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8 Formulas of F-thresholds and F-jumping coefficients

on toric rings ∗

Daisuke Hirose

Abstract

Mustaţǎ, Takagi and Watanabe define F-thresholds, which are in-
variants of a pair of ideals in a ring of characteristic p > 0. In their
paper, it is proved that F-thresholds are equal to jumping numbers
of test ideals on regular local rings. In this note, we give formulas
of F-thresholds and F-jumping coefficients on toric rings. By these
formulas, we prove that there exists an inequality between F-jumping
coefficients and F-thresholds. In particular, we observe a comparison
between F-pure thresholds and F-thresholds in some cases. As applica-
tions, we give a characterization of regularity for toric rings defined by
simplicial cones, and we prove the rationality of F-thresholds in some
cases.

1 Introduction

Let R be a commutative Noetherian ring of characteristic p > 0. In [HY],
Hara and Yoshida defined a generalized test ideal τ(ac) of an ideal a ⊆ R
and a positive real number c ∈ R>0. This is a generalization of the test
ideal τ(R), which appeared in the theory of tight closure (cf. [HH]). On the
other hand, this ideal is a characteristic p analogue of a multiplier ideal (cf.
[Laz]). Similarly, one can define a characteristic p analogue of a jumping
coefficient of a multiplier ideal, which is called the F-jumping coefficient.
In other words, c ∈ R>0 is an F-jumping coefficient of an ideal a ⊆ R if
τ(ac) 6= τ(ac−ε) for all ε > 0.

Mustaţǎ, Takagi and Watanabe studied an F-jumping coefficient. In
[MTW], they defined another invariant of singularities, which is called the
F-threshold. They proved that an F-threshold coincides with an F-jumping
coefficient on a regular local ring of characteristic p > 0. Using this relation,
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they proved basic properties of F-jumping coefficients. Blickle, Mustaţǎ
and Smith studied F-jumping coefficients or F-thresholds on F-finite reg-
ular rings. In particular, they proved the rationality and discreteness of
F-thresholds for F-finite regular rings under some assumptions (cf. [BMS1]
and [BMS2] for details), which partially solves an open problem in [MTW].

However, if rings have singularities, F-thresholds do not coincide with
F-jumping coefficients in general. In [HMTW], Huneke, Mustaţǎ, Tak-
agi and Watanabe studied various topics of F-thresholds for general set-
tings. For example, they defined a new invariant called the F-threshold of
a module, which coincides with an F-jumping coefficient for F-finite and
F-regular local normal Q-Gorenstein rings. As a corollary, they proved an
inequality between the F-threshold and the F-pure threshold, which is the
smallest F-jumping coefficient for a fixed ideal. They also gave examples of
non-regular rings and ideals whose F-thresholds coincide with their F-pure
thresholds.

In this paper, we consider F-thresholds and F-jumping coefficients of
monomial ideals for toric rings, which are not necessarily regular. We give
the explicit formula of F-thresholds in section 3, which is written in terms
of cones corresponding to toric rings and Newton polyhedrons correspond-
ing to monomial ideals. Using this formula, we compare F-thresholds with
F-jumping coefficients in section 4. As applications, we give a characteriza-
tion of regularity of toric rings defined by simplicial cones in Theorem 5.3.
We also prove the rationality of F-thresholds of monomial ideals for toric
rings defined by simplicial cones in Theorem 5.5.

2 The definition of F-thresholds

Throughout this paper, we assume that every ringR is reduced, and contains
a perfect field k whose characteristic is p > 0. Let F : R → R be the
Frobenius map which sends an element x of R to xp. For a positive integer
e, the ring R viewed as an R-module via the e-times iterated Frobenius map
is denoted by eR. We assume that a ring R is F-finite, that is, 1R is a
finitely generated R-module. We also assume that a ring R is F-pure, that
is, the Frobenius map F is pure. For an ideal J and a positive integer e,
J [pe] is the ideal generated by pe-th power elements of J . For example, if J
is (X1,X

2
2 ) ⊂ k[X1,X2], then J [pe] is (Xpe

1 ,X2pe

2 ). We recall the definition
and some remarks of F-thresholds which are defined by Mustaţǎ, Takagi and
Watanabe in [MTW]. These are invariants of a pair of ideals.

Definition 2.1 (F-threshold, cf. [MTW, §1]). Let a and J be nonzero proper
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ideals of a ring R such that a ⊆
√
J . The pe-th threshold νJ

a
(pe) of a with

respect to J is defined as

νJ
a
(pe) := max{r ∈ N|ar * J [pe]}.

Then we define the F-threshold cJ(a) of a with respect to J as

cJ(a) := lim
e→∞

νJ
a
(pe)

pe
.

Remark. Since R is F-pure, if u /∈ J [pe], then up /∈ J [pe+1]. This implies that
νJ
a
(pe)/pe ≤ νJ

a
(pe+1)/pe+1, and hence cJ(a) exists under our assumption.

