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Abstra
t: In this paper, the e�e
ts of periodi
 partial harvesting of a 
ontinuously grown


rop on augmentative biologi
al 
ontrol are analyzed. Partial harvesting 
an remove a

proportion of both pests and biologi
al 
ontrol agents, so its in�uen
e on the 
ontrol e�
ien
y


annot be a priori negle
ted. An impulsive model 
onsisting of a general predator-preymodel

in ode, augmented by a dis
rete 
omponent to depi
t releases of biologi
al 
ontrol agents

and the periodi
 partial harvesting is used. The periods are taken as integer multiples of

ea
h other. A stability 
ondition for pest eradi
ation is expressed as the minimal value of

the budget per unit time to spend on predators. We 
onsider the partial harvesting period

to be �xed by both the plant's physiology and market for
es so that the only manipulated

variable is the release period. It is shown that varying the release period with respe
t to

the harvest period in�uen
es the minimal budget value when the former is 
arried out more

often than the latter and has no e�e
t when releases take pla
e as often as or less frequently

than the partial harvests.
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E�ets de la ré
olte partielle des 
ultures sur la lutte

biologique

Résumé : Ce do
ument montre les e�ets de la ré
olte partielle périodique sur la lutte

biologique inondative dans le 
as de la prote
tion d'une plantation à 
roissan
e 
ontinue.

Comme la ré
olte partielle est sus
eptible de prélever une partie des ravageurs ainsi que des

auxiliaires de lutte biologique, on ne peut ignorer son in�uen
e sur son e�
a
ité.

Le modèle étudié 
onsiste en un modèle proie-prédateur en EDO 
lassique dé
rivant

l'intera
tion biologique entre les deux populations, auquel s'ajoute une partie dis
rète re-

pr±entant les phénomènes, intrins�quement dis
rets, liés à la ré
olte et à la lutte biologique.

Les paramètres de ré
olte partielle sont supposés �xés par la physiologie de la plante ainsi

que la demande é
onomique; la période de lâ
her des auxiliaires et le budget investi sont

don
 les seuls paramêtres modi�ables du système. L'exigen
e de stabilité de l'état du sys-

tème où les ravageurs sont absents nous donne un budget minimal d'auxiliaires à utiliser par

unité de temps qui peut être fon
tion de la période des lâ
hers. Nous démontrons que la

période des lâ
hers in�ue sur le budget minimal quand elle a lieu plus souvent que la ré
olte,

mais n'a au
un e�et quand elle a lieu moins fréquemment.

Mots-
lés : Dynamiques proie-prédateur; ré
olte partielle; lutte biologique inondative;


ommande impulsive; stabilité; budget minimal



The e�e
t of partial 
rop harvest on biologi
al pest 
ontrol 3

1 Introdu
tion

Biologi
al 
ontrol is the redu
tion of pest populations to harmless levels through the release

of their natural enemies. The latter 
an in
lude both parasiti
 and predatory spe
ies, whi
h

are deployed at sele
ted lo
ations throughout the 
rop and, wherever possible, to spe
i�


parts of individual plants where the pest is likely to atta
k. Su

essful 
ontrol proje
ts in

the �eld have involved the use of only one predatory spe
ies su
h as in [3, 9℄, as well as

more 
omplex biodiverse s
hemes su
h as those suggested by [14, 8, 2, 17℄ and the referen
es

therein. The target pest spe
ies and the setting, i.e. where the 
rop is grown, usually

determines the type of 
ontrol required, namely whether pest eradi
ation is ne
essary or

not. For an exhaustive list of de�nitions and appli
ations, we refer the reader to [5, 16℄.

In this report, we 
onsider the prote
tion of 
ontinuously grown 
rops whi
h have zero

toleran
e to pest invasions. There are two aspe
ts in this type of 
ulture.

� Firstly, inundative 
ontrol whi
h is a prophyla
ti
 method of pest 
ontrol yields the

most satisfatory results when implemented (see [7, 20, 6℄ for theoreti
al/simulatory

studies and [4, 8, 9, 1℄ for real life experiments). A 
al
ulated number of predators

are repeatedly inje
ted into the e
osystem, independently of the dete
tion of pest

inse
ts in the greenhouse. Su
h populations are not allowed to thrive and 
onsist only

of individuals whose main sour
e of subsisten
e is the pest inse
t, in the absen
e of

whi
h, they (the predator inse
ts) rapidly die out. The frequen
y of the releases and

the number of predators inje
ted ea
h time ensures that a minimal 'sentry' population

is present to redu
e the damage 
aused by the pests on their atta
k.

� Se
ondly, over their growing period, these 
rops are partially harvested on a regular

basis. Sin
e it is known that harvests are likely to in�uen
e, even 
ounterintuitively,

predator-prey dynami
s [18, 15℄, it has to be taken into a

ount in the formulation of

the problem.

We 
onsider the simplest ditrophi
 
ase whereby one predatory spe
ies is used to eradi-


ate a pest population. Our model 
onsists of ODEs augmented by a dis
rete 
omponent to

in
orporate the e�e
t of partial harvest and releases that by their very nature are dis
rete

phenomena. This is a 
lassi
al formulation that is used widely in the literature where impul-

sive dynami
s are studied. Examples are [12, 15℄ in the 
ontext of agri
ultural e
osystems,

[19℄ in epidemiology, [10℄ in pulsed 
hemotherapy to 
ite some. Few papers in the literature

on impulsive 
rop prote
tion however seem to fo
us on stability of the pest-free state: yet

this is of pra
ti
al importan
e espe
ially for high valued 
rop 
ultures.

In our work, we attempt to give an e
onomi
 dimension to the solution of our problem

by de�ning the releases in terms of the number of predators to invest in over a budget

period. Using Floquet Theory as presented by [19℄, we are able to express the stability


ondition as the minimal number of predators per budget period required to drive the pests

to zero at a given release frequen
y. [13℄ showed how this number varied with the release

period 
hosen. The worst 
ase s
enario of pest atta
k o

urring at an intermediate stage

between two predator releases was 
onsidered and the optimal release poli
y whi
h would

RR n° 6284



4 S. Nundloll, L. Mailleret & F. Grognard

guarantee the most e�
ient prote
tion against surges in the pest population was 
al
ulated.

In parti
ular, it is shown that the higher the frequen
ies of predator release, the smaller the

time interval over whi
h the pest population was above a threshold 
ommonly referred to

as the E
onomi
 Injury Level [21℄ - and hen
e the lower the damage in
urred by the 
rops.

