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Abstract

This paper is divided in two parts. In the first part we consider a convergent
q-analog of the divergent Euler series, with q ∈ (0, 1), and we show how the Borel
sum of a generic Gevrey formal solution to a differential equation can be uniformly
approximated on a convenient sector by a meromorphic solution of a corresponding
q-difference equation. In the second part, we work under the assumption q ∈ (1,+∞).
In this case, at least four different q-Borel sums of a divergent power series solution of
an irregular singular analytic q-difference equations are spread in the literature: under
convenient assumptions we clarify the relations among them.
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Introduction

Let C[[x]] be the ring of formal power series with complex coefficients and C{x} the ring of

germs of analytic functions at zero. A divergent formal power series f̂ =
∑

n≥0 fnx
n+1 ∈

xC[[x]]rxC{x} is said to be a generic Gevrey series if it is solution of a differential equation
of the form

(1) an(x)
(
x2∂

)n
y(x) + an−1(x)

(
x2∂

)n−1
y(x) + · · ·+ a0(x)y(x) = g(x) ,

where ∂ = d
dx and a0(x), . . . , an(x), g(x) ∈ C{x}, with a0(0)an(0) 6= 0. This implies that

its formal Borel transform B(f̂) = ∑
n≥0

fn
n! ξ

n ∈ C{ξ} is a germ of an analytic non entire
function. The most important example is the Euler series

Ê(x) =
∑

n≥0

(−1)nn!xn+1 ,

which is solution of the differential equation x2∂y + y = x. A generic Gevrey series has
the following properties: B(f̂) can be analytically continued along almost all direction d ∈
(−π, π] and the Laplace integral along the half line eidR+:

Sd(f̂) =

∫ eid∞

0

B(f̂)(ξ)e−ξ/xdξ ,

called sum of f̂ in the direction d, represents a convergent solution of (1), analytic on a

convenient sector and asymptotic to f̂ at zero: this is the first result of the well-known
theory of summation of divergent series (cf. [RM90, Mal95, LR90, LR95]).

In the last fifteen years analogous summation theories for q-difference equations have
been developed (cf. [Zha99, MZ00, Zha02, RZ02, DSK05]). This last sentence already
shows one issue in the topic: there are many q-summation theories in the literature and the
relations among them are not clear.

Let us consider a q-deformation of the Euler series, namely:

Êq(x) =
∑

n≥0

(−1)n[n]!qx
n+1 ,

2



where [n]q = 1 + q + · · · + qn−1 and [n]!q = [n]q[n − 1]q · · · [1]q. This series converges

coefficientwise to Ê(x) when q → 1 and is solution of the q-difference equation

x2dqy + y = x , with q ∈ C
∗ and dqy(x) =

y(qx)− y(x)

(q − 1)x
,

which is a discretization, in an obvious sense, of the so-called Euler differential equation
x2∂y+ y = x. A first dichotomy immediately appears: when |q| < 1 the series Êq is a germ

of analytic function, converging for |x| < |1 − q|, while for |q| > 1 the series Êq diverges.
This is itself quite a curious fact, that we have investigated in the present paper.

As far as the divergent case |q| > 1 is concerned, another dichotomy immediately shows
up: authors have been using two formal Borel transforms, namely

Bq(f̂) =
∑

n≥0

fn
[n]!q

ξn and Bq(f̂) =
∑

n≥0

fn
qn(n−1)/2

ξn .

Notice that we have Bq(Êq) =
1

1+ξ and Bq(Êq) = Êp(ξ), with p = q−1. Each one of these
formal Borel transforms will be seen to naturally determine two summation procedures, so
that we end up with at least four summation procedures: understanding the relations among
them is a natural question. Notice that from an arithmetic point of view, Bq and Bq are
deeply different (cf. [And00]).

∗ ∗ ∗

The present paper is divided in two parts: in the first one we consider the case q ∈
(0, 1) ⊂ R, while in the second one we study different summation procedures under the
assumption q ∈ (1,∞). Let us make a few comments on these assumptions:

• We assume that the parameter q is real: this simplifies the exposition, although it is not
always completely necessary.

• Authors writing on q-difference equations say sometimes that choosing q smaller or greater
than one is only a matter of convention: as we explain below, this is not true in the present
situation, and the two cases need to be investigated separately.

Let q ∈ (0, 1) ⊂ R. In this case Êq is the Taylor expansion at 0 of a meromorphic function
Eq on C, whose poles are a discrete subset of the negative real axis R−. In §1 we prove the
uniform convergence of Eq on the compacts of CrR− to the analytic continuation E of the

Borel sum of Ê in the direction R+. The proof of this result is based on the development
of Eq at ∞, which is a q-deformation of the classical expansion of E at ∞ ([EMOT81, page
261]):

E(x) = (− log x+ γ)e
1
x +

∑

n≥1

∑
1≤k≤n

1
k

n!

(
1

x

)n

,

where γ = limn→∞

(∑n
k=1

1
k − ln(n)

)
is the Euler constant. In the same spirit, using

Sauloy’s canonical solutions at ∞ of a fuchsian q-difference operators [Sau00] and his result
on their confluence when q → 1, we can prove the main theorem of the first part. Namely,
let y(q, x) =

∑
n≥0 yn(q)x

n+1 ∈ xC[[x]] be a family of formal power series, with q ∈ (η, 1],
for some η ∈ (0, 1). We suppose that the yn(q)’s are continuous functions of q and that the
family φ(q, ξ) = Bqy(q, x) ∈ C{ξ} is solution of a family of equations over P1

C
, fuchsian and

non resonant at ∞1. Then (cf. Theorem 2.6 below):

1For a precise definition of a family of equations over P1

C
, fuchsian and non resonant at ∞, cf. Assumption

2.7 below.
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Theorem 1. Let d ∈ [0, 2π) be such that φ(1, x) is holomorphic on a domain containing the
half line eidR+. Then for any x ∈ V := {| argx− d| < π

2 } we have

lim
q→1−

y(q, x) = Sd(y(1, x)) =

∫ eid∞

0

φ(1, ξ)e−ξ/xdξ ,

the convergence being uniform on the compacts of V .

This result immediately implies two corollaries (cf. §2.3 below). First of all, let y(x) =∑
n≥0 ynx

n+1 ∈ xC[[x]] be a series such that φ(ξ) =
∑

n≥0
yn

n! ξ
n is solution of a fuch-

sian differential equation
∑µ

i=0Ai(ξ)(x∂)
iφ = 0 on P1

C
, non resonant at ∞. One can con-

struct a family of power series yq(x), with q ∈ (0, 1), such that Bqyq(ξ) is solution of∑µ
i=0 Ai(ξ)(xdq)

iφ = 0 and yq(x) converges coefficientwise to y(x) when q → 1−. Then:

Corollary 2. The family yq(x) converges uniformly to the Borel sum Sd(y(ξ)) of y(x),
when q → 1−, on the compacts of a convenient sector V = {| argx− d| < π/2}.

A second corollary is about the sum of confluent hypergeometric series. Let us consider
a, b ∈ C, with a− b 6∈ Z, and the basic hypergeometric function:

Φ(a, b; q, x) =
∑

n≥0

(qa; q)n(q
b; q)n

(q; q)n

(
x

1− q

)n

,

where (a; q)0 = 1 and (a; q)n = (1− a)(1− qa) · · · (1− qn−1a) for any integer n ≥ 1.

Corollary 3. The analytic function Φ(a, b; q, x) converges uniformly to the Borel sum of
the hypergeometric confluent series

2F0(a, b;−;x) =
∑

n≥0

(a)n(b)n
n!

xn ,

with (a)0 = 1 and (a)n = a(a + 1) · · · (a + n) for any integer n ≥ 1, on the compacts of a
convenient sector centered at 0, when q → 1−.

Finally, notice that the result on the confluence of Eq can be deduced from theorem 1.

The second part of the paper deals with the summation of divergent q-series when q ∈
(1,∞) ⊂ R. Following the scheme of the first part, we start our investigation studying
four summations of the series Êq(x). We consider the q-exponential and the classical Theta
function (here p = q−1):

eq(x) =
∑

n≥0

xn

[n]!q
, θp(x) =

∑

n∈Z

pn(n−1)/2xn .

We replace, in the classical Laplace integral, the exponential function by eq or θp. By using
an usual integral or a discrete q-analogue2, denoted

∫
λpZ fdpξ, we get four different q-Borel

sums of Êq(x):

Ed
q (x) =

q − 1

ln q

∫ eid∞

0

1

(1 + ξ)eq(q
ξ
x )
dξ, Ed

q (x) =
q

ln q

∫ eid∞

0

Êp(ξ)

θp(q
ξ
x )
dξ;

E [λ]
q (x) =

q

1− p

∫

λpZ

1

(1 + ξ
1−p )eq(q

ξ
(1−p)x )

dpξ, E[λ]
q (x) =

q

1− p

∫

λpZ

Êp(ξ)

θq(q
ξ
x)
dpξ,

2It’s precisely the so-called Jackson’s integral, which is an infinite sum that approximates the associated
usual integral. The precise definition is in Appendix A below.
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where d ∈ (−π, π) and λ /∈ −pZ. We prove that Ed
q (x) = Ed

q (x) on the sector arg(x) ∈
(−2π, 2π) of the Riemann surface of the logarithm and that E [λ]

q (x) = E
[λ]
q (x) for any

x ∈ Cr (p− 1)λqZ. Moreover we can explicitly determine the functions Ed
q (x)−E [λ]

q (x) and

E [λ]
q (x) − E [µ]

q (x) for x ∈ C r R−, in terms of the Theta function. Finally, we establish the

following relation between Ed
q (x) and E [λ]

q (x) (cf. Corollary 3.10 below):

Ed
q (x) =

1

ln q

∫ q

1

E [λ]
q (x)

dλ

λ
.

In an analogous way, for a formal power series f̂ ∈ C[[x]] such that Bqf̂ is an analytic

function with a q-exponential growth of order one at ∞ we can define its sums Sd
q f̂ , S [λ]

q f̂ ,

Sd
q f̂ and S

[λ]
q f̂ . Using some explicit results for the Tschakaloff series and a q-convolution

product adapted to the situation we can prove the following (cf. Theorem 4.14):

Theorem 4. Let f̂ ∈ C[[x]] be a generic q-Gevrey series. Then for any λ ∈ C∗ r∪n
i=1µiq

Z,

for convenient µ1, . . . , µn ∈ C∗, and almost all direction d ∈ (−π, π), we have Sd
q f̂ = Sd

q f̂

and S [λ]
q f̂ = S

[λ]
q f̂ . Moreover:

Sd
q f̂ =

1

ln q

∫ qeid

eid
S [λ]
q f̂

dλ

λ
.

∗ ∗ ∗

The theory of irregular singular q-difference equations is nowadays relatively well under-
stood. This paper deals with two of the questions that are still without answer, namely:

1. Thanks to the work of J. Sauloy [Sau00] we know how to “uniformly approximate” the
global monodromy of a fuchsian differential equation on P1

C
, in terms of the Birkhoff matrices,

which is a sort of q-monodromy, of a family of q-difference equations deforming the given
differential one. Of course an analogous result is expected be true for the Stokes phenomenon:
actually the confluence of the Stokes matrices is studied for some functional equations linked
to classical special functions (cf. for instance [Zha02]). The main theorem of the first part
of this article goes in the direction of a discrete deformation of the Stokes phenomenon:
differently from previous authors, we consider a discrete convergent deformation of the
divergent differential datum. This approach is not really explored and the present result
surely does not exhaust its possible applications.

2. In the second part of the paper we study the relations between the different kind of q-Borel
sums considered in the literature. We prove the relations among them for a generic Gevrey
series. This is a first step towards the proof of a general result for a divergent solution of a
q-difference equations, having a Newton polygon with more than one slope.

Acknowledgement. We would like to thank the organizers of the Séminaire sur les
équations aux q-différences, at the University of Toulouse 3, and of the Special Session
in Differential Algebra, at the 2007 AMS Spring Eastern Sectional Meeting, for giving us
the possibility to expose the results contained in this paper and their interest in our work.
In particular we thank Yves André, Jean-Pierre Ramis and Jacques Sauloy for their interest
and encouragement.

