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Formulas of F-thresholds and F-jumping coefficients
on toric rings *

Daisuke Hirose

Abstract

Mustata, Takagi and Watanabe define F-thresholds, which are in-
variants of a pair of ideals in a ring of characteristic p > 0. In their
paper, it is proved that F-thresholds are equal to jumping numbers
of test ideals on regular local rings. In this note, we give formulas
of F-thresholds and F-jumping coefficients on toric rings. By these
formulas, we prove that there exists an inequality between F-jumping
coefficients and F-thresholds. In particular, we observe a comparison
between F-pure thresholds and F-thresholds in some cases. As applica-
tions, we give a characterization of regularity for toric rings defined by
simplicial cones, and we prove the rationality of F-thresholds in some
cases.

1 Introduction

Let R be a commutative Noetherian ring of characteristic p > 0. In [HY],
Hara and Yoshida defined a generalized test ideal 7(a“) of an ideal a C R
and a positive real number ¢ € Ryy. This is a generalization of the test
ideal 7(R), which appeared in the theory of tight closure (cf. [HH]). On the
other hand, this ideal is a characteristic p analogue of a multiplier ideal (cf.
Laz]). Similarly, one can define a characteristic p analogue of a jumping
coefficient of a multiplier ideal, which is called the F-jumping coefficient.
In other words, ¢ € Ryq is an F-jumping coefficient of an ideal a C R if
7(a%) # 7(a®¢) for all € > 0.

Mustata, Takagi and Watanabe studied an F-jumping coefficient. In
[MTW], they defined another invariant of singularities, which is called the
F-threshold. They proved that an F-threshold coincides with an F-jumping
coefficient on a regular local ring of characteristic p > 0. Using this relation,
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they proved basic properties of F-jumping coefficients. Blickle, Mustata
and Smith studied F-jumping coefficients or F-thresholds on F-finite reg-
ular rings. In particular, they proved the rationality and discreteness of
F-thresholds for F-finite regular rings under some assumptions (cf. [BMSI]
and [BMS2] for details), which partially solves an open problem in [MTW].

However, if rings have singularities, F-thresholds do not coincide with
F-jumping coefficients in general. In [HMTW], Huneke, Mustata, Tak-
agi and Watanabe studied various topics of F-thresholds for general set-
tings. For example, they defined a new invariant called the F-threshold of
a module, which coincides with an F-jumping coefficient for F-finite and
F-regular local normal Q-Gorenstein rings. As a corollary, they proved an
inequality between the F-threshold and the F-pure threshold, which is the
smallest F-jumping coefficient for a fixed ideal. They also gave examples of
non-regular rings and ideals whose F-thresholds coincide with their F-pure
thresholds.

In this paper, we consider F-thresholds and F-jumping coefficients of
monomial ideals for toric rings, which are not necessarily regular. We give
the explicit formula of F-thresholds in section 3, which is written in terms
of cones corresponding to toric rings and Newton polyhedrons correspond-
ing to monomial ideals. Using this formula, we compare F-thresholds with
F-jumping coefficients in section 4. As applications, we give a characteriza-
tion of regularity of toric rings defined by simplicial cones in Theorem [5.31
We also prove the rationality of F-thresholds of monomial ideals for toric
rings defined by simplicial cones in Theorem

2 The definition of F-thresholds

Throughout this paper, we assume that every ring R is reduced, and contains
a perfect field k& whose characteristic is p > 0. Let F : R — R be the
Frobenius map which sends an element x of R to zP. For a positive integer
e, the ring R viewed as an R-module via the e-times iterated Frobenius map
is denoted by °R. We assume that a ring R is F-finite, that is, 'R is a
finitely generated R-module. We also assume that a ring R is F-pure, that
is, the Frobenius map F' is pure. For an ideal J and a positive integer e,
JP) is the ideal generated by pt-th power elements of J. For example, if J
is (X1,X2) C k[X1, Xs], then JPT is (XP", X2P"). We recall the definition
and some remarks of F-thresholds which are defined by Mustaté, Takagi and
Watanabe in [MTW]. These are invariants of a pair of ideals.