In line with the work of [13℄, we investigate how the frequen
y of releases is to be varied

with respe
t to the (�xed) harvesting frequen
y to minimise the minimal budget value.

We 
onsider the harvest period as a referen
e sin
e it is set by market 
onstraints. The

e�e
t of partial harvesting is similar to that of pesti
ide usage proposed by [12℄ in their

Integrated Pest Management (IPM) strategy. Our model departs from the latter's in three

ways. Firstly, both the predator and pest populations are subje
ted to partial harvesting

when this o

urs. Se
ondly, hypotheses made on the fun
tions governing the population


hanges are weak and 
an en
ompass most of the density-dependent fun
tions proposed in

the literature. Finally, one period is taken as the integer multiple of other. This feature

is key in solving for the stability 
ondition to obtain the minimal budget value. The 
ase

where the frequen
ies are not the same is in
luded.

It is shown that for a given harvest period, when releases take pla
e less often or as often

as harvests, the minimal budget is at a 
al
ulated value whi
h is independent of release

period. However, when releases take pla
e more often than harvests, the minimal budget

required always ex
eeds this value. This result runs 
ounter with that obtained by [13℄:

merging the two seems to indi
ate that the harvest frequen
y is a threshold that should not

be ex
eeded when releasing predators for e�
ient biologi
al 
ontrol.

In the �rst se
tion of this arti
le, the system model is presented. The mathemati
al

analysis of the system's stability and the formulation of the stability 
ondition in terms

of the minimal budget are presented in the next se
tion. A brief interpretation of the

mathemati
al results follows. Finally, we 
on
lude with a dis
ussion on their impli
ations.

2 Model des
ription

The model we present 
onsists of a 
ontinuous part to depi
t the predator-prey intera
tion.

We 
onsider the 
ase at the onset of pest invasion where the 
rop - the pest food supply -

is in abundan
e. Be
ause of this, at this stage, it is su�
ient to model only the pest x and

predator y spe
ies.























ẋ = f(x)− g(x)y
ẏ = h(x)y − dy

x(nT+
h ) = (1− αx)x(nTh) ∀n ∈ N

y(nT+
h ) = (1− αy)y(nTh) + δ (nTh mod Tr)µTr ∀n ∈ N

y(mT+
r ) = (1− δ (mTr mod Th)αy)y(mTr) + µTr ∀m ∈ N

(1)

The �rst two equations govern the intrinsi
 predator-prey intera
tion o

urring in the

system. The three ones depi
t the impulsive phenomena that we 
onsider with harvest

taking pla
e at nTh and releases at mTr.

INRIA
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In the 
ontinuous part, the fun
tions dis
ussed are not spe
i�ed so they are representative

of as many systems as possible. Only the following hypotheses are made.

Hypothesis 1 Let f(x), g(x) and h(x) be lo
ally Lips
hitz 
ontinuous in R
+
su
h that

� f(0) = 0

� g(0) = 0, g′(0) > 0 and g(x) > 0 ∀x > 0

� h(0) = 0 and h(x) > 0 ∀x > 0

�

f(x)
g(x) and

g(x)
x are upper bounded for x ≥ 0

f(x) is the growth velo
ity or feeding input of the pests. It represents the growth fun
tion
of the pest spe
ies and in our model, it also en
ompasses any non-predatory losses of the pest

population (e.g. logisti
 growth). We assume that the predator population is never large

enough for intra-predator intera
tion to take pla
e so the fun
tional and numeri
al responses


an be expressed solely in terms of the prey numbers, i.e. as g(x) and h(x) respe
tively.
We assume that pest growth rate, the fun
tional and numeri
al responses are all nil when

the e
osystem is pest-free.

The fun
tional response is in
reasing for small pest population levels. We also 
onsider

that, in the presen
e of pests, predation always takes pla
e with a negative impa
t on x

(g(x) > 0) and a positive impa
t on y (h(x) > 0). Note that 
onditions 
an be indu
ed as

mu
h by the predator inse
t foraging abilities per se as they 
an be fa
ilitated by pla
ing

the predator inse
ts at known lo
ations on the plant where the pests are most likely to

atta
k. In 
lassi
al density dependent models, g(x) is bounded or linear, so that

g(x)
x is

always bounded. The boundedness of

f(x)
g(x) means that there is no value of x where the

pest growth f(x) overwhelmingly dominates the predation g(x), whi
h would render the

biologi
al 
ontrol impossible.

Partial 
rop harvests and predator releases o

ur respe
tively every Th and Tr. αx and

αy represent the respe
tive proportions of the prey and predator populations a�e
ted at

ea
h harvest. These parameters are allowed be di�erent sin
e in reality, it is very likely that

ea
h spe
ies tends to o

upy di�erent parts of the plant. We also assume that the inse
ts are

uniformly distributed throughout our plantation so that the e�e
t of partial harvesting is

dire
tly 
orrelated with the number of plants harvested. We assume linear maturation of the


rop so the proportion of 
rops harvested ea
h time and hen
e inse
ts removed is 
onsidered

as �xed. The δ-fun
tion is de�ned thus to identify instants of simultaneous partial harvest

and predator release.

δ(θ) =

{

1 if θ = 0
0 otherwise

(2)

Finally, we presume that we have a �xed budget of predators over a designated time

period that is distributed evenly among the releases that are 
arried out. µ refers to the

total number of predators pur
hased per time unit. Expressing Tr in the same units as the

budget period gives the 
ontrol µTr as the number of predators released every Tr.

RR n° 6284



6 S. Nundloll, L. Mailleret & F. Grognard

3 Mathemati
al analysis

In our analysis, we restri
t ourselves to the 
ase where either one of the periods (release

or partial harvests) is the integer multiple of the other. Note however that the model (1)

formalism is more general. We study the system in the absen
e of pests, i.e. when x = 0. In
addition of being invariant, it is the target state of our system. The stability of the system

around that state is therefore of interest. Our analysis takes pla
e separately for the 
ase

when releases are more frequent than harvests, and when they are less frequent.

We show that in the absen
e of pests at the initial time, the predator population 
onverges

towards a positive periodi
 solution. We then demonstrate that when preys are present at

the initial time, 
onvergen
e of the predator population also takes pla
e to that same periodi


solution, while the preys go extin
t provided some 
ondition on the parameters is veri�ed.