The first author would like to thanks the University of Lille 1, and particularly the
participants of the Séminaire de théorie de Galois différentielle, for their hospitality.

The authors thanks the anonymous referee for his remarks and suggestions.
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Part I. Convergent q-Borel and q-Laplace transform and

confluence: the case q < 1

We suppose that q ∈ (0, 1) ⊂ R and we set p = q−1.
The first part of the paper is organized as follows. First of all we study the properties of

the q-deformation Eq(x) =
∑

n≥0(−1)n[n]!qx
n of the Euler series: namely we give two integral

representations for Eq(x), and use them for proving that Eq(x) converges uniformly to the

Borel sum of Ê(x) =
∑

n≥0(−1)nn!xn in the direction R+, uniformly on the compacts
of a convenient sector. Then we give an analogous result for general q-series, deforming
coefficientwise a Gevrey series of order 1. In appendix A we recall some general facts on the
Jackson integral, while in appendix B we prove a degenerate q-Watson formula for Heine’s
series that we need in §1 for the proof of Proposition 1.5.

1 Convergent q-Euler series

The series
Eq(x) =

∑

n≥0

(−1)n[n]!qx
n+1 ,

where [n]q = qn−1
q−1 and [n]!q = [n]q[n− 1]q · · · [1]q, represents a germ of analytic function at

0. If we consider the q-derivation:

dqy =
y(qx)− y(x)

(q − 1)x

and observe that dqx
n = [n]qx

n−1 for any n ∈ Z, n ≥ 1, then Eq(x) verifies the functional
equation :

x2dqy + y = x ,

that can be rewritten in the form:

y(x) =
x

x+ 1− q
y(qx)− (q − 1)x

x+ 1− q
.

By substitution of x by qnx, we deduce that

y(qnx) =
qnx

qnx+ 1− q
y(qn+1x) − (q − 1)qnx

qnx+ 1− q
,

which implies that Eq(x) can be continued to an analytic function on C r {(q − 1)qn : n ∈
Z, n ≤ 0}. The discrete spiral of poles {(q − 1)qn : n ∈ Z, n ≤ 0} of Eq turns out to be a
spiral of simple poles, as the following lemma shows:

Lemma 1.1. The analytic function Eq admits the following expansion

(1.1.1) Eq(x) = (1− q)
∑

n≥0

(qn+1; q)∞

1 + 1−q
qnx

,

where (a; q)∞ =
∏∞

i=0(1 − qia).
In particular for any k ∈ Z, k ≤ 0, the function Eq(x) has a simple pole at (q − 1)qk.

The residue of the differential form Eq(x)dx at (q − 1)qk is equal to

Resx=(q−1)qkEq(x)dx = −(1− q)2qk(q1−k; q)∞ .

6



We recall some standard notations for basic hypergeometric functions




2φ1 (a, b; c; q, x) =

∑

n≥0

(a; q)n(b; q)n
(c; q)n(q; q)n

xn ,

where (a; q)0 = 1 and (a; q)n =
∏n

k=1(1− aqk−1)) for 1 ≤ n ≤ ∞,

and the Heine’s basic transformation (cf. [GR90, §1.4]):

(1.1.2) 2φ1 (a, b; c; q, x) =
(a; q)∞(bx; q)∞
(c; q; )∞(x; q)∞

2φ1 (c/a, x; bx; q, a) (|q| < 1, |a| < 1) .

Proof. The lemma above is a straightforward application of (1.1.2), in fact:

(1.1.3) Eq(x) = x 2φ1

(
q, q; 0; q,− x

1− q

)
.

The calculation of the residues of Eq(x) follows at once.

1.1 Integral representation

Using the Jackson’s integral (cf. Appendix A for the definition) we obtain the following
integral representation for Eq:
Proposition 1.2. For any x ∈ Cr {(q − 1)qn : n ∈ Z, n ≤ 0}, we have:

(1.2.1) Eq(x) =
∫ x

1−q

0

(q(1 − q) t
x ; q)∞

t+ 1
dqt =

∫

qZ x
1−q

(q(1 − q) t
x ; q)∞

t+ 1
dqt.

Proof. Let us remark that (q−k; q)∞ = 0 for any k ∈ Z, k ≥ 0. Then it follows from Remark
A.5, that Formula (1.1.1) is equivalent to (1.2.1)

Remark 1.3. A straightforward verification shows that the infinite product (q(1− q)x; q)∞
represents a germ of analytic function at 0 and that it verifies the equation

y(px) = (1 + (p− 1)(−qx)) y(x) ,

or equivalently
dpy(x) = −qy(x) .

This implies that (q(1− q)x; q)∞ coincides with the analytic function at 0:

ep(−qx) :=
∑

n≥0

(−qx)n
[n]!p

,

so that Equation (1.2.1) takes the more familiar shape:

Eq(x) =
∫ x

1−q

0

ep(−qt/x)
t+ 1

dqt ,

that so closely reminds the Euler integral:

E(x) =
∫ +∞

0

e−
t
x

t+ 1
dt .

The analytic function E(x) can be continued to CrR−, it is asymptotic at zero to the Euler
series

∑
n≥0(−1)nn!xn+1 and is solution of the differential equation x2y′ + y = x. In the

following subsection we are going to study the behavior of Eq(x) with respect to E(x) when
q → 1−.

7



1.2 Confluence

Let us denote by E(x) the analytic continuation to C \ (−∞, 0] of the Borel sum of Ê(x) in
the direction R+:

E(x) =
∫ +∞

0

e−
t
x

t+ 1
dt, ℜx > 0 ,

and by log x the analytic continuation to C \ (−∞, 0] of log x.

Theorem 1.4. If q → 1−, the analytic continuation of Eq(x) converges to E(x) for any
x ∈ C r (−∞, 0] and the convergence is uniform on the compacts of Cr (−∞, 0].

The proof of the theorem above relies on the following result (cf. §B.2 below for the
proof):

Proposition 1.5. The following identity holds, for any x ∈ C∗ \ q−N:
(1.5.1)
∑

n≥0

(q; q)nx
n+1 = −

(
−qxθ

′(−qx)
θ(−qx) + 1 +A(q)

)( q
x
; q
)

∞
+
∑

n≥1

an
(q; q)n

qn(n+1)/2

(
− 1

x

)n

,

where
θ(x) = θ(q, x) =

∑

n∈Z

qn(n−1)/2xn ,

A(q) =
∑

n≥0

qn+1

qn+1 − 1

and

an+1 =

n∑

k=0

1

qk+1 − 1
, n ≥ 0 .

Our strategy for the proof of Theorem 1.4 is based on the fact that (1.5.1) is a “defor-
mation” of the following classical formula:

(1.5.2) E(x) = (− log x+ γ)e
1
x +

∑

n≥1

∑
1≤k≤n

1
k

n!

(
1

x

)n

,

where γ is the Euler constant:

γ = lim
n→∞

(
n∑

k=1

1

k
− ln(n)

)
.

In fact, taking the logarithmic derivative of the functional equation θ(x) = xθ(qx), one proves

that the meromorphic function (q − 1)z θ′(−z)
θ(−z) verifies the equation y(qx) − y(x) = q − 1 or

equivalently dqy(x) =
1
x , therefore it “deforms” the logarithm. On the other hand we have:

(q − 1)A(q) =
∑

n≥0

qn+1

[n+ 1]q
,

whose link to the Euler constant is intuitive. The proof of Theorem 1.4 is a formalization
of these ideas.
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Proof of Theorem 1.4

If we perform the variable change x→ x
q−1 in (1.5.2) and remember that

ep (q/x) =

(−q(1− q)

x
; q

)

∞

, ℓq(x) := −xθ
′(−x)
θ(−x) ,

then we obtain the expression

(1.5.3) Eq(x) = (q − 1)

[
ℓq

(
qx

q − 1

)
+ 1 +A(q)

]
ep

( q
x

)
+
∑

n≥1

(q − 1)an
[n]!q

qn(n−1)/2
( q
x

)n
,

that we are going to analyze term by term.
First of all the constant A(q) can be expressed in terms of the logarithmic derivative

Ψq(x) =
Γ′
q(x)

Γq(x)
(see (B.1.5), where Ω(q) = A(q)):

(1.5.4) A(q) = − 1

ln q
(Ψq(1) + ln(1− q)) .

The following result says how the q-logarithm ℓq tend to the usual logarithm.

Lemma 1.6. Let ǫ ∈ (0, π) and consider the sector Vǫ = {x ∈ C∗ : | arg x| ≤ π − ǫ}. Then
the following uniform estimate holds for any (q, x) ∈ (0, 1)× Vǫ:

(1.6.1) | ln q ℓq(−
√
q x) + log x| ≤ 4π e

2π
ln q

ǫ

(1− e
4π2

ln q )(1− e
2π
ln q

ǫ)
.

Proof. The lemma is a consequence of the following classical functional relation for θ(x) (cf.
[WW88, §21.51, p. 475], where ϑ3(z|τ) = θ(

√
q e2πiz) with q = e2πiτ ):

(1.6.2) θ(
√
q x) =

√
2π

ln(1/q)
e−

log2 x
2 ln q θ∗(

√
q∗ x∗),

where we write

x∗ = e−
2πi
ln q

log x, q∗ = e
4π2

ln q

and denote by θ∗ the Theta function obtained by replacing q by q∗. Indeed, if we take the
logarithmic derivative w.r.t. the variable x in (1.6.2) and observe that ln q xdx∗ = −2πix∗dx,
then we obtain the following expression:

(1.6.3) ln q ℓq(−
√
q x) + log x = −2πiℓq∗(−

√
q∗ x∗),

so that we only need to examine ℓq∗(−
√
q∗ x∗). The key point of the proof is the fact that

q∗ → 0+ when q → 1−.
For ǫ ∈ (0, π) we set:

rǫ = e
2π
ln q

ǫ ∈ (
√
q∗ , 1), V ∗

ǫ = {x ∈ C :

√
q∗

rǫ
≤ |x| ≤ rǫ√

q∗
}.

It’s obvious that for any x ∈ Vǫ, we have x∗ ∈ V ∗
ǫ , so that

(1.6.4) q∗ <
q∗

rǫ
≤ |√q∗ x∗| ≤ rǫ < 1.

9



On the other hand, the following identity, consequence of the Jacobi triple product,

X
θ∗′(X)

θ∗(X)
=
∑

n≥0

(
q∗nX

1 + q∗nX
− q∗n+1

X + q∗n+1

)
,

combined with the inequality:

|1 +Xq∗n| ≥ 1− |X |, |X + q∗n+1| ≥ |X | − q∗ , for q∗ < |X | < 1,

implies that:

(1.6.5) sup
q∗
rǫ

≤|X|≤rǫ

|ℓq∗(−X)| ≤ rǫ
1− q∗

1

1− rǫ
+

q∗

1− q∗
1

q∗

rǫ
− q∗

≤ 2rǫ
(1− rǫ)(1− qǫ)

.

We get (1.6.1) and hence Lemma 1.6 by combing (1.6.3) and (1.6.5).

End of the proof of Theorem 1.4. By replacing x by
√
qx/(1− q) in Lemma 1.6, we have:

ℓq

(
qx

q − 1

)
= − 1

ln q

[
log x+ ln

( √
q

1− q

)
+O

(
e2πǫ/ ln q

)]
,

so that we obtain, by (1.5.4),

(1.6.6) ℓq

(
qx

q − 1

)
+ 1 +A(q) = − 1

ln q

[
log x+Ψq(1) +

ln q

2
+O(e2πǫ/ ln q)

]
,

where Ψq denotes the logarithmic derivative of Γq. As q → 1−, the function Γq(x) converges
uniformly to Γ(x) on any compact of C \ (−N) (cf. [Zha01]), so Ψq(x) converges to the
logarithmic derivative Ψ(x) of the Γ function. From the classical relation Ψ(1) = −γ, one
deduces that Ψq(1) = −γ + o(1). In other words, (1.6.6) implies the following estimate:

(1.6.7) (q − 1)

[
ℓq

(
qx

q − 1

)
+ 1 +A(q)

]
= − logx+ γ + o(1)

where o(1) denotes a quantity converging to 0 as q → 1−, uniformly on any compact of
C \ (−∞, 0].

