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KOPPELMAN FORMULAS ON GRASSMANNIANS

ELIN GÖTMARK & HÅKAN SAMUELSSON & HENRIK SEPPÄNEN

Abstrat. We onstrut Koppelman formulas on Grassmannians for

forms with values in any holomorphi line bundle as well as in the tau-

tologial vetor bundle and its dual. As a onsequene we obtain some

vanishing theorems of the Bott-Borel-Weil type. We also relate the pro-

jetion part of our formulas to the Bergman kernels assoiated to the

line bundles.

1. Introdution

The Cauhy integral formula in one omplex variable is of vast importane

in many respets. It provides a way of representing a holomorphi funtion as

a superposition of simple rational funtions, and gives an expliit solution to

the equation ∂̄u = f . Furthermore, it is an important tool in funtion theory.

For our purposes it is onvenient to note that Cauhy's formula is equivalent

to the urrent equation ∂̄u = [z], where u = (2πi)−1dζ/(ζ−z) is the Cauhy
form, and [z] is the Dira measure at z onsidered as a (1, 1)-urrent. This

point of view is well adapted for generating weighted Cauhy formulas. For

instane, by omputing ∂̄
(
((1 − |ζ|2)/(1 − zζ̄))αu

)
in the urrent sense, one

obtains (for suitable α) the weighted representation formula

f(z) =
α

π

∫

{|ζ|<1}
f(ζ)

(1− |ζ|2)α−1

(1− zζ̄)α+1
dλ(ζ),

for holomorphi funtions on the unit dis with ertain limited growth at

the boundary. The integral kernel is the reproduing kernel for a weighted

Bergman spae; and this shows that there is a onnetion between Cauhy

kernels and Bergman kernels. Both these kernels are also intimately linked

with the symmetry of the dis. Reall that the group

SU(1, 1) =

{(
a b
b a

)
∈ M22(C)| |a|

2 − |b|2 = 1

}

ats holomorphially and transitively on the unit dis by z 7→ (az+ b)/(bz+
a). The stabilizer of the origin is the subgroup

K :=

{(
eiθ 0
0 e−iθ

)}
∼= S1,
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and hene the dis an be viewed as the homogeneous spae SU(1, 1)/S1
.

The kernels are then invariant under ertain ations on funtions whih are

indued from the natural ation on the losed dis. From the point of view

of representation theory, the Bergman kernels are interesting sine the orre-

sponding weighted Bergman spaes form a family of unitary representation

spaes for SU(1, 1), and moreover, these kernels an be desribed entirely in

terms of the Lie-theoreti struture of the group. This disussion indiates

two possible diretions of generalizations; namely to domains in Cn
, and to

omplex homogeneous spaes. In the latter ase, the lass of bounded sym-

metri domains have been studied extensively from the Lie-theoreti point of

view. Hua, [10℄, omputed the Cauhy kernels and Bergman kernels for the

lassial domains using the expliit desription of their symmetry groups.

Later, more abstrat group theoreti mahinery has been used to desribe

both Bergman kernels (f. [15℄) and the generalized Cauhy-Szeg kernels,

[11℄. For ompat Hermitian symmetri spaes, Bergman kernels for line

bundles an be desribed expliitly in terms of the polynomial models for

the spaes of global holomorphi setions, [21℄.

Complex analysts have mainly been onerned with domains in Cn
. The

Bohner-Martinelli kernel represents holomorphi funtions in any domain

but has the drawbak of not being holomorphi, a property whih is highly

useful in appliations. The Cauhy-Fantappi-Leray kernel is holomorphi

in domains where we an �nd a holomorphi support funtion, for example

stritly pseudoonvex domains. More �exibility is a�orded by using weighted

formulas, whih was �rst done in [6℄, and suh formulas have been widely

used in appliations suh as interpolation, division, obtaining estimates for

solutions to the ∂̄-equation, et. See, e.g., [1℄ and [3℄ and the referenes

therein. Some work has also been done on generalizing integral formulas to

omplex manifolds, see, e.g., [9℄, [5℄, [4℄. Of these, the paper [4℄ by Berndtsson

will be of partiular importane for us; see below.

More reently, in [1℄ was introdued a general method for generating

weighted formulas for domains in Cn
, both for holomorphi funtions and

(p, q)-forms. For future referene, we will desribe this method in the former

ase in some detail. First, reall that the Cauhy kernel, u, in one variable

satis�es ∂̄u = [z], but less obviously, we also have δζ−zu = 1, where δζ−z

denotes ontration with the vetor �eld 2πi(ζ − z)∂/∂ζ. These equations

an be ombined into the single equation

(1) ∇ζ−zu = 1− [z],

where ∇ζ−z is the operator

∇ζ−z = δζ−z − ∂̄.

To generalize this to Cn
, we de�ne δζ−z as ontration with

(2) 2πi
∑

(ζj − zj)
∂

∂ζj
,

and if we onstrue equation (1) as being in Cn
, the right hand side of (1) now

ontains one form of bidegree (0, 0) and one of bidegree (n, n), so we must in
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fat have u = u1,0 +u2,1+ . . .+un,n−1, where uk,k−1 has bidegree (k, k− 1).
We an then write the ∇ζ−z-equation (1) as the system of equations

δζ−zu1,0 = 1, δζ−zu1,2 − ∂̄u1,0 = 0, . . . , ∂̄un,n−1 = [z].

In that ase, un,n−1 will satisfy ∂̄un,n−1 = [z] and will give a kernel for a

representation formula. One advantage of this approah, as opposed to just

solving ∂̄un,n−1 = [z], is that it easily allows for weighted integral formulas.

We de�ne g = g0,0 + · · · + gn,n to be a weight if ∇g = 0 and g0,0(z, z) = 1.
It is easy to see that ∇(u ∧ g) = g − [∆], and this yields a representation

formula

φ(z) =

∫

∂D

φ(ζ)(u ∧ g)n +

∫

D

φgn

if φ ∈ O(D) and z ∈ D. Note that if g1 and g2 are weights, then g1 ∧ g2 is

also a weight.

In the ase of ompat manifolds one is naturally led to onsider holo-

morphi line bundles and representation formulas for holomorphi setions

as well as smooth bundle-valued forms. In this setting the integral kernels

must be operator valued, and the integrals beome superpositions of on-

tributions from all �bres. Our method for ahieving this has two ruial

omponents; the above mentioned ∇-formalism, and Berndtsson's method

from [4℄. Indeed, Berndtsson gave a method for obtaining integral formulas

for (p, q)-forms on n-dimensional manifolds X whih admit a vetor bundle

of rank n over X×X suh that the diagonal has a de�ning setion η; and to

get formulas for forms with values in bundles the ∇-method is well suited.

In fat, by generalizing it to manifolds one realizes that it allows for operator

valued weights. We then need something to substitute for the vetor �eld

(2), and this is where Berndtsson's assumption omes in: we will use the

setion η to ontrat with, and de�ne ∇η := δη − ∂̄. It is of independent

interest to note that ∇η in fat is a superonnetion in the sense of Quillen,

[14℄. In the reent artile [8℄ by the �rst author, this general theory for

integral formulas on manifolds has been developed to a large degree, and

expliit formulas have been onstruted on CPn
yielding expliit proofs of

vanishing theorems for its line bundles. Suh proofs ould be of interest also

for representation theoreti purposes. Indeed, in view of the by now �rmly

established goal, initiated by the Bott-Borel-Weil theorem and further for-

ti�ed by the onjeture of Langlands, [12℄, and Shmid's proof of it, [16℄,

of wanting to realize representations of Lie groups in Dolbeault ohomology

(or, rather L2
-ohomology in the non-ompat ase), (f. also [19℄ and [20℄),

it is our hope that expliit integral formulas ould give further insight into

the underlying group theory.

In this paper, we extend the method in [8℄ to the vetor bundle setting

and we apply the tehnique to omplex Grassmannians, Gr(k,N). We �nd

a suitable vetor bundle, with a setion η as above, and natural weights

for the line bundles and for the tautologial k-plane bundle. We thus get

Koppelman formulas for (p, q)-forms with values in any holomorphi line

bundle as well as in the tautologial bundle and its dual. The onstrution is
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uniform in the sense that it uses the expliit desription of the Piard group

of holomorphi line bundles and redues the problem to that of �nding a

weight for the generator. The generator in turn, is the determinant of the

tautologial bundle; by ertain algebrai properties of weights, it thus su�es

to onstrut a weight for the tautologial bundle. As an appliation, we give

expliit proofs of ertain vanishing theorems of Bott-Borel-Weil type

1

for

the ohomology groups assoiated with these line bundles. We also relate

the projetion part of our Koppelman formulas to Bergman kernels; thus

giving a geometri interpretation of the latter ones.

This paper is organized as follows: In Setion 2 we reapture the general

method for �nding weighted Koppelman formulas on manifolds from [8℄.

The only di�erene is that we allow for forms with values in vetor bundles

and state a slightly more general Koppelman formula. The proofs have

been omitted sine they are straightforward generalizations of the proofs

in [8℄. Setion 3 desribes some general operations on weights. In Setion

4 we onstrut the ingredients neessary to generate weighted formulas on

Grassmannians aording to the general framework. In Setion 5 we review

the representation theoreti desription of the Piard group and we prove

a ertain invariane property for the weights, whih will be useful for the

appliations. We also prove that the bundle E restrited to the diagonal

is equivalent to the holomorphi otangent bundle over Gr(k,N). In the

last setion, Setion 6, we disuss some appliations; we obtain vanishing

theorems for the line bundles over Grassmann, and we give a geometri

interpretation of the Bergman kernels assoiated to the line bundles.

