraic numbers ξ of
degree > n which are unusually well approximable by algebraic numbers
of degree at most n, i.e., have larger values for wn and w∗

n than almost
all complex numbers. We consider also the approximation of complex
non-real algebraic numbers ξ by algebraic integers, and show that if ξ is
unusually well approximable by algebraic numbers of degree at most n
then it is unusually badly approximable by algebraic integers of degree
at most n+1. By means of Schmidt’s Subspace Theorem we reduce the
approximation problem to compute wn(ξ), w

∗
n(ξ) to an algebraic prob-

lem which is trivial if ξ is real but much harder if ξ is not real. We give
a partial solution to this problem.

1. Introduction

Conjecturally, most of the properties shared by almost all numbers (throughout the
present paper, ‘almost all’ always refers to the Lebesgue measure) should be either trivially
false for the algebraic numbers, or satisfied by the algebraic numbers. Thus, the sequence of
partial quotients of every real, irrational algebraic number of degree at least 3 is expected
to be unbounded, and the digit 2 should occur infinitely often in the decimal expansion of
every real, irrational algebraic number. Our very limited knowledge on these two problems
show that they are far from being solved.

In Diophantine approximation, the situation is better understood. For instance, for ξ ∈
R, denote by λ(ξ) the supremum of all λ such that the inequality |ξ−p/q| ≤ max{|p|, |q|}−λ
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has infinitely many solutions in rational numbers p/q where p, q ∈ Z, q 6= 0. Then for almost
all real numbers ξ we have λ(ξ) = 2, while by Roth’s Theorem [15], we have also λ(ξ) = 2
for every real, algebraic, irrational number ξ.

More generally, the quality of the approximation of a complex number ξ by algebraic
numbers of degree at most n can be measured by means of the exponents wn(ξ) and w

∗
n(ξ)

introduced by Mahler [14] in 1932 and by Koksma [13] in 1939, respectively, which are
defined as follows:

• wn(ξ) denotes the supremum of those real numbers w for which the inequality

0 < |P (ξ)| ≤ H(P )−w

is satisfied by infinitely many polynomials P ∈ Z[X ] of degree at most n;

• w∗
n(ξ) denotes the supremum of those real numbers w∗ for which the inequality

0 < |ξ − α| ≤ H(α)−w∗−1

is satisfied by infinitely many algebraic numbers α of degree at most n.

Here, the height H(P ) of a polynomial P ∈ Z[X ] is defined to be the maximum of the
absolute values of its coefficients, and the height H(α) of an algebraic number α is defined
to be the height of its minimal polynomial (by definition with coprime integer coefficients).
The reader is directed to [2] for an overview of the known results on the functions wn and
w∗

n.

For every complex number ξ and every integer n ≥ 1 one has w∗
n(ξ) ≤ wn(ξ), but for

every n ≥ 2, there are complex numbers ξ for which the inequality is strict. Sprindžuk (see
his monograph [24]) established in 1965 that for every integer n ≥ 1, we have wn(ξ) =
w∗

n(ξ) = n for almost all real numbers ξ (with respect to the Lebesgue measure on R),
while wn(ξ) = w∗

n(ξ) =
n−1
2

for almost all complex numbers (with respect to the Lebesgue
measure on C).

Schmidt [20] confirmed that with respect to approximation by algebraic numbers of
degree at most n, real algebraic numbers of degree larger than n behave like almost all real
numbers. Precisely, for every real algebraic number ξ of degree d, we have

wn(ξ) = w∗
n(ξ) = min{d− 1, n} (1.2)

for every integer n ≥ 1. The d−1 in the right-hand side of (1.2) is an immediate consequence
of the Liouville inequality. A comparison with Sprindžuk’s result gives that if ξ is a real
algebraic number of degree > n then wn(ξ) = wn(η) for almost all η ∈ R, that is, real
algebraic numbers of degree > n are equally well approximable by algebraic numbers of
degree at most n as almost all real numbers.

In this paper we consider the problem to compute wn(ξ) and w
∗
n(ξ) for complex, non-

real algebraic numbers ξ. It follows again from the Liouville inequality that for complex,
non-real algebraic numbers ξ of degree d ≤ n one has wn(ξ) = w∗

n(ξ) = (d − 2)/2, but
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there is no literature about the case where ξ has degree d > n. This case is treated in the
present paper.

Our results may be summarized as follows. Let ξ be a complex, non-real algebraic
number of degree larger than n. Then if n is odd, we have wn(ξ) = w∗

n(ξ) =
n−1
2 , while if n

is even we have wn(ξ) = w∗
n(ξ) ∈ {n−1

2 , n2 }. Further, for every even n both cases may occur.
In fact, we are able to decide for every positive even integer n and every complex algebraic
number ξ whether wn(ξ) = w∗

n(ξ) =
n−1
2 or n

2 , except when n ≥ 6, n+2 < deg ξ ≤ 2n−2,

[Q(ξ) : Q(ξ) ∩R] = 2, and 1, ξ + ξ, ξ · ξ are linearly independent over Q.

A comparison with Sprindžuk’s result for complex numbers mentioned above gives
that for every even integer n ≥ 2 there are complex algebraic numbers ξ of degree > n
such that wn(ξ) > wn(η) for almost all complex numbers η. So an important consequence
of our results is that in contrast to the real case, for every even integer n ≥ 2 there are
complex algebraic numbers ξ of degree larger than n that are better approximable by
algebraic numbers of degree at most n than almost all complex numbers.

We also study how well complex algebraic numbers can be approximated by algebraic
integers of bounded degree, and our results support the expectation that complex algebraic
numbers which are unusually well approximable by algebraic numbers of degree at most
n, are unusually badly approximable by algebraic integers of degree at most n+ 1.

We define quantities w̃n(ξ), w̃
∗
n(ξ) analogously to wn(ξ), w

∗
n(ξ), except that now the

approximation is with respect to monic polynomials in Z[X ] of degree at most n + 1 and
complex algebraic integers of degree at most n + 1, instead of polynomials in Z[X ] of
degree at most n and complex algebraic numbers of degree at most n. We prove that if
ξ is a complex algebraic number of degree larger than n, then w̃n(ξ) = w̃∗

n(ξ) = n−1
2 if

wn(ξ) =
n−1
2 , while w̃n(ξ) = w̃∗

n(ξ) =
n−2
2 if wn(ξ) =

n
2 .

Similarly to the case that the number ξ is real algebraic, in our proofs we apply
Schmidt’s Subspace Theorem and techniques from the geometry of numbers. In this way,
we reduce our approximation problem to a purely algebraic problem which does not occur
in the real case and which leads to additional difficulties.

2. Main results

The exponents wn and w∗
n defined in the Introduction measure the quality of algebraic

approximation, but do not give any information regarding the number, or the density, of
very good approximations. This lead the authors of [3] to introduce exponents of uniform
Diophantine approximation. For a complex number ξ and an integer n ≥ 1, we denote by
ŵn(ξ) the supremum of those real numbers w for which, for every sufficiently large integer
H, the inequality

0 < |P (ξ)| ≤ H−w

is satisfied by an integer polynomial P of degree at most n and height at most H.

Khintchine [12] proved that ŵ1(ξ) = 1 for all irrational real numbers ξ. Quite unex-
pectedly, there are real numbers ξ with ŵ2(ξ) > 2. This was established very recently by
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Roy [16, 17] (in fact with ŵ2(ξ) =
3+

√
5

2 ). However, it is still open whether there exist an
integer n ≥ 3 and a real number ξ such that ŵn(ξ) > n.

Our results show that the three functions wn, w
∗
n and ŵn coincide on the set of complex

algebraic numbers. Our first result is as follows.

Theorem 1. Let n be a positive integer, and ξ a complex, non-real algebraic number of
degree d. Then

wn(ξ) = w∗
n(ξ) = ŵn(ξ) =

d− 2

2
if d ≤ n+ 1, (2.1)

wn(ξ) = w∗
n(ξ) = ŵn(ξ) =

n− 1

2
if d ≥ n+ 2 and n is odd, (2.2)

wn(ξ) = w∗
n(ξ) = ŵn(ξ) ∈

{n− 1

2
,
n

2

}
if d ≥ n+ 2 and n is even. (2.3)

Thus, Theorem 1 settles completely the case when n is odd. Henceforth we assume
that n is even. In Theorem 2 we give some cases where wn(ξ) = n/2 and in Theorem 3
some cases where wn(ξ) =

n−1
2

. Unfortunately, we have not been able to compute wn(ξ)
in all cases. We denote by α the complex conjugate of a complex number α.

Theorem 2. Let n be an even positive integer and ξ a complex, non-real algebraic number
of degree ≥ n+ 2. Then wn(ξ) = w∗

n(ξ) = ŵn(ξ) =
n
2 in each of the following two cases:

(i). 1, ξ + ξ and ξ · ξ are linearly dependent over Q;

(ii). deg ξ = n+ 2 and [Q(ξ) : Q(ξ) ∩R] = 2.

One particular special case of (i) is when ξ =
√
−α for some positive real algebraic

number α of degree ≥ n
2
+ 1. Then ξ + ξ = 0 and so wn(ξ) = w∗

n(ξ) = ŵn(ξ) = n/2.

We do not know whether Theorem 2 covers all cases where wn(ξ) =
n
2 . We now give

some cases where wn(ξ) =
n−1
2

.

Theorem 3. Let again n be an even positive integer and ξ a complex, non-real algebraic
number of degree ≥ n + 2. Then wn(ξ) = w∗

n(ξ) = ŵn(ξ) =
n−1
2 in each of the following

two cases:

(i). [Q(ξ) : Q(ξ) ∩R] ≥ 3;

(ii). deg ξ > 2n− 2 and 1, ξ + ξ, ξ · ξ are linearly independent over Q.

For n = 2, 4 we have 2n − 2 ≤ n + 2, so in that case Theorems 2 and 3 cover all
complex algebraic numbers ξ. Further, for n = 2, case (ii) of Theorem 2 is implied by case
(i). This leads to the following corollary.

Corollary 1. Let ξ be a complex, non-real algebraic number.

(i). If ξ has degree > 2, then

w2(ξ) = w∗
2(ξ) = ŵ2(ξ) = 1 if 1, ξ + ξ, ξ · ξ are linearly dependent over Q,

w2(ξ) = w∗
2(ξ) = ŵ2(ξ) =

1
2 otherwise.
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(ii). If ξ has degree > 4, then

w4(ξ) = w∗
4(ξ) = ŵ4(ξ) = 2 if 1, ξ + ξ, ξ · ξ are linearly dependent over Q

or if deg ξ = 6 and [Q(ξ) : Q(ξ) ∩R] = 2,

w4(ξ) = w∗
4(ξ) = ŵ4(ξ) =

3
2

otherwise.

Theorems 1,2,3 and Corollary 1 allow us to determine wn(ξ), w
∗
n(ξ), ŵn(ξ) for every

positive integer n and every complex, non-real algebraic number ξ, with the exception of
the following case:

n is an even integer with n ≥ 6,
ξ is a complex algebraic number such that n + 2 < deg ξ ≤ 2n − 2, [Q(ξ) : Q(ξ) ∩R] = 2
and 1, ξ + ξ, ξ · ξ are linearly independent over Q.