Notice that the exponential function e
1
x is the uniform limit on any domain {|x| > R > 0}

of the p-exponential ep(q/x), for

ep(
1

x
) =

∑

n≥0

qn(n−1)/2

[n]!q

( q
x

)n
.

In the same time, again the dominated convergence Theorem implies that, as q → 1−,

∑

n≥1

(q − 1)anq
n(n−1)/2

[n]!q

( q
x

)n
→
∑

n≥1

∑n
k=1

1
k

n!

(
1

x

)n

,

uniformly for |x| > R > 0. We conclude combining (1.5.3) with (1.6.7).

2 Confluence of the convergent q-analogue of Borel-

Laplace summation

Let q be a real number in the open interval (0, 1). We want to generalize, under convenient
reasonable assumptions, the results of the previous section.
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2.1 Definition of the convergent q-Borel and q-Laplace transform

Definition 2.1. Let C{x} be the ring of the germs of analytic functions in the neighborhood
of x = 0.

1. We call (convergent) q-Borel transform the map Bq given by:

Bq : xC {x} → C{ξ},
∑

n≥0

anx
n+1 7→

∑

n≥0

an
[n]!q

ξn.

2. The (convergent) q-Laplace transform Lq is defined by

Lq = B−1
q : C{ξ} → xC {x} ,

∑

n≥0

anξ
n 7→

∑

n≥0

an[n]
!
qx

n+1.

Remark 2.2. Notice that the q-Euler series Eq(x), considered in the previous section,
converges for |x| < 1− q. Therefore a function f(x) is analytic on an open disc {|x| < R},
for some R ∈ (0,∞), if and only if its q-Borel transform Bqf(ξ) is analytic for |ξ| < R/(1−q).

Calling Bq and Lq q-Borel and q-Laplace transform is somehow an abuse of language:
they don’t transform convergent series in divergent series and vice versa. Nevertheless they
have interesting properties and we will show that they play a role in the understanding of
the confluence in the irregular case. In fact, when q → 1, they tend coefficientwise to the
usual Borel and Laplace transforms, that we will denote B1 and L1 respectively.

An important property of Bq and Lq is that they can be expressed both as continuous
and discrete integrals:

Proposition 2.3. Let f ∈ xC{x} and φ ∈ C{ξ} such that Bqf = φ. Then:

φ(ξ) =
1

2πi

∫

|x|=R

f(x)

((1 − q) ξx ; q)∞

dx

x2
=

1

2πi

∫

|x|=R

f(x)eq (ξ/x)
dx

x2
,

f(x) =
−1

2πi

∫

|ξ|=ρ

φ(ξ)Eq
(
−x
ξ

)
dξ,

where the radius R and ρ are assumed to be chosen sufficiently small.

Proof. The first equality is a consequence of the identity

1

(x; q)∞
=
∑

n≥0

1

(q; q)n
xn

and of the residue theorem. Taking into account (1.1.1), the second equality is an application
of the residue theorem.

Corollary 2.4. Let f and φ be as in Proposition 2.3. Then:

φ(ξ) = (q; q)∞

∫ ξ

0

f((1− q)x)
( qxξ ; q)∞

θ′(−x
ξ )

dqx,

(2.4.1) f(x) =

∫ x
1−q

0

(
(1 − q)qξ

x
; q

)

∞

φ(ξ)dqξ =

∫ x
1−q

0

eq (qx/ξ)
−1
φ(ξ)dqξ .

Remark 2.5. Notice that Formula (2.4.1) generalizes (1.2.1) and can be obtained directly
by identifiying the coefficients. We give an alternative proof below.
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Proof. Taking the derivative with respect to x of the functional equation

θ(qnx) = x−nq−n(n−1)/2θ(x)

and setting x = −1, we obtain

θ′(−qn) = (−1)nq−n(n+1)/2θ′(−1) = (−1)nq−n(n+1)/2(q; q)3∞ .

Again the residues formula and Equation (1.1.1) imply that

φ(ξ) =
(1− q)ξ

(q; q)∞

∑

n≥0

(−1)n
f((1− q)ξqn)

(q; q)n
qn(n+3)/2

and that

f(x) = x
∑

n≥0

qn(qn+1; q)∞φ

(
qnx

1− q

)
.

This ends the proof.

2.2 Main result

The formulas above suggest the convergence of the q-Laplace transform Lqφ to the classical
Laplace transform Ldφ (in the direction d ∈ (0, 2π)):

(2.5.1) Ldφ(x) =

∫ ∞eid

0

φ(ξ)e−
ξ
x dξ ,

where φ is supposed to be holomorphic in a neighborhood of ξ = 0 and to be analytically
continued in an open sector {| arg ξ−d| < ǫ} with at most an exponential growth at infinity.

Theorem 2.6. Let y(q, x) =
∑

n≥0 yn(q)x
n+1 ∈ xC[[x]] be a family of formal power series,

with q ∈ (η, 1], for some η ∈ (0, 1). We suppose that the yn(q)’s are continuous functions
of q and that the family φ(q, ξ) = Bqy(q, x) ∈ C{ξ} is solution of a family of equations over
P1
C
, fuchsian and non resonant at ∞, in the sense of Assumption 2.7 below.
Let d ∈ [0, 2π) be such that φ(1, x) is holomorphic on a domain containing the half line

[0, eid∞). Then for any x ∈ V := {| argx− d| < π
2 } we have

lim
q→1−

y(q, x) = Ldφ(1, ξ) ,

the convergence being uniform on any compact of V .

Notice that y(q, x) = Lqφ(q, ξ), so that the result above is actually a result about the
confluence of q-summation. Moreover φ(q, ξ) is meromorphic over C∗ and its poles are
contained in a finite set of lines passing through the origin. Also for φ(1, ξ) there are only a
finite numbers of direction d that are forbidden: the anti-Stokes directions.

Assumption 2.7. We suppose that:

1. The series φ(1, ξ) is solution of a differential equationN1φ(1, ξ) =
∑µ

i=0 Ai(1, ξ)δ
iφ(1, ξ) =

0, where δ = ξ d
dξ , Ai(1, ξ) ∈ C[ξ], and the operator N1 is fuchsian at 0 and ∞. More-

over we suppose that the exponents of N1φ(1, ξ) = 0 at ∞ are non resonant.

2. The series φ(q, ξ) = Bqy(q, x), q ∈ (0, 1), are solutions of a linear q-difference operator
Nqφ(q, ξ) =

∑µ
i=0 Ai(q, ξ)δ

i
qφ(q, ξ) = 0, where δq = ξdq, Ai(q, ξ) ∈ C[ξ], and Nq is

fuchsian at 0 and ∞3.
3This means that the only non vertical slope of the Newton-Ramis polygon, i.e. of the convex envelope

of the set
{(i, j) : Ai(q, x) 6= 0, ordx=0Ai(q, x) ≤ j ≤ degx Ai(q, x)} ,

are horizontal.
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3. The Newton-Ramis polygons of Nq coincide for any q ∈ (η, 1], and the coefficients
Ai(q, ξ) tends uniformly to Ai(1, ξ) when q → 1, on any compact of P1

C
. This implies

in particular that for q sufficiently closed to 1, the exponents of Nq at ∞ are non
resonant.

4. For any q sufficiently closed to 1 there exists a constant gauge transformation C(q) ∈
Glµ(C) such that the constant term at ∞ of the matrix

C(q)−1




0 1 0
...

. . .

0 0 1

−A0(q,x)
Aµ(q,x)

−A1(q,x)
Aµ(q,x)

. . . −Aµ−1(q,x)
Aµ(q,x)


C(q)

is in the Jordan normal form. We suppose that for q ∈ (η, 1] the entries of the
matrix C(q) are continuous functions of q and that the form of the Jordan blocks is
independent of q.

2.3 Applications

Notice that the assumptions of Theorem 2.6 are verified in the following two natural situa-
tions.

2.8 (“Constant coefficient deformation” of a differential equation). For a lin-
ear differential equation

∑µ
i=0 Ai(x)δ

iy = 0, a possible trivial deformation is given by∑µ
i=0 Ai(x)δ

i
qy = 0. One verifies that if

∑µ
i=0 Ai(ξ)δ

iy = 0 satisfies the first point of

Assumption 2.7, then
∑µ

i=0 Ai(ξ)δ
i
qy = 0 verifies automatically the next three assumptions,

provided that 1− q is small enough. Therefore we have:

Corollary 2.9. Let y(x) =
∑

n≥0 ynx
n+1 ∈ xC[[x]] be a Gevrey series of order one such

that φ(ξ) = B1y(x) is solution of a fuchsian differential equation
∑µ

i=0 Ai(x)δ
iφ = 0 on

P1
C
, non resonant at ∞. Consider a family of power series yq(x), with q ∈ (0, 1), such that

Bq(yq)(ξ) is solution of
∑µ

i=0Ai(ξ)δ
i
qφ = 0 and yq(x) converges coefficientwise to y(x) when

q → 1−.
Then the family yq(x) converges uniformly to the Borel sum of y(x), when q → 1−, on

the compacts of a convenient sector V = {| argx− d| < π/2}.
2.10 (Confluent hypergeometric case). Take φ(q, ξ) to be the basic hypergeometric
series:

φ(q, ξ) =






2Φ1(q
a, qb; q; q, x) =

∑

n≥0

(qa; q)n(q
b; q)n

(q; q)n(q; q)n
xn , for q ∈ (0, 1);

2F1(a, b; 1;x) =
∑

n≥0

(a)n(b)n
n!n!

xn , if q = 1;

where a, b ∈ C, with a− b 6∈ Z. Then Theorem 2.6 says that:

Corollary 2.11. The basic hypergeometric analytic function

∑

n≥0

(qa; q)n(q
b; q)n

(q; q)n

(
x

1− q

)n

converges uniformly to the Borel sum of the hypergeometric confluent series

2F0(a, b;−;x) =
∑

n≥0

(a)n(b)n
n!

xn
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on the compacts of a convenient sector centered at 0, when q → 1−.

Of course the results above can be generalized. In fact, for any ℓ ≥ 2, and any generic
choice of the parameters a1, . . . , aℓ, b1, . . . , bℓ−2 ∈ C, the analytic basic hypergeometric func-
tion ∑

n≥0

(qa1 ; q)n · · · (qaℓ ; q)n
(qb1 ; q)n · · · (qbℓ−2 ; q)n(q; q)n

(
x

1− q

)n

converges uniformly to the Borel sum of the hypergeometric confluent series

ℓFℓ−2(a1, . . . , aℓ; b1, . . . , bℓ−2;x) =
∑

n≥0

(a1)n · · · (aℓ)n
(b)1 · · · (b)ℓ−2n!

xn

on the compacts of a convenient sector centered at 0, when q → 1−.

2.4 Proof of Theorem 2.6

We know that our germs φ(q, ξ), q ∈ (η, 1], of analytic functions at 0 admit an analytic
continuation along d. Moreover, for q < 1, the functions φ(q, ξ) are actually meromorphic
over C, which means that they are linear combination of a basis of solutions of Nqy = 0
at ∞. The main point of the proof is the careful choice of such a basis, that will allow
us to prove that φ(q, x) converges uniformly to φ(1, ξ) on an infinite sector containing the
direction d. Of course this ends the proof since Equations (2.4.1) and (2.5.1) imply that for
any x ∈ V we have:

(2.11.1)

lim
q→1

y(q, x) = lim
q→1

∫ x
1−q

0

(
(1− q)qξ

x
; q

)

∞

φ(q, ξ)dqξ

=

∫ ∞ei arg(x)

0

lim
q→1

(
eq

(
qξ

x

)−1

φ(q, ξ)

)
dξ

=

∫ ∞ei arg(x)

0

φ(1, ξ)e−
ξ
x dξ .

