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ANOMALIES IN GAUGE THEORY AND GERBES OVER

QUOTIENT STACKS

VESA TÄHTINEN

Abstra
t. In Yang-Mills theory one is interested in lifting the a
tion of the

gauge transformation group G = G(P ) on the spa
e of 
onne
tion one-forms

A = A(P ), where P −→ M is a prin
ipal G-bundle over a 
ompa
t Riemannian

spin manifoldM , to the total spa
e of the Fo
k bundle F −→ A in a 
onsistent

way with the se
ond quantized Dira
 operators D̂/
A
, A ∈ A. In general, there is

an obstru
tion to this 
alled the Faddeev-Mi
kelsson anomaly, and to over
ome

this one has to introdu
e a Lie group extension Ĝ, not ne
essarily 
entral, of

G that a
ts in the Fo
k bundle. The Faddeev-Mi
kelsson anomaly is then

essentially the 
lass of the Lie group extension Ĝ.

When M = S1
and P is the trivial G-bundle, we are dealing with S1

-
entral

extensions of loop groups LG as in [PreSe℄. However, it was �rst noti
ed in

the pioneering works of J. Mi
kelsson, [Mi℄ and L. Faddeev, [Fad℄ that when

dimM > 1 the group multipli
ation in Ĝ depends also on the elements A ∈ A

and hen
e is no longer an S1
-
entral extension of Lie groups.

We give a new interpretation of 
ertain non
ommutative versions of Faddeev-

Mi
kelsson anomaly (see for example [Ra℄, [LaMiRy℄ and [ArnMi℄) and show

that the analogous Lie group extensions Ĝ 
an be repla
ed with a Lie groupoid

extension of the a
tion Lie groupoid A ⋊ G, where A is now some relevant

abstra
t analog of the spa
e of 
onne
tion one-forms. Then at the level of

Lie groupoids, this extension proves out to be an S1
-
entral extension and

hen
e one may apply the general theory of these extensions developed by K.

Behrend and P. Xu in [BeXu℄. This makes it possible to 
onsider the Faddeev-

Mi
kelsson anomaly as the 
lass of this Lie groupoid extension or equivalently

as the 
lass of a 
ertain di�erentiable S1
-gerbe over the quotient sta
k [A/G].

We also give examples from non
ommutative gauge theory where our 
onstru
-

tion 
an be applied.

The 
onstru
tion may also be used to give a geometri
 interpretation of the

(
lassi
al) Faddeev-Mi
kelsson anomaly in Yang-Mills theory when dimM = 3.
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1. Introdu
tion

1.1. Obstru
tion to 
anoni
al quantization of fermions in Yang-Mills the-

ory (a.k.a Faddeev-Mi
kelsson anomaly).

1.1.1. Dira
 operators. Suppose that (M, gM ) is a 
ompa
t oriented Riemannian

spin manifold of dimension d = 2n + 1 without boundary and let S be the spin

bundle of the spin manifold M .

Let G be a �nite dimensional semi-simple 
ompa
t Lie group and ρ : G −→
AutC(V ) a unitary 
omplex representation of G with respe
t to an inner produ
t

(·, ·)V on V , i.e. (ρ(g)x, ρ(g)y) = (x, y) for all g ∈ G and x, y ∈ V . Next suppose

that π : P −→M is an arbitrary prin
ipal G bundle and form the asso
iated ve
tor

bundle E = P ×ρ V . One 
an show that sin
e ρ is unitary the asso
iated ve
tor

bundle E is a Hermitean ve
tor bundle with Hermitean metri
 hE .
Denote by A the spa
e of g = Lie(G) valued 
onne
tion 1-forms on P and by Ge

the based gauge transformation group. It is known that A/Ge is a smooth in�nite

dimensional I.L.H. manifold, [Pay℄. To ea
h A ∈ A one 
an asso
iate a Dira


operator D/A : Γ(E ) −→ Γ(E ), where E := S ⊗ E. This extends to an operator on

H = L2(E ), the Hilbert spa
e of square integrable se
tions of the ve
tor bundle E .

The domain of D/A in H is known to be H1(M ;S), the �rst Sobolev spa
e, [Boss℄.

One knows from fun
tional analysis that D/A is a Fredholm operator sin
e it is

ellipti
 and the manifold M is 
ompa
t. Thus dimkerD/A <∞ and dim cokerD/A <
∞. Moreover, the gauge transformation group Ge a
ts on H and the Dira
 operator

D/A satis�es the following equivarian
e 
ondition

gD/Ag
−1 = D/Ag

for all g ∈ Ge.

1.1.2. Fo
k bundle. For ea
h A ∈ A s.t. 0 /∈ spe
(D/A) the operator D/A produ
es a

de
omposition

H = H+(A)⊕H−(A),

where the spa
esH± are the 
orresponding eigenspa
es to the positive and negative

eigenvalues of the Dira
 operator D/A, respe
tively. Corresponding to this de
ompo-

sition there exists an irredu
ible Dira
 representation of the representation of the

algebra CAR(H) =: Cℓ(H⊕H̄) (the algebra of 
anoni
al anti
ommutation relations

or the algebra of fermion �elds) on the Fo
k spa
e

FA :=
∧(
H+(A) ⊕ H̄−(A)

)
=

∧
H+(A) ⊗

∧
H̄−(A)

=
⊕

p,q

( p∧
H+(A) ⊗

q∧
H̄−(A)

)
,
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where physi
ally the subspa
e

∧p
H+(A) ⊗

∧q
H̄−(A) 
onsists of the states with

p parti
les and q antiparti
les, all of positive energy.

1

A CAR-representation

ψA : CAR −→ End(FA) is determined by giving a va
uum ve
tor |0A〉 ∈ FA

hara
terized by the property that

ψ∗
A(u)|0A〉 = 0 = ψA(v)|0A〉, for all u ∈ H−(A), v ∈ H+(A).

De�nition 1.1. Two representations of the CAR-algebra are said to be equivalent

if it is possible to represent them in the same Fo
k spa
e in su
h a way that both


orresponding va
uum ve
tors will be of �nite norm.

Theorem 1.2. Two di�erent polarizations H = H+ ⊕ H− = W+ ⊕ W− de�ne

equivalent Dira
 representations of the CAR-algebra if and only if the proje
tions

pr−W+
:W+ −→ H− and pr+W−

:W− −→ H+ are Hilbert-S
hmidt.

Theorem 1.3 (Shale-Stinespring). Two Dira
 representation of the CAR-algebra

de�ned by a pair of polarizations H+ and H′
+ are equivalent if and and only if

there is g ∈ Ures(H) su
h that H′
+ = g · H+. In addition, in order that an element

g ∈ U(H) is implementable in the Fo
k spa
e, i.e. there is a unitary operator

ĝ ∈ U(F) su
h that

ĝψ∗(v)ĝ−1 = ψ∗(gv), for all v ∈ H,

and similarly for the ψ(v)'s, one must have g ∈ Ures(H).

Here Ures(H) is the group of unitary operators g in the polarized Hilbert spa
e

H = H+ ⊕H− su
h that the o�-diagonal blo
ks are Hilbert-S
hmidt operators.

One would like to glue somehow the di�erent CAR-algebra representations FA
into an in�nite-dimensional Hilbert bundle F over A with a 
ontinuous se
tion

sF : A −→ F su
h that sF (A) = |0A〉 (a Dira
 representation if �xed by a given

va
uum ve
tor so this way it is possible to de�ne what we mean by a 
ontinuously

varying family of CAR-representations). First, to 
onstru
t a bundle of Fo
k spa
es

one 
an use the following tri
k:

One repla
es the operator D/A with the operator D/A − λ, where λ ∈ R, λ /∈
spe
(D/A). This way, one obtains a de
omposition

H = H+(A, λ) ⊕H−(A, λ),

with the 
orresponding (irredu
ible) Fo
k spa
e representation

ρA,λ : CAR(H) −→ End(FA,λ)

of the CAR-algebra.

The Fo
k spa
es FA,λ depend on the 
hoi
e of the va
uum level λ. However, for
λ, µ /∈ spe
(D/A) there exists a natural proje
tive isomorphism

FA,λ ≡ FA,µ mod C
×, (1.1)

allowing us to glue the di�erent Fo
k spa
es FA,λ together into an in�nite dimen-

sional proje
tive Fo
k bundle PF over A, [Ara℄. One 
an show that sin
e A is


ontra
tible as an a�ne spa
e, there exists a trivial ve
tor bundle F = A×F0 over

A whose proje
tivization is proje
tively isomorphi
 to PF .
Now the �bre of F at A ∈ A is equal to FA ∼= F0 but unfortunately for the

energy polarization H = H+(A) ⊕ H−(A) the map A 7→ |0A〉 does not de�ne a


ontinuous se
tion of F (or equivalently the map A −→ Gr(H) : A 7→ H+(A)
isn't 
ontinuous). This problem is resolved by intodu
ing another family W (A) of
polaritations H =W (A)⊕W (A)⊥ parametrized by A ∈ A su
h that

1

Here H̄
−

denotes the abstra
t 
omplex 
onjugate spa
e to H
−
. It is a 
opy of H

−
with the

s
alars a
ting in a 
onjugate way: λ · ξ̄ = (λ · ξ)−; we don't suppose that there is a 
omplex


onjugation operation de�ned inside the Hilbert spa
e H.
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(1) The map A −→ Gr(H) : A 7→W (A) is 
ontinuous;

(2) The 
orresponding CAR-algebra representations ρA and ρW (A) indu
ed by

the two polarizations are equivalent.

To 
onstru
t su
h a family of polarizations one pro
eeds as follows (see [Mi5℄ for

details): Ea
h A ∈ A de�nes a Grassmannian manifold Grres(A) 
onsisting of all


losed subspa
es W ⊆ H su
h that the di�eren
e prH+(A) − prW ∈ L(H) is a

Hilbert-S
hmidt operator. One 
an show that these spa
es 
an be glued together

to form a lo
ally trivial �bre bundle over A, 
alled the Grasmannian bundle Gr.
The question now is that does this bundle admit a global se
tion A 7→W (A)? If it

does the W (A)'s give us a family of polarizations with the required properties.