Aknowledgement: We are grateful to Mats Andersson and Genkai

Zhang for rewarding disussions and for valuable omments on preliminary

versions of this paper. We would also like to thank Harald Upmeier for

interesting disussions on the topi of this paper.

2. A general method for finding weighted Koppelman

formulas on manifolds

Let X be a omplex manifold of dimension n. We want to �nd Koppelman

formulas for di�erential forms on X with values in a given vetor bundle

H → X. The method desribed in this setion is taken from [8℄, exept

for the generalization whih yields formulas for a general vetor bundle H
instead of for a line bundle.

We begin by noting that Stokes' theorem holds also for setions of vetor

bundles, whih is easily proved. Let M be any omplex manifold, and G →
M a holomorphi Hermitian vetor bundle over M . Let DG∗

and DG be

the Chern onnetions for G∗
and G respetively. If u is a di�erential form

taking values in G∗
and φ is a test form with values in G, we have

(3)

∫

M

DG∗u ∧ φ = (−1)deg u+1

∫

M

u ∧DGφ,

1

These are not given in the form inluding the ρ-shift whih is ommon in representation

theory.
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where ∧ denotes taking the natural pairing between the fators in G∗
and

G, and taking the wedge produt between the fators whih are di�erential

forms. If u is instead a urrent, we an take (3) as a de�nition. In the same

way, we also have

(4)

∫

M

∂̄u ∧ φ = (−1)deg u+1

∫

M

u ∧ ∂̄φ.

Let ∆ be the diagonal in Xz ×Xζ . Let Hz denote π
∗
z(H), where πz is the

projetion from Xz×Xζ to Xz, and analogously for Hζ . Let g0,0 be a setion
of Hz ⊗H∗

ζ = Hom(Hζ ,Hz) suh that g0,0(z, z) = Id for all z. If [∆] denotes

the urrent of integration over the diagonal and ω(ζ, z) is a di�erential form
with values in H∗

z ⊗Hζ , then we let

[∆]g0,0(ω) := [∆].((g0,0 ⊗ Id)ω),

where Id ats on the di�erential forms in ω, and we take the natural pairing

(H∗
z ⊗Hζ)× (Hz ⊗H∗

ζ ) → C. Note that this does not depend on whih g0,0
we hoose, sine the values on the diagonal are the only ones that matter.

The reason for the subsript on g0,0 will beome apparent later on.

Proposition 1 (Koppelman's formula). Assume that D ⊂ Xζ , φ ∈ Ep,q(D̄,Hζ),
and that the urrent K(z, ζ) and the smooth form P (z, ζ) take values in

Hz ⊗H∗
ζ = Hom(Hζ ,Hz) and solve the equation

(5) ∂̄K = [∆]g0,0 − P.

We then have

(6) φ(z) =

∫

∂D

K ∧ φ+

∫

D

K ∧ ∂̄φ+ ∂̄z

∫

D

K ∧ φ+

∫

D

P ∧ φ,

where the integrals are taken over the ζ variable.

The proof of this uses (4) but is otherwise just like the usual proof of the

Koppelman formula. Note that if φ in (6) is a ∂̄-losed form and the �rst

and fourth terms of the right hand side of Koppelman's formula vanish, we

get a solution to the ∂̄-problem for φ.
Our purpose now is to �nd K and P that satisfy (5) in a speial type of

manifold. To begin with, we will let H be the trivial line bundle. Assume

that we an �nd a holomorphi vetor bundle E → Xz × Xζ of rank n,
suh that there exists a holomorphi setion η of E that de�nes the diagonal

∆. In other words, η must vanish to the �rst order on ∆ and be non-zero

elsewhere. Let {ei} be a loal frame for E, and {e∗i } the dual loal frame

for E∗
. Contration with η is an operation on E∗

whih we denote by δη; if
η =

∑
ηiei then

δη

(∑
σie

∗
i

)
=
∑

ηiσi.

We de�ne the operator

∇η = δη − ∂̄.

Choose a Hermitian metri h for E, let DE be the Chern onnetion on

E, and DE∗
the indued onnetion on E∗

. Consider the bundle
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GE = Λ[T ∗(X ×X)⊕ E ⊕ E∗] → X ×X

and Γ(X × X,GE), the spae of C∞
setions of GE (note the hange of

notation ompared to [8℄). If A lies in Γ(X × X,T ∗(X × X) ⊗ E ⊗ E∗)),

then we de�ne Ã as the orresponding element in Γ(X ×X,GE), arranged
with the di�erential form �rst, then the setion of E and �nally the setion

of E∗
. For example, if A = dz1 ⊗ e1 ⊗ e∗1, then Ã = dz1 ∧ e1 ∧ e∗1.

To de�ne a derivation D on Γ(X ×X,GE), we �rst let Df = D̃Ef for a

setion f of E, and Dg = D̃E∗g for a setion g of E∗
. We then extend the

de�nition by

D(ξ1 ∧ ξ2) = Dξ1 ∧ ξ2 + (−1)deg ξ1ξ1 ∧Dξ2,

where Dξi = dξi if ξi happens to be a di�erential form, and deg ξ1 is the

total degree of ξ1. For example, deg(α∧ e1 ∧ e∗1) = degα+2, where degα is

the degree of α as a di�erential form. We let

Lm =
⊕

p

Γ(X ×X,ΛpE∗ ∧ Λp+mT ∗
0,1(X ×X));

note that Lm
is a subspae of Γ(X ×X,GE). The operator ∇η will at in a

natural way as ∇η : L
m → Lm+1

. If f ∈ Lm
and g ∈ Lk

, then f ∧ g ∈ Lm+k
.

We also see that ∇η obeys Leibniz' rule, and that ∇2
η = 0.

De�nition 2. For a form f(z, ζ) on X ×X, we de�ne

∫

E

f(z, ζ) ∧ e1 ∧ e∗1 ∧ . . . ∧ en ∧ e∗n = f(z, ζ).

Note that if I is the identity on E, then Ĩ = e∧ e∗ = e1 ∧ e∗1 + . . .+ en ∧ e∗n.

It follows that Ĩn = e1 ∧ e∗1 ∧ . . .∧ en ∧ e∗n (with the notation an = an/n!), so
the de�nition above is independent of the hoie of frame. Our derivation D
and

∫
E
interat in the following way:

Proposition 3. If F ∈ Γ(X ×X,GE) then

d

∫

E

F =

∫

E

DF.

We will now onstrut integral formulas on X×X. As a �rst step, we �nd

a setion σ of E∗
suh that δησ = 1 outside ∆. For reasons that will beome

apparent, we hoose σ to have minimal pointwise norm with respet to the

metri h, whih means that σ =
∑

ij hij η̄je
∗
i /|η|

2
. Close to ∆, it is obvious

that |σ| . 1/|η|, and a alulation shows that we also have |∂̄σ| . 1/|η|2.
Next, we onstrut a setion u with the property that ∇ηu = 1 − R where

R is a urrent with support on ∆. We set

(7) u =
σ

∇ησ
=

∞∑

k=0

σ ∧ (∂̄σ)k,
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and note that u ∈ L−1
. By uk,k−1 we will mean the term in u of degree k

in E∗
and degree k − 1 in T ∗

0,1(X × X). It is easily heked that ∇ηu = 1
outside ∆.

The following theorem yields a Koppelman formula by Theorem 1, with

the trivial line bundle as H:

Theorem 4. Let E → X × X be a vetor bundle with a setion η whih

de�nes the diagonal ∆ of X ×X. We have

∂̄K = [∆]− P,

where

(8) K =

∫

E

u ∧

(
Dη

2πi
+

iΘ̃

2π

)

n

and P =

∫

E

(
Dη

2πi
+

iΘ̃

2π

)

n

,

and u is de�ned by (7).

Note that sine Dη ontains no e∗i 's, we have

P =

∫

E

(
iΘ̃

2π
)n = det

iΘ

2π
= cn(E),

i.e., the nth Chern lass of E. The fator

Dη

2πi
+

iΘ̃

2π
is atually the superurvature assoiated with the operator ∇η if we view

∇η as a superonnetion in the sense of Quillen, [14℄. In fat, we have the

following Bianhi identity:

(9) ∇η

(
Dη

2πi
+

iΘ̃

2π

)
= 0,

for a diret proof see, e.g., [8℄.

The idea behind the proof of Theorem 4 is that by (9) and Proposition 3

we have

∂̄

∫

E

u ∧

(
Dη

2πi
+

iΘ̃

2π

)

n

=

∫

E

∂̄

[
u ∧

(
Dη

2πi
+

iΘ̃

2π

)

n

]
=

= −

∫

E

∇η

[
u ∧

(
Dη

2πi
+

iΘ̃

2π

)

n

]
=

= −

∫

E

(
Dη

2πi
+

iΘ̃

2π

)

n

+
1

(2πi)n

∫

E

R ∧ (Dη)n.(10)

The left hand term in (10) is P . The rest of the proof onsists of proving

that
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(11)

1

(2πi)n

∫

E

R ∧ (Dη)n = [∆],

whih is proved by hoosing loal oordinates on X, and reduing the prob-

lem to the Cn
-ase. For details of the proof, see, e.g., [8℄.