3.1 Pest-free stability analysis

Releases more frequent than harvests

Proposition 1 Let Th = kTr where k ∈ N
∗
and Hypotheses 1 be satis�ed. Then, in the

absen
e of pests, model (1) possesses a globally stable periodi
 solution

(xph (t) , yph (t)) =






0, y∗e−d(t mod Th) + µTre

−d(t mod Tr)

⌊
t mod Th

Tr
⌋−1

∑

j=0

e−jdTr






(3)

where

y∗ =

(

1−e−dTh

1−e−dTr

)

(1− αy) + αy

1− (1− αy)e−dTh
µTr (4)

Proof: When Th = kTr, in the absen
e of pests and using Hypotheses 1, the system is

simpli�ed to























ẋ = 0
ẏ = −dy

x(mT+
r ) = (1− δ (m mod k)αx)x(mTr)

y(mT+
r ) = (1− δ (m mod k)αy)y(mTr) + µTr

∀m ∈ N

(5)

The pest population stays nil sin
e in the absen
e of pests, their population does not


hange either. The solution

xph(t) = 0

is trivial.

INRIA
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On the other hand, the predator population will vary a

ording to the number of preda-

tors manually inje
ted into the system and, sin
e the population is non-zero, a

ording to

the partial harvest e�e
t. The absen
e of their sour
e of food will 
ause an exponential de
ay

of the population. We demonstrate that these for
es will provoke the predator population

to rea
h a periodi
 pattern of period equal to Th, whi
h we shall refer to as the period of

referen
e. The instant following a 
oin
iding partial harvest and release is taken as the point

of referen
e.

To prove Proposition 1, we �rst show by indu
tion that the predator population right

after a release 
an be expressed in terms of the point of referen
e as follows

y(nTh + iT+
r ) = y(nT+

h )e−idTr + µTr

i−1
∑

j=0

e−jdTr
(6)

where i ∈ [0, 1, . . . , (k − 1)]
It is seen that (6) is valid for i = 0 sin
e it is equal to

y(nT+
h ) = y(nT+

h )e0 + µTr

−1
∑

j=0

e−jdTr = y(nT+
h )

Now suppose that (6) holds for i = q where q ∈ [0, 1, . . . , k − 2], i.e.

y(nTh + qT+
r ) = y(nT+

h )e−qdTr ++µTr

q−1
∑

j=0

e−jdTr

We will now show that (6) is valid for i = q + 1. We 
al
ulate y(nTh + (q + 1)T+
r ) from

y(nTh + qT+
r ) using (5), then substituting (3.1) into (7) as follows

y(nTh + (q + 1)T+
r ) = y(nTh + qT+

r )e−dTr + µTr

=



y(nT+
h )e−qdTr + µTr

q−1
∑

j=0

e−jdTr



 e−dTr + µTr

= y(nT+
h )e−(q+1)dTr + µTr

q
∑

j=1

e−jdTr + µTr

= y(nT+
h )e−(q+1)dTr + µTr

q
∑

j=0

e−jdTr

(7)

so that (6) holds true for i ∈ [0, 1, . . . , k − 1].
To evaluate the evolution of y a

ording to the period of referen
e Th, we need to 
al
ulate

the value of y((n + 1)T+
h ), whi
h is equivalent to y(nTh + kT+

r ), in terms of y(nT+
h ) . At

this point however, partial harvesting takes pla
e before predator release; so we �rst express

it in terms of y(nTh + (k − 1)T+
r ) then expand the expression using (6) as follows

RR n° 6284



8 S. Nundloll, L. Mailleret & F. Grognard

y
(

(n+ 1)T+
h

)

= y (nTh + (k − 1)T+
r ) e−dTr(1− αy) + µTr

=



y(nT+
h )e−d(k−1)Tr + µTr

k−2
∑

j=0

e−jdTr



 e−dTr(1 − αy) + µTr

= y(nT+
h )e−dTh + µTr(1− αy)

k−1
∑

j=1

e−jdTr + µTr

= y(nT+
h )e−dTh + µTr



(1− αy)
k−1
∑

j=0

e−jdTr + αy





Note that the summation term 
an also be evaluated so the sequen
e is expressible as

y
(

(n+ 1)T+
h

)

= y(nT+
h )e−dTh + µTr

(

(1− αy)
1− e−dTh

1− e−dTr
+ αy

)

(8)

In this linear dynami
al system, the 
oe�
ient of y(nT+
h ), e−dTh

is less than one in magni-

tude, so the sequen
e will 
onverge to a limit, the equilibrium of (8). This equilibrium yields

(4) and the 
onvergen
e of y(t) to a periodi
 solution yph(t) based on y∗.

Now that we have established the existen
e of the periodi
 solution yph(t), we seek to

formulate it. We fo
us on a referen
e period over nTh < t ≤ (n+1)Th during whi
h yph(t) is
pie
ewise 
ontinuous, with the 
ontinuous 
omponents separated by predator releases. The


ontinuous intervals are de�ned over nTh+iTr < t ≤ nTh+(i+1)Tr where i ∈ [0, 1, . . . , k−1].
For a given value of t, the value of i is easily identi�ed as being i = ⌊ t mod Th

Tr
⌋. The value

of yph(t) is then of the form

yph(t) = yph(nTh + iT+
r )e−d(t mod Tr)

and, from (6) with y(nT+
h ) = y∗, we have that

yph(nTh + iT+
r ) = y∗e−idTr + µTr

i−1
∑

j=0

e−jdTr

so that

yph(t) =



y∗e−idTr + µTr

i−1
∑

j=0

e−jdTr



 e−d(t mod Tr)

= y∗e−d(t mod Th) + µTre
−d(t mod Tr)

i−1
∑

j=0

e−jdTr

= y∗e−d(t mod Th) + µTre
−d(t mod Tr)

⌊
t mod Th

Tr
⌋−1

∑

j=0

e−jdTr

INRIA
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This is of the same form as proposed in (3), thereby 
ompleting our proof. �

The form of the yph fun
tion is illustrated on Figure 1.

PSfrag replacements

0 Tr 2Tr Th = 3Tr 4Tr 5Tr 2Th 7Tr 8Tr 3Th

y
p
h
(t

)

t

Figure 1: Form of the periodi
 solution yph(t) in the 
ase where k = 3. Releases of predators
are apparent at every mTr instant, while the 
umulative e�e
t of harvest and release leads

to an apparent smaller release at every nTh instant. Between those instants, the population

de
ays exponentially sin
e it has no prey to feed on.

Releases less frequent than harvests

When harvesting is more frequent than the release of predators, we have a similar result

about the existen
e of a periodi
 solution.