Lu
kily, the answer to our question is �yes�. This is be
ause Gr happens to be

an asso
iated bundle to an Ures(H)-bundle P −→ A,

Gr = P ×Ures(H) Grres(H),

where the �bre of P at A ∈ A is

PA = {g ∈ U(H) | g · H+ ∈ Grres(A)}

and Grres(H) is the restri
ted Grassmannian of Segal and Wilson (see Appendix

A). Now

Grres(H) ∼= Ures(H)/(U(H+)× U(H−))

and by a result of N. Kuiper the subgroup U(H+) × U(H−) is 
ontra
tible and so

Gr has a global se
tion if and only if P is trivial. This happens to be the 
ase sin
e

A is 
ontra
tible as an a�ne spa
e.

1.1.3. Se
ond quantizing gauge transformations. After a 
ertain ne
essary renor-

malization pro
ess, introdu
ed by Mi
kelsson in [Mi3℄, on operations on the one-

parti
le Hilbert spa
e H (e.g. the a
tion of gauge transformation group) one would

hope to lift the a
tion of G on A to an a
tion on F so that the diagram

F
ΓA(g) //

��

F

��
A

g // A


ommutes and

ΓA(g)D̂/AΓ
−1
A (g) = D̂/Ag ,

where D̂/A is the se
ond quantized Dira
 operator. Unfortunately, there is an ob-

stru
tion to this. To study this, it is useful to swit
h to the Lie algebra pi
ture.

De�nition 1.4. Se
ond quantization of an in�nitesimal gauge transformation is

the map dΓA : D(A) ⊆ Lie(G) −→ End(FA) 
hara
terized by

[dΓA(X), ψ∗
A(v)] = ψ∗

A(X · v), for all v ∈ H, (1.2)

〈0A|dΓA(X)|0A〉 = 0. (1.3)

Here we may 
hoose the domain D(A) of dΓA(X) to be the set

D(A) = {X ∈ Lie(G) | [ǫA, X ] is Hilbert-S
hmidt},

where ǫA = ± on H±(A). Moreover, supposing there exists a des
ribed lift ΓA :
G −→ End(F) we should have

ΓA(e
iX) = eidΓA(X), for all X ∈ Lie(G).

In view of this, equation (1.2) 
an be written as

ΓA(e
iX)ψ∗

A(v)Γ
−1
A (eiX) = ψ∗

A(e
iX · v), for all X ∈ Lie(G), v ∈ H

relating De�nition 1.4 to Theorem 1.3.
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Next, we introdu
e the so 
alled Gauss law generators a
ting on (S
hrödinger

wave) fun
tions φ : A −→ H,

GA(X) = X + LX ,

where A ∈ A, X ∈ Lie(G) and the Lie derivative LX is de�ned so that

(
LXφ

)
(A) =

d

dt
φ(Ae

tX

)
∣∣∣
t=0

Their se
ond quantization is de�ned to be

dΓ(GA(X)) = dΓA(X) + LX ,

where X ∈ Lie(G). The renormalization pro
edure makes it possible to 
onsider

dΓA(X) a
ting on F0 instead of FA. Now the se
ond quantized Gauss law genera-

tors do not have anymore the same Lie algebra bra
ket as Lie(G) but instead

[dΓ(GA(X)), dΓ(GA(Y ))] = dΓ([GA(X), GA(Y )]) + c(X,Y ;A),

where c(X,Y ;A) is a Map(A,R)-valued Lie algebra 
o
y
le of Lie(G) 
alled the

S
hwinger term. This is the sought obstru
tion term. The 
onne
tion with bundle

gerbes 
omes from a transgression map τ ,

H3(A/Ge,Z) −→ H3(A/Ge,R) ∼= H3
DR(A/Ge)

τ
−→ H2(Lie(G),Map(A,R))

studied in [CaMuWa℄.

In [CaMiMu℄ Carey, Mi
kelsson and Murray 
onstru
ted expli
itly the bundle

gerbe in question using a 
olle
tion of lo
al determinant line bundles on the smooth

Fré
het manifold A/Ge that satisfy 
ertain 
ompatibility 
onditions. Let us re
all

this 
onstru
tion brie�y.

De�ne for all λ ∈ R the open subsets

Uλ = {A ∈ A | λ /∈ spe
(D/A)} ⊆ A.

These form an open 
over for A. Over ea
h interse
tion Uλµ := Uλ ∩ Uµ there

exists a line bundle Detλν , whose �bre Detλν(A) at A ∈ A is related to (1.1) by

the equation

FA,λ = Detλµ(A) ⊗FA,µ

(thus giving the phase) and de�ned so that

Detλµ(A) =

max∧ (
H+(A, λ) ∩H−(A, µ)

)

for λ < µ andDetµλ := Det−1
λµ . The phase is related to the arbitrariness in �lling the

Dira
 sea between va
uum levels λ and µ. Su
h a �lling 
orresponds to an exterior

produ
t v1∧v2∧ . . .∧vm of a 
omplete orthonormal set of eigenve
tors D/Avi = λivi
with λ < λi < µ. A rotation of the eigenve
tor basis gives a multilipli
ation of

the exterior produ
t by the determinant of the rotation. Now, sin
e the exterior

produ
t satis�es the 'exponential law'

max∧
(V ⊕W ) =

max∧
V ⊗

max∧
W

for �nite dimensional ve
tor spa
es V and W , one sees that over the triple inter-

se
tions Uλλ′λ′′ := Uλ ∩ Uλ′ ∩ Uλ′′

Detλλ′ ⊗Detλ′λ′′ = Detλλ′′ ,

so that the 
olle
tion {Detλµ} of lo
al line bundles de�ne a bundle gerbe on A.

These lo
al determinant line bundles are a
tually Ĝ-equivariant, where Ĝ is the

group extension of G integrating the Lie algebra extension of Lie(G) determined by

the S
whinger term, and so des
end to the moduli spa
e A/Ge giving us the bundle
gerbe whose Dixmier-Douady 
lass transgresses to the S
hwinger term.
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�

1.2. Main results. We use di�erentiable gerbes of Behrend and Xu [BeXu℄ in-

stead of bundle gerbes to des
ribe geometri
ally the non
ommutative version of

Faddeev-Mi
kelsson anomaly. This allows us to 
onsider situations where a rele-

vant generalized gauge transformation group G (e.g. Up(H)) no longer a
ts freely

and transitively on some spa
e of generalized 
onne
tion one-formsA (e.g. Grp(H)).
This is often the 
ase with non
ommutative gauge theories, where it is hard to �nd

a relevant gauge group a
ting ni
ely enough.

In this pi
ture the non
ommutative Faddeev-Mi
kelsson anomaly is given by the

gerbe 
lass ω ∈ H2([A/G], S1) of a 
ertain S1
-gerbe over the quotient sta
k [A/G]

or equivalently by the 
lass of a 
ertain S1
-Lie groupoid extension of the a
tion

groupoid A ⋊ G whi
h we 
onstru
t. When A/G exists as a ni
e manifold (e.g. a

Bana
h or an I.L.H. manifold) satisfying the smooth partition of unity property

one knows that [A/G] ∼= A/G and H2([A/G], S1) ∼= H2(A/G, S1) ∼= H3(A/G,Z),
where the last 
ohomology group 
lassi�es bundle gerbes, [Steve℄.

It was proven in [LaMi℄ that in dimension equal to three and at the level of

Lie group entensions one 
an revive the a
tual Faddeev-Mi
kelsson anomaly in

(
lassi
al) Yang-Mills theory from a non
ommutative Faddeev-Mi
kelsson anomaly.

Namely, one 
an pull-ba
k the non
ommutative Faddeev-Mi
kelsson anomaly Lie

algebra 
o
y
le and it proves out that this represents the same 
lass as the original

Faddeev-Mi
kelsson anomaly 
o
y
le. Hen
e our methods may also be used to

des
ribe the original Faddeev-Mi
kelsson anomaly on a 
ompa
t Riemannian spin

manifold M , when dimM = 3.

A
knowledgments. The author would like to thank Professor Jouko Mi
kelsson

for introdu
ing the problem and giving many helpful 
omments. The work was �-

nan
ially supported by the Finnish A
ademy of S
ien
e and Letters, Vilho, Yrjö and

Kalle Väisälä Foundation. The author would also like to thank Erwin S
hrödinger

International Institute for Mathemati
al Physi
s for hospitality where the work was

initiated in summer 2006.

2. NCG field theory examples

Here we give two examples from non
ommutative gauge theory in whi
h it is

di�
ult to �nd any relevant gauge transformation group G a
ting freely and tran-

sitively on the spa
e of 
onne
tions A. In that 
ase [A/G] is no longer a smooth

manifold but rather a (di�erentiable) sta
k and hen
e bundle gerbes on it are not

de�ned anymore. However, the author thinks one might be able to develop some

G-equivariant bundle gerbe approa
h to Faddeev-Mi
kelsson anomalies in this set-

ting, but sin
e we a
tually work at the level of Lie groupoids we prefer to speak

about quotient sta
ks instead in the spirit of [BeXu℄.

2.1. Universal Yang-Mills theory of Rajeev. Here we follow [MiRa℄, [Ra℄ and

[Mi1℄.

2.1.1. Generalized Fredholm determinants. LetH be a 
omplex in�nite dimensional

separable Hilbert spa
e with a given polarization H = H+ ⊕ H−. Let Lp, where
p ≥ 1, denote the S
hatten ideal, i.e. the spa
e of linear operators A : H −→ H s.t.

‖A‖
p
p = Tr(A∗A)p/2 <∞.

Ea
h Lp is a 
omplete metri
 spa
e with respe
t to the norm ‖·‖p.
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Now for ea
h A ∈ Lp de�ne

Rp(A) = −1 + (1 +A) exp
[ p−1∑

j=1

(−1)j
Aj

j

]
.

De�nition 2.1 (Generalized Fredholm determinants). Let A ∈ Lp and de�ne

detp(1 +A) := det(1 +Rp(A)).

We have the following formula

log detp(1 +A) = Tr
(
(−1)p

Ap

p
+ (−1)p+1A

p+1

p+ 1
+ · · ·

)

so that log detp(1 + A) 
an be thought of as a regularization of det(1 + A), where
the �rst p− 1 terms have been subtra
ted in the expansion of log(1 +A).