We deduce Theorems 1,2,3 from Theorem 4 below. To state the latter, we have to
introduce some notation. For n ∈ Z>0, ξ ∈ C∗, µ ∈ C∗, define the Q-vector space

Vn(µ, ξ) := {f ∈ Q[X ] : deg f ≤ n, µf(ξ) ∈ R}, (2.4)

and for n ∈ Z>0, ξ ∈ C∗ denote by tn(ξ) the maximum over µ of the dimensions of these
spaces, i.e.,

tn(ξ) := max{dimQ Vn(µ, ξ) : µ ∈ C∗}. (2.5)

It is clear that tn(ξ) ≤ n+ 1 and tn(ξ) = n+ 1 if and only if ξ ∈ R.

Theorem 4. Let n be a positive integer and ξ a complex, non-real algebraic number of
degree > n. Then

wn(ξ) = w∗
n(ξ) = ŵn(ξ) = max

{
n− 1

2
, tn(ξ)− 1

}
.

The proof of Theorem 4 is based on Schmidt’s Subspace Theorem and geometry of
numbers. It should be noted that Theorem 4 reduces the problem to determine how well ξ
can be approximated by algebraic numbers of degree at most n to the algebraic problem
to compute tn(ξ). We deduce Theorems 1,2 and 3 by combining Theorem 4 with some
properties of the quantity tn(ξ) proved below.

3. Approximation by algebraic integers

In view of a transference lemma relating uniform homogeneous approximation to in-
homogeneous approximation (see [4]), for any integer n ≥ 2, the real numbers ξ with
ŵn(ξ) > n are good candidates for being unexpectedly badly approximable by algebraic
integers of degree less than or equal to n+1. This has been confirmed by Roy [18] for the case
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n = 2. Namely, in [17] he proved that there exist real numbers ξ with ŵ2(ξ) =
3+

√
5

2 > 2,
and in [18] he used this to prove that there exist real numbers ξ with the property that

|ξ − α| ≫ H(α)−(3+
√
5)/2 for every algebraic integer α of degree at most 3. By a result of

Davenport and Schmidt [9], the exponent 3+
√
5

2 is optimal. On the other hand Bugeaud and
Teulié [5] proved that for every κ < 3 and almost all ξ ∈ R, the inequality |ξ−α| < H(α)−κ

has infinitely many solutions in algebraic integers of degree 3.

Analogously to the real case one should expect that complex numbers ξ with ŵn(ξ) >
n−1
2 are unusually badly approximable by algebraic integers of degree at most n + 1. In

Theorem 5 below we confirm this for complex algebraic numbers.

We introduce the following quantities for complex numbers ξ and integers n ≥ 1:

• w̃n(ξ) denotes the supremum of those real numbers w̃ such that

0 < |P (ξ)| ≤ H(P )−w̃

is satisfied by infinitely many monic polynomials P ∈ Z[X ] of degree at most n+ 1;

• w̃∗
n(ξ) denotes the supremum of those real numbers w̃∗ for which

0 < |ξ − α| ≤ H(α)−w̃∗−1

holds for infinitely many algebraic integers of degree at most n+ 1;

• ˆ̃wn(ξ) denotes the supremum of those real numbers w̃ with the property that for every
sufficiently large real H, there exists a monic integer polynomial P of degree at most n+1
and height at most H such that

0 < |P (ξ)| ≤ H−w̃.

It is known that every real algebraic number ξ of degree d satisfies

w̃n(ξ) = w̃∗
n(ξ) =

ˆ̃wn(ξ) = min{d− 1, n}

for every integer n (see [22, 2]). Furthermore, methods developed by Bugeaud and Teulié
[5] and Roy and Waldschmidt [19] allow one to show that for every positive integer n we
have

w̃n(ξ) = w̃∗
n(ξ) =

ˆ̃wn(ξ) = n for almost all ξ ∈ R,

w̃n(ξ) = w̃∗
n(ξ) =

ˆ̃wn(ξ) =
n− 1

2
for almost all ξ ∈ C.

We show that for every positive integer n the functions w̃n, w̃
∗
n,

ˆ̃wn coincide on the
complex algebraic numbers and, moreover, that a complex algebraic number ξ is unusually
badly approximable by algebraic integers of degree at most n+1 (i.e., has w̃n(ξ) = w̃∗

n(ξ) =
ˆ̃wn(ξ) <

n−1
2 ) if and only if it is unusually well approximable by algebraic numbers of

degree at most n (i.e., has wn(ξ) = w∗
n(ξ) = ŵn(ξ) >

n−1
2

). More precisely, we prove the
following.

6



Theorem 5. Let n be a positive integer and ξ a complex, non-real algebraic number of
degree d. Then

w̃n(ξ) = w̃∗
n(ξ) =

ˆ̃wn(ξ) =
d− 2

2
if d ≤ n+ 1, (3.1)

w̃n(ξ) = w̃∗
n(ξ) =

ˆ̃wn(ξ) =
n− 1

2
if d ≥ n+ 2 and n is odd, (3.2)

w̃n(ξ) = w̃∗
n(ξ) =

ˆ̃wn(ξ) ∈
{
n− 2

2
,
n− 1

2

}
if d ≥ n+ 2 and n is even. (3.3)

Moreover, if d ≥ n+ 2 and n is even then

w̃n(ξ) = w̃∗
n(ξ) =

ˆ̃wn(ξ) =
n− 2

2
⇐⇒ wn(ξ) = w∗

n(ξ) = ŵn(ξ) =
n

2
.

Combining Theorem 5 with Corollary 1, we get at once the following statement.

Corollary 2. Let ξ be a complex, non-real algebraic number.

(i). If ξ has degree > 2, then

w̃2(ξ) = w̃∗
2(ξ) =

ˆ̃w2(ξ) = 0 if 1, ξ + ξ, ξ · ξ are linearly dependent over Q,

w̃2(ξ) = w̃∗
2(ξ) =

ˆ̃w2(ξ) =
1
2 otherwise.

(ii). If ξ has degree > 4, then

w̃4(ξ) = w̃∗
4(ξ) =

ˆ̃w4(ξ) = 1 if 1, ξ + ξ, ξ · ξ are linearly dependent over Q
or if deg ξ = 6 and [Q(ξ) : Q(ξ) ∩R] = 2,

w̃4(ξ) = w̃∗
4(ξ) =

ˆ̃w4(ξ) =
3
2 otherwise.

4. Deduction of Theorem 1 from Theorem 4

For every positive integer m we define the Q-vector space

Wm := {f ∈ Q[X ] : deg f ≤ m}

and for any subset S of the polynomial ring Q[X ] and any polynomial g ∈ Q[X ], we define
the set g · S := {gf : f ∈ S}.

In this section, n is a positive integer, and ξ a complex, non-real algebraic number
of degree d > n. We prove some lemmata about the quantity tn(ξ) which in combination
with Theorem 4 will imply Theorem 1. Choose µ0 ∈ C∗ such that dimVn(µ0, ξ) = tn(ξ).
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Lemma 4.1. Let µ ∈ C∗ be such that dimVn(µ, ξ) >
n+1
2 . Then Vn(µ, ξ) = Vn(µ0, ξ).

Proof: Our assumption on µ clearly implies that tn(ξ) >
n+1
2 . Both vector spaces Vn(µ, ξ),

Vn(µ0, ξ) are contained in the same n+ 1-dimensional vector space, hence they have non-
zero intersection. Let f1 ∈ Q[X ] be a non-zero polynomial lying in both spaces and put
µ1 := f1(ξ)

−1. Then µ1/µ ∈ R, µ1/µ0 ∈ R, hence Vn(µ, ξ) = Vn(µ1, ξ) = Vn(µ0, ξ).

Lemma 4.2. Suppose that tn(ξ) >
n+1
2 . Then

(i). Wn+1 is the direct sum of the Q-vector spaces Vn(µ0, ξ) and X · Vn(µ0, ξ).

(ii). n is even, tn(ξ) =
n+2
2 .

Proof: Suppose that Vn(µ0, ξ) ∩X · Vn(µ0, ξ) 6= {0}. Choose a non-zero polynomial f in
the intersection of both spaces. Then f = Xg where g ∈ Vn(µ0, ξ). Hence

ξ =
f(ξ)

g(ξ)
=
µ0f(ξ)

µ0g(ξ)
∈ R ,

which is against our assumption. Therefore, Vn(µ0, ξ) ∩ X · Vn(µ0, ξ) = {0}. From our
assumption on ξ it follows that tn(ξ) ≥ n+2

2 . Further, both Vn(µ0, ξ) and X · Vn(µ0, ξ) are
linear subspaces of Wn+1. Hence by comparing dimensions,

2 · n+ 2

2
≤ 2tn(ξ) = dim

(
Vn(µ0, ξ) +X · Vn(µ0, ξ)

)
≤ dimWn+1 = n+ 2.

This implies (i) and (ii).

Lemma 4.3. Let ξ be a complex, non-real algebraic number of degree d > 1. Then
td−1(ξ) ≤ d

2 .

Proof: Choose µ0 ∈ C∗ such that dimVd−1(µ0, ξ) = td−1(ξ). Pick a non-zero polynomial

f0 ∈ Vd−1(µ0, ξ). Then for every f ∈ Vd−1(µ0, ξ) we have f(ξ)
f0(ξ)

= µ0f(ξ)
µ0f0(ξ)

∈ Q(ξ) ∩ R.

For linearly independent polynomials f ∈ Q[X ] of degree at most d − 1 = deg ξ − 1,
the corresponding quantities f(ξ)/f0(ξ) are linearly independent over Q. Hence td−1(ξ) ≤
[Q(ξ) ∩R : Q] ≤ d

2
.

In the proof of Theorem 1 we use the following observations.

Lemma 4.4. Let ξ be a complex number and n a positive integer. Then
(i). w∗

n(ξ) ≤ wn(ξ),
(ii). ŵn(ξ) ≤ wn(ξ).

Proof: If α is an algebraic number of degree n with minimal polynomial P ∈ Z[X ], we
have |P (ξ)| ≪ H(P ) ·min{1, |α− ξ|}, where the implied constant depends only on ξ and
on n. This implies (i). If for some w ∈ R there exists H0 such that for every H ≥ H0 there
exists an integer polynomial P of degree at most n with 0 < |P (ξ)| ≤ H−w, H(P ) ≤ H,
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then clearly, there are infinitely many integer polynomials P of degree at most n such that
0 < |P (ξ)| ≤ H(P )−w. This implies (ii).

Proof of Theorem 1: Constants implied by ≪ and ≫ depend only on n, ξ. We first
prove (2.1). Assume that d ≤ n+ 1. In view of Lemma 4.4, it suffices to prove that

wn(ξ) ≤
d− 2

2
, w∗

n(ξ) ≥
d− 2

2
, ŵn(ξ) ≥

d− 2

2
.

To prove the former, denote by ξ(1), . . . , ξ(d) the conjugates of ξ, where ξ(1) = ξ, ξ(2) = ξ.
For some a ∈ Z>0, the polynomial Q := a

∏d
i=1(X − ξ(i)) has integer coefficients, and for

any polynomial P ∈ Z[X ] of degree at most n with P (ξ) 6= 0, the resultant R(P,Q) =

an
∏d

i=1 P (ξ
(i)) is a non-zero rational integer. This gives the Liouville inequality

|P (ξ)|2 = |P (ξ)P (ξ)| ≫ |R(P,Q)|
|P (ξ(3)) · · ·P (ξ(d))| ≫ H(P )2−d. (4.1)

Consequently, wn(ξ) ≤ d−2
2 .

By Theorem 4 with n = d− 1 and by Lemma 4.3 we have w∗
d−1(ξ) = ŵd−1(ξ) =

d−2
2 .