Furthermore, the assumption that a ⊆
√
J implies that cJ(a) < ∞. How-

ever, in general, this limit does not necessarily exist. In [HMTW], Huneke,
Mustaţǎ, Takagi and Watanabe defined cJ−(a) and cJ+(a) as

cJ−(a) := lim inf
νJ
a
(pe)

pe
, cJ+(a) := lim sup

νJ
a
(pe)

pe
,

for ideals a and J with a ⊆
√
J . When cJ−(a) = cJ+(a), they call it the

F-threshold of a with respect to J , which is denoted by cJ(a). They give a
sufficient condition when cJ(a) exists (cf. [HMTW, Lemma 2.3]).

Let R◦ be the set of elements of R which are not contained in any minimal
prime ideals of R. Let a be an ideal of R such that a ∩R◦ 6= ∅, and let c be
a positive real number. For an R-module D, we define the a

c-tight closure
of the zero submodule in D as the following, which is denoted by 0∗a

c

D . For
z ∈ D, an element z is contained in 0∗a

c

D if there exists x ∈ R◦ such that

xa⌈cp
e⌉(1⊗ z) = 0 ∈ eR⊗D,

where e runs all sufficiently large positive integers.

Definition 2.2 (test ideal). Let a ⊆ R be an ideal such that a∩R◦ 6= ∅, and
c a positive real number. Let E := ⊕mER(R/m), where m runs all maximal
ideals of R and ER(R/m) is the injective hull of the residue field R/m. The
test ideal τ(ac) of a and c is defined as

τ(ac) :=
⋂

D⊆E

AnnR0
∗a

c

D ,

where D runs all finitely generated R-submodules of E.
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In [MTW], they also proved the connection between F-thresholds and
test ideals for regular local rings. Moreover, in [BMS2], they generalized it
for regular rings.

Theorem 2.3 ([MTW, Proposition 2.7] and [BMS2, Proposition 2.23]). Let
a and J be proper ideals on a regular ring R such that a ⊆

√
J . Then

τ(ac
J (a)) ⊆ J.

On the other hand, for a positive real number c, we have a ⊆
√

τ(ac), and
also

cτ(a
c)(a) ≤ c.

In addition, there exists a map from the set of F-thresholds of a to the set
of test ideals of a which sends the test ideal J to cJ(a). Moreover, this map
is bijective. The inverse map sends an F-threshold c of a to τ(ac).

By the two inequalities in Theorem 2.3, F-thresholds on a regular ring are
equal to F-jumping coefficients. They are analogues of jumping coefficients
of a multiplier ideal.

Corollary 2.4. For a fixed nonzero proper ideal a on a regular ring R, the
set of F-thresholds of a is equal to the set of F-jumping coefficients of a.

3 A formula of F-thresholds on toric rings

Let us begin with fixing the notation about toric geometries. Let N ∼= Zd

andM ∼= HomZ(N,Z) which is isomorphic to Zd. The duality pair ofMR := M ⊗Z R
and NR := N ⊗Z R is denoted by

〈 , 〉 : MR ×NR → R.

For a strongly convex rational polyhedral cone σ of NR, we define

σ∨ := {u ∈ MR|〈u, v〉 ≥ 0,∀v ∈ σ}.

Let R be a toric ring defined by σ, that is, the subalgebra of Laurent poly-
nomial k[X±1

1 , · · · ,X±1
d ] generated by sets {Xu|u ∈ σ∨ ∩ M}, where Xu

expresses Xu1
1 · · ·Xud

d for u = (u1, · · · , ud) ∈ M . Since we always assume
that k is a perfect field, a toric ring is F-finite under our assumption. A
proper ideal a of R is said to be a monomial ideal if a is generated by mono-
mials of R ⊂ k[X±1

1 , · · · ,X±1
d ]. For a monomial ideal a, we define two types

of sets in σ∨.
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Definition 3.1. The Newton polyhedron P(a) of a is defined as

P(a) := conv{u ∈ M |Xu ∈ a}.

Moreover, we define

Q(a) :=
⋃

Xu∈a

u+ σ∨.

In addition, for P(a) and a positive real number λ, the sets λP(a) is defined
as

λP(a) := {λu ∈ MR|u ∈ P(a)}.
We can define λQ(a) by the same way.

The following proposition is basic properties of Q(a) and P(a), which
follows immediately.

Proposition 3.2. Let a be a monomial ideal of a toric ring R defined by a
cone σ ⊆ NR.

(i). For e ∈ Z>0, it holds that Q(a) = (1/pe)Q(a[p
e]).

(ii). P(a) + σ∨ ⊆ P(a).

(iii). If a = (Xa1 , · · · ,Xas), then P(a) = conv{a1, · · · ,as}+ σ∨.

Using this notation, we give a computation of F-thresholds in real affine
geometries. This formula is a generalization of [HMTW, Eample 2.7]. Let
R be a toric ring defined by a cone σ ⊆ NR. Let a be a monomial ideal. For
u ∈ σ∨, we define λa(u) as

λa(u) :=

{

sup{λ ∈ R≥0|u ∈ λP(a)} (∃λ ∈ R>0 s.t. u ∈ λP(a)),
0 (∀λ ∈ R>0, u /∈ λP(a)).