Proposition 2 Let Tr = kTh where k ∈ N
∗
and Hypotheses 1 be satis�ed. Then, in the

absen
e of pests, model (1) possesses a globally stable periodi
 solution

(xpr (t) , ypr (t)) =
(

0, y∗e−d(t mod Tr)(1 − αy)
⌊ t mod Tr

Th
⌋
)

(9)

RR n° 6284



10 S. Nundloll, L. Mailleret & F. Grognard

where

y∗ =
µTr

1− (1 − αy)ke−dTr
(10)

Proof: When Tr = kTh, in the absen
e of pests and using Hypotheses 1, the system is

simpli�ed to























ẋ = 0
ẏ = −dy

x(nT+
h ) = (1 − αx)x(nTh)

y(nT+
h ) = (1 − αy)y(nTh) + µTrδ (n mod k)

∀n ∈ N

(11)

As previously explained, xpr(t) is solved for trivially as being

xpr(t) = 0

We prove that the predator population again rea
hes a periodi
 solution. This time,

however, the period of referen
e is Tr. The point of referen
e is the instant after a 
oin
iding

harvest and release. We show by indu
tion that the population after a harvest 
an be

expressed as

y(mTr + iT+
h ) = y(mT+

r )e−idTh(1− αy)
i

(12)

where i ∈ [0, 1, . . . , (k − 1)].
It is seen that (12) is valid for i = 0 sin
e it resumes to

y(mT+
r ) = y(mT+

r )e0(1− αy)
0

Suppose (12) holds for i = q where q ∈ [0, 1, . . . k − 2], i.e.

y(mTr + qT+
h ) = y(mT+

r )e−qdTh(1 − αy)
q

(13)

We will now show that (12) is valid for i = q+1. We 
al
ulate the value of y when i = q+1
in terms of y(nTh + qT+

r ), knowing from ẏ = −dy in (11) it will be an exponential de
ay

with the added 
omponent for the harvest. We then substitute (13) in and obtain

y(mTr + (q + 1)T+
h ) = y(mTr + qT+

h )e−dTh(1− αy)
=

(

y(mT+
r )e−qdTh(1− αy)

q
)

e−dTh(1− αy)
= y(nT+

h )e−d(q+1)Th(1 − αy)
q+1

(14)

This is 
learly the same form given from the expression in (12), thereby validating it.

y∗ is given as the �xed point of the sequen
e representing post-release instants. Therefore,

using (12) for i = k and model (11), we next 
al
ulate y((m+ 1)T+
r ) as

y((m+ 1)T+
r ) = y(mTr + kT+

h )
= y(mT+

r )e−kdTh(1 − αy)
k + µTr

= y(mT+
r )e−dTr (1− αy)

k + µTr

(15)
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In this linear dynami
al system, the 
oe�
ient of y(mT+
r ), e−dTr(1 − αy)

k
is less than

one in magnitude, whi
h 
on�rms the existen
e of the �xed point y∗ to whi
h the sequen
e


onverges. This equilibrium yields (10) and the 
onvergen
e of y(t) to a periodi
 solution

ypr(t).
Now that we have established the existen
e of the periodi
 solution ypr(t), we seek to

formulate it. We fo
us on a referen
e period overmTr < t ≤ (m+1)Tr during whi
h ypr(t) is
pie
ewise 
ontinuous, with the 
ontinuous 
omponents separated by harvests. The intervals

of 
ontinuity span mTr + iTh < t ≤ mTr + (i+ 1)Th where i ∈ [0, 1, . . . , k − 1]. For a given

value of t, the value of i is easily identi�ed as being i = ⌊ t mod Tr

Th
⌋. The value of ypr(t) is

then of the form

ypr(t) = ypr(mTr + iT+
h )e−d(t mod Th)

and, from (12) with y(mT+
r ) = y∗, we have that

ypr(mTr + iT+
h ) = y∗e−idTh(1− αy)

i

so that

ypr(t) =
(

y∗e−idTh(1− αy)
i
)

e−d(t mod Th)

= y∗e−d(t mod Tr)(1− αy)
⌊ t mod Tr

Th
⌋

whi
h is exa
tly the expression given in (9) and 
ompletes the proof. �

The form of the ypr fun
tion is illustrated on Figure 2.

3.2 Global stability analysis

Sin
e we will study the 
onvergen
e of the solutions to (0, yp(t)) (where the p subs
ript

stands as well for ph or pr), it will be 
onvenient to des
ribe the system in terms of the

deviation 
oordinates with respe
t to the referen
e periodi
 solution:

x̃(t) = x(t)− xp(t)

ỹ(t) = y(t)− yp(t)

This yields

˙̃x = f(x)− g(x)y

= f(x̃)− g(x̃)(ỹ + yp(t)) (16)

and

˙̃y = h(x)y − dy − h(xp)yp + dyp

= h(x̃)(ỹ + yp(t))− dỹ (17)

RR n° 6284
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PSfrag replacements

0 Th 2Th Tr = 3Th 4Th 5Th 2Tr 7Th 8Th 3Tr

y
p
r
(t

)

t

Figure 2: Form of the periodi
 solution ypr(t) in the 
ase where k = 3. Harvests are

apparent at every nTh instant, while the release of predators dominates the harvest at every

mTr instant. Between those instants, the population de
ays exponentially sin
e it has no

prey to feed on.

The impulsive e�e
ts on x̃ are obviously un
hanged 
ompared to those on x. On the

other hand, the release e�e
ts on y disappear in ỹ; indeed, we have

ỹ(mT+
r ) = y(mT+

r )− yp(mT+
r ) = y(mTr) + µTr − (yp(mTr) + µTr) = ỹ(mTr)

The harvesting impulses are preserved in the expression of ỹ

ỹ(nT+
h ) = y(nT+

h )− yp(nT
+
h ) = (1− αy)y(nTh)− (1− αy)yp(nTh) = (1− αy)ỹ(nTh)

In the sequel, we will perform a global and a lo
al stability analysis. For the latter, we

will need the 
omputation of the linear approximation of the deviation system around the

periodi
 solution (0, yp(t)):

{

˙̃x = (f ′(0)− g′(0)yp(t))x̃
˙̃y = h′(0)yp(t)x̃− dỹ

(18)
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Releases more frequent than harvests

We will �rst prove our result in the 
ase where releases take pla
e more often than har-

vests. We obtain two di�erent 
onstraints for the Lo
al Asymptoti
 Stability (LAS) and

Global Asymptoti
 Stability (GAS) of the periodi
 solution in system (1). The latter is

obviously stronger than the former, but is su�
ient in the 
ase where pests outbreaks do

not immediately take large proportions.