Hence for n ≥ d we have

w∗
n(ξ) ≥ w∗

d−1(ξ) =
d− 2

2
, ŵn(ξ) ≥ ŵd−1(ξ) =

d− 2

2
.

This completes the proof of (2.1).

Statements (2.2), (2.3) follow immediately by combining Theorem 4 with part (ii) of
Lemma 4.2. This completes the proof of Theorem 1.

5. Deduction of Theorem 2 from Theorem 4

To deduce Theorem 2 from Theorem 4, we prove again the necessary properties for
the quantity tn(ξ) defined by (2.5).

Lemma 5.1. Assume that n is even, and that ξ is a complex, non-real algebraic number
of degree > n such that 1, ξ + ξ and ξ · ξ are linearly dependent over Q. Then

tn(ξ) =
n+ 2

2
.

Proof: We use the easy observation that tn(ξ + c) = tn(ξ) for any c ∈ Q.

Put β := ξ+ξ, γ := ξ ·ξ. Our assumption on ξ implies that either β ∈ Q, or γ = a+bβ
for some a, b ∈ Q. By our observation, the first case can be reduced to β = 0 by replacing
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ξ by ξ − 1
2β. Then ξ =

√−γ with γ > 0. Likewise, the second case can be reduced to

γ = a ∈ Q by replacing ξ by ξ− b. Then ξ = 1
2

(
β±

√
β2 − 4a

)
with a ∈ Q and a > β2/4.

Case I. ξ =
√−γ with γ > 0.

In this case,

Vn(1, ξ) = {f ∈ Q[X ] : deg f ≤ n, f(ξ) ∈ R} =

{n/2∑

i=0

ciX
2i : c0, . . . , cn/2 ∈ Q

}
.

So tn(ξ) ≥ dimVn(1, ξ) =
n+2
2

. Hence by Lemma 4.2 we have tn(ξ) =
n+2
2

.

Case II. γ = ξ · ξ = a ∈ Q∗.

Put µ := ξ−n/2. Then for a polynomial f =
∑n

i=0 ciX
i ∈ Q[X ] we have, recalling our

assumption that ξ has degree larger than n,

µf(ξ) ∈ R ⇐⇒ ξ−n/2f(ξ) = ξ
(−n/2)

f(ξ) ⇐⇒ ξ−n/2f(ξ) = (a/ξ)−n/2f(a/ξ)

⇐⇒ an/2f(ξ) = ξnf(a/ξ) ⇐⇒ an/2f(X) = Xnf(a/X)

⇐⇒ an/2ci = an−icn−i for i = 0, . . . , n.

This implies tn(ξ) ≥ dimVn(µ, ξ) =
n+2
2

. Hence tn(ξ) =
n+2
2

in view of Lemma 4.2.

Lemma 5.2. Let n be an even positive integer, and ξ a complex algebraic number of
degree n+ 2. Suppose that [Q(ξ) : Q(ξ) ∩R] = 2. Then

tn(ξ) =
n+ 2

2
.

Proof: Write k := n/2. Then Q(ξ) ∩ R has degree k + 1. We prove that there exists
µ ∈ Q(ξ)∗ such that dimVn(µ, ξ) ≥ k + 1 = n+2

2
. Then from Lemma 4.2 it follows that

tn(ξ) =
n+2
2 .

Let {ω1, . . . , ωk+1} be aQ-basis ofQ(ξ)∩R. Then ω1, . . . , ωk+1, ξω1, . . . , ξωk+1 form a
Q-basis ofQ(ξ), every element ofQ(ξ) can be expressed uniquely as aQ-linear combination
of these numbers, and a number in Q(ξ) thus expressed belongs to Q(ξ) ∩R if and only
if its coefficients with respect to ξω1, . . . , ξωk+1 are 0.

For i, j = 0, . . . , 2k + 1 we have

ξi+j =
k+1∑

l=1

a
(l)
ij ωl +

k+1∑

l=1

b
(l)
ij ξωl with a

(l)
ij , b

(l)
ij ∈ Q.

Write µ ∈ Q(ξ) as µ =
∑2k+1

i=0 uiξ
i with u0, . . . , u2k+1 ∈ Q and write f ∈ Vn(µ, ξ) as

f =
∑2k

j=0 xjX
j with x0, . . . , x2k ∈ Q. Then

µf(ξ) =
k+1∑

l=1

ωl





2k∑

j=0

( 2k+1∑

i=0

a
(l)
ij ui

)
xj



+

k+1∑

l=1

ξωl





2k∑

j=0

( 2k+1∑

i=0

b
(l)
ij ui

)
xj



 .
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So f =
∑2k

j=0 xjX
j ∈ Vn(µ, ξ), i.e., µf(ξ) ∈ Q(ξ) ∩R, if and only if

L(l)
µ (x) :=

2k∑

j=0

( 2k+1∑

i=0

b
(l)
ij ui

)
xj = 0 for l = 1, . . . , k + 1, (5.1)

where x = (x0, . . . , x2k).

We choose µ ∈ Q(ξ)∗ to make one of the linear forms in (5.1), for instance L
(k+1)
µ ,

vanish identically. This amounts to choosing a non-zero vector u = (u0, . . . , u2k+1) ∈ Q2k+2

such that
2k+1∑

i=0

b
(k+1)
ij ui = 0 for j = 0, . . . , 2k.

This is possible since a system of 2k + 1 linear equations in 2k + 2 unknowns has a non-
trivial solution. Thus, (5.1) becomes a system of k equations in 2k + 1 unknowns over Q,
and the solution space of this system has dimension at least k+ 1. Consequently, Vn(µ, ξ)
has dimension at least k + 1 = n+2

2 . This proves Lemma 5.2.

Now Theorem 2 follows at once by combining Theorem 4 with Lemmata 5.1 and 5.2.

6. Deduction of Theorem 3 from Theorem 4

We prove some results about the quantity tn(ξ) which, in combination with Theorem
4, will yield Theorem 3.

Lemma 6.1. Let n be an even positive integer and ξ a complex, non-real algebraic number
of degree > n. Assume that tn(ξ) >

n+1
2 .

(i). [Q(ξ) : Q(ξ) ∩R] = 2.

(ii). If moreover deg ξ > 2n− 2, then 1, ξ + ξ, ξ · ξ are linearly dependent over Q.

Proof: Put β := ξ+ ξ, γ := ξ · ξ. Choose µ0 such that dimVn(µ0, ξ) = tn(ξ). By part (i) of
Lemma 4.2, every polynomial in Q[X ] of degree at most n+ 1 can be expressed uniquely
as a sum of a polynomial in Vn(µ0, ξ) and a polynomial in X · Vn(µ0, ξ). In particular,
for every non-zero polynomial f ∈ Vn(µ0, ξ) of degree ≤ n − 1, there are polynomials
g, h ∈ Vn(µ0, ξ), uniquely determined by f , such that

X2f = Xg + h. (6.1)

This implies that ξ is a zero of the polynomial X2 − (g(ξ)/f(ξ))X − (h(ξ)/f(ξ)). On the
other hand, there is a unique monic quadratic polynomial with real coefficients having ξ
as a zero, namely X2 − βX + γ, and

g(ξ)

f(ξ)
=
µ0g(ξ)

µ0f(ξ)
∈ R,

h(ξ)

f(ξ)
=
µ0h(ξ)

µ0f(ξ)
∈ R.
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Therefore,
g(ξ)

f(ξ)
= β,

h(ξ)

f(ξ)
= −γ . (6.2)

So β, γ ∈ Q(ξ) ∩R. This implies (i).

To prove (ii), we proceed by induction on n. First let n = 2. By assumption, there
is µ0 ∈ C∗ such that V2(µ0, ξ) has dimension larger than 1. This means that there are
non-zero polynomials f1, f2 ∈ V2(µ0, ξ) with deg f1 < deg f2 ≤ 2. We have f1(ξ)f2(ξ) ∈
(µ0µ0)

−1R = R, hence

f1(ξ)f2(ξ)− f1(ξ)f2(ξ) = 0.

First suppose that f2 has degree 1. Then f1 has degree 0, therefore, f1 = c1, f2 = c2+c3X
with c1c3 6= 0. Hence

0 = f1(ξ)f2(ξ)− f1(ξ)f2(ξ) = c1c3(ξ − ξ)

which is impossible since ξ 6∈ R. Now suppose that f2 has degree 2. Then f1 = c1 + c2X ,
f2 = c3 + c4X + c5X

2 with c1, . . . , c5 ∈ Q, hence

0 = f1(ξ)f2(ξ)− f1(ξ)f2(ξ) = (ξ − ξ)(c1c4 − c2c3 + c1c5β + c2c5γ).

We have (c1, c2) 6= (0, 0) since f1 6= 0, while c5 6= 0 since f2 has degree 2, and further
ξ 6∈ R. Hence 1, β, γ are Q-linearly dependent.

Now let n be an even integer with n ≥ 4. Assume part (ii) of Lemma 6.1 is true if
n is replaced by any positive even integer smaller than n. There is µ0 ∈ C∗ such that
dimVn(µ0, ξ) =: t > n+1

2 . Let f1, . . . , ft be a basis of Vn(µ0, ξ) with deg f1 < deg f2 <
· · · < deg ft ≤ n. So in particular, deg ft−1 ≤ n− 1.

First assume that a := gcd(f1, . . . , ft−1) is a polynomial of degree at least 1. Let
f̃i := fi/a for i = 1, . . . , t−1. Put µ̃0 := µ0a(ξ). Then f̃1, . . . , f̃t−1 are linearly independent
polynomials of degree at most n− 2 with µ̃0f̃i(ξ) ∈ R for i = 1, . . . , t− 1. Hence

tn−2(ξ) ≥ dimVn−2(µ̃0, ξ) ≥ t− 1 >
(n− 2) + 1

2
.

So by the induction hypothesis, 1, β, γ are linearly dependent over Q.

Now assume that gcd(f1, . . . , ft−1) = 1. By (6.1), for i = 1, . . . , t− 1 there are poly-
nomials gi, hi ∈ Vn(µ0, ξ) such that X2fi = Xgi + hi for i = 1, . . . , t− 1 and by (6.2) we
have

gi(ξ)

fi(ξ)
= β,

hi(ξ)

fi(ξ)
= −γ for i = 1, . . . , t− 1.

The polynomials hi are all divisible by X . Therefore, ξ is a common zero of the polynomials

fi ·
hj
X

− fj ·
hi
X

(1 ≤ i, j ≤ t− 1).
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Each of these polynomials has degree at most 2n − 2 and, by assumption, ξ has de-
gree > 2n − 2. Therefore, these polynomials are all identically 0. Since by assumption
gcd(f1, . . . , ft−1) = 1, this implies that there is a polynomial a ∈ Q[X ] with hi/X = afi
for i = 1, . . . , t− 1.

Now a cannot be equal to 0 since otherwise γ = ξ · ξ would be 0 which is impossible.
Further, a cannot be a constant c ∈ Q∗ since otherwise, we would have ξ = hi(ξ)/cfi(ξ) =
−γ/c ∈ R which is impossible. Hence a has degree at least 1. But then deg fi ≤ deg hi−2 ≤
n− 2 for i = 1, . . . , t− 1. This implies

tn−2(ξ) ≥ dimVn−2(µ, ξ) ≥ t− 1 >
n− 2 + 1

2
.

Now again the induction hypothesis can be applied, and we infer that 1, β, γ are linearly
dependent over Q. This completes our proof.