Definition 2.1 (F-threshold, cf. [MTW],, §1]). Let a and J be nonzero proper



ideals of a ring R such that a C v/J. The p°-th threshold v (p®) of a with
respect to J is defined as

vl (p°) := max{r € N[a" ¢ JP}.
Then we define the F-threshold ¢/ (a) of a with respect to .J as

J (e
¢/(a) := lim Va (P )
e—oo  pt

Remark. Since R is F-pure, if u ¢ JIP), then u? ¢ JP . This implies that
vl (p®)/p® < vl (p“t1)/p°T!, and hence c¢’(a) exists under our assumption.
Furthermore, the assumption that a C N implies that ¢’ (a) < co. How-
ever, in general, this limit does not necessarily exist. In [HMTW], Huneke,
Mustata, Takagi and Watanabe defined ¢’ (a) and ¢ (a) as

I (pe J (e
ci(a) = lim inf %, Ci(a) := lim sup Va;f )7

for ideals a and J with a C v/J. When ¢’ (a) = ¢/(a), they call it the
F-threshold of a with respect to .J, which is denoted by ¢’ (a). They give a
sufficient condition when c¢”(a) exists (cf. [IMTW] Lemma 2.3]).

Let R° be the set of elements of R which are not contained in any minimal
prime ideals of R. Let a be an ideal of R such that a N R° # (), and let ¢ be
a positive real number. For an R-module D, we define the a®-tight closure
of the zero submodule in D as the following, which is denoted by OEC‘C. For
z € D, an element z is contained in O*DClc if there exists © € R° such that

zal”l1®2)=0€°R® D,
where e runs all sufficiently large positive integers.

Definition 2.2 (test ideal). Let a C R be an ideal such that anR° # (), and
¢ a positive real number. Let E := &y Er(R/m), where m runs all maximal
ideals of R and Er(R/m) is the injective hull of the residue field R/m. The
test ideal 7(a®) of a and c is defined as

7(a) = ﬂ AnnRO*gc,
DCE

where D runs all finitely generated R-submodules of E.



In [MTW], they also proved the connection between F-thresholds and
test ideals for regular local rings. Moreover, in [BMS2|, they generalized it
for regular rings.

Theorem 2.3 ([MTW]| Proposition 2.7] and [BMS2, Proposition 2.23]). Let
a and J be proper ideals on a regular ring R such that a C v/J. Then

(< @) C J.

On the other hand, for a positive real number ¢, we have a C /7(a¢), and
also
¢ (a) <e.

In addition, there exists a map from the set of F-thresholds of a to the set
of test ideals of a which sends the test ideal J to ¢’ (a). Moreover, this map
is bijective. The inverse map sends an F-threshold ¢ of a to 7(ac).

By the two inequalities in Theorem [2.3] F-thresholds on a regular ring are
equal to F-jumping coefficients. They are analogues of jumping coefficients
of a multiplier ideal.

Corollary 2.4. For a fixed nonzero proper ideal a on a regular ring R, the
set of F-thresholds of a is equal to the set of F-jumping coefficients of a.

3 A formula of F-thresholds on toric rings

Let us begin with fixing the notation about toric geometries. Let N = Z¢
and M = Homy (N, Z) which is isomorphic to Z%. The duality pair of My := M ®7 R
and Ng := N ®z R is denoted by

(, >:MRXNR—>R.
For a strongly convex rational polyhedral cone o of Ng, we define
o = {u € Mg|(u,v) > 0,Vv € o}.

Let R be a toric ring defined by o, that is, the subalgebra of Laurent poly-
nomial k[X:!, - ,XC}H] generated by sets {X“|u € oY N M}, where X*
expresses X{? .- X7 for u = (ug,--- ,uq) € M. Since we always assume
that k is a perfect field, a toric ring is F-finite under our assumption. A
proper ideal a of R is said to be a monomial ideal if a is generated by mono-
mials of R C k:[Xlil, e ,X;ltl]. For a monomial ideal a, we define two types
of sets in V.



Definition 3.1. The Newton polyhedron P(a) of a is defined as
P(a) := conv{u € M| X" € a}.

Moreover, we define

Q@)= |J u+o.

Xtea
In addition, for P(a) and a positive real number A, the sets AP (a) is defined

AP(a) := {\u € Mg|u € P(a)}.

We can define A\Q(a) by the same way.

The following proposition is basic properties of Q(a) and P(a), which
follows immediately.

Proposition 3.2. Let a be a monomial ideal of a toric ring R defined by a
cone o C Ng.

(i). For e € Zsy, it holds that Q(a) = (1/p¢)Q(alP)).
(ii). P(a) +0Y C P(a).
(iii). If a = (X?®,.-- , X®), then P(a) = conv{ay,--- ,as} +0".