The regularized determinants are not multipli
ative but instead we have the

following proposition

Proposition 2.2. For ea
h p ∈ N+
there is a symmetri
 polynomial γp(A,B) of

two variables A,B ∈ 1 + Lp su
h that

detp AB = detpA · detpB · e
γp(A,B).

De�nition 2.3. ωp(A,B) = detpB · e
γp(A,B)

.

When A is invertible it is known that

ωp(A,B) =
detp AB

detpA
.

More over, for A,B,C ∈ 1 + Lp

ωp(A,BC) = ωp(AB,C) · ωp(A,B).

2.1.2. Generalized determinant line bundles. Let H be a 
omplex in�nite dimen-

sional separable Hilbert spa
e with a given polarization H = H+ ⊕H−. We �x an

orthonormal basis {en}n∈Z of H su
h that en ∈ H+ for n > 0 and en ∈ H− for

n ≤ 0.
LetGLp(H) denote the group 
onsisting of all invertible bounded linear operators

of the form (
a b
c d

)
,

where a : H+ −→ H+, d : H− −→ H−, c : H+ −→ H− and b : H− −→ H+ are

linear operators su
h that b, c ∈ L2p. The group GLp(H) has a natural metri


topology de�ned by

d(g, g′) = ‖a− a′‖+ ‖d− d′‖+ ‖b− b′‖2p + ‖c− c
′‖2p .

This makes GLp(H) into a Bana
h-Lie group.

De�nition 2.4 (Grassmannian manifold). Let Bp(H) be the (
losed) normal sub-

group of the blo
k triangular operators in GLp(H) with c = 0. De�ne the in�nite-
dimensional p :th S
hatten Grassmannian by

Grp(H) := GLp(H)/Bp(H).

As a homogeneous spa
e of a Bana
h-Lie group, Grp(H) is a Bana
h-Lie group.

The points of Grp 
an be thought of as in�nite-dimensional 
losed subspa
es

W ⊆ H su
h that

(1) The proje
tion prH+
:W −→ H+ is a Fredholm operator;

(2) The proje
tion prH−
:W −→ H− belongs to the S
hatten ideal L2p.
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De�nition 2.5. A basis w = {wn}n=1,2,... of W ∈ Grp is said to be admissible

(with respe
t to the basis {en}n>0 of H+) if w+−1 ∈ Lp, where w+ is the (in�nite)

matrix de�ned by

prH+
wi =

∑

j>0

(w+)jiej.

De�nition 2.6. Let

Ep := {(g, q) | g ∈ GLp, q ∈ GL(H+), aq
−1 − 1 ∈ Lp} ⊆ GLp ×GL(H+),

where g =

(
a b
c d

)
, be the group whose group multipli
ation is given by

(g1, q1)(g2, q2) = (g1g2, q1q2)

and topology by the norm

‖(g, q)‖ = ‖a‖+ ‖d‖ + ‖b‖2p + ‖c‖2p + ‖a− q‖p .

Then Ep is a Bana
h-Lie group.

De�nition 2.7. De�ne GLp = GL(H+) ∩ (1 + Lp), where p ∈ N ∪ {∞}; L0 =
{�nite rank operators}, L∞ = {
ompa
t operators}.

De�nition 2.8 (Stiefel manifolds). The in�nite-dimensional p :th S
hatten-Stiefel

manifold

Stp := Ep/Bp,

where the a
tion of k =

(
α β
0 γ

)
∈ Bp is given by

(g, q) · k = (gk, qα).

The Stiefel manifold Stp parametrizes all admissible basis of all in�nite-dimensio-

nal planes W ∈ Grp, see [Mi1℄. It is in a natural way a prin
ipal GLp-bundle over
Grp, the GLp a
tion being given by the basis transformations and the 
anoni
al

proje
tion Stp −→ Grp is 
hosen to be the mapping asso
iating to the basis w the

plane W spanned by the ve
tors in w.

De�nition 2.9 (Generalized determinant line bundles). Let

Detp := (Stp × C)/GLp,

where the right a
tion of GLp on Stp × C is de�ned so that

(w, λ) · t = (wt, λωp(w+, t)
−1).

One 
an show that Detp is a holomorphi
 line bundle over Grp where the proje
-
tion map is given by [(w, λ)] 7→ the plane spanned by {w1, w2, . . .}. Moreover, the

group GLp a
ts on the base manifold Grp but the a
tion doesn't lift to the bundle

Detp for p ≥ 1.
Naturally there is also the dual determinant line bundle Det∗p −→ Grp.

Lemma 2.10. Se
tions of Det∗p 
an be identi�ed with fun
tions ψ : Stp −→ C su
h

that

ψ(wt) = ψ(w)ωp(w, t), t ∈ GLp.



ANOMALIES IN GAUGE THEORY AND GERBES OVER QUOTIENT STACKS 9

2.1.3. The Abelian extension of GLp.

Lemma 2.11. There are smooth fun
tions α(g, q;w) on Ep × Stp s.t.

α(g, q;wt)

α(g, q;w)
= −

ωp(w+, t)

ωp((gwq−1)+, qtq−1)
.

Theorem 2.12 (Mi
kelsson and Rajeev, [MiRa℄). Let H be a 
omplex in�nite

dimensional separable Hilbert spa
e with a given polarization H = H+⊕H−. There

is an Abelian extension of GLp =: GLp(H) by Map(Grp,C
∗) whi
h a
ts on Detp.

The extension is

ĜLp = (Ep ×Map(Grp,C
∗))/N,

where N is the normal subgroup 
onsisting of elements (1, q, µq), where µq(w) =
α(1, q, w)−1 · ωp(w+, q

−1)−1, q ∈ GLp.

Remark 2.13. As a 
orollary, one obtains the Abelian Lie group extension Ûp(H)
of Up(H) ⊆ GLp(H) by the group Map(Grp,C

∗) by restri
tion.

2.1.4. Canoni
al formalism for universal gauge theory. The 
on�guration spa
e in

Universal Yang-Mills theory is by de�nition

Ã =
{
bounded Hermitean Ã : H −→ H

∣∣∣ Ã ∈
(
Lp L2p

L2p Lp

)}
.

The subgroup Up ⊆ GLp of unitaries plays the role of the gauge transformation

group a
ting on the manifold Ã by the rule

Ã 7→ g̃Ãg̃−1 + g̃[ǫ, g̃−1].

The operator g̃[ǫ, g̃−1] is indeed of type

(
Lp L2p

L2p Lp

)

sin
e we know that for S
hatten ideals

Lp · Lq ⊆ Lr,

where 1/r = 1/p+ 1/q.
The spa
e of �ele
tri
 �elds� is

Ẽ =
{
bounded Hermitean Ẽ : H −→ H

∣∣∣ Ẽ ∈
(
Lp/(p−1) L2p/(2p−1)

L2p/(2p−1) Lp/(p−1)

)}
.

The phase spa
e of universal Yang-Mills theory is de�ned to be the dire
t sum

Ã ⊕ Ẽ . This spa
e has a natural exterior derivative operator d̃ : Ã ⊕ Ẽ −→ Ã ⊕ Ẽ ,

d̃(Ã, Ẽ) := ([ǫ, Ẽ], [ǫ, Ã]+),

where [·, ·]+ means the anti-
ommutator. The elements of the form (Ã, 0) ∈ Ã ⊕ Ẽ

are said to be of odd degree and respe
tively the elements of the form (0, Ẽ) ∈ Ã⊕Ẽ

are said to be of even degree. Clearly, d̃ maps even operators to odd operators and

vi
e versa. Furthermore, d̃2(Ã, Ẽ) = 0, sin
e ǫ2 = 1.

The exterior derivative operator d̃ makes it possible to de�ne the 
urvature F̃
for every Ã ∈ Ã,

F̃ := d̃Ã+ Ã2.

This is an even operator in the sense we just de�ned. The 
urvature transforms


ovariantly under gauge transformation, F̃ 7→ g̃F̃ g̃−1
.

De�nition 2.14. We say that a generalized ve
tor potential/
onne
tion 1-form

Ã ∈ Ã is �at if its 
urvature F̃ = 0.



10 VESA TÄHTINEN

Proposition 2.15. The spa
e of �at 
onne
tions in universal Yang-Mills theory

with gauge transformation group Up(H) 
an be identi�ed with the p :th S
hatten

Grassmannian

Grp(H) ∼= Up/(U(H+)× U(H−)).

2.1.5. Generalized Fo
k bundles over Gr2(H). An ex
ellent referen
e for this sub-

se
tion is [Mi4℄.

First, re
all from [PreSe℄ the geometri
 
onstru
tion of the Fermioni
 Fo
k spa
e

as the spa
e of holomorphi
 se
tions of a 
omplex line bundle Det∗1 over Gr1. We

want to generalize this to higher dimensional 
ases.

We suppose our S
hatten Grassmannian Gr2(H) is de�ned by a splitting H =
H+ ⊕H−.

De�nition 2.16. Let F ∈ Gr2(H+ ⊕H−) and let H = F ⊕ F⊥
be the asso
iated

splitting. We de�ne the generalized Fo
k spa
e FF by

FF := Γ(Det∗2(F ⊕ F
⊥)),

where Det∗2(F ⊕ F
⊥) −→ Gr2(F ⊕ F

⊥) is the dual of the 2 :nd determinant line

bundle Det2(F ⊕ F
⊥).

Now the problem with the above 
onstru
tion is that the Fo
k spa
es FF depend

on a 
hoi
e of admissible basis f in ea
h F ∈ Gr2(H+ ⊕H−):

Lemma 2.17. Fix an admissible basis f = {f1, f2, . . .} of F ∈ Gr2(H+ ⊕ H−).

Then a se
tion ψ̃F ∈ Γ(Det∗2(F ⊕ F⊥)) 
an be identi�ed with a fun
tion ψF :
St 2(F ⊕ F

⊥) −→ C satisfying

ψF (wt) = ψF (w) · ω2(w
(f), t), t ∈ GL2(F ⊕ F⊥), (2.1)

where w(f) is the matrix relating the F -proje
tion to the basis {fn}, i.e.

prF (wn) =
∑

j

w
(f)
jn fj

and

ω2(w
(f), t) =

det2 w
(f)t

det2 w(f)
.

In fa
t, what we have 
onsru
ted is a �bre bundle over St 2(H+ ⊕H−) and not

over Gr2(H+⊕H−). We need to modify the situation a bit to obtain a bundle over

Gr2(H+ ⊕H−) and for this we pro
eed as follows.