As explained in the introdution, we will obtain more �exible formulas if

we use weights.

De�nition 5. A setion g with values in L0 is a weight if ∇ηg = 0 and

g0,0(z, z) = 1.

Theorem 4 goes through with essentially the same proof if we take

(12) Kg =

∫

E

u ∧ g ∧

(
Dη

2πi
+

iΘ̃

2π

)

n

and Pg =

∫

E

g ∧

(
Dη

2πi
+

iΘ̃

2π

)

n

,

as shown by the following alulation:

∂̄Kg = −

∫

E

∇ηu ∧ g ∧

(
Dη

2πi
+

iΘ̃

2π

)

n

=

= −

∫

E

(g −R) ∧

(
Dη

2πi
+

iΘ̃

2π

)

n

= [∆]− Pg,(13)

whih follows from the proof of Theorem 4 and the properties of weights.

Finally, we will use weights taking values in Hom(Hζ ,Hz) to onstrut

Koppelman formulas for di�erential forms with values in the vetor bundle

H → X. We de�ne

GE,H = Hom(Hζ ,Hz)⊗ Λ[T ∗(X ×X)⊕ E ⊕ E∗] → X ×X

and

(14) Lm
H :=

⊕

p

Γ(X ×X,Hom(Hζ ,Hz)⊗ [ΛpE∗ ∧ Λp+mT ∗
0,1(X ×X)]).

We de�ne δη on Γ(X ×X,GE,H) as Id⊗ δη, where Id ats on the fators in

Hom(Hζ ,Hz) and δη on the fators in Λ[T ∗(X×X)⊕E⊕E∗]. We also need

to extend the derivation D to Γ(X ×X,GE,H). If a1 is a di�erential form

taking values in Hom(Hζ ,Hz), and a2 ∈ Γ(X ×X,GE), then we de�ne

D(a1 ∧ a2) = D
Hom(Hζ ,Hz)a1 ∧ a2 + (−1)deg a1a1 ∧Da2,

where D
Hom(Hζ ,Hz) is the Chern onnetion on Hom(Hζ ,Hz). It is obvious

that Leibniz' rule holds for both δη and the extended D, with the degree

taken as the total degree in E, E∗
and T ∗(X ×X).

If F ∈ L0
H , then in analogy with Proposition 3 we have

D
Hom(Hζ ,Hz)

∫

E

F =

∫

E

DF.

It follows that we also have ∂̄
∫
E
F =

∫
E
∂̄F .
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Let g ∈ L0
H be suh that ∇ηg = 0 and g0,0(z, z) = Id. In that ase we an

use g as a weight just as in (12) and get

(15) ∂̄Kg = [∆]g0,0 − Pg

by a alulation similar to (13), and then we get a Koppelman formula by

Theorem 1.

Remark 6. To obtain more general formulas, one an �nd forms K and P
suh that

(16) D
Hom(Hζ ,Hz)Kg = [∆]g0,0 − Pg

by setting ∇full

η = δη −D and heking that the orresponding equation (9)

and Theorem 4 are still valid. See for example [8℄ for details. This will

give the same formulas as in [4℄, if H is the trivial line bundle. We an

use weights just as before, if we require that a weight g has the property

∇full

η g = 0 instead of ∇ηg = 0.

3. Algebrai properties of weights

In this setion we investigate some general onstrutions of weights with

the purpose of generating weights for a wide lass of derived bundles from

two given vetor bundles and weights for these. This method will be useful

later when we fous on line bundles over Grassmannians.

To be more preise, we let H and H ′
be holomorphi vetor bundles over

the omplex manifold X and assume that X ful�lls the requirements of our

general setup for onstruting Koppelman formulas, i.e., X × X admits a

holomorphi vetor bundle E with a holomorphi setion de�ning the di-

agonal. Assume also that g ∈ Γ(X × X,GE,H) and g′ ∈ Γ(X × X,GE,H′)
are weights for H and H ′

respetively. We shall see that one an naturally

de�ne weights g⊗ g′ and g∧ g′ (when H = H ′
), as well as g∗ for the bundles

H ⊗H ′,H ∧H and H∗
respetively. This generalizes the fat, mentioned in

the introdution, that the produt of weights for the trivial bundle is again

a weight.

3.1. Tensor produts and exterior produts of weights. For operators

A ∈ Hz ⊗H∗
ζ and B ∈ Hz ⊗ (H ′

ζ)
∗
the tensor produt A⊗B de�ned by

(17) A⊗B(u⊗ v) := A(u)⊗B(v), u ∈ Hζ , v ∈ H ′
ζ

is a linear operator in Hom(Hζ ⊗ H ′
ζ ,Hz ⊗ H ′

z). We an therefore extend

the exterior multipliation on the vetor spae GE to a linear map (whih

we still denote by ⊗)

⊗ : (GE,H)(z,ζ) ⊗ (GE,H′)(z,ζ) → (GE,H⊗H′)(z,ζ)

given by

(A⊗ ω)⊗ (B ⊗ ω′) 7→ (A⊗B)⊗ (ω ∧ ω′),
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for ω, ω′ ∈ (GE)(z,ζ). This operation de�nes a natural �berwise multiplia-

tion on setions.

Lemma 7. The operator ∇η ats as a graded derivation with respet to the

multipliation, ⊗, of setions, i.e.,

∇η

(
(A⊗ ω)⊗ (B ⊗ ω′)

)
= ∇η(A⊗ ω)⊗ (B ⊗ ω′)

+(−1)deg ω(A⊗ ω)⊗∇η(B ⊗ ω′),

where A and B are loal smooth setions of Hz ⊗H∗
ζ and H ′

z ⊗ (H ′
ζ)

∗
respe-

tively, and ω and ω′
are loal smooth setions of GE.

Proof. We �rst observe that

∇η(A⊗ ω) = −∂̄A⊗ ω +A⊗∇η ω,

and likewise for B ⊗ ω′
. Hene,

∇η

(
(A⊗B)⊗ (ω ∧ ω′)

)

= −∂̄(A⊗B)⊗ (ω ∧ ω′) + (A⊗B)⊗∇η(ω ∧ ω′)

= −∂̄A⊗ (B ⊗ (ω ∧ ω′)) + (A⊗B)⊗ (∇η ω ∧ ω′)−

A⊗ (∂̄B ⊗ ω ∧ ω′) + (−1)deg ω(A⊗B)⊗ (ω ∧ ∇η ω
′)

= (−∂̄A⊗ ω +A⊗∇η ω)⊗ (B ⊗ ω′) +

(A⊗ ω)⊗ (−∂̄B ⊗ ω′ + (−1)deg ωB ⊗∇η ω
′)

= ∇η(A⊗ ω)⊗ (B ⊗ ω′) + (−1)deg ω(A⊗ ω)⊗∇η(B ⊗ ω′).

�

Corollary 8. Given weights g and g′ for H and H ′
respetively, the setion

g ⊗ g′ ∈ Γ(X ×X,GE,H⊗H′)

is a weight for H ⊗H ′
.

We next turn to exterior produts of a vetor bundle. Reall that when A
and A′

are operators in Hom(Hζ ,Hz), A∧A
′
is the operator in Hom(Λ2Hζ ,Λ

2Hz)
given by

A ∧A′(u ∧ u′) = A(u) ∧A′(u′)−A(u′) ∧A′(u).

We an then form the exterior produt

∧ : (GE,H)(z,ζ) ⊗ (GE,H)(z,ζ) → (GE,H∧H)(z,ζ)

given by

(A⊗ ω)⊗ (A′ ⊗ ω′) 7→ (A ∧A′)⊗ (ω ∧ ω′).

It indues a natural exterior produt on setions of GE,H . Using the Leibniz

identity
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∂̄(A ∧A′) = ∂̄A ∧A′ +A ∧ ∂̄A′,

the following lemma an be proved in the same manner as Lemma 7.

Lemma 9. The operator ∇η ats as a graded derivation with respet to the

exterior multipliation of setions, i.e.,

∇η

(
(A⊗ ω) ∧ (A′ ⊗ ω′)

)
= ∇η(A⊗ ω) ∧ (A′ ⊗ ω′) +

(−1)deg ω(A⊗ ω) ∧ ∇η(A
′ ⊗ ω′),

where A and A′
are loal smooth setions of Hz⊗H∗

ζ , and ω and ω′
are loal

smooth setions of GE.

In analogy with Corollary 8, we have

Corollary 10. Given weights g1 and g2 for H, the setion

g1 ∧ g2 ∈ Γ(X ×X,GE,H∧H)

is a weight for H ∧H.

3.2. Dual weights. For a loal setion A⊗ω of the bundle GE,H , we de�ne

the adjoint setion

(A⊗ ω)∗ := A∗ ⊗ ω,

where A∗(z, ζ) : H∗
z → H∗

ζ is the standard dual operator to A(z, ζ) given by

omposing funtionals with A(z, ζ). The relations

∇η(A
∗ ⊗ ω) = −∂̄A∗ ⊗ ω +A∗ ⊗∇η ω

= −(∂̄A)∗ ⊗ ω + (A⊗∇η ω)
∗

= (∇η(A⊗ ω))∗

prove the following lemma.