The theorem results of the combination of two lemmas. First of all let us prove the
uniform convergence around zero:

Lemma 2.12. The family φ(q, ξ) converges uniformly to φ(1, x), when q → 1, on a closed
disk centered at 0.

Proof. Let us write φ(q, ξ) =
∑

n≥0 φn(q)x
n for any q ∈ (η, 1]. Then there exists N > 0

such that for any n > N the coefficients φn(q) verify a well defined recursive relation whose
coefficients do not degenerate4. A direct estimates of the recursive relation allows to conclude
that |φn(q)| ≤ Cn for a convenient real constant C, any n > N and any q ∈ (η, 1]. This
estimate, together with the fact that φn(q) is a continuous function of q, implies the uniform
convergence on a convenient closed disk centered at 0 (cf. for instance the estimates in
[Sau02, Lemma 1.2.6]).

The last assumption in 2.7 implies that φ(q, x) is a linear combination, whose coefficients
are entries of the matrix C(q), of the canonical solutions at ∞, constructed in [Sau00, §1],
using a q-analog of the Frobenius method. As noticed in [Sau00, §3], the uniform part of the
canonical solution at ∞ converges uniformly on any compact of P1

C
r{0} where it is analytic,

4Notice that we have not assumed that 0 is a regular singular point with non resonant exponents at 0.
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to the uniform part of the solutions of N1y = 0 constructed with the classical Frobenius
methods, once that the gauge transformation C(1) has been applied to the companion
matrix. Since the entries of C(q) converges to the entries of C(1) by assumption, to obtain
the uniform convergence in a neighborhood of∞ it is enough to control the convergence of the
so called log-car matrix5. Let ζ = 1/ξ. The uniform convergence of (1 − q)ζθ′(q, ζ)/θ(q, ζ)
over the infinite sector {| arg(ζ)| < π − ε} to log ζ is already proved in Lemma 1.6. We
need an analogous result for θ(q, ζ)/θ(q, cx) which is solution of the q-difference equation
y(qζ) = cy(ζ), c ∈ C∗. We give a proof of the needed estimate, although it is a classical
result:

Lemma 2.13. Let c(q) ∈ C∗ be a function of q ∈ (0, 1) such that limq→1
log c
ln q = γ, ǫ ∈ (0, π)

and consider the sector Vǫ := {ζ ∈ C∗ : | arg ζ| ≤ π − ǫ}. As q → 1−, the following uniform
estimate holds uniformly over Vǫ:

θ(q, ζ)

θ(q, cζ)
= ζγ(1 + o(1− q)) .

Proof. Let us consider again the modular equation (1.6.2) :

θ(q,
√
q ) =

√
2π

ln(1/q)
e−

log2 x
2 ln q θ(q∗,

√
q∗ x∗),

where

x∗ = e−
2πi
ln q

log x, q∗ = e
4π2

ln q .

We observe that (ζ/
√
q)∗ = −ζ∗ and (cζ/

√
q)∗ = −c∗ ζ∗. Therefore we obtain:

θ(q, ζ)

θ(q, cζ)
= e

log c
ln q

(log( ζ√
q
)+ log c

2 ) θ(q∗,−√
q∗ ζ∗)

θ(q∗,−√
q∗ c∗ ζ∗)

.

As in the proof of Lemma 1.6, we observe that for any ζ ∈ Vǫ, ζ
∗ ∈ V ∗

ǫ ; see (1.6.4) for more
details. Moreover, when X and Y denote two complex numbers such that |X |, |Y | ∈ (q∗, 1),
we have the estimate:

∣∣∣∣
θ(q∗, X)

θ(q∗, Y )

∣∣∣∣ ≤
(−|X |; q∗)∞ (− q∗

|X| ; q
∗)∞

(|Y |; q∗)∞ ( q∗

|Y | ; q
∗)∞

=
θ(q∗, |X |)
θ(q∗,−|Y |) .

An elementary calculation using (1.6.4) allows to conclude, since q∗ → 0+ and c∗ → e−2πiγ .

Resuming, the function φ(q, ξ) is a linear combination, with coefficients that are con-
tinuous functions of q, of a canonical basis of solutions at ∞: we have proven that both
the canonical basis and the coefficients of the linear combination admit a uniform limit in a
bounded sector containing d, centered at ∞ and of arbitrary radius R > 0. Combined with
Lemma 2.12, this means that φ(q, x) converges uniformly to φ(1, x) in a neighborhood of
the direction d, which allows to conclude the proof.

5The terminology comes from the juxtaposition of the terms “logarithm” and “character”, meaning the
solution matrix of a constant coefficient differential (resp. q-difference) system is obtained by a combinatoric
procedure from the logarithm (resp. q-logarithm) and a family of characters (resp. q-characters). A solution
in a regular singular point, whose exponents are non resonant, is given by the product of an analytic matrix,
called uniform part, by the “log-car” matrix.

We are choosing here as a q-logarithm the logarithmic derivative of the Jacobi θ function and as q-
characters convenient quotient of the θ functions. For more details in the q-difference setting cf. [Sau00].
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A Jackson’s integral

Definition A.1. We set

F (x) =

∫ x

0

f(t)dqt = (1− q)x
∑

n≥0

f(qnx)qn ,

whenever the right hand side converges.

Remark A.2.

1. Notice that if F (x) is well-defined than dqF (x) = f(x).

2. If f(x) is continuous on the closed disk D(0, r+), then F (x) is well defined for any
x ∈ D(0, r+). In fact there exists M > 0 such that |f(qnx)qn| ≤ M |q|n, which guarantees
the convergence of the infinite sum.

Proposition A.3.

1. If f(x) is an analytic function over the disk D(0, r−), then F (x) is also analytic over
D(0, r−).

2. If F (x) is analytic over the disk D(0, r−) and if G(x) is another analytic function over
D(0, r−) such that dqG(x) = f(x), then

∫ x

0

f(t)dqt = G(x) −G(0) .

Proof. 1. It follows from the fact that F (x) is a uniformly convergent series of analytic
function over D(0, r − ε+), for any r > ε > 0.

2. It follows immediately from the remark that the subfield of constants of the ring of
analytic function over D(0, r−) with respect to the operator f(x) 7→ f(qx) is C. In fact this
implies that F (x) −G(x) ∈ C.

Definition A.4. Let us fix a q-orbit qZα ⊂ C and suppose that for any x ∈ qZα the integral
F (x) =

∫ x

0 f(t)dqt is well-defined. Then we set

∫

qZα

f(t)dqt = lim
|x|→∞
x∈qZα

∫ x

0

f(t)dqt .

Remark A.5. A straightforward calculation shows that

∫

qZα

f(t)dqt = (1− q)α
∑

n∈Z

f(qnα)qn

and in particular that ∫

qZα

f(t)
dqt

t
= (1− q)

+∞∑

n=−∞

f(qnα) ,

whenever the right side converges.
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B Expansion of Eq(x) at ∞
The purpose of this section is the proof of Proposition 1.5. We recall the notation

(B.0.1) an+1 =

n∑

k=0

1

qk+1 − 1
, n ≥ 0 ,

A(q) =
∑

n≥0

qn+1

qn+1 − 1
,

and
θ(x) =

∑

n∈Z

qn(n−1)/2xn ,

and the statement of the proposition:

Proposition B.1. For any x ∈ C∗ \ q−N:
(B.1.1)
∑

n≥0

(q; q)nx
n+1 = −

(
−qxθ

′(−qx)
θ(−qx) + 1 +A(q)

) ( q
x
; q
)

∞
+
∑

n≥1

an
(q; q)n

qn(n+1)/2

(
− 1

x

)n

.

The proof of the proposition above is based on a Watson’s formula for basic hyperge-
ometric functions, which is the analogue of a Barnes’ formula for Gauss hypergeometric
function. Barnes (cf. [WW88, §14.51] and [Bar08]) proved that if | arg(−x)| < π, c /∈ Z≤0

and a− b /∈ Z, then the analytic continuation of 2F1(a, b; c;x) for |x| > 1 is given by:

2F1(a, b; c;x) =
Γ(c)Γ(b − a)

Γ(b)Γ(c− a)
(−x)−a

2F1(a, a− c+ 1, a− b+ 1;x−1)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−x)−b

2F1(b, b− c+ 1, b− a+ 1;x−1).

G.N. Watson (cf. [GR90, §4.3]) proved a formula of the same kind for Heine series, namely
if:

(B.1.2) x /∈ q−N ∪
( cq
ab
qN
)
, c /∈ q−N,

a

b
/∈ qZ, abcx 6= 0.

then

2φ1(a, b; c; q, x) =
(b, c/a; q)∞
(c, b/a; q)∞

θ(−ax)
θ(−x) 2φ1

(
a, aq/c; aq/b; q,

cq

abx

)

+
(a, c/b; q)∞
(c, a/b; q)∞

θ(−bx)
θ(−x) 2φ1

(
b, bq/c; bq/a; q,

cq

abx

)
,(B.1.3)

where (α1, ..., αk; q)n =
∏k

i=1(αi; q)n. We are going to consider a degeneration of Watson’s
formula letting b → a and c → 0. In this way we obtain an expression for 2φ1(a, a; 0; q, x)
that we can apply to

Eq(x) = x2φ1

(
q, q; 0; q,− x

1− q

)
.

B.1 Degenerate cases of the Watson’s formula

Let us first consider the case b → aqm, where m denotes a non-negative integer. For this
purpose, we introduce the following notation:

Ωm+1(x) =
m∑

k=0

qkx

qkx− 1
;
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as extension, we set

Ω0(x) = 0, Ω(x) := Ω∞(x) = lim
m→∞

Ωm(x).

Notice that Ωm(x) may be identified to a logarithmic derivative as follows:

Ωm(x) =
x d
dx(x; q)m

(x; q)m
= x

d

dx
log(x; q)m, m ∈ N ∪ {∞}.

Since (x; q)m+n = (x; q)m (xqm; q)n for any m, n ∈ N, it follows:

(B.1.4) Ωm+n(x) = Ωm(x) + Ωn(q
mx), Ω(x) = Ωm(x) + Ω(qmx).

Let

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x , defined for any x /∈ (−N),

be the Jackson’s Gamma function (cf. [GR90, §10.1]). It’s useful to remark that, if Ψq(x) =
d

dx
log Γq(x), then

(B.1.5) Ψq(x) = − ln qΩ(qx)− ln(1− q), Ψq(x+m) = Ψq(x) + ln qΩm(qx) ,

for any non-negative integer m.
Let us define

ℓ(x) := ℓq(x) = −xθ
′(−x)
θ(−x) ,

where θ′(−x) denotes the derivative of θ w.r.t. at the variable x. From the Jacobi’s triple
formula θ(x) = (q,−x,−q/x; q)∞, one deduces the following relation:

(B.1.6) ℓ(x) = −Ω(x) + Ω(
q

x
).

Since Ω1(x) + Ω1(
1
x ) = 1, putting m = 1 in (B.1.4) allows to obtain the following relation:

ℓ(qx)− ℓ(x) = 1,

which means that, for any given non-zero complex number λ, the function x 7→ ℓ(λx) is a
q-logarithm. From (B.1.5), one gets the following link between ℓq and Ψq:

(B.1.7) ℓ(qx) =
1

ln q
(Ψq(x)−Ψq(1 − x)) .

Proposition B.2. Letm be a non-negative integer and let a, c be non-zero complex numbers.
Suppose that a /∈ q−N, c /∈ q−N and c/a /∈ q−N. Then, the following formula holds:

2φ1(a, aq
m; c; q, x) =

(aqm, c/a; q)∞
(c, qm; q)∞

θ(−ax)
θ(−x) Pm(a, c, x) +

(a, cq−m/a; q)∞
(c, q; q)∞ (q−m; q)m

θ(−aqmx)
θ(−x)

×
{
[Cm(a, c) + ℓ(aqmx)] Φm(a, c, x) +

∞∑

n=1

Cm,n(a, c)φm,n(a, c, x)

}
,(B.2.1)

where

Pm(a, c, x) =
(q; q)m−1

(a; q)m

m−1∑

n=0

(a, aq/c; q)n
(q, q1−m; q)n

(
cq1−m

a2x

)n

,

Cm(a, c) = Ω(q) + Ω(q1+m)− Ω(cq−m/a)− Ω(aqm) + 1,
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Φm(a, c, x) = 2φ1(aq
m, aq1+m/c; q1+m; q,

cq1−m

a2x
) =

∑

n≥0

φm,n(a, c, x),

φm,n(a, c, x) =
(aqm, aq1+m/c; q)n

(q, q1+m; q)n

(
cq1−m

a2x

)n

and
Cm,n(a, c) = Ωn(aq

m) + Ωn(aq
1+m/c)− Ωn(q

1+m)− Ωn(q).