Theorem 3 follows at once by combining Theorem 4 with Lemma 6.1.

7. Consequences of the Parametric Subspace Theorem

In this section we have collected some applications of the Parametric Subspace The-
orem which are needed in both the proofs of Theorem 4 and Theorem 5. Our arguments
are a routine extension of Chapter VI, §§1,2 of Schmidt’s Lecture Notes [23], but for lack
of a convenient reference we have included the proofs.

We start with some notation. For a linear form L =
∑n

i=1 αiXi with complex coef-
ficients, we write Re (L) :=

∑n
i=1(Reαi)Xi and Im (L) :=

∑n
i=1(Imαi)Xi. For a linear

subspace U of Qn, we denote by RU the R-linear subspace of Rn generated by U . We say
that linear forms L1, . . . , Ls in X1, . . . , Xn with complex coefficients are linearly dependent
on a linear subspace U of Qn if there are complex numbers a1, . . . , as, not all zero, such
that a1L1 + · · · + asLs vanishes identically on U . Otherwise, L1, . . . , Ls are said to be
linearly independent on U .

Our main tool is the so-called Parametric Subspace Theorem which is stated in Propo-
sition 7.1 below. We consider symmetric convex bodies

Π(H) := {x ∈ Rn : |Li(x)| ≤ H−ci (i = 1, . . . , r)} (7.1)

where r ≥ n, L1, . . . , Lr are linear forms with real algebraic coefficients in the n variables
X1, . . . , Xn, c1, . . . , cr are reals, and H is a real ≥ 1. We will refer to ci as the H-exponent

corresponding to Li.

Proposition 7.1. Assume that there are indices i1, . . . , in ∈ {1, . . . , r} such that

rank(Li1 , . . . , Lin) = n, ci1 + · · ·+ cin > 0. (7.2)
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Then there is a finite collection of proper linear subspaces {T1, . . . , Tt} of Qn such that for
every H ≥ 1 there is Ti ∈ {T1, . . . , Tt} with

Π(H) ∩ Zn ⊂ Ti .

Proof: This is a special case of Theorem 1.1 of [11], where a quantitative version was given
with an explicit upper bound for the number of subspaces t. In fact, in its qualitative form
this result was already proved implicitly by Schmidt.

Lemma 7.2. Let L1, . . . , Lr be linear forms in X1, . . . , Xn with real algebraic coefficients
and with rank(L1, . . . , Lr) = n, let c1, . . . , cr be reals, and let {M1, . . . ,Ms} be a (possibly
empty) collection of linear forms in X1, . . . , Xn with complex coefficients.
Assume that for every non-zero linear subspace U of Qn on which none of M1, . . . ,Ms

vanishes identically there are indices i1, . . . , im ∈ {1, . . . , r} (m = dimU) such that

Li1 , . . . , Lim are linearly independent on U , ci1 + · · ·+ cim > 0. (7.3)

Then there is H0 > 1 such that if there is x with

x ∈ Π(H) ∩ Zn, x 6= 0, Mj(x) 6= 0 for j = 1, . . . , s,

then H ≤ H0.

Proof: A subspace U of Qn is called admissible if none of M1, . . . ,Ms vanishes identically
on U . From (7.3) and Proposition 7.1 it follows easily, that for every admissible linear
subspace U of Qn of dimension ≥ 2, there is a finite collection {U1, . . . , Uu} of admissible
proper linear subspaces of U , such that for every H ≥ 1 there is Ui ∈ {U1, . . . , Uu} with

{x ∈ Π(H) ∩ Zn ∩ U : Mj(x) 6= 0 for j = 1, . . . , s} ⊂ Ui .

By repeatedly applying this, it follows that there is a finite collection {V1, . . . , Vv}
of admissible one-dimensional linear subspaces of Qn, such that for every H ≥ 1 there is
Vi ∈ {V1, . . . , Vv} with

{x ∈ Π(H) ∩ Zn, Mj(x) 6= 0 for j = 1, . . . , s} ⊂ Vi .

Let V be one of these subspaces. Choose a non-zero vector x0 ∈ V ∩ Zn whose
coefficients have gcd 1. Such a vector is up to sign uniquely determined by V , and every
vector in V is a scalar multiple of x0. By assumption, there is i ∈ {1, . . . , r} such that
Li(x0) 6= 0 and ci > 0. Now let x be a non-zero vector in Π(H) ∩ Zn ∩ V . Then x = ax0

for some non-zero integer a, hence

H−ci ≥ |Li(x)| ≥ |Li(x0)|,
which implies that H ≤ HV for some finite constant HV depending only on V .

Now Lemma 7.2 is satisfied with H0 = maxi=1,...,vHVi
.

Denote by λ1(H), . . . , λn(H) the successive minima of Π(H). Recall that λi(H) is the
minimum of all positive reals λ such that λΠ(H) contains i linearly independent points
from Zn.
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Lemma 7.3. Let L1, . . . , Lr be linear forms in X1, . . . , Xn with real algebraic coefficients
and with rank(L1, . . . , Lr) = n and let c1, . . . , cr be reals. Put

E :=
1

n
max{ci1 + · · ·+ cin} (7.4)

where the maximum is taken over all tuples i1, . . . , in such that Li1 , . . . , Lin are linearly
independent.

(i). There is a constant c > 0 depending only on n, L1, . . . , Lr such that for every H ≥ 1
we have λ1(H) ≤ cHE .

(ii). Assume that for every non-zero linear subspace U of Qn there are indices i1, . . . , im ∈
{1, . . . , r} (m = dimU) such that

Li1 , . . . , Lim are linearly independent on U ,
1

m
(ci1 + · · ·+ cim) ≥ E. (7.5)

Then for every ε > 0 there is Hε > 1 such that for every H > Hε we have

HE−ε < λ1(H) ≤ · · · ≤ λn(H) < HE+ε.

Proof: In what follows, the constants implied by ≪ and ≫ may depend on L1, . . . , Lr,
c1, . . . , cr, n, ε, but are independent ofH. Without loss of generality, L1, . . . , Ln are linearly
independent and c1 ≥ · · · ≥ cr.

We first prove (i). Let Π′(H) be the set of x ∈ Rn with |Li(x)| ≤ H−ci for i = 1, . . . , n
(so with only n instead of r inequalities). There is a constant λ0 > 0 such that Π(H) ⊇
λ0Π

′(H) and this implies at once

Vol(Π(H)) ≫ Vol(Π′(H)) ≫ H−(c1+···+cn) = H−nE .

So by Minkowski’s Theorem on successive minima,

n∏

i=1

λi(H) ≪ HnE . (7.6)

This implies (i).

We now prove (ii), and assume that for every non-zero linear subspace U of Qn there
are indices i1, . . . , im with (7.5). Let ε > 0. We first show that for every sufficiently large
H we have

λ1(H) > HE−ε/n, (7.7)

in other words, that for every sufficiently large H the convex body

HE−ε/nΠ(H) = {x ∈ Rn : |Li(x)| ≤ HE−ci−ε/n (i = 1, . . . , r)}

does not contain non-zero points x in Zn.
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We apply Lemma 7.2 with ci − E + ε/n instead of ci for i = 1, . . . , r. From our
assumption it follows that for every non-zero linear subspace U of Qn there are indices
i1, . . . , im (m = dimU) such that Li1 , . . . , Lim are linearly independent on U and

m∑

j=1

(cij − E + ε/n) = (
m∑

j=1

cij )−mE +mε/n > 0.

So condition (7.3) is satisfied, and therefore we have HE−ε/nΠ(H) ∩ Zn = {0} for every
sufficiently large H. This proves (7.7).

Now a combination of (7.7) with (7.6) immediately gives (ii).

Let n be a positive integer and ξ a complex, non-real algebraic number of degree larger
than n. Define the linear forms

L1 := Re
( n∑

i=0

ξiXi

)
, L2 := Im

( n∑

i=0

ξiXi

)
(7.8)

and the symmetric convex body

K(ξ, n, w,H) := {x ∈ Rn+1 : |L1(x)| ≤ H−w, |L2(x)| ≤ H−w,

|x0| ≤ H, . . . , |xn| ≤ H},
(7.9)

where x = (x0, . . . , xn) and w ∈ R. We denote by λi(ξ, n, w,H) (i = 1, . . . , n + 1) the
successive minima of this body.

Recall that Vn(µ, ξ) consists of the polynomials f ∈ Q[X ] of degree at most n for
which µf(ξ) ∈ R. We start with a simple lemma.

Lemma 7.4. (i). Let U be a non-zero linear subspace of Qn+1. Then at least one of the
linear forms L1, L2 does not vanish identically on U .

(ii). Let U be a linear subspace of Qn+1. Then L1, L2 are linearly dependent on U if and
only if there is µ ∈ C∗ such that

U ⊂ {x ∈ Qn+1 :
n∑

i=0

xiX
i ∈ Vn(µ, ξ)}.

Proof: (i). If L1, L2 would both vanish identically on U , then so would L1 +
√
−1 · L2 =∑n

i=0 xiξ
i. But this is impossible since ξ has degree larger than n.

(ii). The linear forms L1, L2 are linearly dependent on U if and only if there are
α, β ∈ R such that αL1 + βL2 is identically zero on U . Using

αL1(x) + βL2(x) = Im
(
µ

n∑

i=0

xiξ
i
)
with µ = β +

√
−1 · α,
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one verifies at once that L1, L2 are linearly dependent on U if and only if for every x ∈ U
the polynomial

∑n
i=0 xiX

i belongs to Vn(µ, ξ).

Let tn(ξ) be the quantity defined by (2.5). By Lemma 4.2, we have either tn(ξ) ≤ n+1
2

or tn(ξ) = n+2
2

. In what follows we have to distinguish between these two cases. In the
proofs below, constants implied by ≪ and ≫ may depend on ξ, n, w, and on an additional
parameter ε, but are independent of H.

Lemma 7.5. Assume that tn(ξ) ≤ (n+ 1)/2 and let w ≥ −1.

(i). There is a constant c = c(ξ, n) > 0 such that for every H ≥ 1 we have λ1(ξ, n, w,H) ≤
cH

2w−n+1

n+1 .

(ii). For every ε > 0 there is H1,ε > 1 such that for every H > H1,ε we have

H
2w−n+1

n+1
−ε < λ1(ξ, n, w,H) ≤ · · · ≤ λn+1(ξ, n, w,H) < H

2w−n+1

n+1
+ε. (7.10)

Proof: In the situation being considered here, for the quantity E defined by (7.4) we have
E = 2w−n+1

n+1 . Thus, part (i) of Lemma 7.5 follows at once from part (i) of Lemma 7.3.

We deduce part (ii) of Lemma 7.5 from part (ii) of Lemma 7.3. and to this end we have
to verify the conditions of the latter. First let U be a linear subspace of Qn+1 of dimension
m > tn(ξ). By part (ii) of Lemma 7.4, the linear forms L1, L2 are linearly independent
on U . Pick m − 2 linear forms from X0, . . . , Xn which together with L1, L2 are linearly
independent on U . Then the sum of the H-exponents corresponding to these linear forms
is equal to 2w −m+ 2, and

2w −m+ 2

m
≥ 2w − n+ 1

n+ 1
= E.