Sin
e the de�nition of a se
tion ψ depends on f we shall write expli
itly ψ =
ψ(w, f) and 
onsider these also as fun
tions of f .

Proposition 2.18. Fun
tions ψF : St 2(F ⊕ F
⊥)× St 2(F ⊕ F

⊥) −→ C satisfying

equation (2.1) and

ψF (w, ft) = ψF (w, f) · ω2(w
(f), t−1), t ∈ GL2(F ⊕ F⊥) (2.2)


an be identi�ed with se
tions of a ve
tor bundle F ′
over Gr2(H+⊕H−) whi
h is a

tensor produ
t of the determinant bundle Det2(H+⊕H−) and a trivial Fo
k bundle

B (with �bre FH+
) over Gr2(H+ ⊕H−).

De�nition 2.19. We de�ne the generalized Fo
k bundle F ′
over Gr2(H+ ⊕ H−)

by

F ′ := B ⊗Det2.

Motivated by this, one may de�ne the obstru
tion to 
anoni
al quantization

in universal Yang-Mills theory to be the 
lass of the Abelian Lie group extension

Û2(H) −→ U2(H).
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2.2. NCG theory model of Langmann, Mi
kelsson and Rydh. Our refer-

en
es in this se
tion are [LaMiRy℄, [G-BV℄ and [Con℄.

2.2.1. The spa
e of generalized ve
tor potentials. Let (H, D0) be a tame p+ sum-

mable K-
y
le over the

∗
-algebra

A = {A ∈ B(H) | [|D0|, A] ∈ L
p+(H), [D0, A] ∈ B(H)}

with π : A −→ U(H) the 
orresponding unitary representation and Γ : H −→ H a

grading operator. Denote by ǫ = D0/|D0| the sign of the (abstra
t) Dira
 operator.

Using the representation π, the equivalen
e 
lasses α ∈ A := Ω1
D0

(A ) 
an then be

presented in the form

α = a0[D0, a1], a0, a1 ∈ A , or α = a0[ǫ, a1], a0, a1 ∈ A .

It follows that all the operators α ∈ A satisfy the 
ondition [ǫ, α] ∈ B(H).

2.2.2. Gauge transformation group. We assume our (Hermitean) ve
tor bundle E

on A to be trivial and of rank one, i.e. E = A . Hen
e the gauge group U(E ) is
given by

U(E ) = Up+ = {u ∈ A | uu∗ = u∗u = 1}.

Any element g ∈ Up+(H) satis�es [ǫ, g] ∈ Lp+. This is seen to be the group of

unitaries in the group

GLp+ := {g ∈ A | g is invertible}.

2.2.3. Family of (abstra
t) Dira
 operators over A. We 
onsider bounded pertur-

bations DA of the `free Dira
 operator ' D0 that are of the form DA = D0 + A,
where A ∈ A and the sign operator FA := DA/|DA| satis�es

FA = F ∗
A = F−1

A ∈ B(H), FA − ǫ ∈ L
p+.

Following the ideas of [La1℄ and [La2℄, one 
an see that the sign operator FA

an thus be thought as an element of the weak-Lp Grassmannian Grp+(H) de�ned
analogously with the S
hatten Grassmannian Grp(H) ex
ept that now we require

that the proje
tion prH−
: W −→ H− belongs to the weak-Lp spa
e Lp+ instead

of the S
hatten ideal Lp. More over, the Grassmannian Grp+ has a natural a
tion

of the group GLp+.
This motivates us to 
onsider the obstru
tion of 
anoni
ally quantizing fermions

in this NCG gauge theory model as the 
lass of the group extension Ûp+ a
ting on

the total spa
e of the determinant line bundle Detp+ −→ Grp+ analogously with

what we did in the 
ase of universal Yang-Mills theory.

The group extension ĜLp+ 
an be 
onstru
ted in the same vein as in [ArnMi℄.

However, one has to pay attention to the properties of generalized tra
es, [LaMiRy℄.

3. Differentiable S1
-gerbes and S1

-Lie groupoid 
entral extensions

The main referen
e in this se
tion is [BeXu℄.

3.1. Sta
ks. Let S be either the 
ategory of all �nite dimensional C

∞
-manifolds

with C

∞
-maps as morphisms, or the 
ategory of all (in�nite dimensional) C

∞
-

Bana
h manifolds with the 
orresponding smooth maps. We endow S with the

Grothendie
k topology, whose 
overing families {Ui −→ X} are lo
al di�eomor-

phisms Ui −→ X su
h that the total map

∐
i Ui −→ X is surje
tive.

De�nition 3.1. A 
ategory �bered in groupoids X −→ S is a 
ategory X, together

with a fun
tor π : X −→ S, su
h that the following two 
onditions are satis�ed:

(1) For every arrow V −→ U in S, and every obje
t x of X lying over U ,
π(x) = U , there exists an arrow y −→ x in X lying over V −→ U , i.e.
π(y −→ x) = V −→ U .
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(2) For every 
ommutative diagram W −→ V −→ U in S and arrows z −→ x
lying over W −→ U and y −→ x, there exists a unique arrow z −→ y lying

over W −→ V , su
h that the 
omposition z −→ y −→ x equals z −→ x.

Example 3.2. Manifolds X ∈ Ob(S) give groupoid �brations. To see this, let X
denote the 
ategory where

Ob(X) = {(S, u) | S ∈ Ob(S), u ∈ HomS(S,X)}

and a morphism (S, u) −→ (T, v) of obje
ts is a morphism f : S −→ T su
h that

u = v ◦ f , i.e. an X morphism.

De�nition 3.3. Let π : X −→ S be a 
ategory �bered in groupoids. Then X is


alled a sta
k over S if the following three axioms are satis�ed:

(1) For any C

∞
manifold X ∈ Ob(S), any two obje
ts x, y ∈ Ob(X) lying over

X , and any two isomorphims φ, ψ : x −→ y over X su
h that φ|Ui = ψ|Uj
for all Ui in a 
overing family {Ui −→ X}, then φ = ψ.

(2) For any X ∈ Ob(S), any two obje
ts x, y ∈ Ob(X) lying over X , a 
overing

family {Ui −→ X}, and a 
olle
tion of isomorphisms φi : x|Ui −→ y|Ui su
h
that φi|Ui ×X Uj = φj |Ui ×X Uj for all i, j, there exists an isomorphism

φ : x −→ y su
h that φ|Ui = φi for all i.
(3) For every X ∈ Ob(S), every 
overing family {Ui −→ X}, every family {xi}

of obje
ts xi in the �bre XUi
, and every family of morphims {φij}, φij :

xi|Ui×XUj −→ xj |Ui×XUj satisfying the 
o
y
le 
ondition φjk ◦φij = φik
in the �bre XUi×XUj×XUk

, there exists an obje
t x over X , together with

isomorphisms φi : x|Ui −→ xi su
h that φij ◦ φi = φj over Uij .

Remark 3.4. Here 
ondition (2) means that morphisms glue and 
ondition (3) says

that obje
ts glue (des
ent data is e�e
tive). Conditions (1) and (2) imply that for

�xed X ∈ Ob(S), x, y ∈ XX , Isom(x, y) is a sheaf on S/X .

The morphisms of sta
ks are morphisms of their underlying groupoid �brations.

Example 3.5 (Manifolds). For every manifold X ∈ Ob(S) the groupoid �bration

X is a sta
k.

Example 3.6 (Quotient sta
ks). Let G ∈ Ob(S) be a Lie group a
ting on a

manifold X ∈ Ob(S). De�ne the quotient sta
k [X/G] as the 
ategory whose

obje
ts are prin
ipal G-bundles π : P −→ S, where all manifolds and stru
ture

maps are in S, together with a G-equivariant morphism α ∈ HomS(P,X). A

morphism in [X/G] is a Cartesian diagram in S

P ′
p //

π′

��

P

π

��
S′

f // S

su
h that α ◦ p = α′
. The proje
tion fun
tor π[X/G] : [X/G] −→ S asso
iates to a

prin
ipal G-bundle π : P −→ S its base spa
e S and to a morphism as above the

map f : S′ −→ S in S. Choosing X = •, a point, one obtains the 
lassifying sta
k

BG.
If G a
ts properly and freely, i.e. X −→ X/G is a G-bundle, then [X/G] ∼= X/G,

see [Hein℄, Remark 1.6.

De�nition 3.7. A sta
k X over S is 
alled di�erentiable or a C

∞
sta
k, if there

exists a manifold X ∈ Ob(S) and a surje
tive representable submersion x : X −→
X. In this 
ase X together with the stru
ture morphism x is 
alled an atlas for X

or a presentation of X.
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Example 3.8 (Quotient sta
ks). An atlas is given by the quotient map X −→
[X/G], de�ned by the trivial G-bundle G×X −→ X and α : G ×X −→ X being

the a
tion map.

3.2. Lie groupoids.

De�nition 3.9. A Lie groupoid Γ = X1 ⇒ X0 
onsists of

• Two smooth manifolds X1 ∈ Ob(S) (the morphisms or arrows) and X0 ∈
Ob(S) (the obje
ts or points);

• Two smooth surje
tive submersions s : X1 −→ X0 the sour
e map and

t : X1 −→ X0 the target map;

• A smooth embedding e : X0 −→ X1 (the identities or 
onstant arrows);

• A smooth involution i : X1 −→ X1, (the inversion) also denoted x 7→ x−1
;

• A multipli
ation

m : Γ(2) −→ Γ,

(x, y) 7→ x · y,

where Γ(2) = X1 ×s,t X1 = {(x, y) ∈ X1 ×X1 | s(x) = t(y)}. Noti
e, that

Γ(2)
is a smooth manifold, sin
e s and t are submersions. We require the

multipli
ation map m to be smooth and that

(1) s(x · y) = s(y), t(x · y) = t(x),
(2) x · (y · z) = (x · y) · z,
(3) e is a se
tion of both s and t,
(4) e(t(x)) · x = x = x · e(s(x)),
(5) s(x−1) = t(x), t(x−1) = s(x),
(6) x · x−1 = e(t(x)), x−1 · x = e(s(x)),
whenever (x, y) and (y, z) are in Γ(2)

.