Using this notation, we give a computation of F-thresholds in real affine
geometries. This formula is a generalization of [HMTW| Eample 2.7]. Let
R be a toric ring defined by a cone 0 C Ngr. Let a be a monomial ideal. For
u € 0V, we define \q(u) as

3 [ sup{X € Rxglu € AP(a)} (3 € Ryg s.t. u € AP(a)),
a(u) = { 0 (VA € Rog, u ¢ AP(a)).

Theorem 3.3. Let R and a be as the above. Let J be a monomial ideal
such that a € v/J. Then

(@)= sup  Aa(u).
uea¥\Q(J)

Proof. We assume that a = (X2 ... X?) wherea; € M fori=1,---,s.
To prove the theorem, we need the following two claims.

Claim 1. For any positive integers e, there exists u € 0" \ Q(J) such that
vl (0°)/p° < Aaluw).



Claim 2. For every element u € 0¥\ Q(J), there exists a positive integer e
such that v (p®)/p® > Aa(u).

We note that Claim 1 implies ¢’ (a) < sup Aq(u). Since the definition of
right-hand side supremum, v (p®)/p® < sup Aq(u). Thus ¢’ (a) < sup Ag(u)
by the definition of F-thresholds and the fact that a supremum is the min-
imum number in upper bounds. By the similar argument, Claim 2 implies
¢’ (a) > sup Aq(u).

Proof of claim 1. We fix a positive integer e. Since the definition of the p®-th
threshold, for every ¢ = 1,--- , s, there are nonnegative integers r; such that
Siri = vl (pf) and XX 7@ ¢ JIPl In particular, 3 ra; ¢ Q(JP). This
is equivalent to (1/p°) Y ra; ¢ (1/p°)Q(JP). By Proposition (i), we
have (1/p®) > ria; ¢ Q(J). Hence

J

a

1 vy (p©) T
DT = D T

pe

which is an element of (v (p)/p®)P(a). Thus v (p®)/p® < Xa((1/p%) > mia;).
U

Proof of Claim 2. We fix u € 0¥ \ Q(J), which satisfies Aq(u) # 0. We find

an integer e which satisfies the assertion of Claim 2 by three steps.

STEP 1. We prove that there exists an element «’ on the boundary ([p®Aq(u)]/p®)P(a)
such that v’ ¢ Q(J) for sufficiently large e. The following sequence of real
numbers

)] _ P A)]  [PAs(w)]

)\a(’LL) <0< pe+1 — e — P

induces the sequence of Newton polyhedrons
e e+1

p C..-C p C ot C - C Ag(u)P(a).

In particular, the above sequences are strict if A\q(u) ¢ (1/p°)Z for all e.
Since u ¢ Q(J), we can find such u’ by taking e sufficiently large.

STEP 2. We prove that there exist nonnegative integers r; foreveryi =1,--- s
such that Y r;/p® > Ag(u) and v’ := > ra;/p® ¢ Q(J). Since u' is con-
tained in ([p®Aq(u)]/p)P(a), ' can be written

[pe)]\:;(u)"l (Z cia; + W)7



where ¢; are nonnegative real numbers with > ¢; =1 and w € ¢V by Propo-
sition B.2] (iii). Let
ri = [[p“Aa(u)]ei].

i [p°Aa(u)] o ”
SLLETCID SV

Then

Moreover,
‘ (p/;( )—|w u/‘<z‘((p)\ u)]ci] (p/\()CZHZ‘<_Z‘aZ’

Since v ¢ Q(J), we have u” + ([p®Aq(u)]/p®)w ¢ Q(J) if we choose e
sufficiently large. By the definition of Q(J), we have u” ¢ Q(J).
STEP 3. Since u” ¢ Q(J),

P & pQ(J) = QM)

E//

e,/

Therefore X" ¢ JIPl. On the other hand, X?**" € =" by the construc-
tion of u”. Therefore Zm < v (p®). This implies \q(u) < v (p®)/p°. O

We complete the proof of Theorem [3.3] O

4 A comparison between F-jumping coefficients
and F-thresholds

F-pure thresholds are defined via F-singularities of the pair (R, a®) where ¢
is a positive real number. See [TW] Definition 1.3, Definition 2.1] for details.
Since F-finite toric rings are strongly F-regular, the F-pure thresholds can
be defined as follows (See [TW], Proposition 2.2]).

Definition 4.1 (F-pure thresholds). Let R be a toric ring, and a a monomial
ideal. The F-pure threshold c(a) of a is defined as

c(a) := sup{c € R>¢|7(a®) = R}.