Lemma 11. Given a weight g for the bundle H, the setion g∗ is a weight

for the dual bundle H∗
.

4. The neessary onstrutions on Grassmannians

In this setion we onstrut the ingredients neessary to generate weighted

integral formulas on Grassmannians aording to the reipe in Setion 2. We

start by reviewing some elementary fats and introduing some notation.

Hereafter, X will denote the Grassmannian Gr(k,N) of omplex k-planes
in CN

. Just as CPn
, (= Gr(1, n + 1)), has its tautologial line bundle, X

has a tautologial rank k-vetor bundle, whih will be denoted by H → X
from now on. We onsider H as a subbundle of the trivial rank N -bundle,

CN → X, and the �ber ofH above p ∈ X is the k-plane in CN
orresponding

to the point p. We will take the standard metri on CN
and this gives us

a Hermitian metri on H ⊂ CN
. From H we get a natural Hermitian line

bundle L = detH, whih atually generates the Piard group; see Subsetion

5.4. We also get the quotient bundle, F := CN/H, whih is a holomorphi
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vetor bundle of rank N−k. As a C∞
-bundle, it is isomorphi to the bundle

of orthogonal omplements H⊥ ⊂ CN
via the mapping ϕ : F → H⊥

de�ned

�berwise by ϕ(v +Hz) = v − πHzv, where πHz is the orthogonal projetion

from CN
onto Hz. (If w is a CN

-valued form we will, for simpliity, also

write πHzw for (πHz ⊗ Id)w.) The mapping ϕ and the metri on H⊥ ⊂ CN

gives us a metri on F .
Let e = (e1, . . . , eN ) be the standard basis for CN

. The point on X
orresponding to the k-plane Span{e1, . . . , ek} will be the referene point

and denoted by p0. A loal holomorphi hart entered at p0 an be de�ned

as follows: Let z be a point in Cn := Ck(N−k)
and organize z as an (N−k)×k-

matrix, i.e.,

z =




z11 · · · z1k
.

.

.

.

.

.

zN−k,1 · · · zN−k,k


 ∈ Cn.

Assoiate to z the point on X orresponding to the k-plane spanned by the

olumns of the N × k-matrix

(18)

(
I
z

)
, I = Ik×k,

with respet to the basis e. This atually gives us an injetive map from Cn

onto a dense subset U ⊂ X. We also get natural loal holomorphi frames

for the bundles H, L, and F over this hart. For j = 1, . . . , k, let hj(z) be the

jth olumn of (18), i.e., hj(z) = ej +
∑N−k

i=1 zijek+i. Then h1, . . . , hk are k
pointwise linearly independent holomorphi setions of H over U . A natural

holomorphi frame for L is thus l = h1 ∧ · · · ∧ hk. Also, for 1 ≤ j ≤ N − k,
let fj(z) be the equivalene lass de�ned by ek+j in F = CN/H, in the �ber

over z. Then (f1, . . . , fN−k) is a loal holomorphi frame for F over U . The
projetion CN → F , expressed in the e-basis for CN

and the frame f for F ,
an then be written as the (N − k)×N -matrix

(19)

(
−z I

)
, I = I(N−k)×(N−k).

For referene we note some more expliit expressions: As a mapping CN
e →

CN
e expressed in the e-basis we have

πH =

(
I
z

)
(I + z∗z)−1

(
I z∗

)

and as a mapping CN
e → Hh,

πH = (I + z∗z)−1
(
I z∗

)
.

The mapping ϕ : Ff → CN
e looks like

ϕ =

(
−(I + z∗z)−1z∗

I − z(I + z∗z)−1z∗

)
.
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We have de�ned the metri, 〈·, ·〉F , on F via ϕ so the Hermitian metri-

matrix, hF , expressed in the frame f satis�es (hF )i,j = 〈ϕ(fi), ϕ(fj)〉CN ,

(with the onvention that 〈v,w〉F = vthF w̄). Using the expliit expression

for ϕ, a omputation then gives

htF (z) = (I + zz∗)−1,

and so the Chern urvature-matrix of F is

ΘF = ∂̄(h̄−1
F ∂h̄F ) = ∂∂̄ log(I + zz∗),

where the last expression should be interpreted in the funtional alulus

sense. For the bundle H we get

htH = I + z∗z, and ΘH = ∂∂̄ log(I + z∗z)−1,

expressed in the frame h.

4.1. The bundle E and the setion η. We will onstrut a holomorphi

vetor bundle E → Xz×Xζ of rank n (= k(N−k)) and a global holomorphi

setion η of it de�ning the diagonal. As in Setion 2, we letHz andHζ denote

the pull-bak of the tautologial bundle under the projetions Xz×Xζ → Xz

and Xz × Xζ → Xζ respetively and we de�ne Fz similarly. However, for

onveniene we will oasionally abuse this notation and also write, e.g.,

Hz for the �ber of the bundle Hz → Xz × Xζ above a point (z, ζ). This

ambiguity is (partly) justi�ed sine one an identify �bers of Hz → Xz ×Xζ

above points (z, ζ) for any ζ. This means also that, e.g, {hj(z)} is a loal

holomorphi frame for Hz → Xz ×Xζ over Uz ×Xζ .

The bundle E is simply E = Fz ⊗ H∗
ζ and then eij := fi(z) ⊗ h∗j(ζ),

1 ≤ i ≤ N−k, 1 ≤ j ≤ k, is a holomorphi frame for E over U×U ⊂ X×X.

To de�ne η we start with a vetor v ∈ Hζ and via Hζ ⊂ CN
ζ

∼= CN
z we an

identify v with a vetor ṽ ∈ CN
z . We then let η(v) be the projetion of ṽ on

Fz = CN
z /Hz.

Proposition 12. The setion η of E is holomorphi and de�nes the diagonal

in X ×X.

Proof. It is lear that η(v) vanishes if and only if v belongs to the �ber

above a point in the diagonal ∆ ⊂ X × X. Hene, η is a global setion

of Hom(Hζ , Fz) ∼= E and vanishes preisely on ∆. In the oordinates and

frames desribed above, η has the form

η = ζ − z.

In fat, if v =
∑k

1 vjhj(ζ) ∈ Hζ then η(v) is the image in Fz of

∑k
1 vjej +∑N−k

i=1

∑k
j=1 ζijvjek+i. By (19) this is equal to

∑N−k
i=1

∑k
j=1(ζij − zij)vjek+i.

We thus see that η is holomorphi and vanishes to the �rst order on ∆. �
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4.2. Bundles and weights. The bundle L = detH atually generates the

Piard group of holomorphi line bundles; f. Setion 5.3, and [18℄. We will

onstrut weights for the line bundles Lr := L⊗r → X, and for the vetor

bundle H → X. We start by de�ning two fundamental setions γ0 and γ1 of
Hom(Hζ ,Hz) and Hom(Hζ ,Hz)⊗E∗∧T ∗

0,1(X×X) respetively. For v ∈ Hζ

we �rst identify v with the vetor ṽ in the trivial bundle CN
z → Xz × Xζ

via Hζ ⊂ CN
ζ

∼= CN
z . We then put γ0(v) = πHz ṽ. In the h-frames desribed

above, γ0 is simply the k × k-matrix

(20) γ0 = (I + z∗z)−1(I + z∗ζ).

It is a little bit more ompliated to desribe γ1: Let ξ and v be (germs of)

smooth setions of E and Hζ respetively. Sine E = Fz ⊗H∗
ζ , ξ(v) de�nes

naturally a smooth setion of Fz and hene, ϕ(ξ(v)) is a smooth setion of

H⊥
z ⊂ CN

z . We then put −γ1(ξ ⊗ v) = πHz(∂̄ ϕ(ξ(v))), whih is a smooth

setion ofHz⊗T ∗
0,1(X×X). We hek that γ1 so de�ned atually is tensorial.

Let f be (a germ of) a smooth funtion. We then get

γ1(fξ ⊗ v) = −πHz

(
∂̄ ϕ(fξ(v))

)

= −πHz

(
ϕ(ξ(v)) ⊗ ∂̄f + f ∂̄ϕ(ξ(v))

)

= −πHz

(
ϕ(ξ(v))

)
⊗ ∂̄f + fγ1(ξ ⊗ v).

But πHz

(
ϕ(ξ(v))

)
= 0 sine ϕ(ξ(v)) ∈ H⊥

z , and so γ1(fξ ⊗ v) = fγ1(ξ ⊗ v).

(One ould also note that γ1(ξ⊗v) = −[πHz , ∂̄]ϕ(ξ(v)), where [πHz , ∂̄] is the
ommutator.) Hene, γ1 de�nes a setion of Hz⊗T ∗

0,1(Xz×Xζ)⊗E∗⊗H∗
ζ
∼=

Hom(Hζ ,Hz) ⊗ E∗ ∧ T ∗
0,1(X ×X). A omputation in the loal oordinates

shows that

(21) γ1 =
k∑

i,j=1

hi(z)⊗ h∗j (ζ)⊗Mij ,

where M is the k × k-matrix of E∗
-valued (0, 1)-forms

(22) M = ∂̄
(
(I + z∗z)−1z∗

)
∧ e∗.

Here, e∗ is the matrix with entries (eij)
∗
.

Proposition 13. The setion G := γ0 + γ1 ∈ L0
H , (f. (14)), is a weight for

the tautologial bundle H.