In order to state the following theorem, we �rst need to de�ne the fun
tion

µ
h
(S, r) = d

(

S +
ln (1− αx)

rTh

)

1

1−

(

αy(1−e−dTh)
1−(1−αy)e−dTh

)





e−
dTh
k

k

„

1−e−
dTh
k

«





This fun
tion is in
reasing in S and r be
ause the sign of the partial derivatives is determined

by the sign of the last fa
tor, whi
h 
an be shown to be positive. Indeed, this fa
tor is positive

when

(

αy

(

1− e−dTh
)

1− (1− αy) e−dTh

)





e−
dTh
k

k
(

1− e−
dTh
k

)



 < 1

and we have αye
−

dTh
k ≤ αy and 1− (1− αy) e

−dTh > αy, so that

αye
−

dTh
k

1− (1− αy) e−dTh
< 1

Also, k
(

1− e−
dTh
k

)

≥
(

1− e−dTh
)

sin
e both sides of the inequality have the same value in

Th = 0, and

d

dTh

(

k
(

1− e−
dTh
k

))

= de−
dTh
k ≥ de−dTh =

d

dTh

(

1− e−dTh
)

whi
h shows that µ
h
(S, r) is in
reasing in S and r.

Theorem 1 When Th = kTr with k ∈ N
∗
, the solution (x(t), y(t)) = (0, yph(t)) of (1) is

LAS i�

µ > µ
h

(

f ′(0)

g′(0)
, g′(0)

)

(19)

and is GAS if

µ > µ
h

(

sup
x≥0

f(x)

g(x)
, sup
x≥0

g(x)

x

)

(20)
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14 S. Nundloll, L. Mailleret & F. Grognard

Proof: We start with the proof of global 
onvergen
e under 
ondition (20). In this proof,

we will �rst show that x̃ goes to zero, from whi
h we will derive that ỹ goes to 0 also (so

that y(t) 
onverges to yph(t)).
Let the initial 
ondition for system (16)-(17) be (x̃0, ỹ0) at time t0 = 0+, that is after

the harvest and the predator release that take pla
e at the initial time. Analyzing (17) and

noting that yph(t) + ỹ = y(t) ≥ 0, we have

˙̃y ≥ −dỹ

so that ỹ(t) ≥ min(0, ỹ0)e
−dt

.

In order to analyze the

˙̃x equation, we de�ne the fun
tion

G(x̃) =

∫ x̃

x0

1

g(s)
ds (21)

whi
h 
an easily be seen to be an in
reasing fun
tion of x̃ sin
e g(s) > 0. Sin
e we also have
that

g(s) <
(

supx≥0
g(x)
x

)

s, it is straightforward that lim
x̃

>
→0

G(x̃) = −∞. In order to show the ex-

tin
tion of the pests we will then prove that G(x̃) goes to −∞ as t goes to in�nity. Therefore,

we write the G dynami
s:

dG(x̃)
dt = 1

g(x̃)
˙̃x

= f(x̃)
g(x̃) − ỹ − yph(t)

≤ f(x̃)
g(x̃) −min(0, ỹ0)e

−dt − yph(t)

We will now 
onsider the evolution ofG between two su

essive harvests, that is the evolution

of G between the times nT+
h and (n+ 1)Th for a given n:

G(x̃((n+ 1)Th)) ≤ G(x̃(nT+
h )) +

∫ (n+1)Th

nT+
h

[

f(x̃(s))

g(x̃(s))
−min(0, ỹ0)e

−ds − yph(s)

]

ds

Sin
e no impulse is present inside the integral, we 
an drop the

+
supers
ript in its lower

extremity.

We will now analyze how the harvest that takes pla
e at time (n+ 1)Th impa
ts G. We

have

G(x̃((n+ 1)T+
h )) =

∫ x̃((n+1)T+
h )

x0

1
g(s)ds

=
∫ x̃((n+1)Th)

x0

1
g(s)ds+

∫ x̃((n+1)T+
h )

x̃((n+1)Th)
1

g(s)ds

≤ G(x̃(nT+
h )) +

∫ (n+1)Th

nTh

[

f(x̃(s))
g(x̃(s)) −min(0, ỹ0)e

−ds − yph(s)
]

ds

+
∫ x̃((n+1)T+

h )

x̃((n+1)Th)
1

g(s)ds

(22)
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The last term represents the in�uen
e of harvest onG and 
an easily be approximated be-


ause

x̃((n + 1)Th) > x̃((n + 1)T+
h ) = (1 − αx)x̃((n + 1)Th). Denoting Sg = supx≥0

f(x)
g(x) and

rg = supx≥0
g(x)
x , we have

∫ (1−αx)x̃((n+1)Th)

x̃((n+1)Th)

1

g(s)
ds ≤

∫ (1−αx)x̃((n+1)Th)

x̃((n+1)Th)

1

rgs
ds =

ln(1 − αx)

rg
(23)

Introdu
ing (23) into (22) then yields a bound on the appli
ation between su

essive

moments after harvest.

G(x̃((n+1)T+
h )) ≤ G(x̃(nT+

h ))+

∫ (n+1)Th

nTh

[

f(x̃(s))

g(x̃(s))
−min(0, ỹ0)e

−ds − yph(s)

]

ds+
ln(1− αx)

rg
(24)

We 
an now evaluate an upper-bound for G at any time t ≥ 0. De�ning l as the integer

part of

t
Th
, we have:

G(x̃(t)) −G(x0) ≤
∫ t

0

[

f(x̃(s))
g(x̃(s)) −min(0, ỹ0)e

−ds − yph(s)
]

ds+ l
ln(1−αx)

rg

≤
∫ t

0

[

Sg −min(0, ỹ0)e
−ds − yph(s)

]

ds+ l
ln(1−αx)

rg

= −
∫ t

0
min(0, ỹ0)e

−dsds+
∫ t

lTh
[Sg − yph(s)] ds+ l

∫ Th

0
[Sg − yph(s)] ds

+l
ln(1−αx)

rg

= min(0,ỹ0)
d (e−dt − 1) +

∫ t

lTh
[Sg − yph(s)] ds+ l

∫ Th

0 [Sg − yph(s)] ds

+l
ln(1−αx)

rg

The �rst two terms are bounded (the �rst one is obvious and the se
ond one is upper-bounded

by SgTh). We then have to analyze the third one, whi
h has been obtained through the

periodi
ity of yph(t) and the fourth in order to know if G(x̃(t)) goes to −∞ when t goes to

in�nity. In fa
t, it su�
es to have

∫ Th

0

[Sg − yph(s)] ds+
ln(1− αx)

rg
< 0

to a
hieve this. It is more 
leanly rewritten in the form

∫ Th

0

yph(t)dt > SgTh +
ln(1− αx)

rg
(25)

In order to obtain (20), we are now left with the 
omputation of

∫ Th

0 yph(t)dt, whi
h is

detailed in Proposition 3 of the Appendix:

∫ Th

0

yph(t)dt =
µTh

d



1−

(

αy

(

1− e−dTh
)

1− (1− αy) e−dTh

)





e−
dTh
k

k
(

1− e−
dTh
k

)









(26)
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16 S. Nundloll, L. Mailleret & F. Grognard

Introdu
ing (26) into (25) then yields (20), whi
h shows that this last 
ondition is su�-


ient for having x̃ going to 0 as t goes to ∞.