Now let U be a non-zero linear subspace of Qn+1 of dimension m ≤ tn(ξ). By part (i)
of Lemma 7.4, there is a linear form Li ∈ {L1, L2} which does not vanish identically on U .
Pick m− 1 linear forms from X0, . . . , Xn which together with Li are linearly independent
on U . Then the sum of the H-exponents corresponding to these linear forms is w−m+1,
and again

w −m+ 1

m
≥ w − 1

2
(n+ 1) + 1

1
2 (n+ 1)

= E

where we have used m ≤ tn(ξ) ≤ n+1
2 . Hence, indeed, the conditions of part (ii) of Lemma

7.3 are satisfied. This proves part (ii) of Lemma 7.5.

We now deal with the case that tn(ξ) =
n+2
2 . Choose µ0 ∈ C∗ such that dimVn(µ0, ξ)

= tn(ξ) and define

U0 := {x ∈ Qn+1 :
n∑

i=0

xiX
i ∈ Vn(µ0, ξ)} = {x ∈ Qn+1 : µ0

n∑

i=0

xiξ
i ∈ R}. (7.11)

Then dimU0 = tn(ξ) and by Lemma 4.1 the vector space U0 does not depend on the choice
of µ0. Recall that we can choose µ0 from Q(ξ). Thus, µ0 is algebraic.
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Lemma 7.6. Assume that tn(ξ) =
n+2
2 and let w ≥ −1.

(i). There is a constant c = c(ξ, n) > 0 such that for every H ≥ 1 we have λ1(ξ, n, w,H) ≤
cH

2w−n

n+2 .

(ii). For every ε > 0 there is H2,ε > 0 such that for every H > H2,ε we have

H
2w−n

n+2
−ε < λ1(ξ, n, w,H) ≤ · · · ≤ λ(n+2)/2(ξ, n, w,H) < H

2w−n

n+2
+ε. (7.12)

H
2w−n+2

n
−ε < λ(n+4)/2(ξ, n, w,H) ≤ · · · ≤ λn+1(ξ, n, w,H) < H

2w−n+2

n
+ε. (7.13)

H
2w−n+2

n
−εK(ξ, n, w,H)∩ Zn+1 ⊂ U0. (7.14)

Proof: We first prove part (ii). The idea is to apply Lemma 7.3 first to a convex body
defined on the quotient space Rn+1/RU0, and then to K(ξ, n, w,H) restricted to RU0.

Let µ0 = α0 +
√
−1 · β0, where α0, β0 ∈ R and define the linear form

M1 :=
1

|α0|+ |β0|
·
(
β0L1 + α0L2

)
.

By a straightforward computation,

M1 =
1

2
√
−1(|α0|+ |β0|)

(
µ0

n∑

i=0

ξiXi − µ0

n∑

i=0

ξ
i
Xi

)
,

hence
{x ∈ Qn+1 : M1(x) = 0} = U0. (7.15)

Since U0 has dimension n+2
2 , we can choose linear forms M2, . . . ,Mn/2 in X0, . . . , Xn as

follows: M2, . . . ,Mn/2 vanish identically on U0; {M1,M2, . . . ,Mn/2} is linearly indepen-
dent; and each Mi (i = 2, . . . , n2 ) has real algebraic coefficients the sum of whose absolute
values is equal to 1.

There is a surjective linear map ψ from Rn+1 to Rn/2 with kernel RU0, which induces
a surjective Z-linear map from Zn+1 to Zn/2 with kernel U0 ∩ Zn+1. For i = 1, . . . , n

2
, let

M∗
i be the linear form on Rn/2 such that Mi = M∗

i ◦ ψ. Then M∗
1 , . . . ,M

∗
n/2 are linearly

independent. Now it is clear that for x ∈ K(ξ, n, w,H) we have

|M∗
1 (ψ(x))| = |M1(x)| ≤ max(|L1(x)|, |L2(x)|) ≤ H−w,

|M∗
i (ψ(x))| = |Mi(x)| ≤ max(|x0|, . . . , |xn|) ≤ H (i = 2, . . . , n/2),

in other words, if x ∈ K(ξ, n, w,H) then ψ(x) belongs to the convex body

Π(H) := {y ∈ Rn/2 : |M∗
1 (y)| ≤ H−w, |M∗

i (y)| ≤ H (i = 2, . . . , n/2)}.

Similarly, for any λ > 0 we have

x ∈ λK(ξ, n, w,H)∩ Zn+1 =⇒ ψ(x) ∈ λΠ(H) ∩ Zn/2. (7.16)
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Let ε > 0. Denote by ν1(H), . . . , νn/2(H) the successive minima of Π(H). We apply

Lemma 7.3. Let U be a linear subspace of Qn/2 of dimension m > 0. By (7.15), M∗
1 does

not vanish identically on U . Pick m−1 linear forms fromM∗
2 , . . .M

∗
n/2 which together with

M∗
1 form a system of linear forms linearly independent on U . The sum of the H-exponents

corresponding to these linear forms is w −m+ 1 and we have

w −m+ 1

m
≥ 2w − n+ 2

n
.

So the conditions of part (ii) of Lemma 7.3 are satisfied. Consequently, for every sufficiently
large H we have

H
2w−n+2

n
−ε/2n < ν1(H) ≤ · · · ≤ νn/2(H) < H

2w−n+2

n
+ε/2n.

Together with (7.16) this implies

H
2w−n+2

n
−ε/2nK(ξ, n, w,H)∩ Zn+1 ⊂ U0

which implies (7.14).

Further, since dimU0 = n
2 + 1, we have

H
2w−n+2

n
−(ε/2n) < λn+4

2

(ξ, n, w,H) ≤ · · · ≤ λn+1(ξ, n, w,H). (7.17)

For i = 1, . . . , n+2
2 , denote by µi(H) the minimum of all positive reals µ such that

µK(ξ, n, w,H)∩ U0 ∩ Zn+1 contains i linearly independent points.

We apply again Lemma 7.3. Let U be a linear subspace of U0 of dimension m > 0. By
part (i) of Lemma 7.4, there is a linear form Li ∈ {L1, L2} which does not vanish identically
on U . Pickm−1 coordinates from x0, . . . , xn which together with Li form a system of linear
forms which is linearly independent on U . Then the sum of the H-exponents corresponding
to these linear forms is w −m+ 1 and

w −m+ 1

m
≥ 2w − n

n+ 2
.

By means of a bijective linear map φ from RU0 to R(n+2)/2 with φ(U0 ∩ Zn+1) =
Z(n+2)/2, we can transform K(ξ, n, w,H)∩RU0 into a convex body with successive minima
µ1(H), . . . , µ(n+2)/2(H) satisfying the conditions of part (ii) of Lemma 7.3. It follows that
for every sufficiently large H,

H
2w−n

n+2
−ε/2n < µ1(H) ≤ · · · ≤ µn+2

2

(H) < H
2w−n

n+2
+ε/2n. (7.18)

By combining (7.18) with (7.17) and the already proved (7.14) we obtain (assuming
that ε is sufficiently small), that µi(H) = λi(ξ, n, w,H) for i = 1, . . . , n+2

2
. By inserting

this into (7.18) we obtain (7.12).
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By Minkowski’s Theorem,

n+1∏

i=1

λi(ξ, n, w,H)≪ Vol(K(ξ, n, w,H))−1 ≪ H
2w−n+1

n+1 .

Together with (7.12), (7.17) this implies that for every sufficiently large H we have

H
2w−n+2

n
−ε/2n < λn+4

2

(ξ, n, w,H) ≤ · · · ≤ λn+1(ξ, n, w,H) < H
2w−n+2

n
+ε.

This implies (7.13), and completes the proof of part (ii).

It remains to prove part (i). Applying part (i) of Lemma 7.3 to the image under φ of
K(ξ, n, w,H)∩RU0 we obtain that there is a constant c = c(ξ, n) > 0 such that for every

H ≥ 1 we have µ1(H) ≤ H
2w−n

n+2 . Since obviously, λ1(ξ, n, w,H) ≤ µ1(H), part (i) follows.

8. Proof of Theorem 4

Let again n be a positive integer, and ξ a complex, non-real algebraic number of degree
> n. Let L1, L2 denote the linear forms defined by (7.8) and K(ξ, n, w,H) the convex body
defined by (7.9). Put

un(ξ) := max
{n− 1

2
, tn(ξ)− 1

}
. (8.1)

In view of Lemma 4.4, in order to prove Theorem 4, it suffices to prove that wn(ξ) ≤ un(ξ),
ŵn(ξ) ≥ un(ξ), w

∗
n(ξ) ≥ un(ξ).

Lemma 8.1. We have wn(ξ) ≤ un(ξ).

Proof: Let w ∈ R. Suppose there are infinitely many polynomials P = x0 + x1X + · · ·+
xnX

n ∈ Z[X ] satisfying
0 < |P (ξ)| ≤ H(P )−w. (8.2)

For such a polynomial P , put H := H(P ), x = (x0, . . . , xn). Then clearly, |L1(x)| =
|ReP (ξ)| ≤ H−w, |L2(x)| = |ImP (ξ)| ≤ H−w, |xi| ≤ H for i = 0, . . . , n, and so

x ∈ K(ξ, n, w,H)∩ Zn+1. (8.3)

Since (8.2) is supposed to hold for infinitely many polynomials P ∈ Z[X ] of degree ≤ n,
there are arbitrarily large H such that there is a non-zero x with (8.3). That is, there are
arbitrarily large H such that the first minimum λ1 = λ1(ξ, n, w,H) of K(ξ, n, w,H) is ≤ 1.

First suppose that tn(ξ) ≤ n+1
2

. Then un(ξ) =
n−1
2

. By Lemma 7.5, for every ε > 0

there is Hε > 1 such that λ1 ≥ H
2w−n+1

n+1
−ε for every H > Hε. Hence w ≤ n−1

2
= un(ξ).

Now suppose that tn(ξ) =
n+2
2 ; then un(ξ) =

n
2 . By Lemma 7.6, for every ε > 0 there is
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Hε > 1 such that λ1 ≥ H
2w−n

n+2
−ε for every H > Hε. Hence w ≤ n

2 = un(ξ). This implies
Lemma 8.1.

Lemma 8.2. We have ŵn(ξ) ≥ un(ξ), w
∗
n(ξ) ≥ un(ξ).

Proof: We prove the following stronger assertion: For every ε > 0 there is Hε > 1 such
that for every H > Hε there is a non-zero irreducible polynomial P ∈ Z[X ] of degree n
with

0 < |P (ξ)| ≤ H−un(ξ)+ε, |P ′(ξ)| ≥ H1−ε, H(P ) ≤ H , (8.4)

where P ′ denotes the derivative of P .

By ignoring the lower bound for |P ′(ξ)| in (8.4) we obtain that for every H > Hε

there is a non-zero irreducible polynomial P ∈ Z[X ] of degree n such that 0 < |P (ξ)| ≤
H−un(ξ)+ε. This implies ŵn(ξ) ≥ un(ξ).

To prove that w∗
n(ξ) ≥ un(ξ) we have to show that for every ε > 0 there are infinitely

many algebraic numbers α of degree at most n with |ξ − α| ≤ H(α)−un(ξ)−1+ε. We prove
the existence of infinitely many such α of degree equal to n. Take an irreducible polynomial
P ∈ Z[X ] with (8.4) and let α be a zero of P closest to ξ. Then using the inequalities
|ξ − α| ≪ |P (ξ)/P ′(ξ)| (see (A.11) on p. 228 of [2]) and H(α) ≪ H(P ) ≪ H, we obtain

|ξ − α| ≪ H−un(ξ)−1+2ε ≪ H(α)−un(ξ)−1+2ε, (8.5)

where the constants implied by ≪ depend only on n, ε. Since deg ξ > n, the number α
cannot be equal to ξ so eq. (8.5) cannot hold for fixed α and arbitrarily large H. Hence by
letting H → ∞, we obtain infinitely many distinct algebraic numbers α of degree n with
(8.5).