Proof. We need to hek that γ0(z, z) = Id and that ∇ηG = 0. The �rst

equality is obvious from the de�nition. For the seond one we have to verify

the two equations ∂̄γ0 = δηγ1 and ∂̄γ1 = 0. Let v be a germ of a holomorphi

setion of Hζ . Via Hζ ⊂ CN
ζ

∼= CN
z we may view v as a holomorphi setion

of CN
z and then we an write
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(δηγ1)(v) = −πHz

(
∂̄(ϕ(η(v)))

)
= −πHz

(
∂̄(πH⊥

z
v)
)

= −πHz

(
∂̄(v − πHzv)

)
= ∂̄Hz(πHzv)

= ∂̄Hz(γ0(v)).

Hene, ∂̄Hz(γ0(v)) = δηγ1(v) for any germ of holomorphi setion v of Hζ .

It follows that ∂̄γ0 = δηγ1. Now, let ξ be a germ of a holomorphi setion of

E. Then ξ(v) is a germ of a holomorphi setion of Fz . One an (loally) lift

ξ(v) to a germ of a holomorphi setion, ξ̃(v), of CN
that projets to ξ(v).

We then get

∂̄Hzγ1(ξ ⊗ v) = ∂̄Hz

(
πHz ∂̄(ϕ(ξ(v)))

)
= ∂̄Hz

(
πHz ∂̄(ξ̃(v)− πHz ξ̃(v))

)

= −∂̄Hz

(
πHz ∂̄(πHz ξ̃(v))

)
= −∂̄2

Hz
(πHz ξ̃(v))

= 0.

Hene, ∂̄Hzγ1(ξ ⊗ v) = 0 for any holomorphi ξ and v, and this �nishes the

proof. �

By the algebrai properties of weights established in Setion 3 we now get

that g := G ∧ · · · ∧ G (the exterior produt of G with itself k times) is a

weight for L. It is easy to hek that

g0,0 = γ0 ∧ · · · ∧ γ0 = k!
det(I + z∗ζ)

det(I + z∗z)

in the frame l for L. Weights for positive powers of L are then obtained

by taking powers of g. By the results at the end of Setion 3 we an also

get weights for H∗
and L−r = (L∗)⊗r

from G. If one wants to onstrut

weights for H∗
geometrially, as we have done in this setion, it is easier to

take Fζ ⊗H∗
z as the bundle E. However, our Koppelman formulas have an

inherent duality and this gives us weighted formulas for forms with values in

H∗
and L−r

from the weighted formulas for H and Lr
.

5. Representation-theoreti interpretations

In this setion we desribe X and its line bundles in terms of group ations

and representations. The purpose of this is threefold. First of all, this point

of view gives an easy desription of the Piard group of X. Seondly, and

more importantly, we prove that the weights we have onstruted earlier will

all be invariant under a ertain group ation; a property whih will turn out

be highly useful in the last setion with appliations to Bergman kernels.

Finally, in this setup, we an fairly easily prove that the restrition of the

bundle E to the diagonal is equivalent to the holomorphi otangent bundle

T ∗
1,0 of X.

5.1. The Grassmannian as a homogeneous spae. The linear ation of

the group GL(N,C) on CN
indues an ation as holomorphi automorphisms

of X, and this ation is learly transitive. Hene, we an desribe X as a

homogeneous spae X ∼= GL(N,C)/P , where
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P :=

{(
A B
0 D

)∣∣∣∣detAdetD 6= 0

}

is the stabilizer of p0. One an also restrit the ation to the subgroup

SL(N,C) and still have a transitive group ation; this time exhibiting X as

the homogeneous spae SL(N,C)/P ′
, where

P ′ :=

{(
A B
0 D

)∣∣∣∣detAdetD = 1

}

is the stabilizer of p0 in SL(N,C). The reason that we mention this real-

ization is that some of the results we refer to later hold only for quotients

of semisimple Lie groups. A third realization is given by restriting the

GL(N,C)-ation to the unitary group U(N). The stabilizer of p0 in this

subgroup is

{(
A 0
0 D

)∣∣∣∣A ∈ U(k),D ∈ U(N − k)

}
∼= U(k)× U(N − k),

and hene we have a third desription ofX as the quotient spae U(N)/(U(k)×
U(N − k)).

5.2. The bundles H, F , and E. We reall that a vetor bundle V → X is

said to be homogeneous under a group G if G ats on it by bundle automor-

phisms in suh a way that the orresponding ation on X is transitive. As

a onsequene, the stabilizer, Gp0 , of p0 in G ats linearly on the �ber Vp0 ,

i.e., Vp0 arries a representation, τ , of Gp0 . The vetor bundle V an then

be reonstruted from the representation τ as the set of equivalene lasses

G×Gp0
Vp0 := G× Vp0/ ∼,

where the equivalene relation ∼ is de�ned as (g, v) ∼ (g′, v′) if and only

if (g′, v′) = (gx−1, τ(x)v) for some x in Gp0 . The G-ation is then given

by [(g′, v)]
g
7→ [(gg′, v)], where the brakets denote the equivalene lasses of

the respetive pairs. The holomorphi vetor bundles are those assoiated

with holomorphi representations, τ , of Gp0 , i.e., τ : Gp0 → End(Vp0) is a
holomorphi group homomorphism.

Suppose now that H ⊂ G is a losed subgroup of G whih also ats

transitively on X. Then we an desribe X as a quotient H/(H ∩Gp0) and
form the H-homogeneous vetor bundle VH := H ×H∩Gp0

Vp0 . This latter

bundle is in fat equivalent to the former one via the bundle mapping

ΨG
H : H ×H∩Gp0

Vp0 → G×Gp0
Vp0 ,

[(h, v)]H 7→ [(h, v)]G ,

where the brakets denote the respetive equivalene lasses.

For our purposes, this means that we an hoose to view GL(N,C)-
homogeneous vetor bundles as SL(N,C)-homogeneous ones without any



KOPPELMAN FORMULAS ON GRASSMANNIANS 17

loss of information as long as the orresponding representations of P ′
are

restritions of P -representations. Moreover, sine P is the omplexi�ation

of U(k)×U(N−k) (i.e., U(k)×U(N−k) is a totally real submanifold of P ),
a holomorphi representation of P is uniquely determined by its restrition

to U(k) × U(N − k). Hene we an also view the vetor bundle as only

U(N)-homogeneous.

The group GL(N,C) ats naturally on the trivial bundle X × CN
by

(p, v)
g
7→ (g(p), gv). The tautologial bundle H is invariant under this ation,

and is therefore a GL(N,C)-homogeneous vetor bundle. We let τ : P →
End(Ck) denote the orresponding representation of P on Hp0

∼= Ck
, namely

τ

(
A B
0 D

)
v = Av, v ∈ Ck.

Sine the subbundle H of CN
is GL(N,C)-invariant, there is a well-de�ned

ation on the quotient bundle F = CN/H; i.e., F is also a homogeneous

bundle. We an identify the �ber Fp0 with CN−k
, and we let ρ denote the

orresponding P -representation given by

ρ

(
A B
0 D

)
v = Dv, v ∈ CN−k.

The bundle E → X×X is homogeneous under the produt group GL(N,C)×
GL(N,C), and the representation of P × P on the �ber (Fz ⊗H∗

ζ )(p0,p0)
∼=

Hom(Ck,CN−k) is the tensor produt representation ρ⊗ τ∗ given by

ρ⊗ τ∗(gz, gζ)Z = DzZA−1
ζ , gζ =

(
Aζ Bζ

0 Dζ

)
,

gz =

(
Az Bz

0 Dz

)
,

Z ∈ MN−k,k(C).

The trivial bundle CN
is equipped with the standard Eulidean metri

whih is U(N)-invariant; and the tautologial bundle H inherits this metri,

thus admitting an isometri ation of U(N). Moreover, we reall that the

quotient bundle F is smoothly equivalent to the orthogonal omplement,

H⊥
, to the tautologial bundle. It should be pointed out that H⊥

is not

a holomorphi vetor bundle, whereas F is. Sine the metri on F is in-

dued from that on H⊥
, the U(N)-ation on F is also isometri. Moreover,

the bundle E is equipped with a tensor produt metri, and therefore the

Cartesian produt U(N)× U(N) ats isometrially on E.
The Chern onnetions and urvatures of the three bundles H,F , and E

are invariant under the respetive group ations sine they are assoiated

with invariant metris. We reall that the invariane of a urvature, ΘV , of a

holomorphi homogeneous vetor bundle V means the invariane as a setion

of the bundle End(V) ⊗ T ∗
1,1 with respet to the natural ation on setions

of this bundle. Conretely, this means that
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ΘV(gp)(u, v)w = gΘV(p)(dg
−1(gp)u, dg−1(gp)v)g−1w,

u ∈ T ∗
(1,0),gp, v ∈ T ∗

(0,1),gp, w ∈ Vgp.

In partiular, it follows that the urvature is determined by its value at a

�xed referene point. We shall return to the Chern urvature of E below,

and give an expliit formula for it at the point p0. First, however, we shall
undertake a loser study of the restrition of E to the diagonal.