Hence the F-pure threshold of a is the smallest F-jumping coefficient
of a. In [HMTW], the inequality between an F-pure threshold and an F-
threshold on a local ring was given in terms of the F-threshold of a module
([HMTW], Section 4.]). In this section, we consider the inequality on toric
rings, by a combinatorial method. Furthermore, we consider the connection
between arbitrary F-jumping coefficients and F-thresholds with respect to



some monomial ideals. To compute F-pure thresholds and F-jumping co-
efficients of monomial ideals, we introduce the following theorem given by
Blickle.

Theorem 4.2 ([B} Theorem 3]). Let R be the toric ring defined by
o=Rsov; +--- +Ryov,, C Ng := R?, where v; € N are primitive. Then
the test ideal 7(a¢) of a monomial ideal a is also a monomial ideal. Moreover,
X" e 7(a®) for v € M if and only if there exists w € Mg such that

<O.),’Uj> S 17 j: 17 , 1,
u+ w € Int(cP(a)).

By this theorem, the F-pure threshold of a monomial ideal on a toric
ring can be described as the following corollary.

Corollary 4.3. Let R and a be as in Theorem 4.2l Then the F-pure thresh-
old c(a) of a is described as

c(a) = sup Aq(u),
u€aV\O

where
O :={u € a’|Tj, (u,v;)>1}.

Proof. First, we assume that c(a) < sup A\q(u). Then there exists a € R>g
such that
c(a) < o < sup Aq(u).

By the definition of F-pure thresholds, 7(a®) C R. Then there exists
B € R>q such that

a < B <supAq(u)
and 8 = A\q(u') for v/ € o'\ O. This implies that u’ € SP(a). In particular,
v € Int(aP(a)). In addition, (u/,v;) < 1 for all j. By Theorem A.2] it
contradicts that 7(a®) C R. Therefore c(a) > sup Aq(u). Second, we assume
c(a) > sup Agq(u). There exists a € R>g such that

sup Aq(u) < a < c(a)

and 7(a®) = R. This implies that there exists w € ¢ such that (w,v;) <1
for all 7 and
w € Int(aP(a)).



For 1 > ¢ > 0, we have ((1 — ¢)w,v;) =1 —¢e < 1. Thus (1 —e)w € ¥\ O.
On the other hand, since w € Int(aP(a)), it holds that

(1 —¢e)w € aP(a),
for sufficiently small . Therefore

sup  Ag(u) < Aq((1 — &)w),
ucoV\O

which is a contradiction. Thus c(a) > sup Aq(u), which completes the proof
of the corollary. O

Using this presentation, we compare an F-pure threshold with an F-threshold
with respect to the maximal monomial ideal on a toric ring.

Proposition 4.4. Let R, o and a be as in Corollary 4.3 and m the maximal
monomial ideal of R. Then

c(a) < c™(a).

Proof. By the definitions, it is enough to show that Q(m) C O. In particular,
it is enough to show Q(m) N M C O. It follows immediately. O

Remark. In general, for an ideal a, we have ¢’ (a) < ¢/(a), where J and
J' are ideals with J C J’ and a C v/J. Therefore the F-pure threshold of a
is less than or equal to all F-thresholds of a.

Now we generalize this comparison to arbitrary F-jumping coefficients
and F-thresholds.

Lemma 4.5. Let R, 0 and a be as in Theorem and w, w' € ¢¥. For all
j=1,---,n, we assume that

<w7vj> < <wlvvj>'
Then A\g(w) < Ag(w').

Proof. If A\q(w) = 0, it is trivial. We prove this lemma in the case Aq(w) # 0.
By the assumption, there exists w” € oY such that ' = w + w”. Let
A= Ag(w). Since w/A € P(a),

/ "

Wwoow
e, Y cp v,
T + v € (a)+ 0o

By Proposition (ii), we have w’'/\ € P(a). Hence A < Aq(w'). O



Proposition 4.6. Let R, ¢ and a be as in Theorem For u € oV N M,
we define the nonnegative number pq(u) as

fa(u) == sup Aq(u +w),
weaV\O

and the nonnegative number c’(a) as

c(a)=  inf  p(u),
Xuer(ac'™ @)

where c?(a) := 0. Then c(a) is the i-th F-jumping coefficient of a.