We proceed to prove the assertion stated above. Constants implied by ≪ and ≫ will
depend on ξ, n and ε. Write the polynomial P as P = x0 + x1X + · · · + xnX

n and put
x := (x0, . . . , xn). As before, let L1, L2 be the linear forms given by L1(x) = ReP (ξ),
L2(x) = ImP (ξ). Further, define the linear forms L′

1, L
′
2 by

L′
1(x) = ReP ′(ξ) = Re (

n∑

j=1

jxjξ
j−1), L′

2(x) = ImP ′(ξ) = Im (

n∑

j=1

jxjξ
j−1).

We have to distinguish between the cases tn(ξ) ≤ n+1
2 and tn(ξ) =

n+2
2 .

First suppose that tn(ξ) ≤ n+1
2 . Then un(ξ) = n−1

2 . We prove that for every ε > 0
there is Hε > 1 with the property that for every H > Hε there is x ∈ Zn+1 with

|L1(x)| ≤ H−n−1

2
+ε/3, |L2(x)| ≤ H−n−1

2
+ε/3, |x0| ≤ H, . . . , |xn| ≤ H (8.6)

max
{
|L′

1(x)|, |L′
2(x)|

}
> H1−ε (8.7)

2 6 |xn, 2|xi for i = 0, . . . , n− 1, 4 6 |x0. (8.8)

Then the polynomial P =
∑n

i=0 xiX
i satisfies (8.4) and by Eisenstein’s criterion it is

irreducible.
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Let H ≥ 1, ε > 0. Consider vectors x ∈ Zn+1 satisfying (8.6) but not (8.7), i.e., with

|L1(x)| ≤ H−n−1

2
+ε/3, |L2(x)| ≤ H−n−1

2
+ε/3,

|L′
1(x)| ≤ H1−ε, |L′

2(x)| ≤ H1−ε,
|x0| ≤ H, . . . , |xn| ≤ H.



 (8.9)

By considering the coefficients of X0, X1, X2 one infers that the linear forms L1, L2 and
L′
2 are linearly independent. Pick n− 2 coordinates from X0, . . . , Xn which together with

L1, L2, L
′
2 form a system of n + 1 linearly independent linear forms. The sum of the

corresponding H-exponents is

(n− 1− 2ε/3) + (ε− 1)− (n− 2) = ε/3 > 0.

So by Proposition 7.1, there is a finite collection of proper linear subspaces T1, . . . , Tm of
Qn+1, with the property that for every H ≥ 1, there is Ti ∈ {T1, . . . , Tm} such that the
set of solutions x ∈ Zn+1 of (8.9) is contained in Ti. Consequently, if x satisfies (8.6) but
does not lie in T1 ∪ · · · ∪ Tm then it also satisfies (8.7).

We apply Lemma 7.5 with w = n−1
2 . Let η > 0 be a parameter depending on n, ε to be

chosen later, and Y a parameter depending on H and η, also chosen later. For brevity we
write K(Y ) for the convex body K(ξ, n, n−1

2
, Y ) and denote by λn+1(Y ) the largest of the

successive minima of this body. According to a result of Mahler (see Lemma 8, page 135
of Cassels [6]) there is a constant c1 = c1(n) such that the convex body c1λn+1(Y )K(Y )
contains a basis of Zn+1. By applying Lemma 5.2 with η

2 instead of ε we obtain that for

every sufficiently large Y we have λn+1(Y ) < Y η/2. Then for every Y large enough to
satisfy also c1Y

η/2 < Y η, the convex body Y ηK(Y ), that is, the body given by

|L1(x)| ≤ Y −n−1

2
+η, |L2(x)| ≤ Y −n−1

2
+η, |x0| ≤ Y 1+η, . . . , |xn| ≤ Y 1+η

contains a basis of Zn+1, {x(0), . . . ,x(n)}, say. Consider the vectors

x = (x0, . . . , xn) =
n∑

i=0

aix
(i) with ai ∈ Z, |ai| ≤ Y η for i = 0, . . . , n. (8.10)

Assuming again that Y is sufficiently large, each vector (8.10) satisfies

|L1(x)| ≤ Y −n−1

2
+3η, |L2(x)| ≤ Y −n−1

2
+3η, |x0| ≤ Y 1+3η, . . . , |xn| ≤ Y 1+3η. (8.11)

Since x(0), . . . ,x(n) span Zn+1, the number of vectors (8.10) with the additional property
(8.8) is ≫ Y (n+1)η. On the other hand, the number of vectors (8.10) lying in T1 ∪ · · · ∪ Tm
is ≪ Y nη. Hence if Y is sufficiently large, there exist vectors x with (8.10), (8.8) and with
x 6∈ T1 ∪ · · · ∪ Tm. Now by choosing η and then Y such that

n−1
2 − 3η

1 + 3η
=
n− 1

2
− ε

3
, Y 1+3η = H ,
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system (8.11) translates into (8.6). Thus, we infer that for every sufficiently large H, there
exist vectors x ∈ Zn+1 with (8.6), (8.8) which do not lie in T1 ∪ · · · ∪ Tm. But as we have
seen above, such vectors satisfy (8.7). This settles the case that tn(ξ) ≤ n+1

2 .

Now assume that tn(ξ) = n+2
2 . Then un(ξ) = n

2 . We first show that it suffices to
prove that for every ε > 0 and every sufficiently large H there exists a polynomial P ∈
Z[X ] of degree ≤ n with (8.4), without the requirements that P be irreducible and have
degree equal to n. Indeed suppose that for every sufficiently large H there is a polynomial
P ∈ Z[X ] satisfying (8.4) such that degP < n or P is reducible. By the same argument
as above, it follows that there are infinitely many algebraic numbers α of degree < n
with (8.5). Then there is m < n such that (8.5) has infinitely many solutions in algebraic
numbers α of degree m. By Lemma 4.2 and our assumption tn(ξ) =

n+2
2 , the number n is

even, so n−1 is odd and hence tn−1(ξ) ≤ n
2
. So un−1(ξ) =

n−2
2

< un(ξ). Now by Lemmata
4.4 and 8.1,

w∗
m(ξ) ≤ wm(ξ) ≤ wn−1(ξ) < un(ξ),

which contradicts that (8.5) has infinitely many solutions in algebraic numbers α of degree
m. So for every sufficiently large H, the polynomials P ∈ Z[X ] of degree ≤ n that satisfy
(8.4) necessarily have degree equal to n and are irreducible.

Let ε > 0. Let U0 be the vector space defined by (7.11). Recall that U0 has dimension
n+2
2 . We show that for every sufficiently large H there is a non-zero x ∈ U0 ∩ Zn+1 with

|L1(x)| ≤ H−n
2
+ε/3, |L2(x)| ≤ H−n

2
+ε/3, |x0| ≤ H, . . . , |xn| ≤ H, (8.12)

max{|L′
1(x)|, |L′

2(x)|} > H1−ε. (8.13)

Let H > 1 and consider those vectors x ∈ U0 ∩ Zn+1 satisfying (8.12) but not (8.13),
i.e.,

|L1(x)| ≤ H−n
2
+ε/3, |L2(x)| ≤ H−n

2
+ε/3,

|L′
1(x)| ≤ H1−ε, |L′

2(x)| ≤ H1−ε,
|x0| ≤ H, . . . , |xn| ≤ H.



 (8.14)

Claim. There are Li ∈ {L1, L2}, L′
j ∈ {L′

1, L
′
2} that are linearly independent on U0.

Assume the contrary. By Lemma 7.4, the linear forms L1, L2 are linearly dependent on
U0 and at least one of L1, L2 does not vanish identically on U0. Hence M := L1+

√
−1 ·L2

does not vanish identically on U0, and soM andM ′ := L′
1+

√
−1·L′

2 are linearly dependent
on U0.

Since dimU0 = n+2
2 , there are two linearly independent vectors a = (a0, . . . , an),

b = (b0, . . . , bn) ∈ U0 ∩ Zn+1 such that if k is the largest index with ak 6= 0 and l

the largest index with bl 6= 0, then k < l ≤ n − n+2
2 + 2 = n+2

2 . Let A =
∑k

i=0 aiX
i,

B =
∑l

j=0 bjX
j.

Then by the linear dependence of M , M ′ we have

A(ξ)B′(ξ)− A′(ξ)B(ξ) =M(a)M ′(b)−M ′(a)M(b) = 0.
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But the polynomial AB′ − A′B is not identically 0 (since A,B are linearly independent)
and has degree at most

k + l − 1 ≤ 2(n+ 1− (n+ 2)/2) = n.

This leads to a contradiction since by assumption, deg ξ > n. This proves our claim.

Choose n−2
2

coordinates from X0, . . . , Xn which together with Li, L
′
j form a system of

n+2
2 linear forms which are linearly independent on U0. Then the sum of the corresponding

H-exponents is

(
n

2
− ε/3) + (−1 + ε)− n− 2

2
= 2ε/3 > 0.

So by Proposition 7.1, there are proper linear subspaces T1, . . . , Tm of U0 with the property
that for every H > 1 there is Ti ∈ {T1, . . . , Tm} such that the set of x ∈ U0 ∩ Zn+1 with
(8.14) is contained in Ti. This implies that vectors x ∈ U0 ∩ Zn+1 that satisfy (8.12) and
for which x 6∈ T1 ∩ · · · ∩ Tm necessarily have to satisfy (8.13).

To show that there are vectors x ∈ U0 ∩ Zn+1 with x 6∈ T1 ∪ · · · ∪ Tm one proceeds
similarly as above, but applying Lemma 7.6 with w = n

2
instead of Lemma 7.5: For

appropriate η, Y , depending on ε, H, one may choose a basis x(1), . . . ,x(n+2

2
) of U0 ∩Zn+1

in c2λ(n+2)/2(Y )K(Y ), where c2 = c2(n) depends only on n, and λ(n+2)/2(Y ) is the n+2
2

-th
minimum ofK(Y ) := K(ξ, n, n2 , Y ). Then one takes linear combinations as in (8.10), and by
a counting argument arrives at a vector x with (8.12) which does not lie in T1 ∪ · · · ∪ Tm,
hence satisfies (8.13). Here, we don’t have to impose (8.8). This completes the proof of
Lemma 8.2.

9. Proof of Theorem 5

We first prove the following analogue of Theorem 4.

Proposition 9.1. Let n be a positive integer and ξ a complex, non-real algebraic number
of degree > n. Then

w̃n(ξ) = w̃∗
n(ξ) =

ˆ̃wn(ξ) = n− 1−max

{
n− 1

2
, tn(ξ)− 1

}
.

Put vn(ξ) := n− 1−max{n−1
2
, tn(ξ)− 1}. Completely similarly as in Lemma 4.4 we

have
w̃∗

n(ξ) ≤ w̃n(ξ), ˆ̃wn(ξ) ≤ w̃n(ξ).

Therefore, in order to prove Proposition 9.1, it suffices to prove the inequalities

w̃∗
n(ξ) ≥ vn(ξ), ˆ̃wn(ξ) ≥ vn(ξ), w̃n(ξ) ≤ vn(ξ).

These inequalities are proved in Lemmata 9.2 and 9.3 below. The integer n and the
algebraic number ξ will be as in the statement of Proposition 9.1.
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Lemma 9.2. We have
w̃∗

n(ξ) ≥ vn(ξ), ˆ̃wn(ξ) ≥ vn(ξ).