The ation of the group U(N) on X de�nes a �bration q : U(N) →
X given by q(g) = g(p0) whih is U(N)-equivariant with respet to left

multipliation, Lg : x 7→ gx, on the group itself, and the ation on X,

i.e., q(gx) = g(q(x)) holds for g, x ∈ U(N). Moreover, the right ation

Rl : x 7→ xl−1
of the subgroup U(k)×U(N−k) on U(N) preserves eah �ber

q−1(p) for p ∈ X, and yields a di�eomorphism U(k) × U(N − k) ∼= q−1(p).
This equips U(N) with the struture of a prinipal U(k)×U(N − k)-bundle
over X. Sine the right ation of U(k) × U(N − k) ommutes with left

multipliation, the group U(N) ats equivariantly with respet to the ation

of U(k)×U(N −k). Moreover, the embedding of U(N) into MN (C) indues
an Riemannian struture on U(N) by restrition of the trae inner produt

(A,B) 7→ tr(AB∗), and the left multipliation is isometri with respet to

this inner produt. For any g ∈ U(N) with q(g) = p, we have an orthogonal

deomposition

Tg(U(N)) = Tg(q
−1(p))⊕ Tg(q

−1(p))⊥,(23)

and this deomposition is invariant under left multipliation. The restrition

of the di�erential of q to the orthogonal omplement Tg(q
−1(p))⊥ yields an

isomorphism

dq(g)|Tg(q−1(p))⊥ : Tg(q
−1(p))⊥ → Tq(g)(X).

For any p ∈ X we thus have a family of subspaes parametrized by the set

q−1(p) to whih the tangent spae at p is isomorphi. We therefore de�ne

an equivalene relation on the tangent bundle T (U(N)) by

(g, v) ∼ (g′, v′) i� (g′, v′) = (Rl(g), dRl(g)v),(24)

for some l ∈ U(k)×U(N−k). By the isometry of the left multipliation, the

orthogonal omplement bundle ∪pT (q
−1(p))⊥ is a U(N)-homogeneous vetor

bundle. Moreover, for any vetor in this subbundle, the whole equivalene

lass lies in the subbundle sine also the right ation is isometri. It follows

that S := ∪pT (q
−1(p))⊥/ ∼ is a well-de�ned U(N)-homogeneous vetor

bundle over X. Clearly, S is equivalent to the tangent bundle T (X), and
thus it inherits a omplex struture.

Proposition 14. The restrition of E to the diagonal ∆(X×X) is equivalent
to the holomorphi otangent bundle T ∗

1,0(X).
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Proof. We prove that E∗
is equivalent to S. Sine S is U(N)-homogeneous, it

is uniquely determined by the orresponding representation of U(k)×U(N−
k) on the �ber Sp0 . For the identity element e ∈ U(N), the tangent spae

Te(U(N)) is isomorphi to the Lie algebra

u(N) := {X ∈ MN (C)|X∗ = −X},

and the subspaes in the deomposition (23) are expliitly given by

Te(q
−1(p0)) =

{(
Y 0
0 Z

)∣∣∣∣Y
∗ = −Y,Z∗ = −Z

}
,(25)

Te(q
−1(p0))

⊥ =

{(
0 B

−B∗ 0

)∣∣∣∣B ∈ Mk,N−k(C)

}
.(26)

For v =

(
0 B

−B∗ 0

)
∈ Te(q

−1(p0))
⊥
, and l =

(
A 0
0 D

)
∈ U(k)×U(N−

k),

dLl(e)v =

(
A 0
0 D

)(
0 B

−B∗ 0

)

=

(
0 AB

−DB∗ 0

)
.

We an represent the equivalene lass of this tangent vetor by a tangent

vetor at the identity, namely by

dRl(l)dLl(e)v =

(
0 AB

−DB∗ 0

)(
A−1 0
0 D−1

)

=

(
0 ABD−1

−(ABD−1)∗ 0

)
.

Hene, we an identify the representation of U(k) × U(N − k) on Sp0 with

the representation on Mk,N(C) given by B 7→ ABD−1
, i.e., with the repre-

sentation τ ⊗ ρ∗ on Hom(CN−k,Ck), whih is preisely the U(k)×U(N − k)
representation assoiated to the restrition of E∗

to the diagonal. �

Remark 15. In [4℄, Berndtsson proves that any appropriate bundle E →
X × X has to oinide with the holomorphi otangent bundle on the di-

agonal. In the ase of CPn
, an independent proof of Proposition 14 an be

found in the book [7℄ by Demailly; Proposition 15.7 in Chapter V.

By the identi�ation Tp0(X) with the subspae Te(q
−1(p0))

⊥
in (26), we

have an expliit realization of its omplexi�ation

Tp0(X)C ∼=

{(
0 B
C 0

)∣∣∣∣B ∈ Mk,N−k(C), C ∈ MN−k,k(C)

}
.

Consider now the element

(
iN−k

N
Ik 0

0 −i k
N
IN−k

)
∈ Te(q

−1(p0)) ∼= u(k) ×

u(N − k). Its adjoint ation determines the omplex struture, Jp0 , at p0 by
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Jp0

(
0 B

−B∗ 0

)
:=

[(
iN−k

N
Ik 0

0 −i k
N
IN−k

)
,

(
0 B

−B∗ 0

)]

=

(
0 iB

−(iB)∗ 0

)
.

The splitting of TC
p0

into the the ±i-eigenspaes is given by

T(1,0),p0(X) ∼=

{(
0 Y
0 0

)∣∣∣∣Y ∈ Mk,N−k(C)

}
,

T(0,1),p0(X) ∼=

{(
0 0
Z 0

)∣∣∣∣Z ∈ MN−k,k(C)

}
.

We reall that the urvature ΘE at the point p0 is given by the formula

ΘE(p0)(Y,Z)W = (ρ⊗ τ∗)′([Y,Z])(W ),(27)

where (ρ ⊗ τ∗)′ denotes the di�erentiated representation of the Lie algebra

u(k)×u(N−k) given by (ρ⊗τ∗)′(X) := d
dt
(ρ⊗τ∗)(exp tX)|t=0. The expliit

expression for (27) is

ΘE(p0)(Y,Z)W = (ρ⊗ τ∗)′
(

Y Z 0
0 ZY

)
(W )

= ZYW −WY Z, W ∈ MN−k,k(C).

5.3. Invariane of weights. In this setion we study a natural ation of

U(N) on setions of the bundles Hom(Lr
ζ , L

r
z) ⊗ GE , and prove that the

orresponding weights are invariant under that ation.

Reall that for an ation of a group, G, on a vetor bundle V → M , a

natural ation is indued on the spae of setions by

(28) (gs)(z) := gs(g−1z),

where the seond ation on the right hand side refers to the ation on the

total spae of the bundle. The bundles Hom(Lr
ζ , L

r
z)⊗GE are equipped with

the natural U(N)×U(N) ations given as tensor (and exterior) produts of

the ations desribed in the previous setion and their duals. In what follows,

we will onsider the ation of U(N) (embedded as the diagonal subgroup of

U(N) × U(N)) given by restrition. The ations on the respetive total

spaes are the obvious ones, and we will therefore use the simple notation

from (28) for suh an ation.

We let gr := g⊗r
for r ≥ 0 and gr := (g∗)⊗r

for r ≤ 0 denote the weight

for the line bundle Lr
.

Proposition 16. The weight gr is a U(N)-invariant setion of the vetor

bundle Hom(Lr
ζ , L

r
z)⊗GE.
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Proof. It learly su�es to prove that the setion G = γ0+γ1 is an invariant

setion of Hom(Hζ ,Hζ); and for this, we prove that γ0 and γ1 are invariant

separately. We now �x an orthonormal basis, {h1, . . . , hk}, for Hz. For any

u ∈ Hζ and l ∈ U(N), we have

(lγ0)(u) = lγ0(l
−1u) = l

k∑

i=1

〈l−1u, l−1hi〉l
−1hi

=

k∑

i=1

〈u, hi〉hi

= γ0(u),

whih shows the invariane of γ0. We now onsider γ1, and therefore hoose

a loal setion f of F near the point z ∈ X. Then, we have

(lγ1)(f ⊗ u) = −l(πH
l−1z

(∂̄ϕ(l−1f))⊗ l−1u)

= −l(πH
l−1z

(l−1∂̄ϕ(f))⊗ l−1u)

= −πHz(∂̄ϕ(f)⊗ u)

= γ1(f ⊗ u),

where the third equality is ompletely analogous to the invariane of γ0. This
onludes the proof. �

We now turn our attention to the form Pgr de�ned in (12) again.

Corollary 17. The form Pgr is U(N)-invariant.

Proof. First of all, an argument similar to the proof of Proposition 16 shows

that the setion η is U(N)-invariant. Seondly, the Chern onnetion DE on

E ommutes with the U(N)-ation, and hene Dη is also U(N)-invariant.
The urvature Θ is even U(N) × U(N)-invariant; and hene it follows that

the form g∧
(
Dη
2πi +

iΘ̃
2π

)
n
is U(N)-invariant. We now laim that the operator

∫
E
is U(N)-equivariant. Indeed, the identity setion I ∈ End(E) is obviously

U(N)-invariant, and so is therefore also the setion Ĩn de�ned in onnetion

with De�nition 2. Hene,

∫
E
is an equivariant operator, and this also �nishes

the proof. �

The anonial splitting T ∗(X × X) ∼= T ∗
z (X) ⊕ T ∗

ζ (X) of the otangent

bundle of X ⊗X is U(N)×U(N)-invariant, and hene (Pgr) an be deom-

posed as

(29) (Pgr) =
∑

p′+p′′=n

q′+q′′=n

(Pgr )p′,p′′,q′,q′′ ,

where (Pgr )p′,p′′,q′,q′′ is a setion of Hom(Hζ ,Hz)⊗Λp′,q′(TC
z )

∗∧Λp′′,q′′(TC

ζ )
∗
,

i.e., it is of bidegree (p′, q′) in the z-variable, and of bidegree (p′′, q′′) in the
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ζ-variable aording to the splitting. By the invariane of the splitting, we

also have

Corollary 18. The terms (Pgr)p′,p′′,q′,q′′ in the deomposition (29) are U(N)-
invariant.