When m = 0, Pm(a, c, x) = 0.

Remark B.3. Equations (B.2.1) is a q-analog of [EMOT81, p. 109, (7)].

Proof. Letting b = aqmǫ in (B.1.3) gives raise to the following formula:

2φ1( a , aq
mǫ; c; q, x) =

(aqmǫ, c/a; q)∞
(c, qmǫ; q)∞

θ(−ax)
θ(−x) 2φ1

(
a, aq/c; q1−m/ǫ; q,

cq1−m

a2ǫx

)

+
(a, cq−m/(aǫ); q)∞
(c, q−m/ǫ; q)∞

θ(−aqmǫx)
θ(−x) 2φ1

(
aqmǫ, aq1+mǫ/c; q1+mǫ; q,

cq1−m

a2ǫx

)
,(B.3.1)

Suppose m ≥ 1. Since

(X ; q)n+m = (X ; q)m (Xqm; q)n, (X ; q)m = (−X)m (q1−m/X ; q)m qm(m−1)/2

and
θ(qmX) = X−m q−m(m−1)/2 θ(X),

we obtain

2φ1

(
a, aq/c; q1−m/ǫ; q,

cq1−m

a2ǫx

)
=

m−1∑

n=0

(a, aq/c; q)n
(q, q1−m/ǫ; q)n

(
cq1−m

a2ǫx

)n

+
(a, cq−m/a; q)m

(q, ǫ; q)m

( q

aǫx

)m ∞∑

n=0

(aqm, aq1+m/c; q)n
(q1+m, q/ǫ; q)n

(
cq1−m

a2ǫx

)n

and

(a, cq−m/(aǫ); q)∞
(c, q−m/ǫ; q)∞

θ(−aqmǫx)
θ(−x) = −ǫ (a, cq−m/(aǫ); q)∞

(c, q/ǫ; q)∞ (ǫ; q)m+1

( q

ax

)m θ(−aǫx)
θ(−x) .

Hence, we can re-write (B.3.1) as follows:

(B.3.2) 2φ1(a, aq
mǫ; c; q, x) = A(ǫ) +

B1(ǫ)C1(ǫ)−B2(ǫ)C2(ǫ)

ǫ− 1
,

where

A(ǫ) =
(aqmǫ, c/a; q)∞
(c, qmǫ; q)∞

θ(−ax)
θ(−x)

m−1∑

n=0

(a, aq/c; q)n
(q, q1−m/ǫ; q)n

(
cq1−m

a2ǫx

)n

,

B1(ǫ) = ǫ
(a, cq−m/(aǫ); q)∞
(c, q/ǫ; q)∞ (ǫq; q)m

( q

ax

)m θ(−aǫx)
θ(−x) ,

C1(ǫ) = 2φ1

(
aqmǫ, aq1+mǫ/c; q1+mǫ; q,

cq1−m

a2ǫx

)
,

B2(ǫ) =
(a, cq−m/a; q)∞
(c, qǫ; q)∞ (q; q)m

(aqmǫ; q)∞
(aqm; q)∞

( q

aǫx

)m θ(−ax)
θ(−x) ,
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C2(ǫ) =
∞∑

n=0

(aqm, aq1+m/c; q)n
(q1+m, q/ǫ; q)n

(
cq1−m

a2ǫx

)n

.

Since B1(1) = B2(1) and C1(1) = C2(1), putting ǫ → 1 in (B.3.2) allows us to get the
following relation:

2φ1(a, aq
m; c; q, x) = A(1) + [B′

1(1)−B′
2(1)]C +B [C′

1(1)− C′
2(1)] ,

with C = C1(1), B = B1(1). By direct computation, it yields:

B′
1(1) =

[
1− Ω(cq−m/a) + Ω(q) − Ωm(q) + ℓ(ax)

]
B, B′

2(1) = [Ω(aqm)− Ω(q)−m] B,

C′
1(1) =

∞∑

n=1

(aqm, aq1+m/c; q)n
(q1+m, q; q)n

[
Ωn(aq

m) + Ωn(aq
1+m/c)− Ωn(q

1+m)− n
] (cq1−m

a2x

)n

and

C′
2(1) =

∞∑

n=1

(aqm, aq1+m/c; q)n
(q1+m, q; q)n

[Ωn(q)− n]

(
cq1−m

a2x

)n

.

Notice also that

B =
(a, cq−m/a; q)∞
(c, q; q)∞ (q; q)m

( q

ax

)m θ(−ax)
θ(−x) =

(a, cq−m/a; q)∞
(c, q; q)∞ (q−m; q)m

θ(−aqmx)
θ(−x) ,

which ends the proof when m ≥ 1.
If m = 0, A(ǫ) doesn’t exist, so P0(a, c, x) = 0.

Consider now two cases for which the hypothesis of Proposition B.2 are not all fulfilled:
c/a ∈ q−N or c = 0. Let k ∈ N and c/a = q−kǫ, where ǫ→ 1. Since

lim
ǫ→1

(q−kǫ; q)∞ Ω(q−m−kǫ) = −(q−k; q)k (q; q)∞,

it follows:

Corollary B.4. Let k, m ∈ N and a ∈ C∗. The following equality holds:
(B.4.1)

2φ1(a, aq
m; aq−k; q, x) =

(q−k−m; q)k
(aq−k; q)k

θ(−ax)
θ(−x) 2φ1

(
aqm, q1+m+k; q1+m; q,

q1−k−m

ax

)
.

Taking now c→ 0 in (B.2.1) gives the following formula:

2φ1(a, aq
m; 0; q, x) =

(aqm; q)∞
(qm; q)∞

θ(−ax)
θ(−x) Pm(a, x) +

(a; q)∞
(q; q)∞ (q−m; q)m

θ(−aqmx)
θ(−x)

×
{
[Cm(a) + ℓ(aqmx)] Φm(a, x) +

∞∑

n=1

Cm,n(a)φm,n(a, x)

}
,(B.4.2)

where

Pm(a, x) =
(q; q)m−1

(a; q)m

m−1∑

n=0

(a; q)n q
n(n−1)/2

(q, q1−m; q)n

(
−q

2−m

ax

)n

,

Cm(a) = Ω(q) + Ω(q1+m)− Ω(aqm) + 1,

Φm(a, x) = 1φ1(aq
m; q1+m; q,

q2

ax
) =

∑

n≥0

φm,n(a, x),
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φm,n(a, x) =
(aqm; q)n q

n(n−1)/2

(q, q1+m; q)n

(
− q2

ax

)n

and
Cm,n(a) = Ωn(aq

m) + n− Ωn(q
1+m)− Ωn(q).

Once again, when m = 0 and Pm(a, x) = 0, we have:
(B.4.3)

2φ1(a, a; 0; q, x) =
(a; q)∞
(q; q)∞

θ(−ax)
θ(−x)

{
[C0(a) + ℓ(ax)] Φ0(a, x) +

∞∑

n=1

C0,n(a)φ0,n(a, x)

}
,

where

C0(a) = 2Ω(q)− Ω(a) + 1, Φ0(a, x) = 1φ1(a; q; q,
q2

ax
) =

∑

n≥0

φ0,n(a, x),

φ0,n(a, x) =
(a; q)n q

n(n−1)/2

(q, q; q)n

(
− q2

ax

)n

, C0,n(a) = Ωn(a) + n− 2Ωn(q).

B.2 Proof of Proposition 1.5

The equality 1φ1(q; q; q,X) = (X ; q)∞, plus (B.4.3), where we have set a = q, implies the
following formula:

∑

n≥0

(q; q)nx
n = − 1

x



[Ω(q) + 1 + ℓ(qx)] (q/x; q)∞ +

∑

n≥1

[n− Ωn(q)]
qn(n−1)/2

(q; q)n

(
− q

x

)n


 .

Thus, one may obtain Proposition 1.5 by taking into account the following relations:

ℓ(qx) = −qx θ
′(−qx)
θ(−qx) , an = Ωn(q)− n, Aq = Ω(q).

Part II. Summation of divergent q-series and confluence:

the case q > 1

Important. From now on, we fix q ∈ (1,+∞) ⊂ R, so that p = q−1 ∈ (0, 1).

In this second part we introduce four types of q-summation (cf. Definition 4.12 below):
our purpose is studying the relations among them. First of all, we investigate the different
sums of the q-Euler series

∑
n≥0(−1)n[n]!qx

n+1 and their properties (cf. §3 below). Then
we prove a general result for generic q-Gevrey series (cf. Theorem 4.14), based on the study
of the Tschakaloff series

Tq(x) =
∑

n≥0

qn(n−1)/2xn+1 ,

and of a convenient q-convolution product.

Notation. We set:

(2.4.4) θp(x) := θ(p, x) =
∑

n∈Z

pn(n−1)/2xn = (p; p)∞(−x; p)∞(−p/x; p)∞

and

(2.4.5) eq(x) := (−(1− p)x; p)∞ =
∑

n≥0

xn

[n]!q
.

Remark that eq(x) = ep(−x)−1 and that θp(x) = xθp(px).
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3 The divergent q-Euler series

Since q > 1, the q-Euler series

Êq(x) =
∑

n≥0

(−1)n[n]!qx
n+1

is obviously divergent for any x ∈ C∗, as the Euler series
∑

n≥0(−1)nn!xn+1. The corre-
sponding q-difference equation is

x2dqy + y = x .

3.1 Definition of different sums of the q-Euler series

Let us consider the q-Borel transforms of Êq(x) (for the general definition,cf. §4.1):

ψ(ξ) :=
1

1 + ξ
and φ(ξ) := Ep(ξ) .

In the following, we will identify Ep(ξ) to its analytic continuation on C \ ((p − 1)qN). For
any d ∈ (−π, π) and λ /∈ −pZ, we set:

(3.0.6) Ed
q (x) =

q − 1

ln q

∫ eid∞

0

ψ(ξ)

eq(q
ξ
x)
dξ, argx ∈ (d− π, d+ π);

(3.0.7) E [λ]
q (x) =

q

1− p

∫

λpZ

ψ
(

ξ
1−p

)

eq

(
q ξ
(1−p)x

) dpξ, x /∈ (p− 1)λqZ;

(3.0.8) Ed
q (x) =

q

ln q

∫ eid∞

0

φ(ξ)

θp(q
ξ
x )
dξ, arg x ∈ (d− π, d+ π);

(3.0.9) E[λ]
q (x) =

q

1− p

∫

λpZ

φ(ξ)

θp(q
ξ
x)
dpξ, x /∈ (p− 1)λqZ;

Proposition 3.1. (1) The functions Ed
q and Ed

q can be analytically continued on the sector
{| argx| < 2π} of the Riemann surface of the logarithm.

(2) The functions E [λ]
q and E

[λ]
q are analytic on C∗ \ (−(1 − p)λqZ), the point −(1 − p)λqn

being a simple pole for any integer n ∈ Z.

Proof. The functions Ed
q and Ed

q are a priori defined for | arg x − d| < π and d varies in
(−π, π). The second assertion is straightforward.

We will denote by Eq and Eq the analytic continuation of Ed
q and Ed

q , respectively, on the

open sector V (−2π, 2π) := {x ∈ C̃∗ : | argx| < 2π} on the Riemann surface of the logarithm.
We recall the following result:

Proposition 3.2 ([RZ02, Thm. 2.1] and [Zha02, Thm. 1.3.2]). The function Eq(x) (resp.