Proof: We proceed as in Bugeaud and Teulié [5], using a method developed by Davenport
and Schmidt [9] (see also Theorem 2.11 from [2]). As in Section 7, we consider the symmetric
convex body

K(ξ, n, w,H) := {x ∈ Rn+1 : |xnRe (ξn) + . . .+ x1Re (ξ) + x0| ≤ H−w,

|xnIm (ξn) + . . .+ x1Im (ξ) + x0| ≤ H−w,

|x0| ≤ H, . . . , |xn| ≤ H},

where x = (x0, . . . , xn) and w ∈ R.

Set w := vn(ξ). For brevity, we denote the convex body K(ξ, n, w,H) by K(H).

Let ε > 0 be a real number. Then in both the cases tn(ξ) ≤ (n + 1)/2 and tn(ξ) =
(n + 2)/2 we have, by Lemmata 7.5 and 7.6, respectively, that for every sufficiently large
real number H,

λn+1(H) < Hε,

where λn+1(H) denotes the largest successive mimimum of K(H).

There is a constant c1 = c1(n) such that the convex body c1λn+1(H)K(H) contains
a basis of Zn+1,

x(i) = (x
(i)
0 , . . . , x(i)n ) (i = 1, . . . , n+ 1),

say. This means that there exist n+ 1 integer polynomials

Pi = x(i)n Xn + . . .+ x
(i)
1 X + x

(i)
0 , (i = 1, . . . , n+ 1),

that form a basis of the Z-module of polynomials in Z[X ] of degree at most n and for
which

H(Pi) ≤ c1H
1+ε, (1 ≤ i ≤ n+ 1), (9.1)

and
max{|Re (Pi(ξ))|, |Im(Pi(ξ))|} ≤ c1H

−w+ε, (1 ≤ i ≤ n+ 1). (9.2)

There is a unique polynomial Q = Xn+1 +
∑n

i=0 yiX
i ∈ R[X ] such that

ReQ(ξ) = H−w+2ε, ImQ(ξ) = H−w+2ε, ImQ′(ξ) = H1+2ε,
y3 = · · · = yn = 0.

}
(9.3)

Indeed, if we express ReQ(ξ), ImQ(ξ) and ImQ′(ξ) as linear forms in y0, . . . , yn they form
together with y3, . . . , yn a linearly independent system of rank n + 1, and so (9.3) gives
rise to a system of linear equations with a unique solution y0, . . . , yn.

By expressing y0, y1, y2 as a linear combination of these linear forms, we obtain

|yi| ≪ H1+2ε for i = 0, 1, 2, (9.4)
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where here and below, constants implied by ≪ depend on n, ξ, ε only. Since P1, . . . , Pn+1

span the vector space of polynomials with real coefficients of degree at most n, there are
reals θ1, . . . , θn+1 such that

Q = Xn+1 + 2
n+1∑

i=1

θiPi.

Now choose integers t1, . . . , tn with

|θi − ti| ≤ 1 (i = 1, . . . , n+ 1), (9.5)

and define the polynomial

P := Xn+1 + 2
n+1∑

i=1

tiPi.

Write P = Xn+1 +
∑n

i=1 xiX
i.

For a suitable choice of t1, . . . , tn+1, the polynomial P is irreducible. Indeed, since
P1, . . . , Pn+1 span the Z-module of all integer polynomials of degree at most n, at least one

of the constant terms x
(1)
0 , . . . , x

(n+1)
0 of P1, . . . , Pn+1, respectively, must be odd. Without

loss of generality we assume this to be x
(1)
0 . For a fixed n-tuple (t2, . . . , tn+1), there are two

choices for t1, that we denote by t1,0 and t1,1 = t1,0 + 1. Since x
(1)
0 is odd, we can choose

t1 ∈ {t1,0, t1,1} such that t1x
(1)
0 + · · ·+ tn+1x

(n+1)
0 is odd. Then the constant coefficient of

P (H), namely 2(t1x
(1)
0 + . . .+ tn+1x

(n+1)
0 ), is not divisible by 4, and the irreducibility of

P follows from the Eisenstein criterion applied with the prime number 2.

From (9.5), (9.1), it follows that the absolute values of the coefficients of P − Q are
≪ H1+ε. Further, by (9.2), (9.1) we have

|ReP (ξ)− ReQ(ξ)| ≪ H−w+ε, |ImP (ξ)− ImQ(ξ)| ≪ H−w+ε,

|ImP ′(ξ)− ImQ′(ξ)| ≪ H1+ε.

Together with (9.3), (9.4) this implies, assuming that H is sufficiently large,

H(P ) ≤ H1+3ε, (9.6)

and moreover,

|P (ξ)| ≤ |ReP (ξ)|+ |ImP (ξ)| ≤ H−w+3ε, |P ′(ξ)| ≥ |ImP ′(ξ)| ≥ H1+ε.

Ignoring the lower bound for |P ′(ξ)|, we infer that

ˆ̃wn(ξ) ≥ (w − 3ε)/(1 + 3ε).

Since ε is arbitrary, we get the second statement of the lemma. Furthermore, we deduce
that the monic polynomial P has a complex root α with

|ξ − α| ≪ |P (ξ)|
|P ′(ξ)| ≪ H(α)−(w+1−2ε)/(1+3ε).
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Since ε is arbitrary, this shows that

w̃∗
n(ξ) ≥ w = vn(ξ),

and the proof of Lemma 9.2 is complete.

We now prove an upper bound for w̃n(ξ).

Lemma 9.3. We have
w̃n(ξ) ≤ vn(ξ). (9.7)

Proof: It suffices to show that for every w > vn(ξ), the inequality

0 < |P (ξ)| ≤ H(P )−w (9.8)

has only finitely many solutions in monic polynomials P ∈ Z[X ] of degree at most n + 1.
By replacing any monic polynomial P of degree k < n+ 1 satisfying (9.8) by Xn−kP and
modifying w a little bit, one easily observes that it suffices to show that for every w > vn(ξ),
inequality (9.8) has only finitely many solutions in monic polynomials P ∈ Z[X ] of degree
precisely n+ 1.

We have again to distinguish between the cases tn(ξ) ≤ n+1
2 and tn(ξ) = n+2

2 . The
first case is dealt with by a modification of the proof of Lemma 7.5, and the second by a
modification of the proof of Lemma 7.6.

First assume that tn(ξ) ≤ n+1
2

. Then vn(ξ) =
n−1
2

. Consider the inequality (9.8) to
be solved in monic polynomials P ∈ Z[X ] of degree n + 1. Defne the polynomial P =∑n+1

i=0 xiX
i where xn+1 = 1 and put x = (x0, . . . , xn, xn+1), H := H(P ). Define the linear

forms

L̃1 := Re
( n+1∑

i=0

ξiXi

)
, L̃2 := Im

( n+1∑

i=0

ξiXi

)
, M̃ :=

n+1∑

i=0

ξiXi .

Then we can translate (9.8) into

|L̃1(x)| ≤ H−w, |L̃2(x)| ≤ H−w,
|x0| ≤ H, . . . , |xn| ≤ H, |xn+1| ≤ 1, xn+1 6= 0, M̃(x) 6= 0.

}
(9.9)

We prove that for every w > n−1
2

there is Hw > 1 such that if (9.9) has a solution
x ∈ Zn+2 then H < Hw. This implies at once that for every w > n−1

2 there are only
finitely many monic polynomials P ∈ Z[X ] of degree ≤ n + 1 with (9.8), and hence that
w̃n(ξ) ≤ n−1

2 = vn(ξ).

We apply Lemma 7.2. Let w > n−1
2 . We have to verify (7.3). First, let U be a linear

subspace of Qn+2 of dimension m > n+3
2 on which Xn+1 and M̃ are not identically 0.

Then L̃1, L̃2, Xn+1 are linearly independent on U . For if not, then the linear forms

L1 := Re
( n∑

i=0

ξiXi

)
, L2 := Im

( n∑

i=0

ξiXi

)
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are linearly dependent on U ∩ {xn+1 = 0} which has dimension larger than n+1
2 . But by

part (ii) of Lemma 7.4 this is impossible. Now choose m− 3 coordinates from X0, . . . , Xn

which together with L̃1, L̃2, Xn+1 are linearly independent on U . Then the H-exponents
corresponding to these linear forms have sum

2w + 0 + (3−m) > n+ 2−m ≥ 0.

Now let U be a linear subspace of Qn+2 of dimension m with 2 ≤ m ≤ n+3
2

on

which Xn+1, M̃ do not vanish identically. Then there is L̃i ∈ {L̃1, L̃2} such that L̃i and
Xn+1 are linearly independent on U . For if not then both L1 and L2 vanish identically on
U ∩ {xn+1 = 0} which is impossible by part (i) of Lemma 7.4. Choose m − 2 coordinates
from X0, . . . , Xn which together with L̃i and Xn+1 are linearly independent on U . Then
the H-exponents corresponding to these linear forms have sum

w + 0 + (2−m) >
n− 1

2
+ 2−m ≥ 0.

Finally, let U be a one-dimensional linear subspace of Qn+2 on which none of Xn+1,
M̃ , vanishes identically. Then there is L̃i ∈ {L̃1, L̃2} not vanishing identically on U , and
the H-exponent corresponding to this linear form is w > 0. We conclude that condition
(7.3) of Lemma 7.2 is satisfied. So indeed there is Hw > 0 such that if (9.9) is satisfied by
some x ∈ Zn+1 then H < Hw. This settles the case that tn(ξ) ≤ n+1

2 .

Now assume that tn(ξ) =
n+2
2

. Then vn(ξ) =
n−2
2

. Further, by Lemmata 4.2 and 4.3,
n is even, n+ 1 < deg ξ, and

tn+1(ξ) = tn(ξ) =
n+ 2

2
. (9.10)

Choose µ0 = α0+
√
−1 ·β0 with α0, β0 ∈ R such that dimVn(µ0, ξ) = tn(ξ) =

n+2
2

. Define
the linear form

M̃1 =
1

|α0|+ |β0|
·
(
β0L̃1 + α0L̃2

)
=

1

2
√
−1(|α0|+ |β0|)

(
µ0

n+1∑

i=0

xiξ
i − µ0

n+1∑

i=0

xiξ
i
)
.

Let
Ũ0 = {x ∈ Qn+2 : M̃1(x) = 0}.

Then x = (x0, . . . , xn+1) ∈ Ũ0 if and only if
∑n+1

i=0 xiX
i ∈ Vn+1(µ0, ξ).

We claim that Xn+1 = 0 identically on Ũ0. Suppose Ũ0 contains a vector x =
(x0, . . . , xn+1) with xn+1 6= 0. Then the polynomial

∑n+1
i=0 xiX

i belongs to Vn+1(µ0, ξ) but

not to Vn(µ0, ξ) which is impossible by (9.10). This argument shows also that dim Ũ0 =
dimVn(µ0, ξ) =

n+2
2

.