Theorem 3.3. Let R and a be as the above. Let J be a monomial ideal
such that a ⊆

√
J . Then

cJ(a) = sup
u∈σ∨\Q(J)

λa(u).

Proof. We assume that a = (Xa1 , · · · ,Xas) where ai ∈ M for i = 1, · · · , s.
To prove the theorem, we need the following two claims.

Claim 1. For any positive integers e, there exists u ∈ σ∨ \Q(J) such that
νJ
a
(pe)/pe ≤ λa(u).
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Claim 2. For every element u ∈ σ∨ \Q(J), there exists a positive integer e
such that νJ

a
(pe)/pe ≥ λa(u).

We note that Claim 1 implies cJ(a) ≤ supλa(u). Since the definition of
right-hand side supremum, νJ

a
(pe)/pe ≤ supλa(u). Thus cJ(a) ≤ supλa(u)

by the definition of F-thresholds and the fact that a supremum is the min-
imum number in upper bounds. By the similar argument, Claim 2 implies
cJ (a) ≥ supλa(u).

Proof of claim 1. We fix a positive integer e. Since the definition of the pe-th
threshold, for every i = 1, · · · , s, there are nonnegative integers ri such that
∑

ri = νJ
a
(pe) and X

P

riai /∈ J [pe]. In particular,
∑

riai /∈ Q(J [pe]). This
is equivalent to (1/pe)

∑

riai /∈ (1/pe)Q(J [pe]). By Proposition 3.2 (i), we
have (1/pe)

∑

riai /∈ Q(J). Hence

1

pe

∑

riai =
νJ
a
(pe)

pe

∑ ri
νJ
a
(pe)

ai

which is an element of (νJ
a
(pe)/pe)P(a). Thus νJ

a
(pe)/pe ≤ λa((1/p

e)
∑

riai).

Proof of Claim 2. We fix u ∈ σ∨ \Q(J), which satisfies λa(u) 6= 0. We find
an integer e which satisfies the assertion of Claim 2 by three steps.
Step 1. We prove that there exists an element u′ on the boundary (⌈peλa(u)⌉/pe)P(a)
such that u′ /∈ Q(J) for sufficiently large e. The following sequence of real
numbers

λa(u) ≤ · · · ≤ ⌈pe+1λa(u)⌉
pe+1

≤ ⌈peλa(u)⌉
pe

≤ · · · ≤ ⌈pλa(u)⌉
p

induces the sequence of Newton polyhedrons

⌈pλa(u)⌉
p

P(a) ⊆ · · · ⊆ ⌈peλa(u)⌉
pe

P(a) ⊆ ⌈pe+1λa(u)⌉
pe+1

P(a) ⊆ · · · ⊆ λa(u)P(a).

In particular, the above sequences are strict if λa(u) /∈ (1/pe)Z for all e.
Since u /∈ Q(J), we can find such u′ by taking e sufficiently large.
Step 2. We prove that there exist nonnegative integers ri for every i = 1, · · · , s
such that

∑

ri/p
e ≥ λa(u) and u′′ :=

∑

riai/p
e /∈ Q(J). Since u′ is con-

tained in (⌈peλa(u)⌉/pe)P(a), u′ can be written

⌈peλa(u)⌉
pe

(
∑

ciai + ω),
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where ci are nonnegative real numbers with
∑

ci = 1 and ω ∈ σ∨ by Propo-
sition 3.2 (iii). Let

ri := ⌈⌈peλa(u)⌉ci⌉.
Then

∑ ri
pe

≥ ⌈peλa(u)⌉
pe

∑

ci ≥ λa(u).

Moreover,

|u′′+ ⌈peλa(u)⌉
pe

ω−u′| ≤
∑

|⌈⌈p
eλa(u)⌉ci⌉

pe
− ⌈peλa(u)⌉ci

pe
| · |ai| <

1

pe

∑

|ai|.

Since u′ /∈ Q(J), we have u′′ + (⌈peλa(u)⌉/pe)ω /∈ Q(J) if we choose e
sufficiently large. By the definition of Q(J), we have u′′ /∈ Q(J).
Step 3. Since u′′ /∈ Q(J),

peu′′ /∈ peQ(J) = Q(J [pe]).

Therefore Xpeu′′

/∈ J [pe]. On the other hand, Xpeu′′ ∈ a

P

ri by the construc-
tion of u′′. Therefore

∑

ri ≤ νJ
a
(pe). This implies λa(u) ≤ νJ

a
(pe)/pe.

We complete the proof of Theorem 3.3.

4 A comparison between F-jumping coefficients

and F-thresholds

F-pure thresholds are defined via F-singularities of the pair (R, ac) where c
is a positive real number. See [TW, Definition 1.3, Definition 2.1] for details.
Since F-finite toric rings are strongly F-regular, the F-pure thresholds can
be defined as follows (See [TW, Proposition 2.2]).

Definition 4.1 (F-pure thresholds). Let R be a toric ring, and a a monomial
ideal. The F-pure threshold c(a) of a is defined as

c(a) := sup{c ∈ R≥0|τ(ac) = R}.