Remark 3.10. When S is the 
ategory of smooth Bana
h manifolds, we 
all Γ =
X1 ⇒ X0 a Bana
h-Lie groupoid.

De�nition 3.11. A morphism of Lie groupoids (Ψ, ψ) : [X ′
1 ⇒ X ′

0] −→ [X1 ⇒ X0]
are the following 
ommutative diagrams:

X ′
1

t′

��
s′

��

Ψ // X1

t

��
s

��

X1
Ψ // X ′

1

X ′
0

ψ // X0 X ′
0

e′

OO

ψ // X0

e

OO

X ′
1 ×s′,t′ X

′
1

Ψ×Ψ //

m′

��

X1 ×s,t X1

m

��

X ′
1

Ψ //

i′

��

X1

i

��
X ′

1
Ψ // X1 X ′

1
Ψ // X1

Example 3.12. A Lie group G is a Lie groupoid over a point, G⇒ •.

Example 3.13. Let M be a di�erentiable manifold and G a Lie group a
ting

smoothly on M from the right. The a
tion groupoid M × G ⇒ M , denoted by

M ⋊G, is de�ned by the following data:

• s(x, g) = x;

• t(x, g) = xg, so that a pair

(
(x, g), (x′, g′)

)
is de
omposable i� x′ = xg;

• m
(
(x, g), (xg, g′)

)
= (x, gg′);

• i(x, g) = (xg, g−1);
• e(x) = (x,1G).
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3.3. Gerbes and S1
-
entral extensions of Lie groupoids.

Example 3.14. Let G be a Lie group and BG its 
lassifying sta
k. As we have

seen, this is a sta
k, but it is in fa
t a rather spe
ial sta
k. This is be
ause

(1) Every manifold X has at least one prin
ipal G bundle over it, namely the

trivial G bundle;

(2) Any two prin
ipal G bundles are lo
ally isomorphi
.

These two fa
ts lead to the de�nition of a gerbe over a sta
k.

De�nition 3.15. Let X and R be sta
ks over S and π : R −→ X a morphism of

sta
ks. Then π : R −→ X is 
alled a gerbe over (the sta
k) X, if

(1) π has lo
al se
tions, i.e. there is an atlas p : X −→ X and a se
tion

s : X −→ R of π|X , where by a se
tion we mean there exists a natural

isomorphism φ : π ◦ s⇒ p of fun
tors.

(2) Lo
ally over X all obje
ts of R are isomorphi
, i.e. for any two obje
ts

t1, t2 ∈ XT and lifts s1, s2 ∈ RT with π(si) ∼= ti, there is a 
overing {Ti −→
T } su
h that s1|Ti

∼= s2|Ti
.

A gerbe π : R −→ X is trivial, if it admits a global se
tion, i.e. if there exists a

morphism of sta
ks σ : X −→ R satisfying π ◦ σ ∼= idX.

De�nition 3.16. A gerbe R −→ X is 
alled an S1
-gerbe if there is an atlas

p : X −→ X and a se
tion s : X −→ R su
h that there is an isomorphism

Φ : Aut(s/p) := (X ×R X)×X×XX X ∼= S1 ×X

as a family of groups over X su
h that on X ×X X the diagram

Aut(s ◦ pr1/p ◦ pr1)
∼= //

pr∗1Φ

))SSSSSSSSSSSSSS
Aut(s ◦ pr2/p ◦ pr2)

pr∗2Φ

uukkkkkkkkkkkkkk

X ×X X × S
1

where the horizontal map is the isomorphism given by the universal property of the

�bre produ
t, 
ommutes. This means that the automorphism groups of obje
ts of

R are 
entral extensions of those of X by S1
.

De�nition 3.17. Let Γ = X1 ⇒ X0 be a Lie groupoid. An S1
-
entral extension

of X1 ⇒ X0 
onsists of

(1) a Lie groupoid R1 ⇒ X0 and a morphism of Lie groupoids (π, id) : [R1 ⇒

X0] −→ [X1 ⇒ X0],
(2) a left S1

a
tion on R1, making π : R1 −→ X1 a left prin
ipal S1
bundle.

The a
tion must satisfy (s · x)(t · y) = st · (xy), for all s, t ∈ S1
and

(x, y) ∈ R1 ×X0
R1.

When R1 −→ X1 is topologi
ally trivial, then R1
∼= X1 × S

1
and the 
entral

extension is determined by a groupoid 2-
o
y
le of X1 ⇒ X0 with values in S1
.

This is a smooth map

c : Γ(2) =
{
(x, y) ∈ X1 ×X1 | s(x) = t(y)

}
−→ S1

satisfying the 
o
y
le 
ondition

c(x, y)c(xy, z)c(x, yz)−1c(y, z)−1 = 1

for all (x, y, z) ∈ Γ(3)
. The groupoid stru
ture on R1 ⇒ X0 is given by

(x, λ1) · (y, λ2) = (xy, λ1λ2c(x, y)),

for all (x, y) ∈ Γ(2)
and λ1, λ2 ∈ S

1
.
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Proposition 3.18 (Behrend, Xu, [BeXu℄). Let X1 ⇒ X0 be a Lie groupoid and X

its 
orresponding di�erential sta
k of X•-torsors. There is one-to-one 
orrespon-

den
e between S1
-
entral extensions of X1 ⇒ X0 and S1

-gerbes R over X whose

restri
tion to X0 : R|X0
admits a trivialization.

3.4. Sheaf 
ohomology on di�erentiable sta
ks. Let π : X −→ S be a dif-

ferentiable sta
k. Following [Laum℄ and [Hein℄ one 
an de�ne sheaves of Abelian

groups on X.

De�nition 3.19. A sheaf F of Abelian groups on π : X −→ S is determined by

the following data

(1) For ea
h morphism of sta
ks X −→ X where X ∈ Ob(S) is a manifold, a

sheaf FX−→X of Abelian groups on X in the usual sense, i.e. an Abelian

group FX−→X(U) asso
iated to ea
h open U ⊆ X , et
.

(2) For any 2-
ommuting triangle

X
f //

h   @
@@

@@
@@

ϕ
=⇒

Y

g
��~~

~~
~~

~

X

(3.1)

with an isomorphism ϕ : g ◦ f −→ h of fun
tors, there exists a morphism

of sheaves Φf,ϕ : f∗FY−→X −→ FX−→X (often denoted simply by Φf )

ompatible for X −→ Y −→ Z. We require that Φf is an isomorphism,

whenever f is an open 
overing.

The sheaf F is 
alled Cartesian if all Φf are isomorphisms.

We denote the 
ategory of Abelian sheaves on X by Ab(X).

Proposition 3.20. The 
ategory Ab(X) is an Abelian 
ategory with enough in-

je
tive obje
ts, i.e. for every obje
t F ∈ Ob(Ab(X)) there exists an inje
tion

0 −→ F −→ I with I inje
tive.

De�nition 3.21. Let U be a manifold. A sheaf in the usual sense (i.e. de�ned

only on open subsets of U) is 
alled a small sheaf on U .

De�nition 3.22. Let X be a sta
k over S and F a sheaf over X. Let x ∈ Ob(XU ),
where U ∈ Ob(S) is a manifold. The small sheaf on U , whi
h maps the open subset

V ⊆ U to F(x | V ) is 
alled the small sheaf indu
ed by F via x : U −→ X on U .
We denote it by Fx,U or simply FU , if there is no risk of 
onfusion.

Given a morphism in θ : y −→ x in X lying over a C

∞
map f : V −→ U in S,

there is an indu
ed morphism of small sheaves over V

θ∗ : f−1Fx,U −→ Fy,V .

The 
ohomology of a sheaf F ∈ Sh(X) is de�ned in the same way as it is de�ned

for manifolds: One �rst de�nes the global se
tion fun
tor

Γ(X, ·) : Ab(X) −→ Ab,

where now

Γ(X,F) := lim
←−

Γ(X,FX−→X)

and the limit is taken over all atlases X −→ X, the transition fun
tions for a 2-


ommutative diagram X ′
f //

h   A
AA

AA
AA

A

ϕ
=⇒

X

g
��~~

~~
~~

~

X

are given by the restri
tion maps Φf,ϕ.
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Next one 
hooses an inje
tive resolution 0 −→ F
ε
−→ I• and sets

Hi(X,F) = hi(Γ(X, I•)).

Remark 3.23. For a Cartesian sheaf F over X the global se
tion fun
tor 
an be

de�ned by 
hoosing an atlas X −→ X and then setting

Γ(X,F) := ker
(
Γ(X,F) ⇒ Γ(X ×X X)

)
.

This is known to be independent of the 
hosen atlas X −→ X and moreover it


oin
ides with the previous de�nition, [Hein℄.

Theorem 3.24 (Giraud). Isomorphism 
lasses of S1
-gerbes over X are in one-to-

one 
orresponden
e with H2(X, S1).

3.5. �e
h and simpli
ial 
ohomology of sta
ks.

De�nition 3.25. Let ∆ be the 
ategory whose obje
ts are �nite ordered sets

[n] = {0 < 1 < · · · < n}, and whose morphisms are nonde
reasing monotone

fun
tions.

De�nition 3.26. Let A be a 
ategory. A simpli
ial obje
t A in A is a 
ontravariant

fun
tor A : ∆op −→ A

De�nition 3.27. A morphism of simpli
ial obje
ts is a natural transformation

between the 
orresponding fun
tors, and the 
ategory SA of all simpli
ial obje
ts

in A is just the fun
tor 
ategory A∆op

.

Proposition 3.28. To give a simpli
ial obje
t A in a 
ategory A, it is ne
essary and
su�
ient to give a sequen
e of obje
ts A0, A1, A2, . . . together with fa
e operators

∂i : Ap −→ Ap−1 and degenera
y operators σi : Ap −→ Ap+1, where i = 0, 1, . . . , p,
satisfying the so 
alled simpli
ial identities:

∂i∂j = ∂j−1∂i, if i < j

σiσj = σj+1σi, if i ≤ j

∂iσj =





σj−1∂i, if i < j
id, if i = j or i = j + 1
σj∂i−1, if i > j + 1.