E [λ]
q ) admits Êq(x) as q-Gevrey asymptotic expansion at x = 0 in the sector {argx < 3π/2}.

In particular they are solution of x2dqy + y = x.

The following theorem is about the comparison between the four summations of Êq we
have just introduced:
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Theorem 3.3. Eq(x) = Eq(x) and E [λ]
q (x) = E

[λ]
q (x).

First, we need to prove the following two lemmas.

Lemma 3.4. For any x ∈ C such that arg x ∈ (−2π, 0) we have:

(3.4.1) Eq(xe2πi)− Eq(x) = Eq(xe
2πi)− Eq(x) = −2πi

q − 1

ln q

1

eq(− q
x)
.

In particular: Eq(xe2πi)− Eq(xe
2πi) = Eq(x) − Eq(x).

Proof. A variable change in the integral defining Ed
q (resp. Ed

q ) shows that Ed
q (xe

2πi) =

Ed−2π
q (x) (resp. Ed

q (xe
2πi) = Ed−2π

q (x)). We are reduced to calculate Ed−2π
q (x) − Ed

q (x)
and hence to calculate a residue at ξ = −1. In an analogous way, using formula (1.1.1), we
obtain

Ed
q (xe

2πi)− Ed
q (x) = −q2πi

ln q

∑

n≥0

Resξ=(p−1)qn


 Ep(ξ)
θp

(
q ξ
x

)




= −q(p− 1)2πi

ln q

∑

n≥0

qn(pn+1; p)∞

θp

(
q (p−1)qn

x

)

=
q(p− 1)2πi

ln q

(p; p)∞

θp
(
1−q
x

)
∑

n≥0

pn(n−1)/2

(p; p)n

= −q(p− 1)2πi

ln q

(
p,− x

q−1 ; p
)

∞

θp
(
1−q
x

) .

The Jacobi triple product formula for θp immediately allows to conclude.

Lemma 3.5. Let us consider the homogenous q-difference equation

(3.5.1) x2dqy = y.

Let y0 be a meromorphic solution of (3.5.1) on the domain Ω = {0 < |x| < R}. Suppose
that one of the following hypotheses is verified:

• the function y0 is analytic on Ω;

• there exists µ ∈ C∗ such that µ /∈ (1 − p)pN and such that the function y0 has only
simple poles contained in the set µpN;

then y0 is identically zero.

Proof. Notice that 1/ep(q/x) is a uniform solution to (3.5.1). Hence, there exists a q-
invariant function K(x) such that y0(x) = K(x)/ep(q/x). Identifying K(x) to an elliptic
function, one ends the proof noticing that (1−p)pZ is the only spiral of poles of ep(q/x).

Proof of Theorem 3.3. Lemma 3.4 implies that hd(x) := Ed
q (x)−Ed

q (x) is an analytic solution

of (3.5.1) on C∗. We deduce from Lemma 3.5 that hd ≡ 0.

The difference E
[λ]
q (x) − E [λ]

q (x) has only simple poles on −λ(1 − p)qZ. Since λ /∈ −pZ
we conclude applying Lemma 3.5.
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3.2 q-integral and continuous integral

Although both Eq(x) and E [λ]
q are solutions of the q-difference equation x2dqy+ y = x, they

have a deeply different nature. In fact, while Eq(x) is meromorphic on the whole Riemann

surface C̃∗ of the logarithme, the function E [λ]
q is a uniform function: more precisely, it is

analytic on C∗ minus a spiral of simple poles.
Let us consider the projection:

π : ]0,+∞[×R ∼= C̃∗ −→ C∗

(r, α) 7−→ re2iπα
.

Of course, we can identify E [λ]
q to its pull back via π on C̃∗, i.e. to a meromorphic function

on C̃∗, and study the solution Eq(x) − E [λ]
q of x2dqy + y = 0. We have the following result

(we identify all meromorphic function on C∗ to their pull back on C̃∗):

Proposition 3.6. Let λ ∈ C
∗ \ (−qZ). For any x ∈ Ω̃λ := π−1 (C∗ \ [−λ(1− p); q]), we

have:

Eq(x)− E [λ]
q (x) = −2πi

q − 1

ln q

(
L(−λ(1−p))∗,q∗(x

∗)− Cλ,q

)
eq(−q/x)−1,

where the following notations are employed:

x∗ = e−2πi log x
ln q , q∗ = e4π

2/ ln q ,

La,q(x) = −x
a

θ′p(−x
a )

θp(−x
a )

= ℓp

(x
a

)
, Cλ,q = L(−λ(1−p))∗,q∗ ((1− p)∗) .

Since La,q(
x
a′ ) = Laa′,q(x) = ℓp(

x
aa′ ) and (xx′)∗ = x∗(x′)∗, the theorem above can be

rephrased in the following statement:

Corollary 3.7. Let p∗ = 1/q∗ = e−4π2/ ln q. Then

Eq(x) − E [λ]
q (x) = −2πi

q − 1

ln q

[
ℓp∗

((
− x

λ(1 − p)

)∗)
− ℓp∗

((
− 1

λ

)∗)]
eq(−q/x)−1 .

The proof of Proposition 3.6 is based on the following two lemmas:

Lemma 3.8. Let λ ∈ C
∗ \ (−pZ) and Ω̃λ := π−1(C∗ \ [−λ(1− p); q]) ⊂ C̃

∗. For any x ∈ Ω̃λ

we set:
Uλ(x) = (Eq(x)− E [λ](x))eq(−q/x) .

Then

Uλ(xe
2πi)− Uλ(x) = −2πi

q − 1

ln q

and
Uλ(qx) = Uλ(x) .

Proof. The proof follows from Lemma 3.4, taking into account the functional equation of
eq(−q/x):

eq(−q/x) =
(
1− q − 1

x

)
eq(−1/x)
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Lemma 3.9. Let a ∈ C∗ and consider the function La,q defined for x ∈ C∗ \ [a; q] as above,
ie:

La,q(x) = ℓp

(x
a

)
= −x

a

θ′p(−x
a )

θp(−x
a )
.

Then, up to an additive constant, La,q is the only solution of the q-difference equation
y(qx) − y(x) = 1, which is analytic on C

∗ \ [a; q] and has only simple poles at [a; q].

Proof. The functional equation for La,q is obtained deriving the equation −x
aθp(−px

a ) =
θp(−x

a ). The uniqueness (up to a constant) comes from the remark that there are no non
constant elliptic function having only a simple pole in a fundamental domain.

Proof of Proposition 3.6. Let us consider the modular variable change:

q 7−→ q∗ = e4π
2/ ln q , x 7−→ x∗ = e−2πi log x

ln q .

In the notation of Lemma 3.8 above let W (x∗) = Uλ(x). Then:

W (x∗q∗)−W (x∗) = −2πi
q − 1

ln q
, W (x∗e−2πi) =W (x∗).

Equivalently, x∗ 7→ W (x∗) represents a uniform solution to a first order q∗-difference equa-
tion. By Lemma 3.9, there exists a constant C ∈ C such that

W (x∗) = −2πi
q − 1

ln q
L(−λ(1−p))∗,q∗(x

∗) + C, x ∈ Ω̃λ .

We calculate the constant C = Cλ,q setting x = 1− p and x∗ = e−2πi ln(1−p)
ln q . Since eq(−q/x)

has a zero for x = 1− p, we obtain the exact expression for C.

The main result of this section is:

Theorem 3.10. For any x ∈ C∗\]−∞, 0[ we have:

Eq(x) =
1

ln q

∫ q

1

E [λ]
q (x)

dλ

λ
.

The theorem follows from the combination of Corollary 3.7 and the following lemma:

Lemma 3.11. Let p∗ = 1/q∗ = e−
4π2

ln q. For z close enough to 1, we have:
∫ q

1

ℓp∗

((
− z

λ

)∗) dλ
λ

=

∫ q

1

ℓp∗

((
− 1

λ

)∗) dλ

λ
.

Proof. Let µ = −λ−1. From the identity x∗ = e−2πi log x
ln q we deduce that:

dλ

λ
= −dµ

µ
= − ln q

2πi

dµ∗

µ∗
.

Therefore for t = µ∗ we obtain:
∫ q

1

ℓp∗

((
− z

λ

)∗) dλ
λ

=
ln q

2πi

∫

C(−z)∗
ℓp∗(t)

dt

t
,

where C(−z)∗ is the positive oriented circle, centered at 0 and passing through the point
(−z)∗. Observing that, for z close enough to 1, the meromorphic function t 7→ ℓp∗(t) has no
poles in the annulus between C(−z)∗ and C(−1)∗ , we conclude applying Cauchy Theorem.

Remark 3.12. In Theorem 3.10, we could have replaced the interval [1, q] with a path of
the form [a, qa], for any a ∈ Cr (−∞, 0].
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3.3 Comparing sums along different spirals

Notice that if [λ] = [µ], i.e. if λ and µ are two complex numbers congruent modulo q, the

two discrete sums E [λ]
q and E [µ]

q coincide. On the other side, if [λ] 6= [µ] these sums are
trivially distinct, since the sets of their poles are distinct. This simple remark underlines a
fundamental difference between the continuous and the discrete summations. In fact, when
we make the direction d vary we are actually constructing an analytic continuation of Ed

q on

C̃∗, while when we make [λ] vary, we obtain a whole family of distinct meromorphic solution
of x2dqy + y = x. This implies that the “discrete Stokes phenomenon” for the discrete
summation has a different nature from the classical differential Stokes phenomenon. It is
described in the following theorem:

Theorem 3.13. For λ, µ ∈ C∗ \ (1− p)qZ we have:

E [λ]
q − E [µ]

q =
K(λ, µ, x)

ep(
q
x )

,

where:

K(λ, µ, x) = C
θp(−λ

µ )θp(
1−p
x )θp(

(1−p)λµ
x )

θp(
(1−p)λ

x )θp(
(1−p)µ

x )
,

where C is a constant depending only on q.

Proof. The function E [λ]
q (x) − E [µ]

q (x) being solution of the homogeneous equation x2dqy =
−y, it has the form

E [λ]
q − E [µ]

q =
K(λ, µ, x)

ep(
q
x )

,

where K(λ, µ, x) is q-invariant function in each variable (x, λ, µ).

We want a more precise description of K(λ, µ, x). Notice that E [λ]
q − E [µ]

q has only two
spirals of simple poles: −(1−p)λpZ and −(1−p)µpZ. Since any q-invariant uniform function
can be written as a quotient of Theta functions, we obtain:

K(λ, µ, x) =
C(λ, µ)θ(αx )θ(

β
x )

θ( (1−p)λ
x )θ( (1−p)µ

x )
,

where αβ = (1− p)2λµ. Moreover the factor eq(−q/x) in

K(λ, µ, x) = eq(−q/x)(E [λ]
q − E [µ]

q ),

implies that K(λ, µ, x) has a spiral of simple zeros at (1 − p)pZ, which implies that we can
chose either α or β equal to −(1− p). We conclude that {α, β} = {−(1− p),−(1− p)λµ}.

We have to calculate C(λ, µ). The poles of K(λ, µ, x) with respect to the variable λ
forms two spirals: − x

1−pp
Z and −pZ, hence:

C(λ, µ) =
θ(−λ

µ )

θ(λ)
C(µ) .

A similar argument shows that C(µ) = C/θ(pµ).

Remark 3.14. One can express the constant C in terms of q-series. For instance, setting
x = 1 and letting λ→ µ = 1 in K(λ, µ, x), we can express C as a value of a derivative.
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3.4 Confluence

Theorem 3.15. Let E(x) be the sum of the classical Euler series in the direction R
+. Then

Eq(x) → E(x) if q → 1+ for any x ∈ C such that arg x ∈ (−π, π) and the convergence is
uniform on the compacts of such a domain.

Proof. Notice that for any t ∈ R
+ we have eq(t) → et and eq(t) ≤ et. The dominated

convergence theorem applied to the q-Laplace transform in a direction d ∈ (−π, π) allows
to conclude. Moreover, the estimate of eq(x) being uniform with respect to d = arg x, the
uniform convergence on the compacts of {|argx| < π} follows at once.