Sin
e x̃ goes to zero, there exists a �nite time tf after whi
h h(x̃) ≤ d
2 for all times.

Therefore, after this time, we have

˙̃y = h(x̃)(yph(t) + ỹ)− dỹ ≤ h(x̃)yph(t)−
d

2
ỹ

We have seen that h(x̃)yph(t) goes to zero as t goes to in�nity; so does also ỹ.

In order to have the global asymptoti
 stability, we are only left with the lo
al asymptoti


stability to prove. In order to do that, we only have to 
onsider the dis
rete system that

maps the state at time nT+
h onto the state at time (n + 1)T+

h with respe
t to the linear

equation (18) and the dis
rete part. After some 
omputations, we obtain:

(

x̃

ỹ

)

(

(n+ 1)T+
h

)

= B

(

x̃

ỹ

)

(

nT+
h

)

(27)

where

B =





(1− αx)e
R (n+1)Th
nTh

f ′(0)−g′(0)yphdτ 0

‡ (1− αy)e
−d

R (n+1)Th
nTh

dτ





Note that ‡ is a term that we do not use in our analysis, therefore is not expressed.

Indeed, sin
e the matrix is triangular, it is stable if |B11| < 1, i.e.

∫ (n+1)Th

nTh

yphdτ >
f ′(0)Th + ln(1 − αx)

g′(0)
(28)

Similarly to what was done earlier, it 
an be shown that (28) is equivalent to (19), so

that the ne
essary and su�
ient 
ondition for lo
al stability is proven.

It is dire
tly seen that (28) is satis�ed when (25) is be
ause µ
h
(S, r) is in
reasing in S

and r and we have

f ′(0)

g′(0)
= lim

x
≥
→0

f(x)

g(x)
≤ sup

x≥0

f(x)

g(x)
and g′(0) = lim

x
≥
→0

g(x)

x
≤ sup

x≥0

g(x)

x
(29)

This 
ompletes the proof of global stability, sin
e we have shown global 
onvergen
e and

lo
al stability when (20) is satis�ed.

�

Releases less frequent than harvests

If we now 
onsider the 
ase where predators releases take pla
e less often than harvests, we

also obtain global and lo
al stability results based on the following fun
tion

µ
r
(S, r) = d

(

S +
ln(1− αx)

rTh

)

1− (1 − αy)e
−dTh

1− e−dTh

INRIA
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whi
h is in
reasing in S and r sin
e the last fra
tion is positive and αx ≤ 1.

Theorem 2 When Tr = kTh with k ∈ N
∗
, the solution (x(t), y(t)) = (0, ypr(t)) of (1) is

LAS i�

µ > µ
r

(

f ′(0)

g′(0)
, g′(0)

)

(30)

and is GAS if

µ > µ
r

(

sup
x≥0

f(x)

g(x)
, sup
x≥0

g(x)

x

)

(31)

Proof: This proof does not depart very mu
h from the one of Theorem 1. The only

di�eren
e is that the referen
e period is now Tr. We use the same fun
tion G(x̃) as in (21)

and an analysis identi
al to the one of the previous theorem leads to

G(x̃(mTr + (l + 1)T+
h )) ≤ G(x̃(mTr + lT+

h ))

+
∫mTr+(l+1)Th

mTr+lTh

[

f(x̃(s))
g(x̃(s)) −min(0, ỹ0)e

−ds − ypr(s)
]

ds+ ln(1−αx)
rg

whi
h is exa
tly (24) sin
e it is depi
ting the behaviour of the model between two harvesting

instants.

Extending this to the whole Tr interval, we obtain

G(x̃((m+ 1)T+
r )) ≤ G(x̃(mT+

r )) +
∫ (m+1)Tr

mTr

[

f(x̃(s))
g(x̃(s)) −min(0, ỹ0)e

−ds − ypr(s)
]

ds

+k
ln(1−αx)

rg

We now see that this expression is identi
al to (24) with the ex
eption of the presen
e of a

k fa
tor and the expression of ypr(t), whi
h 
omes from (9) instead of (3).

Condition (25) then be
omes

∫ Tr

0

ypr(t)dt > SgTr + k
ln(1− αx)

rg
(32)

and the 
omputation of

∫ Tr

0 ypr(t)dt with ypr(t) as in (9) yields:

∫ Tr

0

ypr(t)dt =
µTr

d

1− e−dTh

1− (1− αy)e−dTh
(33)

This leads to 
onditon (31) (the 
omputation of (33) is detailed in Proposition 4 in the ap-

pendix). Global 
onvergen
e of (x̃, ỹ) to (0, 0) is then 
on
luded by using the same argument

as in the proof of Theorem 1 to show the 
onvergen
e of ỹ to 0.
The lo
al stability 
ondition (30) then dire
tly arises from the analysis of the stability

of the dis
rete linearized system that maps ỹ(mT+
r ) onto ỹ((m+ 1)T+

r ).