Hence the F-pure threshold of a is the smallest F-jumping coefficient
of a. In [HMTW], the inequality between an F-pure threshold and an F-
threshold on a local ring was given in terms of the F-threshold of a module
([HMTW, Section 4.]). In this section, we consider the inequality on toric
rings, by a combinatorial method. Furthermore, we consider the connection
between arbitrary F-jumping coefficients and F-thresholds with respect to
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some monomial ideals. To compute F-pure thresholds and F-jumping co-
efficients of monomial ideals, we introduce the following theorem given by
Blickle.

Theorem 4.2 ([B, Theorem 3]). Let R be the toric ring defined by
σ = R≥0v1 + · · · + R≥0vn ⊆ NR := Rd, where vj ∈ N are primitive. Then
the test ideal τ(ac) of a monomial ideal a is also a monomial ideal. Moreover,
Xu ∈ τ(ac) for u ∈ M if and only if there exists ω ∈ MR such that

〈ω, vj〉 ≤ 1, j = 1, · · · , n,
u+ ω ∈ Int(cP(a)).

By this theorem, the F-pure threshold of a monomial ideal on a toric
ring can be described as the following corollary.

Corollary 4.3. Let R and a be as in Theorem 4.2. Then the F-pure thresh-
old c(a) of a is described as

c(a) = sup
u∈σ∨\O

λa(u),

where
O := {u ∈ σ∨|∃j, 〈u, vj〉 ≥ 1}.

Proof. First, we assume that c(a) < supλa(u). Then there exists α ∈ R≥0

such that
c(a) < α < supλa(u).

By the definition of F-pure thresholds, τ(aα) ( R. Then there exists
β ∈ R≥0 such that

α < β < supλa(u)

and β = λa(u
′) for u′ ∈ σ∨ \O. This implies that u′ ∈ βP(a). In particular,

u′ ∈ Int(αP(a)). In addition, 〈u′, vj〉 < 1 for all j. By Theorem 4.2, it
contradicts that τ(aα) ( R. Therefore c(a) ≥ supλa(u). Second, we assume
c(a) > supλa(u). There exists α ∈ R≥0 such that

supλa(u) < α < c(a)

and τ(aα) = R. This implies that there exists ω ∈ σ∨ such that 〈ω, vj〉 ≤ 1
for all j and

ω ∈ Int(αP(a)).

8



For 1 > ε > 0, we have 〈(1− ε)ω, vj〉 = 1− ε < 1. Thus (1− ε)ω ∈ σ∨ \O.
On the other hand, since ω ∈ Int(αP(a)), it holds that

(1 − ε)ω ∈ αP(a),

for sufficiently small ε. Therefore

sup
u∈σ∨\O

λa(u) < λa((1 − ε)ω),

which is a contradiction. Thus c(a) ≥ supλa(u), which completes the proof
of the corollary.

Using this presentation, we compare an F-pure threshold with an F-threshold
with respect to the maximal monomial ideal on a toric ring.

Proposition 4.4. Let R, σ and a be as in Corollary 4.3, and m the maximal
monomial ideal of R. Then

c(a) ≤ cm(a).

Proof. By the definitions, it is enough to show that Q(m) ⊆ O. In particular,
it is enough to show Q(m) ∩M ⊆ O. It follows immediately.

Remark. In general, for an ideal a, we have cJ
′

(a) ≤ cJ (a), where J and
J ′ are ideals with J ⊆ J ′ and a ⊆

√
J . Therefore the F-pure threshold of a

is less than or equal to all F-thresholds of a.

Now we generalize this comparison to arbitrary F-jumping coefficients
and F-thresholds.

Lemma 4.5. Let R, σ and a be as in Theorem 4.2 and ω, ω′ ∈ σ∨. For all
j = 1, · · · , n, we assume that

〈ω, vj〉 ≤ 〈ω′, vj〉.

Then λa(ω) ≤ λa(ω
′).

Proof. If λa(ω) = 0, it is trivial. We prove this lemma in the case λa(ω) 6= 0.
By the assumption, there exists ω′′ ∈ σ∨ such that ω′ = ω + ω′′. Let
λ := λa(ω). Since ω/λ ∈ P(a),

ω′

λ
=

ω

λ
+

ω′′

λ
∈ P(a) + σ∨.

By Proposition 3.2 (ii), we have ω′/λ ∈ P(a). Hence λ ≤ λa(ω
′).
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Proposition 4.6. Let R, σ and a be as in Theorem 4.2. For u ∈ σ∨ ∩M ,
we define the nonnegative number µa(u) as

µa(u) := sup
ω∈σ∨\O

λa(u+ ω),

and the nonnegative number ci(a) as

ci(a) = inf
Xu∈τ(aci−1(a))

µa(u),

where c0(a) := 0. Then ci(a) is the i-th F-jumping coefficient of a.

Proof. We show that ci(a) is a jumping number of the test ideal. We assume
that

τ(ac
i−1(a)) = (Xb1 , · · · ,Xbt).

By Lemma 4.5,
ci(a) = inf

j=1,··· ,t
µa(bj).

Since {bj} is a finite set, there exists j′ such that ci(a) = µa(bj′). By the
definition of ci(a), for all ω ∈ σ∨ \O,

bj′ + ω /∈ Int(ci(a)P(a)).