Proof. Omitted. See [Weib℄, Prop. 8.1.3. �

If one dualizes the 
on
ept of simpli
ial obje
ts, one obtains 
osimpli
ial obje
ts

and the following proposition:

Proposition 3.29. To give a 
osimpli
ial obje
t A in a 
ategory A, it is ne
essary
and su�
ient to give a sequen
e of obje
ts A0, A1, . . . together with 
ofa
e operators

∂i : Ap−1 −→ Ap and 
odegenera
y operators σi : Ap+1 −→ Ap, where i =
0, 1, . . . , p, whi
h satisfy the 
osimpli
ial identities

∂j∂i = ∂i∂j−1, if i < j

σjσi = σiσj+1, if i ≤ j

σj∂i =





∂iσj−1, if i < j
id, if i = j or i = j + 1
∂i−1σj , if i > j + 1.

Proof. Omitted. See [Weib℄, Cor. 8.1.4. �

Remark 3.30. It is 
lear by the above, that if we have a 
ontravariant funtor F :
A −→ B, then F maps simpli
ial obje
ts in A to 
osimpli
ial obje
ts in B. In the

same way, a 
ovariant fun
tor F maps simpli
ial obje
ts to simpli
ial obje
ts, et
.
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De�nition 3.31. Let A be a simpli
ial obje
t in an Abelian 
ategory A. The

asso
iated, or unnormalized, 
hain 
omplex C(A) has its obje
ts Cp = Ap, and its

boundary morphism d : Cp −→ Cp−1 is the alternating sum of the fa
e operators

∂i : Cp −→ Cp−1:

d = ∂0 − ∂1 + · · ·+ (−1)p∂p.

The simpli
ial identities for ∂i∂j imply that d2 = 0, so that we indeed have a


omplex.

We now 
ome ba
k to our original situation and de�ne for all p ≥ 0

Xp = X ×X . . .×X X︸ ︷︷ ︸
p+1 times

.

Sin
e X −→ X is a representable submersion, all Xp are manifolds. We want to

make X• = {Xp} into a simpli
ial manifold, i.e. a simpli
ial obje
t in the 
ategory

of manifolds:

· · · // ////// X2
////// X1

// // X0. (3.2)

First, note that Xp 
orresponds to the spa
e of 
hains of 
omposable p arrows in

the groupoid X1 ⇒ X0. De�ne the fa
e and degenera
y maps so that

∂i(g1, . . . , gp) =





(g2, . . . , gp), if i = 0
(g1, . . . , gigi+1, . . . , gn), if 0 < i < p
(g1, . . . , gp−1), if i = p,

σi(g1, . . . , gp) = (g1, . . . , gi, 1, gi+1, . . . , gp).

Example 3.32. We 
laim that for a quotient sta
k [X/G] with the natural atlas

X −→ [X/G]

Xp = X ×X . . .×X X︸ ︷︷ ︸
p+1 times

∼= X ×

p∏

i=1

G.

This 
an be seen as follows. By de�nition X0 = X and the produ
t on the right

hand side is empty, thus the 
laim is true when p = 0. Next note that by [Hein℄ we

have X ×X X ∼= X ×G. This implies that

X ×X X ×X X ∼= (X ×X X)×X (X ×X X) ∼= (X ×G)×X (X ×G)
∼= X ×G×G.

Here the last isomorphism follows sin
e

(X ×G)×X (X ×G) =
{(

(x1, g1), (x2, g2)
)
∈ (X ×G)× (X ×G)

∣∣∣ x1 = x2

}
.

More generally, one may write for p > 2

Xp+1 = X ×X . . .×X X︸ ︷︷ ︸
p+2 times

∼=
(
X ×X . . .×X X

)

︸ ︷︷ ︸
p+1 times

×X

(
X ×X X

)

∼= Xp ×X (X ×G) ∼= Xp ×G

and the 
laim follows from this by indu
tion.

Now, let F be a sheaf of Abelian groups on X. Every Xp has p + 1 
anoni
al

proje
tions Xp −→ X, whi
h are all 
anoni
ally isomorphi
 to ea
h other. We


hoose one of them and 
all it πp : Xp −→ X. Re
all that πp as a map from a

manifold to a sta
k 
an be identi�ed with an obje
t of X lying over Xp. We denote
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the Abelian group F(πp) asso
iated to the obje
t πp by the 
ontravariant sheaf

fun
tor F by F(Xp). By Remark 3.30 we have then a 
osimpli
ial Abelian group

F(X0)
//// F(X1) // //// F(X2)

//////// · · · . (3.3)

Sin
e the 
ategory of Abelian groups is an Abelian 
ategory, we may form the

asso
iated 
o
hain 
omplex to F(X•):

C(F(X•)) : F(X0)
∂ // F(X1)

∂ // F(X2)
∂ // · · ·

(3.4)

De�nition 3.33. The homology groups of the 
omplex (3.4) are denoted by

Ȟi(X•,F) = hi(F(X•))

and 
alled the �e
h 
ohomology groups of F with respe
t to the 
overing X −→ X.

As usual, there exists also a map Ȟi(X•,F) −→ Hi(X,F). Moreover, we have

the following proposition

Proposition 3.34. Let F be a Cartesian sheaf of Abelian groups on a di�erentiable

sta
k X. Let X −→ X be an atlas and F•
the indu
ed simpli
ial sheaf on the

simpli
ial manifold X•. Then there is an E1-spe
tral sequen
e:

Ep,q1 = Hq(Xp,Fp) =⇒ Hp+q(X,F).

Moreover,

Hi(X,F) ∼= Hi(X•,F
•)

for all i ≥ 0, where the latter 
ohomology group is the simpli
ial 
ohomology of F•
.

Proof. See [De℄, [Hein℄. �

Corollary 3.35. Let X be a di�erentiable sta
k with an atlas X −→ X. Then

Hi(X, S1) ∼= Hi(X•, S
1)

for all i ≥ 0.

Example 3.36. Let again X = [X/G] be the quotient sta
k and F = S1
X
. By

Example 3.32 Xp
∼= X ×

∏p
i=1G. Hen
e for ea
h p ≥ 0 the indu
ed small sheaves

of S1
on Xp are the sheaves S

1
,X×Gp . It follows now easily from Corollary 3.35 and

[Bry1℄, [De℄, [Gomi℄ that the 
ohomology groups Hi([X/G], S1) are isomorphi
 to

the G-equivariant 
ohomology groups of X . Espe
ially, the group

H2([X/G], S1) ∼= H2(X ×G•, S1
X×G•)


lassi�es the isomorphism 
lasses of G-equivariant gerbes on X in the sense of

Brylinski, [Bry1℄.

3.6. Faddeev-Mi
kelsson anomaly in terms of di�erentiable gerbes and

Lie groupoids. This se
tion 
ontains our main results.

3.6.1. In�nite-dimensional Lie groups of Mi
kelsson-Rajeev type.

De�nition 3.37. Let G be an I.L.H. (resp. Bana
h) Lie group (see Appendix

A). An extension of G by an I.L.H. (resp. Bana
h) Lie group N is a short exa
t

sequen
e with smooth homomorphisms

1 // N
i // Ĝ

q // G // 1

and with a smooth lo
al se
tion σ in the sense that there exists an open identity

neighborhood U ⊆ G on whi
h σ : U −→ Ĝ is smooth and q ◦ σ = idU .

Remark 3.38. One 
an use other 
lasses of in�nite dimensional manifolds and Lie

groups in the de�nition as well, see [MiKrie℄.
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The in�nite-dimensional Lie groups that we are interested in are those that

appear in Yang-Mills theories as gauge transformation groups or their extensions

([PreSe℄), [Mi1℄ and [ArnMi℄).

Let H be a 
omplex in�nite dimensional separable Hilbert spa
e with a given

polarization H = H+ ⊕ H−, where H± are 
losed subspa
es of H. Let ǫ be the

asso
iated sign operator ǫ : H −→ H, ǫ2 = 1 and ǫ|H±
= ±1H±

. Let GL(H) be the
general linear group of H 
onsisting of all invertible bounded linear operators of H.

De�nition 3.39. We say that an in�nite dimensional Lie group G is ofMi
kelsson-

Rajeev type, if it is of the form

G = GLIp :=
{
g =

(
a b
c d

)
∈ GL(H) | [ǫ, g] ∈ I2p

}
,

where Ip ⊆ K(H) is a two-sided ideal in the algebra B(H), p ∈ N+, equipped with

a Bana
h spa
e topology (Ip, ‖·‖Ip) and Ip ⊆ Iq is dense in Iq whenever p < q.
We de�ne GLIp

to be a Bana
h-Lie group with topology given by the norm

‖a‖+ ‖b‖I2p + ‖c‖I2p + ‖d‖ .

We may extend the de�nition to the value p = ∞ by de�ning I∞ := K(H) ⊆
B(H). Then we have a sequen
e of Bana
h-Lie groups

GLI1 ⊆ GLI2 ⊆ · · · ⊆ GLI∞ .

Example 3.40. One 
ould 
hoose for the Ip's the S
hatten ideals Lp or the weak-
Lp spa
es Lp+.

Let A be a 
ontra
tible Bana
h manifold. We assume that there exists a set of

mapsMap(A, S1) su
h that this set has a stru
ture of a Bana
h-Lie group (
ompare

with [MiRa℄, Remark on page 388).

We assume that our Lie group extension is of the form

Ĝ = ĜLIp = (Ep ×Map(A, S1))/N,

where

Ep =: {(g, q) | g ∈ GLIp , q ∈ GL(H+), aq
−1 − 1 ∈ Ip} ⊆ GLIp ×GL(H+),

g =

(
a b
c d

)
and the group multipli
ation is given by

(g1, q1)(g2, q2) = (g1g2, q1q2).

The topology of Ep is not the produ
t spa
e topology, but given by the norm

‖(g, q)‖ = ‖a‖+ ‖d‖ + ‖b‖2p + ‖c‖2p + ‖a− q‖p .

Then Ep is a Bana
h-Lie group. Above, N is assumed to be a (
losed) normal

Bana
h-Lie subgroup of Ep×Map(A, S1) 
onsisting of elements of the form (1, q, µq),

where µq ∈ Map(A, S1) depends smoothly on q ∈ GL(H+). This makes Ĝ into a

Bana
h-Lie group.