Corollary 3.16. The same statement holds for E [λ]
q (x) when q → 1+.

Proof. The proof results of the combination of Proposition 3.6 relating Eq(x) to E [λ]
q (x),

Lemma 1.6 on the uniform convergence of the q-logarithm, and the theorem above.

4 Generic q-Gevrey series

We call generic q-Gevrey series a power series f̂ ∈ C[[x]] satisfying a q-difference equation

∆f̂ ∈ C{x} for some analytic q-difference operator ∆ of the form:

(4.0.1) ∆ := a0(x)(xσq)
n + a1(x)(xσq)

n−1 + ...+ an(x) , with aj ∈ C{x}, a0(0)an(0) 6= 0,

and σq(f(x)) = f(qx). This means that the associated Newton polygon has only one finite
slope equal to one (cf. [Ram92] and [Zha99]).

An explicit calculation (cf. also [DV02, Lemma 1.1.10]) shows that

Lemma 4.1. Let dq =
σq−1
x(q−1) and consider a q-difference operator ∆ ∈ C{x}[σq]. Then ∆

can be written as (4.0.1) if and only if it can be rewritten in the following form:

(4.1.1) ∆ := b0(x)(x
2dq)

n + b1(x)(x
2dq)

n−1 + ...+ bn(x), bj ∈ C{x}, b0(0)bn(0) 6= 0.

Notice that the q-Euler series Ê(x) considered in previous section is a generic q-Gevrey
series.

4.1 Two formal q-Borel transforms

The classical Borel transform associates to each power series
∑

n≥0 anx
n+1 the more con-

vergent (or less divergent) power series
∑

n≥0
an

n! ξ
n. For the solutions of a q-difference

equations, the Gevrey “scaling factor” (n!)s is replaced by the q-Gevrey one: (qsn
2/2) (cf.

[Béz92],[Ram92], [Zha99],[Zha00]). Indeed, in the literature there are (at least) two q-analogs
of the factorial n!, namely [n]!q and qn(n−1)/2. The reason for this dichotomy is the identity

[n]!q =
(q; q)n
(1 − q)n

=
(p; p)n
(1− p)n

qn(n−1)/2 = [n]!pq
n(n−1)/2 ,

which implies that

(4.1.2) [n]!q ∼ qn(n−1)/2

(1− p)n
, when n→ +∞ .

Let us consider the following two formal Borel transforms, associated to those q-factorials:

Bq : xC [[x]] → C [[ξ]] ,
∑

n≥0

anx
n+1 7−→

∑

n≥0

an
[n]!q

ξn
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and
Bq : xC [[x]] → C [[ξ]] ,

∑

n≥0

anx
n+1 7−→

∑

n≥0

an
qn(n−1)/2

ξn.

Following J.P. Ramis [Ram92] we set:

Definition 4.2. An entire function φ is said to have q-exponential growth of order 1 at ∞
if there exist two constants K > 0 and µ > 0 such that

|φ(x)| < K|x|µeq(|x|), |x| → ∞.

Remark that the function eq(|x|) can be replaced by eln
2 |x|/(2 ln q).

Lemma 4.3 ([Ram92, Prop. 2.1]). Let Eq be the set of all the entire functions having a
q-exponential growth of order 1 at ∞, and let C{x} be the set of all power series having a
positive convergence radius. Then Eq = Bq(xC{x}) = Bq(xC{x}).

The following function space Hq has been introduced in [Zha02] and [RZ02]; see also
[Zha99].

Definition 4.4. For any λ ∈ C∗, let [λ; q] = λqZ.

1. A germ of function φ analytic at 0 is said to belong to H[λ;q] if there exist a domain
Ω ⊂ C and a real number r > 0 such that:

• ∪m≥0{x ∈ C : |x− λqm| < rqm} ⊂ Ω;

• φ can be continued to be an analytic function on Ω with a q-exponential growth
of order 1 at infinity.

2. A germ of function φ analytic at 0 is said to belong to Hq if there exist a finite set
Λ ⊂ C∗ such that φ ∈ H[λ;q] for any λ ∈ C∗ \ Λ.

Proposition 4.5. Let f̂ ∈ xC[[x]], λ ∈ C∗ and let ψ = Bqf̂ , φ = Bq f̂ . Then ψ ∈ H[λ;q] if
and only if φ ∈ H[(1−p)λ;q].

Moreover, the map
∑

n≥0 anx
n 7→∑

n≥0 an[n]
!
px

n induces an automorphism of the vector
space Hq.

Proof. Use the integral representation for the corresponding Hadamard product.

Definition 4.6. Let λ ∈ C∗ and let f̂ ∈ xC[[x]].

1. We set C{x}[λ;q]q = B−1
q H[λ/(1−p);q] = B−1

q H[λ;q]. We say that f̂ ∈ C{x}[λ;q]q is q-Borel
summable along [λ; q].

2. Each element of DSf̂ := {[λ; q] : f̂ /∈ C{x}[λ;q]q } will be called singular direction of f̂ .

3. If DSf̂ is finite, f̂ is called q-Borel summable and we denote C{x}q the set of q-Borel
summable series.

Theorem 4.7 ([Zha02, Thm. 1.2.1]). Every generic q-Gevrey series is q-Borel summable.
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4.2 Different kinds of q-exponential summation

The classical Borel-Laplace exponential summation is based on the Euler’s integral repre-
sentation of the Gamma function, namely

(4.7.1) n! =

∫ ∞

0

e−ttn+1 dt

t
.

In the definition of a q-summation procedure one must be guided by the q-analogs of this
last integral, question investigated since Jackson, Wigeret, Watson, etc...

We recall the following q-analogs of the integral representation of the Euler Gamma
function.

Proposition 4.8. For d ∈ (−π, π) and λ /∈ (−qZ) we have:

(4.8.1) [n]!q =
q − 1

ln q

∫ ∞eid

0

tn

eq(qt)
dt =

q − 1

ln q

∫ ∞eid

0

tnep(−qt) dt ,

(4.8.2) [n]!q = q

∫

λpZ

tn

eq(qt)
dpt = q

∫

λpZ

tnep(−qt) dpt ,

(4.8.3) qn(n−1)/2 =
q

ln q

∫ ∞eid

0

tn

θp(qt)
dt ,

(4.8.4) qn(n−1)/2 =
q

1− p

∫

λpZ

tn

θp(qt)
dpt .

Proof. For the proof of the identities above cf. [AAR99, pages 549-550]. More precisely,
letting c→ n+ 1, b→ 1 and a→ 0 (resp. letting c→ n+ 1, b, a→ 0) in

∫ ∞

0

xc−1 (−ax; p)∞(−pb/x; p)∞
(−x; p)∞(−p/x; p)∞

dx =
(ab; p)∞(pc; p)∞(p1−c; p)∞π

(bpc; p)∞(ap−c; p)∞(p; p)∞ sin(πc)
,

one gets the formula

∫ ∞

0

xn

(−x; p)∞
dx = (ln q) (p; p)np

−n(n+1)/2

(
resp.

∫ ∞

0

xn

(−x; p)∞(−p/x; p)∞
dx = (ln q) p−n(n+1)/2

)
,

which yields (4.8.1) (resp. (4.8.3)). Similarly, the formulae (4.8.2) and (4.8.4) can be viewed
as special cases of

∫ ∞

0

xc−1 (−ax; p)∞(−bp/x; p)∞
(−x; p)∞(−p/x; p)∞

dpx =
(1− p)(p; p)∞(−pc; p)∞(−p1−c; p)∞(ab; p)∞

(−1; p)∞(−p; p)∞(ap−c; p)∞(bpc; p)∞
.

Remark 4.9. In particular, (4.8.4) and (4.8.3) have been studied in [RZ02] and [Zha02] as
starting points for the corresponding summation procedures. Other kinds of q-summation
are considered in [Zha99] and [MZ00].

Let d ∈ [−π, π). We will identify d to the half line [0,∞eid) := R+eid.

29



Definition 4.10. We set Hd
q = ∩λ∈(0,∞eid)H

[λ;q].

Remark 4.11. The functional space Hd
q is exactly the space Hd

q;1 introduced in [Zha99].

Let λ ∈ C∗ and d ∈ [−π, π). According to Proposition 4.8, the following four q-Laplace
transforms are well defined:

∀φ ∈ H
[λ;q], L[λ]

q φ =
q

1− p

∫

λpZ

φ(ξ)

θp(q
ξ
x)
dpξ ;

∀φ ∈ H
[λ/(1−p);q], L[λ]

q φ =
q

1− p

∫

λpZ

φ(ξ/(1 − p))

eq(q
ξ

(1−p)x )
dpξ;

∀φ ∈ H
d
q , Ld

qφ =
q

ln q

∫ eid∞

0

φ(ξ)

θp(q
ξ
x )
dξ , Ld

qφ =
q − 1

ln q

∫ eid∞

0

φ(ξ)

eq(q
ξ
x )
dξ .

Definition 4.12. 1. If f̂ ∈ C{x}[λ;q]q , we define its sums in the direction [λ; q] as follows:

S [λ]
q f̂ = L[λ]

q (Bqf̂), S[λ]
q f̂ = L[λ]

q (Bq f̂).

2. If f̂ ∈ C{x}dq, define its sums in the direction d as follows:

Sd
q f̂ = Ld

q(Bqf̂), Sd
q f̂ = Ld

q(Bq f̂).

Remark 4.13.

• The summation procedures f̂ → S[λ;q]f̂ and f̂ → Sdf̂ are introduced in [Zha02] and
[Zha00]: they have many good asymptotic properties.

• Suppose that f̂ is q-summable and that d is not a singular direction. Then we have the
following formal equality (meaning that we exchange carelessly the infinite sum and the
integral):

(4.13.1) Sd
q f̂ =

1

ln q

∫ qeid

eid
S [λ]
q f̂

dλ

λ

and

(4.13.2) Sd
q f̂ =

1

ln q

∫ qeid

eid
S[λ]
q f̂

dλ

λ
.

To prove that this identity is not only formal, but analytic, one would like to apply the
dominated convergence theorem: unfortunately the dominated convergence is a little bit
delicate for a general f̂ , since we don’t really control the spirals of poles of the discrete
q-Borel sums. Anyway, we will prove (4.13.1) and (4.13.2) for a generic q-Gevrey series (cf.
Theorem 4.14).

At this stage a natural question arises:

Do we have S[λ;q]f̂ = S [λ;q]f̂ and Sdf̂ = Sdf̂?

The answer is clear, and trivially positive, if f̂(x) is a germ of analytic function at zero: in

this case all the sums of f̂(x) coincide with f .
The rest of the paper is devoted to the proof of the following theorem:
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Theorem 4.14. Let f̂ be a generic q-Gevrey series and let λ ∈ C∗, d ∈ [−π, π). Assume

that λ /∈ DS(f̂) and (0, eid∞) ∩ DS(f̂) = ∅. Then

1. S
[λ]
q f̂ = S [λ]

q f̂ , on a convenient domain Ω.

2. Sd
q f̂ = Sd

q f̂ on a convenient sector containing the direction d.

Moreover we have:

Sd
q f̂ =

1

ln q

∫ qeid

eid
S [λ]
q f̂

dλ

λ
.

Remark 4.15. Theorems 3.3 and 3.10 are a special case of Theorem 4.14.

Before giving a proof of Theorem 4.14 in §4.5, we make a digression about two essential
ingredients of the proof: first we prove the theorem in the special case of the Tschakaloff
series; then we introduce a functional space that allows to read, in certain sense, any q-
Gevrey series as a finite linear combination of some modified Tschakaloff series.

4.3 The Tschakaloff series

Let us consider another q-analogue of the Euler series:

Tq(x) =
∑

n≥0

qn(n−1)/2xn+1 ,

called the Tschakaloff series or the partial Theta function. It satisfies the q-difference equa-
tion

xTq(qx) − qTq(x) = −qx ,
that can also be rewritten in the form x2(q − 1)dqy + (x− q)y = −qx.