Proof. We show that c?(a) is a jumping number of the test ideal. We assume
that .
(@ @) = (xP1 ... XPr),

By Lemma [4.5] '
()= inf pa(by).
G=1,t
Since {b;} is a finite set, there exists j/ such that c’(a) = pq(bj/). By the
definition of c'(a), for all w € oV \ O,

b+ w ¢ Int(c"(a)P(a)).

This implies that XP ¢ 7(a®(®) by Theorem B2l On the other hand, there
exists w’ € 0¥\ O such that

bj +w' € Int((c’(a) — £)P(a)),

for all € > 0. This also implies that X € 7(a® (9=¢). Therefore 7(a® (@) C 7(a (®)=¢)
and hence c’(a) is a jumping number.

We show that c?(a) is the i-th F-jumping coefficient of a. In other words,
7(a®(@=2) = 7(a®" (@) for all € > 0 with ¢/~ (a) < ¢’(a) — . The inclusion
7(a¢"@=¢) C r(a”" (@) follows immediately from Theorem The oppo-
site inclusion follows from the definition of ¢f(a). In fact, if X* € 7(a¢ (@),
then ci(a) — e < c'(a) < pg(u), by definition of c’(a). Hence there exists
w € 0¥\ O such that

u+w € Int((c’(a) — &)P(a)).

This implies that X* € 7(a¢ (®~¢) by Theorem We complete the proof
of the proposition. O

10



Proposition 4.7. We have the following inequality:
¢i(a) < ™) (q).
Proof. Since 7(a®®) C r(a '®), there exists u € ¢V N M such that
X% er(a’ ' ®) and X* ¢ 7(a® (). By Proposition &6
c'(a) < paluw). (1)

We claim that for all w € o'\ O,
wtueo’\ Q(T(aci(a))).

By Theorem B3] this claim implies that
palu) < 7)), (2)

The proof of the proposition is completed from inequalities () and (2]).
Now we prove that claim. We assume that there exists w € ¥ \ O such
that v + w € Q(r(a®(™)). There exist v € M and ' € oV such that
X € 7@ and u +w = v/ + . Thusu —v' = o' —w € M. On
the other hand, since u = v/ + W' —w € M and X" ¢ 7(a®®), we have
W' —w ¢ o¥. That is, there exists j such that ((w' — w),v;) < 0. Therefore

0 < (W, v5) < {w,v;) < 1.

It contradicts that w’ —w € M. Hence we have the claim, and then we
complete the proof of the proposition. O

Remark. Since a toric ring is strongly F-regular, a C T(aCi(a)). Hence

cr(a (a))(a) exists and is a finite number.

5 Applications

Let us give some applications of results in previous sections. As we see
in Corollary 241 for an arbitrary ideal a, F-thresholds of a are equal to
F-jumping coefficients of a on regular rings. By the formula of F-thresholds,
we see that if R is a toric ring which has at most Gorenstein singularities,
then there exists a monomial ideal a C R such that c¢(a) = c¢™(a).

Proposition 5.1. Let R be a Gorenstein toric ring defined by a cone
o C Ng = R?% and m the maximal monomial ideal. There exist a monomial
ideal a C R such that c¢(a) = c™(a).

11



Proof. We assume that 0 = R>gv; +---+R>ov,, where v; € N are primitive
numbers. For a Gorenstein toric ring R, there exists an element w € 0¥ N M
such that (w,v;) =1 for all j = 1,--- ,n. By Lemma 5] for a monomial
ideal a C R, we can describe

Let a = (X%). We have P(a) =w + 0", and clearly c(a) = A\q(w) = 1. Since
w € M\ 0, we have w € Q(m). Hence P(a) C Q(m). By Theorem [B.3]
that implies ¢™(a) < 1 = c¢(a). On the other hand, c(a) < c¢™(a) follows by
Proposition 1.4l We complete the proof of the proposition. O

For 2-dimensional toric rings, we see that the opposite assertion of Propo-
sition [B.T]is true. However, it is false in general toric rings whose dimension
are greater than 3.

Proposition 5.2. Let R be a 2-dimensional toric ring, and m the maximal
monomial ideal of R. If there exists a monomial ideal a C R such that
c(a) = c¢™(a), then R has at most Gorenstein singularities.