This implies that Xbj′ /∈ τ(ac
i(a)) by Theorem 4.2. On the other hand, there

exists ω′ ∈ σ∨ \O such that

bj′ + ω′ ∈ Int((ci(a)− ε)P(a)),

for all ε > 0. This also implies thatXbj′ ∈ τ(ac
i(a)−ε). Therefore τ(ac

i(a)) ( τ(ac
i(a)−ε)

and hence ci(a) is a jumping number.
We show that ci(a) is the i-th F-jumping coefficient of a. In other words,

τ(ac
i(a)−ε) = τ(ac

i−1(a)) for all ε > 0 with ci−1(a) ≤ ci(a)− ε. The inclusion
τ(ac

i(a)−ε) ⊆ τ(ac
i−1(a)) follows immediately from Theorem 4.2. The oppo-

site inclusion follows from the definition of ci(a). In fact, if Xu ∈ τ(ac
i−1(a)),

then ci(a)− ε < ci(a) ≤ µa(u), by definition of ci(a). Hence there exists
ω ∈ σ∨ \O such that

u+ ω ∈ Int((ci(a)− ε)P(a)).

This implies that Xu ∈ τ(ac
i(a)−ε) by Theorem 4.2. We complete the proof

of the proposition.
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Proposition 4.7. We have the following inequality:

ci(a) ≤ cτ(a
ci(a))(a).

Proof. Since τ(ac
i(a)) ( τ(ac

i−1(a)), there exists u ∈ σ∨ ∩ M such that
Xu ∈ τ(ac

i−1(a)) and Xu /∈ τ(ac
i(a)). By Proposition 4.6,

ci(a) ≤ µa(u). (1)

We claim that for all ω ∈ σ∨ \O,

ω + u ∈ σ∨ \Q(τ(ac
i(a))).

By Theorem 3.3, this claim implies that

µa(u) ≤ cτ(a
ci(a))(a). (2)

The proof of the proposition is completed from inequalities (1) and (2).
Now we prove that claim. We assume that there exists ω ∈ σ∨ \ O such
that u + ω ∈ Q(τ(ac

i(a))). There exist u′ ∈ M and ω′ ∈ σ∨ such that
Xu′ ∈ τ(ac

i(a)) and u + ω = u′ + ω′. Thus u − u′ = ω′ − ω ∈ M . On
the other hand, since u = u′ + ω′ − ω ∈ M and Xu /∈ τ(ac

i(a)), we have
ω′ − ω /∈ σ∨. That is, there exists j such that 〈(ω′ − ω), vj〉 < 0. Therefore

0 ≤ 〈ω′, vj〉 < 〈ω, vj〉 < 1.

It contradicts that ω′ − ω ∈ M . Hence we have the claim, and then we
complete the proof of the proposition.

Remark. Since a toric ring is strongly F-regular, a ⊆ τ(ac
i(a)). Hence

cτ(a
ci(a))(a) exists and is a finite number.

5 Applications

Let us give some applications of results in previous sections. As we see
in Corollary 2.4, for an arbitrary ideal a, F-thresholds of a are equal to
F-jumping coefficients of a on regular rings. By the formula of F-thresholds,
we see that if R is a toric ring which has at most Gorenstein singularities,
then there exists a monomial ideal a ⊆ R such that c(a) = cm(a).

Proposition 5.1. Let R be a Gorenstein toric ring defined by a cone
σ ⊆ NR = Rd and m the maximal monomial ideal. There exist a monomial
ideal a ⊆ R such that c(a) = cm(a).

11



Proof. We assume that σ = R≥0v1+· · ·+R≥0vn, where vj ∈ N are primitive
numbers. For a Gorenstein toric ring R, there exists an element ω ∈ σ∨∩M
such that 〈ω, vj〉 = 1 for all j = 1, · · · , n. By Lemma 4.5, for a monomial
ideal a ⊆ R, we can describe

c(a) = λa(ω).

Let a = (Xω). We have P(a) = ω+ σ∨, and clearly c(a) = λa(ω) = 1. Since
ω ∈ M \ 0, we have ω ∈ Q(m). Hence P(a) ⊆ Q(m). By Theorem 3.3,
that implies cm(a) ≤ 1 = c(a). On the other hand, c(a) ≤ cm(a) follows by
Proposition 4.4. We complete the proof of the proposition.

For 2-dimensional toric rings, we see that the opposite assertion of Propo-
sition 5.1 is true. However, it is false in general toric rings whose dimension
are greater than 3.

Proposition 5.2. Let R be a 2-dimensional toric ring, and m the maximal
monomial ideal of R. If there exists a monomial ideal a ⊆ R such that
c(a) = cm(a), then R has at most Gorenstein singularities.