Only the term (Pgr)n,0,n,0 whih has bidegree (n, n) in the z-variable will
ontribute to the integral in the Koppelman formula. Later we will examine

this term more losely.

Corollary 19. The urrent Kgr in (12) is U(N)-invariant.

Proof. It learly su�es to prove that u in (7) is U(N)-invariant; and sine

the group ation ommutes with the ∂̄-operator and exterior powers, it only

remains to prove the invariane of σ. Note that σ an be desribed by the

equation

σ(v) =
〈v, η〉E
|η|2E

, v ∈ E.

The invariane of σ now follows immediately from the invariane of η and

from the fat that the ation of U(N) preserves the metri. �

5.4. Line bundles on X. In this subsetion we reapitulate how the Piard

group of X an be desribed in terms of holomorphi haraters. All of this

is lassial theory and well-known, even though the results in their expliit

form an be hard to �nd in the literature. The reason for inluding it in

the paper is rather to give an overview for readers who are not familiar with

representation theory of Lie groups.

Suppose now that L → X is a SL(N,C)-homogenous holomorphi line

bundle. The orresponding P ′
-representation then amounts to a holomor-

phi harater χL : P ′ → C∗
. Moreover, it is well-known that all holomorphi

line bundles over X are in fat SL(N,C)-homogeneous (f. [18℄), and hene

the Piard group H1(X,O∗) is isomorphi to the multipliative group of

holomorphi haraters of P ′
.

Suppose now �rst that χ : P → C∗
is a holomorphi harater. (This is

no restrition, as we shall later see that all holomorphi haraters of P ′
are

restritions of P -haraters.) It is well-known that it is then uniquely deter-

mined by its restrition to the Levi-subgroup GL(k) × GL(N − k) realized
as

{(
A 0
0 D

)∣∣∣∣detAdetD 6= 0

}
.

By restriting to the respetive fators, we an uniquely express χ as a prod-

ut χ = χ1χ2, where χ1 and χ2 are haraters of GL(k,C) and GL(N−k,C)
respetively. Let χ′

1 : gl(k,C) → C denote the di�erential at the identity of

χ1. Then χ′
1 annihilates the ommutator ideal in the deomposition

gl(k,C) = Z(gl(k,C)) ⊕ [gl(k,C), gl(k,C)]
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of gl(k,C) as the diret sum of the enter and the ommutator. More speif-

ially, we have the identity

[gl(k,C), gl(k,C)] = sl(k,C),

from whih it follows that the normal subgroup SL(k,C) lies in the kernel

of the harater χ1. Hene, χ1 desends to a harater, χ̃1, of the quotient

group GL(k,C)/SL(k,C), yielding the ommuting diagram

GL(k,C)
χ1 //

����

C∗

GL(k,C)/SL(k,C)

fχ1

77
o

o
o

o
o

o
o

o
o

o
o

o
o

.

Moreover, the quotient group is isomorphi to C∗
via the mapping gSL(k,C) 7→

det g, and hene we have the diagram

GL(k,C)
χ1 //

����

C∗

GL(k,C)/SL(k,C)

fχ1

77
o

o
o

o
o

o
o

o
o

o
o

o
o

�

� // // C∗,

OO

whih allows us to identify χ̃1 with a holomorphi harater C∗ → C∗
. The

latter ones are easily desribed. Indeed, by holomorphy, any suh harater is

uniquely determined by its restrition to the totally real subgroup S1 ⊂ C∗
,

on whih it gives a harater S1 → S1
. Hene, it is of the form ζ 7→ ζm, for

some integer m. The analogous result holds of ourse for χ2. Summing up,

we have thus found that

χ

(
A B
0 D

)
= detAm detDn,

for some m,n ∈ Z.

The line bundle orresponding to the hoie m = 1, n = 0 is the deter-

minant of the tautologial vetor bundle. To study the line bundle orre-

sponding to the parameters m = 0, n = 1, we onsider it as a SL(N,C)-
homogeneous line bundle, whih amounts to restriting the orresponding

harater to the subgroup P ′
of P . We let χ′

denote the di�erential at the

identity of this harater. The Lie algebra p′ admits a deomposition

p′ = Z(p′)⊕
[
p′, p′

]

as the diret sum of its enter and its ommutator ideal. These two ideals

are given by



24 ELIN GÖTMARK & HÅKAN SAMUELSSON & HENRIK SEPPÄNEN

Z(p′) =

{(
c(N − k)Ik 0

0 −ckIN−k

)∣∣∣∣ c ∈ C

}
,

[
p′, p′

]
=

{(
A B
0 D

)∣∣∣∣ trA = trD = 0

}
.

On the group level, we have the ommutator subgroup

[P ′, P ′] =

{(
A B
0 D

)∣∣∣∣ detA = detD = 1

}
,

and the quotient group P ′/[P ′, P ′] has omplex dimension one. In fat, an

isomorphism Φ : P ′/[P ′, P ′] → C∗
is given by

Φ(g [P ′, P ′]) = detA,

for g =

(
A B
0 D

)
.

If µ : P ′ → C∗
is a holomorphi harater, it fators through the projetion

onto the quotient group just as above, yielding a holomorphi harater µ̃ :
P ′/[P ′, P ′] → C∗

. Using the isomorphism Φ above, we obtain the ommuting

diagram

P ′
µ //

����

C∗

P ′/[P ′, P ′]

eµ

99
s

s
s

s
s

s
s

s
s

s

�

� // // C∗.

OO

From this, we onlude that µ

(
A B
0 D

)
= detAj

, for some j ∈ Z. In par-

tiular, it follows that µ an naturally be extended to a holomorphi hara-

ter P → C∗
. Moreover, the dual bundle to the determinant of the tautolog-

ial vetor bundle orresponds to the P ′
-harater

(
A B
0 D

)
7→ detA−1 =

detD, whih an be extended to the P -harater

(
A B
0 D

)
7→ detD. It

is easy to see that the GL(N,C)-homogeneous line bundle assoiated with

this holomorphi harater is isomorphi to the determinant of the quotient

bundle F = CN/H.

5.5. The Bott-Borel-Weil theorem. In this subsetion we brie�y de-

sribe some group representations assoiated with homogeneous vetor bun-

dles.

Suppose now that G is a omplex Lie group ating transitively and holo-

morphially on a omplex manifold M , so that we an write M ∼= G/T for

some losed subgroup T ⊆ G. Let V → M be a G-homogeneous holomor-

phi vetor bundle. Reall that the ation of G on V indues the ation on

smooth setions given by (28). Sine G ats holomorphially on M , there is

a natural ation on V-valued (p, q)-forms (by taking the pullbak omposed
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with inversion). Moreover, the ation ommutes with the ∂-operator on V,
from whih it follows that the ation preserves losed forms and exat form;

thus induing an ation on the Dolbeault ohomology groups Hp,q(M,V).
In the ase when G is a omplexi�ation of some semisimple ompat Lie

group, GR, the Bott-Borel-Weil theorem (f. [2℄, Theorem. 5.0.1) gives a

realization of all irreduible representations of GR as H0,q(M,L) for some

homogeneous line bundle, L, over M , and also states the vanishing of the

other sheaf ohomology groups assoiated with L. We shall see examples of

it in the ontext of the vanishing theorems of the next setion.

6. Appliations

6.1. Vanishing theorems. We would like to �nd vanishing theorems for

the bundles Lr
and L−r

over X by means of the Koppelman formula. This

will yield expliit solutions to the ∂̄-equation in the ohomology groups whih

are trivial.

Let D in Theorem 1 be the whole of X, and let φ(ζ) be a ∂̄-losed form

of bidegree (p, q) taking values in Lr
ζ , with r > 0. The only obstrution to

solving the ∂̄-equation is then the term

∫
ζ
φ(ζ) ∧ Pgr(ζ, z). We have

Pgr =

∫

E

gr ∧

(
Dη

2πi
+

iΘ̃

2π

)

n

=(30)

=

∫

E

min(kr,n)∑

j=1

Cj(g
r)j,j ∧ (Dη)j ∧ (Θ̃ζ + Θ̃z)

n−j

where (gr)j,j is the term in gr whih has bidegree (0, j) and takes values in

ΛjE∗
. Note that all the di�erentials in g are in the z variable; this is beause

∂̄ζ ommutes with πHz .

Theorem 20. The ohomology groups Hp,q(X,Lr) are trivial in the follow-

ing ases:

a) p 6= q and r = 0.
b) p > q and r > 0.
) p < q, rk < q − p, and r > 0.
d) p < q and r < 0.
e) p > q, rk < p− q, and r < 0.