Proof. Suppose that R is defined by a cone ¢. By taking a suitable change
of coordinates, it suffices to consider cones o := Rxo(1,0) + R>o(a,b) C R?,
where b > 0 and the greatest common divisor of a and b is 1. The following
three cases are trivial. If @ = 0, then R is the polynomial ring. Ifa = 1,b =1,
then R = k[X}, Xl_ng], which is a regular ring. If @ = 1, b > 1, then
R= k:[Xl,Xg,X{’Xgl] >~ klx,y, z]/(xz —yP). Note that SpecR has an Ay_;
singularity. Hence R is a Gorenstein ring. Assume that a > 1. We have
0¥ =R>0(0,1) +R>¢(b, —a), and the point w = (1, (1 —a)/b) which satisfies

(w, (1,0)) = (w, (a,b)) = 1.

If w ¢ Q(m), then for all monomial ideals a, we have c(a) < c™(a). In fact,
by taking € > 0 with (1 + ¢)w ¢ Q(m), we have a strict inequality;

c(a) < Ag((1+¢)) < c™a).

By the assumption of the proposition, w € Q(m). Thus it is enough to
prove that w € M under the assumption w € Q(m). By the definition
of Q(m), if w € Q(m), then there exists a lattice point u € ¢¥ N M \ {0}
such that w —u € Y. Since u € ¢V, the lattice point u is written as
u=A1(0,1)+X2(b, —a) € M, where \; and A are positive. Since w—u € ",
we have (1/b) — Ay > 0 and (1/b) — Ay > 0. Since 0 # u € M and b € Z~y,

12



we have Ao = 1/b. Hence u = (1,\; — (a/b)). Since u € M, there exists an
integer [ such that [ = A\ — (a/b) and

a 1—a
—— <<
b~ — b
Since a, b € Z and the greatest common divisor of a and b is 1, we have
bl =1 —a. Thus b|(1 — a). This implies that w € M. The remaining case
when a < 0 follows by the same argument. We complete the proof of the
proposition. O

Example 1. Suppose N = R3. We define generators {v;} of a cone o C Np
as
vy = (1,0,0), vy :=(1,1,0), vs :=(0,1,7r).
Let w:= (1,0,1/r) € ¢¥. Since {(w, v;) = 1 for all i, the toric ring R defined
by o has an r-Gorenstein singularity. We choose a set of generators of o
as
uy = (r,—r, 1), ug :=(0,r,—1), us :=(0,0,1).

Then

W= —u1 + —u + —us.
T T T

Since w — (1/r)ug € ¢V N M, we have w € Q(m), where m C R is the
maximal monomial ideal. Let a be a monomial ideal generated by X".
Then (1/r)P(a) = w+ 0¥ C Q(m). The same argument in the proof of
Proposition 5.1l implies c¢(a) = ¢™(a) = 1/7.

Example 2. Suppose N = R where d > 3. We consider the cone o
generated by

vy :=(1,0,0,0, ,0)
vg := (1,1,0,0, ,0)
U3 22(0,1,7",0, 70)
)
v; := (0,0,0,0, ---,0,1,0,--- ,0), 3<i<d.

By the same argument in Example [ we have a monomial ideal a of a
d-dimensional r-Gorenstein ring R = k[o¥ N M] such that c(a) = ¢™(a).

Using F-thresholds and F-pure thresholds, we give a criterion of regular-
ities for a toric ring defined by a simplicial cone.

13



Theorem 5.3. Let R be a toric ring defined by a simplicial cone o, and m
the maximal monomial ideal. If there exists a monomial ideal a such that

va=m and
c(a) = c™(a),

then R is a regular ring.

Proof. Let 0 C Ng := R%. Since o is simplicial, we may assume that
o= Rxov1 + - Rx>qvg,

where v; € N and {vq,--- ,v4} are R-linearly independent. Hence there
exist u; € M and l; € Z~q such that

oV =Rsous + - + Rxoug,

and (u;,vj) = l;0;5. Moreover, for all i,j = 1,--- ,d, we assume v; and u;
are primitive. Since o is simplicial, R is Q-Gorenstein. Hence there exists
w € M ® Q such that

By Theorem B.3]

Aa(w)P(a) C Q(m). (3)
To prove the theorem, it is enough to show that [; = 1 for every i =1,--- ,d.
We derive a contradiction assuming [; > 1 for some 4. Since y/a = m, for
a sufficiently large nonnegative integer I, we have X' € a. In particular,
Aa(w)lu; € Ag(w)P(a). If we choose sufficiently large [, then we have

-1
il o
O< =1 <

Let a € Ry such that 0 < a < (I; — 1)/(Aq(w)ll; — 1). By the definition of

P(a) and (3)),
adg(w)lu; + (1 — a)w € Q(m).