Proof. Suppose that R is defined by a cone σ. By taking a suitable change
of coordinates, it suffices to consider cones σ := R≥0(1, 0) +R≥0(a, b) ⊆ R2,
where b > 0 and the greatest common divisor of a and b is 1. The following
three cases are trivial. If a = 0, thenR is the polynomial ring. If a = 1, b = 1,
then R = k[X1, X−1

1 X2], which is a regular ring. If a = 1, b > 1, then
R = k[X1,X2,X

b
1X

−1
2 ] ∼= k[x, y, z]/(xz − yb). Note that SpecR has an Ab−1

singularity. Hence R is a Gorenstein ring. Assume that a > 1. We have
σ∨ = R≥0(0, 1)+R≥0(b,−a), and the point ω = (1, (1−a)/b) which satisfies

〈ω, (1, 0)〉 = 〈ω, (a, b)〉 = 1.

If ω /∈ Q(m), then for all monomial ideals a, we have c(a) < cm(a). In fact,
by taking ε > 0 with (1 + ε)ω /∈ Q(m), we have a strict inequality;

c(a) < λa((1 + ε)) ≤ cm(a).

By the assumption of the proposition, ω ∈ Q(m). Thus it is enough to
prove that ω ∈ M under the assumption ω ∈ Q(m). By the definition
of Q(m), if ω ∈ Q(m), then there exists a lattice point u ∈ σ∨ ∩M \ {0}
such that ω − u ∈ σ∨. Since u ∈ σ∨, the lattice point u is written as
u = λ1(0, 1)+λ2(b,−a) ∈ M , where λ1 and λ2 are positive. Since ω−u ∈ σ∨,
we have (1/b) − λ1 ≥ 0 and (1/b) − λ2 ≥ 0. Since 0 6= u ∈ M and b ∈ Z>0,
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we have λ2 = 1/b. Hence u = (1, λ1 − (a/b)). Since u ∈ M , there exists an
integer l such that l = λ1 − (a/b) and

−a

b
≤ l ≤ 1− a

b
.

Since a, b ∈ Z and the greatest common divisor of a and b is 1, we have
bl = 1 − a. Thus b|(1 − a). This implies that ω ∈ M . The remaining case
when a < 0 follows by the same argument. We complete the proof of the
proposition.

Example 1. Suppose N = R3. We define generators {vi} of a cone σ ⊆ NR

as
v1 := (1, 0, 0), v2 := (1, 1, 0), v3 := (0, 1, r).

Let ω := (1, 0, 1/r) ∈ σ∨. Since 〈ω, vi〉 = 1 for all i, the toric ring R defined
by σ has an r-Gorenstein singularity. We choose a set of generators of σ∨

as
u1 := (r,−r, 1), u2 := (0, r,−1), u3 := (0, 0, 1).

Then

ω =
1

r
u1 +

1

r
u2 +

1

r
u3.

Since ω − (1/r)u3 ∈ σ∨ ∩ M , we have ω ∈ Q(m), where m ⊆ R is the
maximal monomial ideal. Let a be a monomial ideal generated by Xrω.
Then (1/r)P(a) = ω + σ∨ ⊆ Q(m). The same argument in the proof of
Proposition 5.1 implies c(a) = cm(a) = 1/r.

Example 2. Suppose N = Rd, where d > 3. We consider the cone σ
generated by

v1 := (1, 0, 0, 0, · · · , 0)

v2 := (1, 1, 0, 0, · · · , 0)

v3 := (0, 1, r, 0, · · · , 0)

vi := (0, 0, 0, 0, · · · , 0,
i

1̆, 0, · · · , 0), 3 < i ≤ d.

By the same argument in Example 1, we have a monomial ideal a of a
d-dimensional r-Gorenstein ring R = k[σ∨ ∩M ] such that c(a) = cm(a).

Using F-thresholds and F-pure thresholds, we give a criterion of regular-
ities for a toric ring defined by a simplicial cone.
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Theorem 5.3. Let R be a toric ring defined by a simplicial cone σ, and m

the maximal monomial ideal. If there exists a monomial ideal a such that√
a = m and

c(a) = cm(a),

then R is a regular ring.

Proof. Let σ ⊆ NR := Rd. Since σ is simplicial, we may assume that

σ = R≥0v1 + · · ·R≥0vd,

where vj ∈ N and {v1, · · · , vd} are R-linearly independent. Hence there
exist ui ∈ M and li ∈ Z>0 such that

σ∨ = R≥0u1 + · · · + R≥0ud,

and 〈ui, vj〉 = liδij . Moreover, for all i, j = 1, · · · , d, we assume vj and ui
are primitive. Since σ is simplicial, R is Q-Gorenstein. Hence there exists
ω ∈ M ⊗Q such that

c(a) = cm(a) = λa(ω).

By Theorem 3.3,
λa(ω)P(a) ⊆ Q(m). (3)

To prove the theorem, it is enough to show that li = 1 for every i = 1, · · · , d.
We derive a contradiction assuming li > 1 for some i. Since

√
a = m, for

a sufficiently large nonnegative integer l, we have X lui ∈ a. In particular,
λa(ω)lui ∈ λa(ω)P(a). If we choose sufficiently large l, then we have

0 <
li − 1

λa(ω)lli − 1
< 1.

Let α ∈ R>0 such that 0 < α < (li − 1)/(λa(ω)lli − 1). By the definition of
P(a) and (3),

αλa(ω)lui + (1− α)ω ∈ Q(m).