The Borel transforms of Tq are:

ψ(ξ) = Bq(Tq) =
∑

n≥0

ξn

[n]!p
= ep(ξ) = ((1− p)ξ; p)

−1

and

φ(ξ) = Bq(Tq) =
1

1− ξ
.

Proposition 4.16. Let us fix λ /∈ [−1; q]. Then S [λ]
q Tq = S

[λ]
q Tq.

Proof. The definition of the Jackson integral (cf. §A) and the Jacobi triple product formula
(cf. (2.4.4)), plus the development of the q-exponential eq(x) as an infinite product (cf.
(2.4.5)), imply that:

L[λ]
q ψ =

q

1− p

∫

λpZ

ep(ξ)

eq

(
qξ

(1−p)x

)dpξ =
q

1− p

∫

λpZ

(
ξ,−qξ

x
; p

)−1

∞

dpξ

= λ(p; p)∞
∑

n∈Z

pn(−p1−nx/λ; p)∞
(pn+1λ; p)∞θp(pnλ/x)

.

Since θp(x) = pn(n−1)/2xnθp(p
nx) for any n ∈ Z, we obtain:

S [λ]
q Tq = L[λ]

q ψ =
λ(p; p)∞
θp(λ/x)

∑

n∈Z

(
−p1−n x

λ ; p
)
∞

(pn+1λ; p)∞
pn(n+1)/2

(
λ

x

)n

.
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On the other hand we have:

S
[λ]
q Tq = L

[λ]
q φ =

q

1− p

∫

pZλ

dpξ

(1− ξ)θp(qξ/x)

= λ
∑

n∈Z

pn

(1− pn+1λ)θp(pnλ/x)

=
λ

θp(λ/x)

∑

n∈Z

pn(n+1)/2

1− pn+1λ

(
λ

x

)n

A straightforward calculation of the residues of (x, p)−1
∞ at x = p−k, for k ≥ 0, gives the

formula:

1

(x; p)∞
=

1

(p; p)∞

∑

k≥0

ak
1− xpk

, with ak =
1

(p−k; p)k
=

(−1)kpk(k+1)/2

(p; p)k
.

Therefore we obtain:

S [λ]
q Tq =

λ

θ(λx )

∑

ℓ∈Z

pℓ(ℓ+1)/2

1− pℓλ

(
λ

x

)ℓ

(aℓ; p)∞ 0φ1(−; aℓ; p, aℓ), aℓ = −p1−ℓx

λ
.

The Ramanujan formula (cf. [Zha03, Thm. 4.4]):

(x; p)∞ 0φ1(−;x; p, x) = 1 , for any x /∈ q−N,

implies that L[λ]
q ψ = L

[λ]
q φ.

4.4 The functional space H in the Borel plane

We recall that the q-Borel transform Bq associates to a power series f̂ =
∑

n≥0 anx
n+1 ∈

C[[x]] the power series φ =
∑

n≥0 anq
−n(n−1)/2ξn ∈ C[[ξ]]. As we have already pointed out,

the q-Borel transform of a generic q-Gevrey series admits a positif radius of convergence and
can be continued to an analytic function in the whole complex plane minus a finite number
of sets of the form λqN (cf. [Zha99] and [Zha02]).

In this section we want to prove that every generic q-Gevrey series can be expressed by
means of “modified Tschakaloff series”. Our strategy consists in proving that the q-Borel
transform of any generic q-Gevrey series admits an elementary decomposition, by studying
the q-convolution product of suitable entire functions by a rational functions. This leads to
the construction of a functional space which is somehow spanned by the q-Borel transforms
of the modified Tschakaloff series.

Definition 4.17. We call q-convolution product the following bilinear operator:

∗q : C{ξ} × C{ξ} −→ ξC{ξ}

ξn ∗q ξm 7−→ q−(nm+n+m+1)ξn+m+1
.

A direct calculation shows that

1. If φ =
∑

n≥0 φnξ
n ∈ C{ξ} and ψ ∈ C{ξ}, then ([MZ00, 1.4.3, where s = 1)])

φ ∗q ψ(ξ) =
∑

≥0

φ0q
−n−1ξn+1ψ(q−n−1ξ).
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2. Bq(f̂ ĝ) = Bq(f̂) ∗q Bq(ĝ).

Let K be the set of rational functions bounded at zero and let Eq be the set of all
entire functions admitting at most a q-exponential growth of order 1 at the infinity. We
know that K ∩ Eq = C[ξ] and Eq = Bq(xC{x}) (cf. [Ram92]). Notice that the formula

Bq(f̂ ĝ) = Bq(f̂) ∗q Bq(ĝ) identifies (Eq, ∗q) to a commutatif sub-ring of (C{ξ}, ∗q).

Definition 4.18. We define the functional space H := ∪n≥0Hn in the following way:

H−1 = {1}, H0 = K, H1 = Eq ∗q K := {φ ∗q r : φ ∈ Eq, r ∈ K}

and, for any integer n ≥ 1,

H2n = KH2n−1 := {ru : r ∈ K,u ∈ H2n−1}, H2n+1 = Eq∗qH2n := {φ∗qu : φ ∈ Eq, u ∈ H2n}.

Proposition 4.19. For any (r, φ, u) ∈ K ×Eq ×H, we have (ru, φ ∗q u) ∈ H ×H. In other
words, the functional space H is a (K,Eq)-bimodule.

Proof. It follows immediately from the definition of H . Indeed, if n ≤ m, then Hn ⊂ Hm.
So, we can suppose that (r, φ, u) ∈ K × Eq ×Hn and hence, (ru, φ ∗q u) ∈ Hn+2 ×Hn+2 ⊂
H ×H .

Theorem 4.20. For any u ∈ H, there exist φ0, φ1, . . . , φn ∈ Eq and r0, r1, . . . , rn ∈ K
such that

u = φ0 + r0 + φ1 ∗q r1 + ...+ φn ∗q rn.
Moreover, we can suppose that r1, ..., rn are rational functions of the form 1

(ξ−λi)νi
, where

ci, λi ∈ C
∗ and νi ∈ N.

Proof. Since Hm ⊂ Hm+1, for any u ∈ H there exists m ∈ N such that u ∈ Hm. So we can
prove the theorem by induction on m. The cases m = 0 and m = 1 are trivial. Suppose
that u ∈ Hm+1. Then there exists (r, v, φ) ∈ K×Hm×Eq such that on of the following two
cases occurs:

(1) u = rv,

(2) u = φ ∗ v,
and, by inductional hypothesis, v = φ0 + r0 +

∑m
j=1 φj ∗q rj . The proof in the case (2) is

straightforward, since φ ∗q (φj ∗q rj) = (φ ∗q φj) ∗q rj . In the case (1), we need the following
elementary lemma.

Lemma 4.21. For any (a, b, ℓ, n) ∈ C∗ × C∗ × N × N such that a 6= b, the following
decomposition holds:

1

(x − a)ℓ
1

(x− b)n
=

ℓ−1∑

k=0

(n+ k)!

(a− b)n+kk!

(−1)k

(x − a)ℓ−k
+

n−1∑

k=0

(ℓ+ k)!

(b− a)ℓ+kk!

(−1)k

(x− b)n−k
.

Proof. It enough to take the (ℓ−1)-th derivative with respect to a and the n−1-th derivative
with respect to b in the formula

1

x− a

1

x− b
=

1

a− b

(
1

x− a
− 1

x− b

)
.

.
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Let us go back to the proof of the Theorem 4.20. By linearity, it enough to consider a
product of the form r(φ∗q r′), with r = 1

(ξ−λ)ℓ
, r′ = 1

(ξ−µ)n) and φ =
∑

k≥0 φkξ
k ∈ Eq. Since

r′ ∗q φ(ξ) =
∑

k≥0

φkq
−k−1 ξk+1

(q−k−1ξ − µ)n
,

the decomposition follows from the lemma above.

Corollary 4.22. For any u ∈ H, there exist λ1, . . . , λn ∈ C∗ such that u is analytic on the
domain C \ (∪m

i=1λiq
N) and the function U defined by

U(ξ) = u(ξ)

n∏

i=1

∏

m≥0

(
1− ξ

λiqm

)

can be continued to an entire function that has at most a q-exponential growth of order n+1
at the infinity.

The corollary results from the combination of the theorem above and the following
lemma:

Lemma 4.23. Let φ ∈ Eq, r = 1
(ξ−λ)n , n ≥ 1 and λ ∈ C∗. Then φ ∗q r admits λqN as set

of poles and there exist C > 0, m > 0 such that, for any ǫ > 0,

|ξq−n − λ| > ǫ =⇒ |φ ∗q r(ξ)| <
C

ǫn
|ξ|m|e

(log x)2

2 ln q |.

Proof. Let φ =
∑

k≥0 φnξ
k. Since φ ∈ Eq, there exist A, B > 0 such that

∀k ∈ N, |φk| < ABnq−n(n+1)/2.

On the other hand,

φ ∗q r =
∑

k≥0

φkq
−k−1ξk+1r(q−k−1ξ),

which implies directly the lemma.

4.5 Proof of Theorem 4.14

We start by proving the following preparatory result:

Proposition 4.24. If f̂ ∈ xC[[x]] is a generic q-Gevrey series, then its q-Borel transform
belongs to H.

Proof. Let ∆ be a linear analytic q-difference operator such that ∆f̂ = g ∈ xC{x}. We know
that ∆ admits an analytic factorization (cf. [Zha99, Prop. 5.1.4], [Sau04, Thm. 1.2.1]):

(4.24.1) ∆ = (xσq − λ1)h1(xσq − λ2)h2...(xσq − λn)hn, λj ∈ C, hj ∈ C{x}, hj(0) = 1 .

We suppose that we have chosen n minimal and let us prove the statement by induction
on n. We consider first of all the case n = 1: we suppose that (xσq − λ1)h1f̂ = g, with

Bq(g) ∈ H6. This implies that Bq(h1f̂) ∈ H , since Bq((xσq − λ1)h1f̂) = (qξ − λ1)Bq(h1f̂).
Therefore

Bq(xh1(qx)f̂ (qx)) = Bq(g)−Bq(λ1h1f̂) ∈ H ,

with Bq(xh1(qx)) ∈ Eq and xh1(qx)f̂(qx) ∈ x2C[[x]]. So xf̂(qx) = g̃h1(qx)
−1 and Bq(xf̂ (qx)) =

Bq(g̃/x) ∗q Bq(xh1(qx)
−1) ∈ H . Finally Bq(f̂) ∈ H .

For n > 1, the inductive hypothesis implies that Bq((xσq − λn)hnf̂) ∈ H , and hence

that Bq(f̂) ∈ H .

6Notice that we are assuming that Bq(g) ∈ H and not Bq(g) ∈ Eq.
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Proof of Theorem 4.14. Applying Theorem 4.20 to Bq(f̂), we can write f̂ as follows:

f̂ = f0 + ê0 + f1ê1 + ...+ fnên,

where f0, . . . , fn ∈ xC{x}, Bq(ê0) ∈ K and, for i = 1,..., n, Bq(êi) =
1

(ξ−λi)νi
. So it is enough

to prove Theorem 4.14 for a modified Tschakaloff series (cf. [MZ00, Prop. 1.4.2]), i.e. under

the assumption Bq(f̂) =
1

(ξ−λ)n . By replacing ξ by −λξ, we can suppose that λ = −1. The

case n = 1 corresponds exactly to the Tschakaloff divergent series Ê , and the result is stated

in Proposition 4.16. If n > 1, by considering f̂(x) = (−1)n−1

(n−1)!xn−1∂
n−1 ∂an−1Ê(ax)‖a=1, we

can easily deduce the wanted result by the help of the dominated convergence theorem.
Concerning the second part of the statement of Theorem 4.14, the decomposition above

allows once again to reduce to the case of the Tschakaloff series. The dominated convergence
theorem applies with no difficulties to this explicit case (cf. Remark 4.13).
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Gaz. Math., (96):20–49, 2003.
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Mathématiciens, (44):41–63, 1990.

35



[LR95] M. Loday-Richaud. Solutions formelles des systèmes différentiels linéaires
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