The group ĜLIp
is assumed to be a (nontrivial) Bana
h prin
ipal Map(A, S1)-

bundle overGLIp
with the obvious proje
tion map. Near the unit element 1 ∈ GLIp

the formula

ψ(g) = (g, a, 1) mod N,

where g =

(
a b
c d

)
∈ GLIp

, de�nes a lo
al se
tion ψ : U −→ ĜLIp
of the

prin
ipal Map(A, S1)-bundle p : ĜLIp −→ GLIp
.

De�nition 3.41. An extension of in�nite dimensional Lie groups p : Ĝ −→ G is

said to be of Mi
kelsson-Rajeev type if it is of the above form.
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A Lie group extension of Mi
kelsson-Rajeev type de�nes a lo
al Map(A, S1)-
valued (smooth) Lie group 2-
o
y
le ω by

ψ(g1)ψ(g2) = ψ(g1g2)(1, 1, ω(g1, g2)),

where ω(g1, g2) ∈Map(A, S1). This 
an then be extended to a global Map(A, S1)-
valued (smooth) 2-
o
y
le by translation giving an element in the Lie group 
oho-

mology [ω] ∈ H2(GLIp ,Map(A, S1)).
It follows from the de�nition that

Lie(ĜLIp) = Lie(GLIp)⊕Map(A, S1),

where the 
ommutator in Lie(ĜLIp) is given by

[(X,µ), (Y, ν)] = ([X,Y ], X · ν − Y · µ+ η(X,Y ; ·)),

where η is a Map(A, S1)-valued Lie algebra 
o
y
le on Lie(GLIp) and the Lie

derivative of a fun
tion ν on A to the dire
tion of the ve
tor �eld X de�ned by the

G a
tion on A is denoted by X · ν. Then at least in prin
iple, one 
an 
al
ulate the

Lie algebra 
o
y
le η as follows: Let exp(tX) and exp(tY ) be two one-parameter

subgroups on GLIp
. Then

∂2

∂t∂s
ψ(etX)ψ(esY )ψ(e−tX)ψ(e−sY )

∣∣∣
t=s=0

= ([X,Y ], 0, η(X,Y )).

3.6.2. From prin
ipal Map(A, S1)-bundles over G to line bundles over A × G. Let

A be a 
ontra
tible Bana
h manifold with a smooth right a
tion of a Lie group G
of Mi
kelsson-Rajeev type. We assume that a Lie group extension p : Ĝ −→ G of

Mi
kelsson-Rajeev type is given:

Map(A, S1) Ĝ

p

��
G

Here p : Ĝ −→ G is a prin
ipal Map(A, S1)-bundle.

Now, 
hoose an open 
over {Uα}α∈I of G and lo
al se
tions ψα : Uα −→ Ĝ.
Over the interse
tions Uα ∩ Uβ , we have transition fun
tions φαβ : Uα ∩ Uβ −→
Map(A, S1) satisfying

ψα(g) = ψβ(g)φβα(g),

for all g ∈ Uα ∩ Uβ. We 
an use the transition fun
tions φαβ to 
onstru
t a line

bundle over the produ
t A×G as follows. De�ne fun
tions φ̃βα : (Uα∩Uβ)×G → S1

so that

φ̃βα(A, g) :=
(
φβα(g)

)
(A) ∈ S1,

for all A ∈ A and g ∈ G. The fun
tions φ̃βα satisfy the following 
o
y
le property

φ̃γβ(A, g) · φ̃βα(A, g) = φγβ(g)(A) · φβα(g)(A) (3.5)

=
(
φγβ(g) · φβα(g)

)
(A)

= φγα(g)(A)

= φ̃γα(A, g),

and hen
e being transition fun
tions determine an S1
-bundle over A× G:

S1 P

π

��
A× G

(3.6)
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Remark 3.42. Note that the original Map(A, S1)-bundle p : Ĝ −→ G 
an be re
on-

stru
ted from the transition fun
tions of the S1
-bundle P −→ A× G.

3.6.3. Constru
ting Lie groupoid operations on the line bundle over A × G � The

�Cut and reglue� pro
edure. Suppose that the Mi
kelsson-Rajeev type Lie group

extension p : Ĝ −→ G is given by the data of a 
hosen open trivializing 
overing {Uα}
of G with transition fun
tions φαβ : Uα ∩ Uβ −→ Map(A, S1) and lo
al 2-
o
y
les

ωαβ,γ : Uα × Uβ −→ Map(A,R) de�ning the multipli
ation on Ĝ (this 
an always

be done starting from the global extension and then looking at the trivializations).

More pre
isely, suppose that f ∈ Uα, g ∈ Uβ , fg ∈ Uγ and λ, µ ∈ Map(A, S1).

Then the multipli
ation on the group Ĝ is de�ned (lo
ally) by the smooth maps

mĜ
αβ,γ :

(
Uα ×Map(A, S1)

)
×
(
Uβ ×Map(A, S1)

)
−→ Uγ ×Map(A,S1),

mĜ
αβ,γ

(
(f, λ), (g, µ)

)
=

(
fg, λ(f · µ) e2πiωαβ,γ(·,f,g)

)
,

where f · µ is the fun
tion (f · µ)(A) = µ(Af ) and for �xed f and g

ωαβ,γ(·; f, g) : A −→ R, ωαβ,γ(A; f, g) := ωαβ,γ(f, g)(A). (3.7)

Denoting sαβ,γ = e2πiω(·,f,g), the following 
ompatibility 
ondition is satis�ed:

sαβ,γ(A; f, g) = φαα′(A; f)φββ′(Af ; g)φγγ′(A; fg)−1sα′β′,γ′(A; f, g), (3.8)

whenever f ∈ Uα ∩Uα′ , g ∈ Uβ ∩Uβ′
and fg ∈ Uγ ∩Uγ′

. This is just the 
ondition

that we 
an glue together the lo
al multipli
ation maps mĜ
αβ,γ to a well-de�ned

global smooth multipli
ation map mĜ : Ĝ × Ĝ −→ Ĝ.
Ignoring the various lower indi
es, the group 2-
o
y
le 
ondition reads:

ω(g1g2, g3) + ω(g1, g2) = ω(g1, g2g3) + g1 · ω(g2, g3), (3.9)

where g1 · ω(·; g2, g3) : A −→ R is the fun
tion

g1 · ω(A; g2, g3) = ω(Ag1 ; g2, g3).

Noti
e, that this 
ondition is equivalent to the asso
iativity of the produ
t on Ĝ.
Re
all, that groupoid multipli
ation in Γ = (A ⋊ G ⇒ A; s, t,m, i, e) is de�ned

by

m : Γ(2) = (A× G)×s,t (A× G) −→ A× G

=
{(

(A1, g1), (A2, g2)
)
∈ (A× G)× (A× G) | A2 = Ag11

}
−→ A× G,

m
(
(A1, g1), (A

g1
1 , g2)

)
= (A1, g1g2),

where

s : A× G −→ A, s(A, g) = A

is the sour
e map and

t : A× G −→ A, t(A, g) = Ag.

is the target map.

Now {A×Uα}α∈I is an open 
overing of A×G. We use the lo
al group 2-
o
y
les

ωαβ,γ : Uα × Uβ −→ Map(A,R) to de�ne maps

cαβ,γ :
{(

(A1, g1), (A2, g2)
)
∈ (A×Uα)× (A×Uβ)

∣∣∣A2 = Ag11 , g1g2 ∈ Uγ

}
−→ S1,

cαβ,γ(A1, g1, A
g1
1 , g2) = e2πiωαβ,γ(A1,g1,g2).

We assume that the 2-
o
y
les ωαβ,γ depend smoothly on the variable A ∈ A so

that the maps cαβ,γ are smooth as well, when we give the sets where the di�erent
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cαβ,γ are de�ned the manifold stru
ture des
ribed below. It follows from (3.9) that

these satisfy the following 
o
y
le 
ondition

c(A1, g1, A
g1
1 , g2)c(A1, g1g2, A

g1g2
1 , g3) = c(Ag11 , g2, A

g2
2 , g3) · (3.10)

c(A1, g1, A
g1
1 , g2g3).

Next, we de�ne the following lo
al multipli
ation maps by

mαβ,γ :
{(

(A1, g1, λ), (A2, g2, µ)
)
∈ (A× Uα × S

1)× (A× Uβ × S
1)
∣∣∣A2 = Ag11 ,

g1 ∈ Uα, g2 ∈ Uβ , g1g2 ∈ Uγ , λ, µ ∈ S
1
}
−→ A× Uγ × S

1,

mαβ,γ

(
(A1, g1, λ), (A

g1
1 , g2, µ)

)
=

(
A1, g1g2, λµ · cαβ,γ(A1, g1, A

g1
1 , g2)

)
.

Noti
e, that the set where mαβ,γ is de�ned is an open subset of the manifold

(A× Uα × S
1)×s◦pr1,2;A;t◦pr1,2 (A× Uβ × S

1)

as the inverse image of the open set Uγ ⊆ G under the smooth map

mαβ : (A× Uα × S
1)×s◦pr1,2;A;t◦pr1,2 (A× Uβ × S

1) −→ G,

mαβ
(
(A1, g1, λ), (A

g1
1 , g2, µ)

)
= g1g2.

Moreover, (A×Uα×S
1)×s◦pr1,2;A;t◦pr1,2 (A×Uβ ×S

1) is indeed a manifold, sin
e

both maps s|A×Uα
◦pr1,2 and t|A×Uβ

◦pr1,2 are surje
tive submersion as 
omposites

of surje
tive submersions. Similarly, ea
h cαβ,γ is de�ned on an open subset of the

manifold

(A× Uα)×s|A×Uα;A;t|A×Uβ
(A× Uβ)

Sin
e the restri
tions P |A×Uα
=: π−1(A × Uα) −→ A× Uα of the S1

-bundle P
in (3.6) are trivial, i.e. there exists an S1

-bundle isomorphism

P |A×Uα
∼= A× Uα × S

1,

one 
an pat
h together the various maps mαβ,γ to obtain a partial multipli
ation

map mP on the total spa
e P of the S1
-bundle π : P −→ A× G. Here by �partial

multipli
ation� we mean that not every pair of elements in P 
an be multiplied

together. The 
o
y
le 
ondtion (3.10) guarantees that the multipli
ation map mP

is asso
iative. We want to make these arguments rigorous and show, that this

makes P ⇒ A a groupoid.