On the other hand, for all j,

〈αλa(ω)lui + (1− α)ω, vj〉 =
{

1− α < 1 (j 6= i),
αλa(ω)lli + 1− α < li (j = i).

By the definition of Q(m), there exist l′i ∈ Z>0, u ∈ M ∩ Q(m) and u′ ∈ σ∨

such that

〈u, vj〉 =
{

0 (j 6= i)
l′i < li (j = i),

14



and
αλa(ω)lui + (1− α)ω = u+ u′.

However, the existence of u contradicts the primitiveness of ui. Thus li = 1.
Eventually, for every i = 1, · · · , d, we have li = 1. Therefore we complete
the proof of the theorem.

On the other hand, there exist a toric R defined by a non-simplicial cone
and a maximal ideal m such that c(m) = cm(m).

Example 3 ([HMTW, Remark 2.5]). If R = k[X1X3,X2X3,X3,X1X2X3]
and m = (X1X3,X2X3,X3,X1X2X3), then R is a toric ring whose defining
cone is

σ = R≥0(1, 0, 0) + R≥0(0, 1, 0) + R≥0(−1, 0, 1) + R≥0(0,−1, 1).

There exists ω = (1, 1, 2) ∈ σ∨ which entails

〈ω, (1, 0, 0)〉 = 〈ω, (0, 1, 0)〉 = 〈ω, (−1, 0, 1)〉 = 〈ω, (0,−1, 1)〉 = 1.

By Corollary 4.3 and Lemma 4.5, for every monomial ideal a, we have
c(a) = λa(ω). Hence c(m) = 2. On the other hand, we can compute cm(m) = 2.

Finally, we discuss about the rationality of F-thresholds. This was given
as an open problem in [MTW]. For some regular rings, Blickle, Mustaţǎ and
Smith give the affirmative answer. In [BMS2], they prove the rationality of
F-thresholds of all proper ideals a with respect to ideals J which entail
a ⊆

√
J on an F-finite regular ring essentially of finite type over k ([BMS2,

Theorem 3.1]). In addition, they also prove in cases that a = (f) is principal
on an F-finite regular ring ([BMS1, Theorem 1.2]). On the other hand,
Katzman, Lyubeznik and Zhang prove in cases that a = (f) is principal on
an excellent regular local ring, that is not necessarily F-finite ([KLZ]). We
will prove rationality of an F-threshold of a monomial ideal a with respect to
an m-primary monomial ideal J on a toric ring. This argument is described
in terms of real affine geometries. We define the affine half space H+(v;λ)
as

H+(v;λ) := {u ∈ MR|〈u, v〉 ≥ λ},
where v ∈ NR and λ ∈ R. We also define the hyperplane ∂H+(v;λ) as

∂H+(v;λ) := {u ∈ MR|〈u, v〉 = λ}.

Assume that a is a monomial ideal of a toric ring. Since P(a) is a convex
polyhedral set, it is written as an intersection of finite affine half spaces. we
observe the form of P(a).
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Lemma 5.4. Let R be a toric ring defined by a cone σ ⊆ NR = Rd, and a

a monomial ideal of R. Then there exist v′l ∈ NQ := N ⊗Q and λ′
l ∈ Q for

l = 1, · · · , t such that P(a) = ∩t
l=1H

+(v′l;λ
′
l).

Proof. Since σ is a rational polyhedral cone, so is σ∨. Hence there exists
ui ∈ M such that

σ∨ = R≥0u1 + · · · +R≥0um.

We assume that a = (Xa1 , · · · ,Xas). We consider the rational polyhedral
cone τ of MR × R as

τ := R≥0(a1, 1) + · · · + R≥0(as, 1) + R≥0(u1, 0) + · · ·+ R≥0(um, 0).

For such τ and P(a),

τ ∩ (MR × {1}) = P(a)× {1}. (4)

In fact, let (u, 1) be an element of the left-hand side. Then

(u, 1) =

s
∑

i=1

ai(ai, 1) +

m
∑

j=1

bj(uj , 0),

where ai, bj ≥ 0. By the definition,
∑

ai = 1. By Proposition 3.2 (iii),
u ∈ P(a). The similar argument implies the opposite inclusion. Since τ is
the rational polyhedral convex cone, for l = 1, · · · , t, there exists
(v′l, µl) ∈ NQ ×Q such that

τ =

t
⋂

l=1

H+((v′l, µl); 0), (5)

where H+((v′l, µl); 0) is the affine half space of MR × R. The duality pair of
MR × R and NR × R is defined as

〈(u, λ), (v, µ)〉 := 〈u, v〉 + λµ,

for every u ∈ MR, v ∈ NR and λ, µ ∈ R. Under this duality,

H+((v, µ); 0) ∩ (MR × {1}) = H+(v;−µ)× {1}.

Therefore if we set λ′
l := −ul for each l = 1, · · · , t, the assertion of the

theorem follows by (4) and (5).
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Theorem 5.5. Let R, σ and a be as in Lemma 5.4. Furthermore, we
assume that σ is a d-dimensional simplicial cone. Let J be an m-primary
monomial ideal, where m is the maximal monomial ideal of R. Then the
F-threshold cJ(a) of a with respect to J is a rational number.