There are linear forms M̃2, . . . , M̃n/2 in X0, . . . , Xn+1 with the following properties:

M̃2, . . . , M̃n/2 vanish indentically on Ũ0; {M̃1, M̃2, . . . , M̃n/2, Xn+1} is linearly indepen-

dent; and each M̃i (i = 2, . . . , n
2
) has real algebraic coefficients whose absolute values have

sum equal to 1.
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Let ψ be a surjective linear mapping from Rn+2 to R
n+2

2 with kernel RŨ0 such that

the restriction of ψ to Zn+2 maps surjectively to Z
n+2

2 and has kernel Ũ0 ∩ Zn+2. For

i = 1, . . . n2 , let M̃
∗
i be the linear form on R

n+2

2 with M̃i = M̃∗
i ◦ ψ. Further, let M̃∗

0

be the linear form on R
n+2

2 such that Xn+1 = M̃∗
0 ◦ ψ. Then M̃∗

0 , . . . , M̃
∗
n/2 are linearly

independent.

Let w > vn(ξ) =
n−2
2

. Let P ∈ Z[X ] be a monic polynomial of degree n+1 satisfying

(9.8). Write P =
∑n+1

i=0 xiX
i, xn+1 = 1, x = (x0, . . . , xn+1), H := H(P ). Then x satisfies

(9.9). By an easy computation it follows that y := ψ(x) satisfies

|M̃∗
1 (y)| ≤ H−w, |M̃∗

i (y)| ≤ H (i = 2, . . . , n/2),
|M̃∗

0 (y)| ≤ 1, M∗
0 (y) 6= 0.

}
(9.11)

We show that system (9.11) satisfies condition (7.3) of Lemma 7.2. First let U = Q
n+2

2 .
As observed before, the linear forms M̃∗

0 , . . . , M̃
∗
n/2 are linearly independent, and the H-

exponents corresponding to these linear forms have sum

w − (n− (n/2)− 1) + 0 > 0.

Now let U be a linear subspace of Q
n+2

2 of dimension m with 0 < m ≤ n
2 on which

M̃∗
0 does not vanish identically. The linear form M̃1 can not vanish identically on ψ−1(U)

since ψ−1(U) is strictly larger than U0, therefore, M̃
∗
1 does not vanish identically on U .

Choose m− 1 linear forms among M̃∗
0 , M̃

∗
2 , . . . , M̃

∗
n/2 which together with M̃∗

1 are linearly
independent on U . Then the sum of the H-exponents corresponding to these linear forms
is at least

w − (m− 1) ≥ w − ((n/2)− 1) > 0.

Hence condition (7.3) of Lemma 7.2 is satisfied. It follows that there is Hw > 0 such that

if system (9.11) is solvable in y ∈ Z
n+2

2 then H ≤ Hw. Hence for every monic polynomial
P ∈ Z[X ] of degree n + 1 with (9.8) we have H(P ) ≤ Hw, implying that (9.8) has only
finitely many solutions.

As observed above, Proposition 9.1 follows from Lemmata 9.2 and 9.3.

Proof of Theorem 5. We first prove (3.1). Assume that deg ξ =: d ≤ n + 1. By Liou-
ville’s inequality (4.1) we have w̃n(ξ) ≤ d−2

2
. By Proposition 9.1 and Lemma 4.3 we have

w̃∗
d−1(ξ) =

ˆ̃wd−1(ξ) =
d−2
2 . Hence

w̃∗
n(ξ) ≥ w̃∗

d−1(ξ) =
d− 2

2
, ˆ̃wn(ξ) ≥ ˆ̃wd−1(ξ) =

d− 2

2
.

These facts together imply (3.1).

The equalities (3.2) and (3.3) follow at once by combining Proposition 9.1 with part
(ii) of Lemma 4.2. The last assertion of Theorem 5 follows at once from Theorem 4 and
Proposition 9.1. This completes the proof of Theorem 5.
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10. A refined question

The exponents wn, ŵn, . . . are defined as suprema of certain sets of real numbers. We
may further ask whether the suprema are also maxima. In other words, for a given complex
number ξ, a positive integer n, do there exist a constant c(ξ, n) and infinitely many integer
polynomials P (H) of degree at most n such that

0 < |P (ξ)| ≤ c(ξ, n)H(P )−wn(ξ) ?

This is Problem P.1, page 210, of [2].

When ξ is algebraic and real, the answer is clearly positive, by Dirichlet’s Theorem.
When ξ is algebraic and non-real, we have already seen that wn(ξ) can be much larger
than expected; however, the answer to the above question is also positive.

Proposition 10.1. For any positive integer n and any complex, non-real algebraic number
ξ, there exist a constant c(ξ, n) > 0 and infinitely many integer polynomials P (H) of degree
at most n such that

0 < |P (ξ)| ≤ c(ξ, n)H(P )−wn(ξ). (10.1)

Proof: This follows from (the proof of) Satz 1 from Schmidt [21]; however, we feel that
it is better to include a complete proof. Constants implied by ≪, ≫ depend only on n, ξ.

First assume that d := deg ξ > n. We apply part (i) of Lemmata 7.5 and 7.6, re-
spectively, with w = wn(ξ). Then in view of Theorem 4, in both the cases tn(ξ) ≤ n+1

2
,

tn(ξ) =
n+2
2 , we have that for every H ≥ 1 the first minimum λ1(ξ, n, w,H) of the convex

body K(ξ, n, w,H) defined by (7.9) is ≪ 1. Consequently, for every H ≥ 1, there is a
non-zero polynomial P =

∑n
i=0 xiX

i ∈ Z[X ] such that

|ReP (ξ)| = |L1(x)| ≪ H−w, |ImP (ξ)| = |L2(x)| ≪ H−w,

H(P ) = max{|x0|, . . . , |xn|} ≪ H.

This clearly implies |P (ξ)| ≪ H−w ≪ H(P )−w. Arbitrarily large H cannot give rise to the
same polynomial P since otherwise we would have P (ξ) = 0, against our assumption that
deg ξ > n. This proves Proposition 10.1 in the case that d > n.

To treat the case n ≥ d we simply have to observe that by Theorem 1 we have
wn(ξ) = wd−1(ξ) = d−2

2 and that by what we have proved above, (10.1) has already
infinitely many solutions in polynomials P of degree at most d− 1.

Actually, the above proof yields that the analogue of Proposition 10.1 is true for the
uniform exponent of approximation ŵn. However, it is a very interesting, but presumably
very difficult, question to decide whether the analogue of Proposition 10.1 holds for the
exponent w∗

n.

We briefly summarize what is known on this question.
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Proposition 10.2. For any positive integer n and any complex algebraic number ξ of
degree n+1, there exist a constant c(ξ) and infinitely many algebraic numbers α of degree
at most n such that

0 < |ξ − α| ≤ c(ξ)H(α)−w∗
n(ξ)−1.

Proof: When ξ is real, Proposition 10.2 has been established by Wirsing [25] (see also
Theorem 2.9 in [2], which reproduces an alternative proof, due to Bombieri and Mueller
[1]). Without any additional complication, the same method gives the required result when
ξ is complex and non-real.

Furthermore, Davenport and Schmidt [7] proved that for every real algebraic number
ξ of degree at least 3, there exist a constant c(ξ) and infinitely many algebraic integer α
of degree at most 2 such that

0 < |ξ − α| ≤ c(ξ)H(α)−w∗
2(ξ)−1 = c(ξ)H(α)−3.

This is a consequence of a more general result of theirs on linear forms [8, 10], which is
the key tool for the proof of the second assertion of the next proposition.

Proposition 10.3. (i). For any complex algebraic number ξ of degree greater than 2,
there exist a constant c(ξ) and infinitely many algebraic numbers α of degree at most 2
such that

0 < |ξ − α| ≤ c(ξ)H(α)−w∗
2(ξ)−1.

(ii). For any complex algebraic number ξ of degree greater than 4 satisfying w∗
4(ξ) = 2,

there exist a constant c(ξ) and infinitely many algebraic numbers α of degree at most 4
such that

0 < |ξ − α| ≤ c(ξ)H(α)−w∗
4(ξ)−1.

Proof: Let ξ be a complex non-real number of degree greater than 2. By the proof of
Proposition 10.1, there are infinitely many integer quadratic polynomials P satisfying

|P (ξ)| ≪ H(P )−w2(ξ), |P (ξ)| ≪ H(P )−w2(ξ).

Such a polynomial P has a root very near to ξ and another very near to ξ. Consequently,
it satisfies |P ′(ξ)| ≫ H(P ) and its root α near to ξ is such that |ξ − α| ≪ H(α)−w2(ξ)−1.
This proves the first part of the proposition since w2(ξ) = w∗

2(ξ).

Let ξ be a complex (non-real) algebraic number of degree > 4 satisfying w∗
4(ξ) = 2.

By Theorem 4, this means that t4(ξ) = 3, i.e., there is µ0 such that dimV4(µ0, ξ) = 3. Let

U0 be the vector space of x = (x0, . . . , x4) ∈ Q5 such that
∑4

i=0 xiX
i ∈ V4(µ0, ξ). Define

the linear forms L1, L2, L
′
1, L

′
2 by

L1(x) = ReP (ξ), L2(x) = ImP (ξ), L′
1(x) = ReP ′(ξ), L′

2(x) = ImP ′(ξ),

where P =
∑4

i=0 xiX
i. By Lemma 7.4, the linear forms L1, L2 are linearly dependent on U0.

On the other hand, by the Claim in the proof of Lemma 8.2, there are i, j ∈ {1, 2} such that
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Li, L
′
j are linearly independent on U0. Choose linearly independent polynomials P1, P2, P3

from V4(µ0, ξ) with integer coefficients. By Lemma 4.2 we may assume degP1 < degP2 <
degP3 = 4. Express P ∈ V4(µ0, ξ) as y1P1 + y2P2 + y3P3 with y = (y1, y2, y3) ∈ Q3. Thus,
ReP (ξ), ImP (ξ), ReP ′(ξ), ImP ′(ξ) can be expressed as linear forms in y,

ReP (ξ) =M1(y), ImP (ξ) =M2(y), ReP
′(ξ) =M ′

1(y), ImP ′(ξ) =M ′
2(y)

say, and by the above, M1,M2 are linearly dependent and there are i, j ∈ {1, 2} such that
Mi,M

′
j are linearly independent.

By Theorem 1 from [8], there are infinitely many integer triples y = (y1, y2, y3) with

|Mi(y)| ≪ |M ′
j(y)| × ‖y‖−3,

where ‖y‖ = max{|y1|, |y2|, |y3|}. This implies that there are infinitely many integer poly-
nomials P of degree 4 of the shape y1P1 + y2P2 + y3P3 with y1, y2, y3 ∈ Z such that

|P (ξ)|
|P ′(ξ)| ≪ H(P )−3.

Consequently, there are infinitely many algebraic numbers α of degree at most 4 such that
|ξ − α| ≪ H(α)−3. This completes the proof of Proposition 10.3.
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briques de degré donné, Acta Arith. 93 (2000), 77–86.

[6] J. W. S. Cassels, An Introduction to the Geometry of Numbers. Springer Verlag,
1997.

[7] H. Davenport and W. M. Schmidt, Approximation to real numbers by quadratic ir-

rationals, Acta Arith. 13 (1967), 169–176.

[8] H. Davenport and W. M. Schmidt, A theorem on linear forms, Acta Arith. 14
(1967/1968), 209–223.

[9] H. Davenport and W. M. Schmidt, Approximation to real numbers by algebraic in-

tegers, Acta Arith. 15 (1969), 393–416.

[10] H. Davenport and W. M. Schmidt, Dirichlet’s theorem on Diophantine approxima-

tion. II, Acta Arith. 16 (1970), 413–423.

[11] J.-H. Evertse and H.P. Schlickewei, A quantitative version of the Absolute Parametric

Subspace Theorem, J. reine angew. Math. 548 (2002), 21-127.
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