Proof. a) If r = 0 we do not need a weight, and in that ase

P =

∫

E

(
iΘ̃

2π

)

n

= cn(E),

or the n:th Chern form of E. It is obvious that P onsists of terms with

bidegree (k, k) in z and (n − k, n − k) in ζ, and thus

∫
φ ∧ P = 0 if φ has

bidegree (p, q) with p 6= q.

b) Sine the only soure of antiholomorphi di�erentials in ζ is Θ̃ζ , whih

is a (1, 1)-form, we an never get more dζ̄i:s than dζi:s. This means that
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∫
ζ
φ(ζ) ∧ Pgr = 0 if φ has bidegree (p, q) where p > q (sine then Pgr would

need to have bidegree (n− p, n− q) in ζ with n− q > n− p).

) If φ(ζ) has bidegree (p, q), then Pgr needs to have bidegree (p, q) in z.

We an take at most p of the Θ̃z:s. We will then need at least q − p more

dz̄i:s, and these have to ome from the fator gr. But gr has maximal bide-

gree (0, rk), so if rk < q − p the obstrution will vanish.

d) By duality, if we have a (p, q)-form φ taking values in Lr
with r < 0,

the obstrution is given by

∫
z
φ(z) ∧ Pg−r (ζ, z). This is zero unless there is

a term in Pg−r of bidegree (p, q) in ζ. By the same argument as in the proof

of b), the obstrution vanishes if q > p.

e) If φ(z) has bidegree (p, q), then Pg−r needs to have bidegree (n− p, n− q)
in z, where n− q > n− p. The rest follows as in the proof of ). �

Remark 21. In CPn
, we an get rid of the obstrution in more ases, either

by proving that Pgr is ∂̄ζ-exat (sine then Stokes' theorem an be applied),

or by proving that it is ∂̄z-exat (sine then

∫
ζ
φ ∧ Pgr will be ∂̄z-exat as

well). See [8℄ for details.

Part d) of the above theorem is the speial ase of the Bott-Borel-Weil

theorem for the paraboli quotient GL(N,C)/P . For r = −1, all vanishing
theorems were proved by le Potier in [13℄. He also proved vanishing theorems

for exterior and symmetri powers of the tautologial bundle and its dual.

In [17℄, Snow gives an algorithm for omputing all Dolbeault ohomology

groups for all line bundles over Grassmannians. Implementing the algorithm

in a omputer, Snow obtains various vanishing theorems inluding ours. It is

worth noting that both le Potier and Snow obtain their results by redution

to the Bott-Borel-Weil theorem.

6.2. Bergman kernels. We will see that the projetion part, Pgr , of our

Koppelman formula for Lr
basially is the Bergman kernel assoiated with

the spae of holomorphi setions of L−r
. We begin by examining Pgr . Reall

that

gr =
(
(γ0 + γ1)

k
)⊗r

=
( k∑

j=0

(
k

j

)
γk−j
0 ∧ γj1

)⊗r
=: (γk0 )

⊗r + g̃r,

where γk0 of ourse is the kth exterior power of γ0, is our weight for L
r
. The

projetion kernel in our Koppelman formula for Lr
is thus

Pgr =

∫

E

gr ∧

(
Dη

2πi
+

iΘ̃E

2π

)

n

= (γk0 )
⊗r ⊗

∫

E

(
Dη

2πi
+

iΘ̃E

2π

)

n

+

∫

E

g̃r ∧

(
Dη

2πi
+

iΘ̃E

2π

)

n

=: P 0
gr + P̃gr .
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Let Pgr and P0
gr be the parts of Pgr and P 0

gr respetivly, whih have bidegree

(n, n) in the z-variables. Let us examine Pgr and P0
gr more losely on the set

Z := {p0} ×Xζ . In our loal oordinates and frames over Uz × Uζ we have

by (20) that γ0 = (I + z∗z)−1(I + z∗ζ). On Z interseted with {p0} × Uζ ,

denoted Z ′
below, we thus have γ0 = I expressed in our frames. Aording

to (21) and (22), we see that, as a matrix in our frames for Hz and Hζ ,

γ1 = dz∗ ∧ e∗ on Z ′
. Moreover, a straightforward omputation shows that

the part of Dη, whih does not ontain any di�erentials in the ζ-variables,
equals −

∑
i,j dzij ∧ eij on Z ′

. Also, the part of Θ̃E , whih does not ontain

any di�erentials in the ζ-variables, is ˜ΘFz ⊗ IdH∗

ζ
. We thus see that the

building bloks for Pgr and P0
gr are independent of ζ on Z ′

when expressed

in our frames. Sine both Pgr and P0
gr take values in a line bundle we must

have Pgr = CP0
gr on Z ′

. But Z ′
is dense in Z and so this equality holds

on Z by ontinuity. Now, by Corollary 18 in Subsetion 5.3, it follows that

both Pgr and P0
gr are invariant under the diagonal group in U(N) × U(N)

and sine Z intersets eah orbit under this group we an onlude that

Pgr = CP0
gr on all of X ×X.

Given any holomorphi setion f of L−r
, r > 0, and any vetor vp in the

�ber of Lr
above an arbitrary point p, our Koppelman formula now gives

(31) f(p).vp =

∫

Xz

Pgr(z, p) ∧ vp ∧ f(z) = C

∫

Xz

P0
gr(z, p) ∧ vp ∧ f(z).

It is easy to ompute P0
gr expliitly, and one gets

P0
gr =

( i

2π

)n
(γk0 )

⊗r ⊗

∫

E

(
˜ΘFz ⊗ IdH∗

ζ

)
n
=
( i

2π

)n
(γk0 )

⊗r ⊗ cN−k(ΘFz)
k.

Moreover, ΘFz is the U(N)-invariant urvature of Fz , so it follows that

cN−k(ΘFz)
k
is a U(N)-invariant (n, n)-form and hene equal to a onstant

times the invariant volume form dV . We have thus obtained

(32) f(p).vp = C

∫

Xz

f(z).(γk0 )
⊗rvpdV (z)

for any holomorphi setion f of L−r
. Modulo a multipliative onstant,

one also has that dV = (c1(L))
n
, and then the above formula assumes the

following form expressed in the frames and oordinates disussed above.

f(ζ) = C

∫

Cn

f(z)
det(I + z∗ζ)r

det(I + z∗z)r
(
(∂∂̄ log det(I + z∗z))

)n
.

We will now desribe what will be the Bergman kernel. Let ρr : Lr
z → L−r

z

be the antilinear identi�ation indued by the metri, i.e., ρr(v) = 〈·, v〉Lr
z
,

and de�ne Kr(z, ζ) : L
r
ζ → L−r

z by Kr(z, ζ) = ρr ◦ (γk0 )
⊗r
. Then one easily

heks that Kr(z, ζ) is a �berwise antilinear map, whih depends antiholo-

morphially on ζ. To show that it atually depends holomorphially on

z we onsider the adjoint operator Kr(z, ζ)
∗ : Lr

z → L−r
ζ and the operator
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Kr(ζ, z) : L
r
z → L−r

ζ . We know that the latter operator depends antiholo-

morphially on z. Note also that sine Kr(z, ζ) is �berwise antilinear, the

adjoint should be de�ned by (Kr(z, ζ)
∗u).v = u.(Kr(z, ζ)v) for u ∈ Lr

z and

v ∈ Lr
ζ . It is then straightforward to hek that Kr(z, ζ)

∗ = Kr(ζ, z), and

so Kr(z, ζ)
∗
must depend antiholomorphially on z. It follows that Kr(z, ζ)

depends holomorphially on z. In partiular, for any non-zero vetor v ∈ Lr
p,

the mapping z 7→ Kr(z, p)v de�nes a global non-zero holomorphi setion of

L−r
. In fat, these setions generate H0(X,L−r) as we now show. Consider

the Bergman spae A2
r de�ned as H0(X,L−r) equipped with the norm

‖f‖2A2
r
:=

∫

X

‖f‖2L−rdV, f ∈ H0(X,L−r).

We laim that, modulo a multipliative onstant, Kr(z, ζ) is the Bergman

kernel for A2
r, i.e., that Kr(z, ζ) is the �berwise antilinear map Lr

ζ → L−r
z ,

whih depends holomorphially on z and antiholomorphially on ζ, and has

the property that for any f ∈ A2
r and any vetor v ∈ Lr

ζ (in the �ber above

ζ) one has

f(ζ).v = 〈f,Kr(·, ζ)v〉A2
r
=

∫

X

〈f(z),Kr(z, ζ)v〉L−r
z
dV (z).

It only remains to verify this last property. But this reproduing property

follows diretly from (32) after noting the following equality, whih basially

is the de�nition of Kr(z, ζ):

u.((γk0 )
⊗rv) = 〈u,Kr(z, ζ)v〉L−r

z
, for all u ∈ L−r

z , and all v ∈ Lr
ζ .

Remark 22. In the ase of CPn
it is not too hard to ompute Pgr diretly

from its de�nition. For instane, one an �rst verify in loal or homogeneous

oordinates that the part of γ1 ∧Dη whih ontains no dζ or dζ̄ is equal to

−γ0 ⊗ ˜ΘFz ⊗ IdO(1)ζ
, f. Proposition 4.1 and the weight α in [8℄. Then, a

straightforward omputation shows that Pgr is equal to

(
n+ r

n

)( i

2π

)n
γr0 ⊗ det(ΘFz).
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