Proof. We denote by ∂Q(J) the boundary of Q(J) in σ∨. By Lemma 5.4, if
there exists a finite set B ⊆ MQ ∩ ∂Q(J) such that

cJ (a) = max
ω∈B

λa(ω),

then we have cJ(a) ∈ Q.
First, we prove that

cJ(a) = sup
ω∈∂Q(J)

λa(ω).

By Theorem 3.3, if there exists an element ω ∈ σ∨ such that cJ(a) = λa(ω),
then ω ∈ ∂Q(J). In fact, if such ω is in σ∨ \ Q(J), there exists ε > 0 such
that (1 + ε)ω ∈ σ∨ \ Q(J). This implies that cJ(a) ≥ (1 + ε)λa(ω). It is a
contradiction, thus we are done.
Second, we prove the existence of B ⊆ MQ ∩ ∂Q(J). We assume that
σ = R≥0v1 + · · · + R≥0vd, where vj are primitive lattice points. Since σ is
simplicial, for every j, there exists uj ∈ MQ such that

〈uj , vl〉 = δjl, l ∈ {1, · · · , d}.

Since J ism-primary, there exists a nonnegative integer rj such that rjuj ∈ Q(J).
That implies ∂Q(J) is bounded. We define the order ≤σ over ∂Q(J) as
u ≤σ u′ if

〈u, vj〉 ≤ 〈u′, vj〉, ∀j = 1, · · · , d.
Then ∂Q(J) has maximal elements with respect to this order. LetB ⊆ ∂Q(J)
be the set of maximal elements with respect to the order ≤σ. By Lemma
4.5, we conclude

cJ (a) = sup
ω∈∂Q(J)

λa(ω) = sup
ω∈B

λa(ω).

To show that B is a finite set of MQ, we prove the following claim.

Claim. Let J = (Xb1 , · · · ,Xbt). We assume that u ∈ B, that is,

(i). u ∈ ∂Q(J),

(ii). u is a maximal element with respect to the order ≤σ in ∂Q(J).
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Then for every j = 1, · · · , d, there exists ij such that

u ∈
n
⋂

j=1

(

bij + (∂H+(vj ; 0) ∩ σ∨)
)

. (6)

In particular, B is a finite set and u ∈ MQ.

Proof of Claim. We suppose that u does not satisfy (6). Then there exists
j′ ∈ {1, · · · , d} such that

u /∈ bi + (∂H+(vj′ ; 0) ∩ σ∨), (7)

for all i = 1, · · · , t. We choose u′ ∈ σ∨ as

〈u′, vj〉 = 〈u, vj〉, (j 6= j′),

〈u′, vj′〉 = ⌊〈u, vj′〉⌋+ 1.

Since σ is simplicial, u′ uniquely exists. We will show that the existence
of u′ contradicts the assumption (ii). By the construction of u′, we have
u′ ∈ Q(J). To see u′ /∈ IntQ(J), we rephrase the assumption (i). Since
u /∈ IntQ(J), we have u /∈ bi + Int(σ∨) for all i = 1, · · · , t. Furthermore,
this is equivalent to the existence of li such that

〈u, vli〉 ≤ 〈bi, vli〉, (8)

for each i = 1, · · · , t. If li 6= j′, we have directly

〈u′, vli〉 = 〈u, vli〉 ≤ 〈bi, vli〉,

by the construction of u′ and the relation (8). On the other hand, if li = j′,
then the relation (8) and (7) implies

⌊〈u, vj′〉⌋ ≤ 〈bi, vj′〉 − 1,

because bi ∈ M . Hence 〈u′, vli〉 ≤ 〈bi, vli〉. Eventually, in both cases,
u′ /∈ IntQ(J). Therefore u′ ∈ ∂Q(J). By the construction of u′, the ele-
ment u is not a maximal element in ∂Q(J). It contradicts the assumption
(ii). We complete the proof of Claim.

We complete the proof of the theorem.
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Now we consider the rationality of F-jumping coefficients on Q-Gorenstein
toric rings. The rationality of F-jumping coefficients is the consequence of
the fact that test ideals are equal to multiplier ideals ([HY, Theorem 4.8]
and [B, Theorem 1]). However, we also give its proof by the combinatorial
method.

Proposition 5.6. Let R, σ, a be as in Lemma 5.4. Moreover, we assume
R is an r-Gorenstein toric ring. Then for all i, the i-th F-jumping coefficient
ci(a) of a is a rational number.

Proof. In the proof of Proposition 4.6, we have seen that there exists b ∈ M
such that ci(a) = µa(b), where X

b is one of generators of τ(ac
i−1(a)). By the

similar argument to that of the proof of Proposition 5.1, there exists ω ∈ σ∨

such that ci(a) = λa(b+ω/r). Since ω corresponds to the generator of ω
(r)
R ,

where ωR is the canonical module of R, we see ω ∈ M . Hence b+ω/r ∈ MQ.
Therefore ci(a) is a rational number.
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