(

x̃

ỹ

)

(

(m+ 1)T+
r

)

= B

(

x̃

ỹ

)

(

mT+
r

)

(34)
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18 S. Nundloll, L. Mailleret & F. Grognard

where

B =

(

(1− αx)
ke

R (m+1)Tr
mTr

f ′(0)−g′(0)yprdτ 0

e
R (m+1)Tr
mTr

h′(0)yprdτ (1− αy)
ke−d

R (m+1)Tr
mTr

dτ

)

(35)

Again, sin
e the system matrix is lower triangular, for stability we simply require that

|B11| < 1 and |B22| < 1. The latter yields a trivial 
ondition, so we 
al
ulate the former:

∫ (m+1)Tr

mTr

yprdτ >
f ′(0)Tr + k ln(1 − αx)

g′(0)
(36)

whi
h dire
tly leads to 
ondition (30) for lo
al stability and the proof of global stability is

also 
omplete be
ause µ
r
is in
reasing in S and r and (29) is still satis�ed. �

Comment

As we have seen, when the 
ondition (20) or (31) is satis�ed, the extin
tion of the pests is

GAS. When the lo
al 
ondition (19) or (30) is not veri�ed, the extin
tion of the pests is not

stable and a bifur
ation analysis similar to what is done in [10, 12℄ would show the presen
e

of a limit 
y
le when µ is 
lose to the limit. When µ satis�es 
ondition (19) or (30) only, the

pests extin
tion is lo
ally stable and we 
annot rule out that it is globally stable (sin
e our

global 
ondition is only su�
ient). Su
h a budget has the advantage of being smaller than

the one that guarantees global stability. It allows for good 
ontrol of limited pest invasions;

however the 
ulture is at risk of being destroyed by a large pest outbreak.

Sin
e, in both 
ases, the 
onditions for lo
al and global stability are identi
al up to

two di�erent parameters, any analysis of the 
onsequen
es of one of those 
onditions will

immediately translate to the other. The interpretation of 
onditions (19)-(20) and (30)-(31)

will be given in the next se
tion.

4 Interpretation of results

It is easy to see that µ
r
is independent of Tr. The in�uen
e of Tr on µ

h
is tri
kier to identify

so we shall analyse it mathemati
ally �rst. We then present graphi
ally the variation of

both µ
r
and µ

h
with respe
t to Tr for a typi
al set of parameter values, and attenpt to give

a pra
ti
al interpretation of these results.

4.1 Mathemati
al analysis

We �rst need to note that when S+ ln(1−αx)
rTh

< 0, for any of the lo
al or global 
ondition, the

ondition is trivially veri�ed. Indeed, it implies simply that no biologi
al 
ontrol is needed

for exterminating the pests; in fa
t, the partial harvesting is e�e
tive enough for this purpose

(as αx is large enough). We now evaluate how the release frequen
y in�uen
es the minimal

budget when this 
ondition is not trivial.
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We have already seen that µ
r
is independent of Tr. We will now study the latter's

in�uen
e on µ
h
.

Theorem 3 Let Th = kTr where k ∈ N
∗
.

The minimal budget is monotoni
ally de
reasing with respe
t to the release period Tr for

non-negative values of µh, i.e.

∂µ
h

∂Tr
< 0 (37)

.

Proof: Knowing that Tr is equal to

Th

k , it is possible to identify the sign of

∂µ
r

∂Tr
noting

that

∂µ
h

∂Tr
=

∂µ
h

∂k

∂k

∂Tr
=

∂µ
h

∂k

(

−k2

Th

)

So

sgn

(

∂µ
h

∂Tr

)

= −sgn

(

∂µ
h

∂k

)

(38)

µ
h
is expressed as the produ
t of two distin
tive parts, one of whi
h is independent of k and

whi
h, for the non-trivial stability 
ondition, is positive,

S +
ln(1− αx)d

rTh
> 0

where S and r are the parameters required for the lo
al and global 
onditions, as de�ned

previously.

The se
ond part is viewed as a 
omposite fun
tion of k so that (38) 
an be evaluated as

sgn

(

∂µ
h

∂Tr

)

= −sgn





∂

∂k





1

1−
(

αy(1−e−dTh )

1−(1−αy)e−dTh

)

σ(k)









(39)

where σ(k) =

(

e−dTh/k

k(1−e−dTh/k)

)

. Then, we get

sgn

(

∂µ
h

∂Tr

)

= −sgn







αy(1−e−dTh)

1−(1−αy)e−dTh

(

1−
(

αy(1−e−dTh )

1−(1−αy)e−dTh

)

σ(k)
)2

∂σ

∂k







= −sgn

(

∂σ

∂k

)

= −sgn

(

e−dTh/k

k2(1− e−dTh/k)2

(

dTh

k
− 1 + e−dTh/k

))

= −sgn
(

ke−dTh/k + dTh − k
)

(40)

RR n° 6284



20 S. Nundloll, L. Mailleret & F. Grognard

Sin
e

∂

∂k
(ke−dTh/k + dTh − k) =

(

1 +
dTh

k

)

e−dTh/k − 1

≤ 0

and using l'Hospital's Rule

lim
k→∞

(

ke−dTh/k + dTh − k
)

= dTh + lim
k→∞

(

e−dTh/k − 1
1
k

)

= dTh + lim
k→∞

(

dTh

k2 e−dTh/k

− 1
k2

)

= 0

we dedu
e that sgn

(

ke−dTh/k + dTh − k
)

> 0 Therefore,

sgn

(

∂µ
h

∂Tr

)

< 0 (41)

�

We 
an dedu
e that we hit the smallest minimal value for the budget for the largest

possible Tr in this 
ase that 
orresponds to when k = 1. This happens when the release

frequen
y equals the partial harvest frequen
y.

4.2 Dis
ussion

Figure 3 represents the analyti
al results obtained in the previous se
tions for a 
hosen set

of parameters. The plot in
ludes the two studied 
ases: either one of the partial harvest

and the release period is an integer multiple of the other.

Under this set of possible s
enarios, in
reasing the frequen
y of release beyond the fre-

quen
y of harvest requires that the total number of predators to invest in be higher than

that when releases take pla
e less or as often as partial harvests. In the latter 
ase, to

ensure pest eradi
ation, the total budget of predators to invest in is �xed, independently of

the release period.

These results imply that it is 
learly less 
ostly to prote
t a greenhouse 
ulture for lower

frequen
ies of release. Of additional e
onomi
 interest, in this 
ase, the biologi
al treatment

is always 
ombined with partial harvesting, so that there is little or no extra 
ost linked

to the presen
e of workers on-site. However, we re
all that [13℄ previously demonstrated

that the higher the release frequen
y, the smaller the worst-
ase damages. Combining the

results from both studies seems to indi
ate that the most pro�table release strategy among

the possibilities that have been 
onsidered is the one where releases are syn
hronized with

the partial harvests.
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Figure 3: Variation of the minimal number of predators required per budget year µ as a

fun
tion of release to harvest period ratio. Parameters are given the values (in arbitrary

units): αx = αy = 0.5, d = 1, and the rate of growth f ′(0), fun
tional response g′(0) and
numeri
al response h′(0) with respe
t to time when the e
osystem is pest-free, i.e. xp(t) = 0,
are all equal to 1.