On the other hand, for all j,

{ada(@)lu; + (1 = e)w,v;) = { ada(W)lli +1—a <l; (j=1).

By the definition of Q(m), there exist I} € Z~o, v € M N Q(m) and «’ € 0"

such that
v_1J0 (j #1)
<U7U]>_{ l;<ll (]ZZ),
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and
adg(W)lu; + (1 — a)w =u +u'.

However, the existence of u contradicts the primitiveness of u;. Thus [; = 1.
Eventually, for every ¢ = 1,--- ,d, we have [; = 1. Therefore we complete
the proof of the theorem. O

On the other hand, there exist a toric R defined by a non-simplicial cone
and a maximal ideal m such that c¢(m) = c™(m).

Example 3 ([HMTW, Remark 25]) IfR= k’[Xng,XQXg,Xg,XlXQXg]
and m = (X7 X3, X9 X3, X3, X1 X5X3), then R is a toric ring whose defining

cone is

o =Rs0(1,0,0) + Ro(0,1,0) + Rog(—1,0,1) + Rsg(0, —1, 1),
There exists w = (1,1,2) € 0" which entails

(w,(1,0,0)) = (w,(0,1,0)) = (w, (—1,0,1)) = (w, (0,—1,1)) = 1.

By Corollary [£3] and Lemma E3] for every monomial ideal a, we have
c(a) = A\g(w). Hence ¢(m) = 2. On the other hand, we can compute ¢™(m) = 2.

Finally, we discuss about the rationality of F-thresholds. This was given
as an open problem in [MTW]|. For some regular rings, Blickle, Mustata and
Smith give the affirmative answer. In [BMS2], they prove the rationality of
F-thresholds of all proper ideals a with respect to ideals J which entail
a C /J on an F-finite regular ring essentially of finite type over k ([BMSZ2,
Theorem 3.1]). In addition, they also prove in cases that a = (f) is principal
on an F-finite regular ring ([BMSI, Theorem 1.2]). On the other hand,
Katzman, Lyubeznik and Zhang prove in cases that a = (f) is principal on
an excellent regular local ring, that is not necessarily F-finite ([KLZ]). We
will prove rationality of an F-threshold of a monomial ideal a with respect to
an m-primary monomial ideal J on a toric ring. This argument is described
in terms of real affine geometries. We define the affine half space HT (v; \)
as

HY (v; \) == {u € Mg|{u,v) > A},

where v € Ng and A € R. We also define the hyperplane OH™ (v; \) as
OHT (v;\) := {u € Mg|(u,v) = A}.

Assume that a is a monomial ideal of a toric ring. Since P(a) is a convex
polyhedral set, it is written as an intersection of finite affine half spaces. we
observe the form of P(a).
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Lemma 5.4. Let R be a toric ring defined by a cone ¢ € Ng = R?, and a
a monomial ideal of R. Then there exist v; € Ng := N ® Q and )] € Q for
[ =1, ,tsuch that P(a) = N{_;H" (v]; \]).

Proof. Since o is a rational polyhedral cone, so is ¢". Hence there exists
u; € M such that
oV = Rzoul + -+ Rzoum.

We assume that a = (X2 ... X?s). We consider the rational polyhedral
cone 7 of Mr xR as

T:= Rzo(al, 1) + -+ Rzo(as, 1) + REO(UI, 0) + -+ Rzo(um, 0).
For such 7 and P(a),
N (Mg x {1}) = P(a) x {1}. (4)

In fact, let (u,1) be an element of the left-hand side. Then

)= ai(ai 1)+ Y b(u;,0),
i=1 J=1

where a;,b; > 0. By the definition, Y a; = 1. By Proposition (iii),
u € P(a). The similar argument implies the opposite inclusion. Since 7 is
the rational polyhedral convex cone, for [ = 1,--- ,t, there exists

(v], 1) € Ng x Q such that

T_mH Ul?:u'l (5)

where HT ((v], 17); 0) is the affine half space of Mg x R. The duality pair of
Mg x R and Ng x R is defined as

<(u7 )‘)7 (Ua N)> = <u7 ’U> + )‘:u’a

for every u € Mg, v € Ng and A, € R. Under this duality,
H((v, 10);0) N (Mg x {1}) = H* (v; —p) x {1}.

Therefore if we set \; := —u; for each | = 1,--- ,t, the assertion of the
theorem follows by ({@l) and (Hl). O
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Theorem 5.5. Let R, o and a be as in Lemma (54l Furthermore, we
assume that o is a d-dimensional simplicial cone. Let J be an m-primary
monomial ideal, where m is the maximal monomial ideal of R. Then the
F-threshold ¢’ (a) of a with respect to J is a rational number.