Proposition 3.43. (P ⇒ A,mP , sP , tP ) is a Bana
h-Lie groupoid, where the

sour
e and target map sP and tP are de�ned so that

sP = s ◦ π tP = t ◦ π.

Proof. First, note that sP and tP are surje
tive submersions as 
ompositions of two

surje
tive submsersions.

Next, 
hoose bundle isomorphisms giving lo
al trivializations

ϕα : A× Uα × S
1 ∼
−→ P |A×Uα

,

for ea
h α ∈ I. Hen
e for ea
h α ∈ I we have a 
ommutative diagram

A× Uα × S
1

∼=

ϕα //

pr1,2

��

P |A×Uα

π|A×Uα

��
A× Uα

id // A× Uα

where ϕα is an S1
-equivariant map of manifolds and pr1,2(A, g, λ) = (A, g). From

this we see that

sP |A×Uα
◦ ϕα = s|A×Uα

◦ pr1,2 = pr1,
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where

pr1 : A× Uα × S
1 −→ A, pr1(A, g, λ) = A.

and

sP |A×Uα
: P |A×Uα

−→ A, s|A×Uα
: A× Uα −→ A,

sP |A×Uα
= s|A×Uα

◦ π|A×Uα
.

Hen
e

sP |A×Uα
= pr1 ◦ ϕ

−1
α .

Similarly

tP |A×Uα
◦ ϕα = t|A×Uα

◦ pr1,2
or

tP |A×Uα
= t|A×Uα

◦ pr1,2 ◦ ϕ
−1
α .

We want to 
onstru
t a global multipli
ation map

mP : P ×sP ,A,tP P −→ P

from the lo
al multipli
ation maps mαβ,γ introdu
ed above. We denote by sP,α =
sP |A×Uα

for every α ∈ I and similarly tP,α = tP |A×Uα
. Then

P |A×Uα
×sP,α;A;tP,β

P |A×Uβ
⊆ P ×sP ,A,tP P.

De�ne (
P |A×Uα

×sP,α;A;tP,β
P |A×Uβ

)
γ

as the open subsetset of P |A×Uα
×sP,α;A;tP,β

P |A×Uβ
so that

(
P |A×Uα

×sP,α;A;tP,β
P |A×Uβ

)
γ
:=

(
mαβ ◦ (pr2 × pr2) ◦ (ϕ

−1
α × ϕ

−1
β )

)−1

(Uγ).

We may now de�ne mP ;αβ,γ :
(
P |A×Uα

×sP,α;A;tP,β
P |A×Uβ

)
γ
−→ P,

mP ;αβ,γ = ϕγ ◦mαβ,γ ◦ (ϕ
−1
α × ϕ

−1
β ).

This gives us a well-de�ned global multipli
ation map mP : P×s,tP −→ P , be
ause
of equation (3.8), that guarantees us that the lo
al multipli
ation maps at the group

extension level glue together.

The other maps in the de�nition of a Lie groupoid are de�ned on lo
al trivial-

izations P |A×Uα
∼= A× Uα × S

1
so that

eP (A) = (A, 1G, 1),

iP (A, g, λ) = (Ag, g−1, λ−1)

�

Proposition 3.44. P ⇒ A is an S1
-(Bana
h-Lie groupoid) 
entral extension of

the a
tion gropoid A⋊ G.

Proof. We �rst 
laim, that the following diagrams 
ommute:

P

tP

��
sP

��

π // A× G

t

��
s

��
A

id // A

(3.11)

P
π // A× G

A
id //

eP

OO

A

e

OO (3.12)
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P ×sP ,tP P
π×π//

mP

��

(A× G)×s,t (A× G)

m

��
P

π // A× G

(3.13)

P

iP

��

π // A× G

i

��
P

π // A× G

(3.14)

(1) Now, diagram (3.11) 
ommutes by de�nition.

(2) On lo
al trivializations of the S1
-bundle π : P −→ A× G, the elements of

the total spa
e P are of the form (A, g, λ), where A ∈ A, g ∈ G and λ ∈ S1
.

Hen
e

(π ◦ eP )(A) = π(A, 1G, 1) = (A, 1G) = e(A),

so that (3.12) 
ommutes.

(3) Again, lo
ally

mP

(
(A1, g1, λ), (A

g1
1 , g2, µ)

)
=

(
A1, g1g2, c(A1, g1, A

g1
1 , g2)

)
π
7→ (A1, g1g2),

and on the other hand

(π × π)
(
(A1, g1, λ), (A

g1
1 , g2, µ)

)
=

(
(A1, g1), (A

g1
1 , g2)

)
m
7→ (A1, g1g2),

whi
h shows that (3.13) 
ommutes.

(4) On lo
al trivializations

(i ◦ π)(A, g, λ) = i(A, g) = (Ag, g−1) = π(Ag, g−1, λ−1) = (π ◦ iP )(A, g, λ).

This data gives us a morphism of Lie groupoids (π, id) : [P ⇒ A] −→ [A⋊G ⇒ A].
Moreover, π : P −→ A⋊G is a prin
ipal S1

-bundle by 
onstru
tion. The only thing

left is to 
he
k that (s·x)(t·y) = (st)·(xy) for all s, t ∈ S1
and (x, y) ∈ P×sP ,A,tP P .

To see this, we look at the lo
al pi
ture, again. Thus, let x = (A1, g1, λ) and

y = (Ag11 , g2, µ). Now

(s · x)(t · y) = (A1, g1, sλ) · (A
g1
1 , g2, µ) =

(
A1, g1g2, stλµ · c(A1, g1, A

g1
1 , g2)

)

= (st) · (xy).

�

By Example 2.26. in [L-GTuXu℄ the 
o
y
le 
ondition (3.10) of the family

{cαβ,γ} guarantees that it gives a 2-
o
y
le in the simpli
ial 
ohomology H2(A ×

G•, S1) (i.e. an element of the �e
h 
ohomology with respe
t to out groupoid 
over).

On the other hand this 
lass is the 
lass 
orresponding to the Morita equivalen
e


lass of the 
onstru
ted S1
-groupoid extension of A⋊ G under the isomorphism

Extsm(A⋊ G, S1) ∼= H2(A× G•, S1).

(see Proposition 2.17, [L-GTuXu℄). Next, re
all from Example 3.36 that the Lie

groupoid A⋊ G 
orresponds to the quotient sta
k [A/G] and

H2(A× G•, S1) ∼= H2([A/G], S1).

Propostion 3.18 produ
es then a gerbe R over the sta
k [A/G] whose gerbe 
lass is
the 
ohomology 
lass of the 2-
o
y
le {cαβ,γ}.
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Remark 3.45. Note that the original multipli
ation in Ĝ 
an be re
onstru
ted from

the asso
iated S1
-groupoid extension P ⇒ A using (3.7). Sin
e we noti
ed earlier

that the original Map(A, S1)-bundle p : Ĝ −→ G 
an be re
onstru
ted from the

asso
iated S1
-bundle π : P −→ A×G we 
on
lude that the whole group extension Ĝ

with its original prin
ipal bundle stru
ture 
an be re
onstru
ted from the asso
iated

S1
-gropoid extension P ⇒ A.

Appendix A. I.L.H. manifolds and Lie groups

Our referen
es are [Bry2℄ and [Pay℄.

De�nition A.1. A topologi
al ve
tor spa
e E is 
alled an I.L.H. ve
tor spa
e if

E = lim
←−n

Hn is an inverse limit of separable Hilbert spa
es Hn.

Hen
e, the topology of an I.L.H. ve
tor spa
e E is the inverse limit topology.

This is the 
oarsest topology whi
h makes all the proje
tion maps pn : E −→
Hn 
ontinuous. Often one wants to impose the following extra 
ondition in the

de�nition of an I.L.H. ve
tor spa
e:

• For every open ball B in Hn, we have

p−1
n (B) = p−1

n (B). (A.1)

Theorem A.2. Let X be a para
ompa
t manifold, modelled on an I.L.H. ve
tor

spa
e E satisfying (A.1). Then for any open 
overing U = {Ui}i∈I of X there exists

a smooth partition of unity subordinate to U .

De�nition A.3. An I.L.H. topologi
al group G is 
alled an I.L.H. Lie group if it is

a smooth I.L.H. manifold with the group operations given by smooth I.L.H. maps.

De�nition A.4. Let P,B be smooth I.L.H. manifolds modelled on I.L.H. ve
tor

spa
es E and F respe
tively, π : P −→ B a smooth I.L.H. map and G an I.L.H.

Lie group. Then (P,B,G, π) is an I.L.H. prin
ipal bundle if the transition maps

are smooth I.H.L. maps.

Let (P,M,G, π) be a smooth prin
ipal G-bundle on a 
losed manifold M , where

we assume all the manifolds to be �nite dimensional and that G is 
ompa
t. Let

E = adP := P ×G Lie(G), where G a
ts on Lie(G) by the adjoint a
tion, and

F := T ∗M ⊗ adP .

Example A.5. The spa
e A(P ) of smooth 
onne
tions on P is an a�ne I.L.H

spa
e with tangent ve
tor spa
e C

∞(F ).

Example A.6. Let EG = AdP := P ×G G where G a
ts on itself by the adjoint

a
tion. Then the set G(P ) := C

∞(EG) is an I.L.H. Lie group modelled on C

∞(E).
It 
orresponds to the group of gauge transformations of the prin
iple G-bundle P ,
i.e. the group of automorphisms of P that 
over the identity.

Example A.7 (In�nite dimensional Grassmannian of Segal and Wilson). Let H be

a separable Hilbert spa
e with an orthogonal de
omposition H = H+⊕H−. Re
all

that for any two Hilbert spa
es H1 and H2 the spa
e H.S.(H1,H2) of Hilbert-

S
hmidt operators T : H1 −→ H2 is a Hilbert spa
e with norm ‖T ‖2 =
√
Tr(T ∗T ).

Let Grres(H) denote the set of 
losed subspa
es W ⊆ H su
h that

(1) The orthogonal proje
tion onto H+, pr
+
W :W −→ H+ is Fredholm;

(2) The orthogonal proje
tion onto H−, pr
−
W :W −→ H− is Hilbert-S
hmidt.

Then Grres(H) is a Hilbert manifold modelled on H.S.(H+,H−).
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