5 Con
lusion

The results obtained in this paper for the stability of the system are yet another 
on�rmation

that inundative 
ontrol 
an be an e�e
tive means of suppressing low pest invasions in a

greenhouse. This requires that a su�
ient number of predators are introdu
ed in the system

as in, for instan
e, [7, 9℄.

Our study aimed to provide a 
ontrol strategy in the prote
tion of 
ontinuously grown


rops that are partially harvested on a regular basis. We demonstrated that partial har-

vesting had a non-negligible e�e
t on biologi
al 
ontrol and needed to be taken into a

ount

when devising a 
ontrol strategy in the 
ase of su
h 
rops.

We thus investigated the 
ombined e�e
ts of releases and partial harvests in terms of

the relative frequen
ies of their implementation. We 
onsidered the 
ase where these two

events o

urred at periods su
h that one was the integer multiple of the other, and with the

two events 
oin
iding over the longer period. In parti
ular, we found when releases were

as frequent as or less than the partial harvests, the minimal budget did not depend on the

period of release but instead on the harvest parameters, the growth fun
tion of the pest

population, the mortality of the predators and the fun
tional response. When releases were
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more frequent than the partial harvests however, the minimal budget value in
reased with

the in
reasing frequen
y of the releases, ex
eeding the 
onstant value obtained for the less

frequent 
ase. Combined with the �ndings of [13℄ whi
h pointed out that higher release

frequen
ies led to the optimal 
ontrol poli
y, we 
on
luded that for the set of possibilities

that was studied, the 
urrent best strategy is when release and harvest frequen
ies are equal.

This approa
h has, however, its short
omings. Sin
e the integer multiple fa
tor is key

to 
al
ulating the minimal budget whi
h would satisfy the stability 
onditions, it is not yet

generalised to other s
enarios where neither period is the integer multiple of the other. This

would happen for instan
e at other rational non-integer ratios as irrational ones. It is highly

likely that these intermediate ratios might indu
e other dynami
s in the system. Whether

they might stabilise it given even lower minimal budget values or favour 
haos remains to

be seen. Moreover it would be interesting to extend the results to the 
ase where the two


ontrols never 
oin
ide in spite of following a periodi
 pattern. This would be in the line of

the work, for instan
e, of [11℄, where pesti
ide spraying - whi
h is analogous to harvests -

and releases are not syn
hronised.

Nevertheless, we 
onsider that our simpli�
ation already has its pra
ti
al e
onomi
al

advantage. Indeed, 
oin
iding periods imply little or no additional 
osts in
urred in terms

of labour: the task of predator release 
an be assigned to workers in 
harge of partial

harvesting. Field-testing is now the next step required to validate the results of this paper.
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Appendix

Proposition 3 Let Hypothesis 1 hold, then

∫ Th

0

yph(t)dt =
µTh

d



1−

(

αy

(

1− e−dTh
)

1− (1− αy) e−dTh

)





e−
dTh
k

k
(

1− e−
dTh
k

)









Proof: In order to 
ompute the integral, we des
ribe yph(t) as yph(iT
+
r )e−(t−iTr)

in ea
h

time interval [iTr, (i+ 1)Tr], with yph(iT
+
r ) given by (6) when y(nT+

h ) = y∗. This yields:

∫ Th

0
yph(t)dt =

k−1
∑

i=0

yph(iT
+
r )

∫ (i+1)Tr

iTr

e−d(t−iTr)dt

=
k−1
∑

i=0



y∗e−idTr + µTr

i−1
∑

j=0

e−jdTr





∫ Tr

0

e−dtdt

=
(

y∗ 1−e−kdTr

1−e−dTr
+ µTr

∑k−1
i=0

1−e−idTr

1−e−dTr

)

1−e−dTr

d

= y∗

d (1 − e−kdTr) + µTr

d

(

k − 1−e−kdTr

1−e−dTr

)

=

„

1−e−dTh

1−e−dTr

«

(1−αy)+αy

1−(1−αy)e−dTh

µTr

d (1− e−kdTr) + µTr

d

(

k − 1−e−kdTr

1−e−dTr

)

= µTh

dk

„

(1−e−dTh)(1−αy)+αy

„

1−e−
dTh
k

««

(1−e−dTh)
„

1−e−
dTh
k

«

(1−(1−αy)e−dTh)

+µTh

dk

„

k

„

1−e−
dTh
k

«

−(1−e−dTh)
«

(1−(1−αy)e
−dTh)

„

1−e−
dTh
k

«

(1−(1−αy)e−dTh)

= µTh

dk

„

(1−(1−αy)e
−dTh)−αye

−
dTh
k

«

(1−e−dTh)
„

1−e−
dTh
k

«

(1−(1−αy)e−dTh)

+µTh

dk

„

k

„

1−e−
dTh
k

«

−(1−e−dTh)
«

(1−(1−αy)e
−dTh)

„

1−e−
dTh
k

«

(1−(1−αy)e−dTh)

= µTh

dk

„

−αye
−

dTh
k

«

(1−e−dTh)+
„

k

„

1−e−
dTh
k

««

(1−(1−αy)e
−dTh)

„

1−e−
dTh
k

«

(1−(1−αy)e−dTh)

= µTh

d



1−

(

αy(1−e−dTh)
1−(1−αy)e−dTh

)





e−
dTh
k

k

„

1−e−
dTh
k

«









�
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Proposition 4 Let Hypothesis 1 hold, then

∫ Tr

0

ypr(t)dt =
µTr

d

1− e−dTh

1− (1− αy)e−dTh

Proof: In order to 
ompute the integral, we des
ribe ypr(t) as ypr(iT
+
h )e−(t−iTh)

in ea
h

time interval [iTh, (i+ 1)Th], with ypr(iT
+
h ) given by (12) when y(mT+

r ) = y∗. This yields:

∫ Tr

0 ypr(t)dt =

k−1
∑

i=0

ypr(iT
+
h )

∫ (i+1)Th

iTh

e−d(t−iTh)dt

=

k−1
∑

i=0

y∗eidTh(1− αy)
i

∫ Th

0

e−dtdt

= y∗
(1−e−dTh )

d

k−1
∑

i=0

y∗eidTh(1 − αy)
i

= µTr

1−(1−αy)ke−dTr

(1−e−dTh)
d

1−(1−αy)
ke−kdTh

1−(1−αy)e−dTh

= µTr(1−e−dTh)
d(1−(1−αy)e−dTh)

�
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