Proof. We denote by 9Q(J) the boundary of Q(.J) in ¢". By Lemma[5.4) if
there exists a finite set B C Mg N 0Q(J) such that

¢’ (a) = max \q(w),
weB
then we have c¢”/(a) € Q.

First, we prove that

/()= sup Aa(w).
wedQ(J)

By Theorem B3] if there exists an element w € o such that ¢/ (a) = A\q(w),
then w € 0Q(J). In fact, if such w is in ¢¥ \ Q(J), there exists € > 0 such
that (1 +¢)w € ¢V \ Q(J). This implies that ¢/ (a) > (1 + &)\q(w). It is a
contradiction, thus we are done.

Second, we prove the existence of B C Mg N 90Q(J). We assume that
o = R>qv1 + -+ + R>gvg, where v; are primitive lattice points. Since o is
simplicial, for every j, there exists u; € Mg such that

<Uj,?]l> = 051, le {1,"' ,d}.

Since J is m-primary, there exists a nonnegative integer r; such that r;ju; € Q(J).
That implies 9Q(J) is bounded. We define the order <, over 9Q(J) as
u <y, u if

(u,v;) < (W, v5), Vj=1,---,d.

Then 0Q(.J) has maximal elements with respect to this order. Let B C 0Q(J)
be the set of maximal elements with respect to the order <,. By Lemma
45l we conclude

¢/(a) = sup Ag(w) = sup Ag(w).
wedQ(J) weB

To show that B is a finite set of Mg, we prove the following claim.

Claim. Let J = (XP1,...  XPt). We assume that u € B, that is,

(i). we0Q(J),

(ii). w is a maximal element with respect to the order <, in 9Q(.J).
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Then for every j = 1,--- ,d, there exists ¢; such that
n
ﬂ + (0HT (v;0) N oY) . (6)

In particular, B is a finite set and u € M.

Proof of Claim. We suppose that u does not satisfy (@). Then there exists
j €{l,--- ,d} such that

u ¢ b;+ (OH (v;;0) NaV), (7)
forall i =1,--- ,t. We choose v’ € 0" as
<u/7vj> = <u7vj>7 (] 7&(7‘/)7

<ulvvj'> = L<u’vj’>J + 1.

Since o is simplicial, u/ uniquely exists. We will show that the existence
of v/ contradicts the assumption (ii). By the construction of v/, we have
u' € Q(J). To see u' ¢ IntQ(J), we rephrase the assumption (i). Since
u ¢ IntQ(J), we have u ¢ b; + Int(c") for all i = 1,--- ,¢t. Furthermore,
this is equivalent to the existence of [; such that

<U,Uli> < <bi7vli>7 (8)
for each ¢ = 1,--- ,t. If [; # j', we have directly
<u,,?}li> = <uavli> S <bi7vli>7

by the construction of u’ and the relation (8). On the other hand, if I; = j,
then the relation () and (7)) implies

L<u’vj’>J < <bi’vj’> -1,

because b; € M. Hence (v/,v;,) < (b;,v;,). Eventually, in both cases,
v ¢ IntQ(J). Therefore u' € 9Q(J). By the construction of u’, the ele-
ment u is not a maximal element in 0Q(J). It contradicts the assumption
(ii). We complete the proof of Claim.

We complete the proof of the theorem.
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Now we consider the rationality of F-jumping coefficients on Q-Gorenstein
toric rings. The rationality of F-jumping coefficients is the consequence of
the fact that test ideals are equal to multiplier ideals (JHY, Theorem 4.8]
and [Bl, Theorem 1]). However, we also give its proof by the combinatorial
method.

Proposition 5.6. Let R, o, a be as in Lemma [5.4l Moreover, we assume
R is an r-Gorenstein toric ring. Then for all 7, the i-th F-jumping coefficient
c'(a) of a is a rational number.

Proof. In the proof of Proposition [4.6] we have seen that there exists b € M
such that ¢(a) = pq(b), where XP is one of generators of 7(a® (@), By the
similar argument to that of the proof of Proposition [5.1] there exists w € oV
such that c’(a) = A\g(b+w/r). Since w corresponds to the generator of wg),
where wp, is the canonical module of R, we see w € M. Hence b+w/r € My.

Therefore c'(a) is a rational number. O
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