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ANOMALIES IN GAUGE THEORY AND GERBES OVER

QUOTIENT STACKS

VESA TÄHTINEN

Abstrat. In Yang-Mills theory one is interested in lifting the ation of the

gauge transformation group G = G(P ) on the spae of onnetion one-forms

A = A(P ), where P −→ M is a prinipal G-bundle over a ompat Riemannian

spin manifoldM , to the total spae of the Fok bundle F −→ A in a onsistent

way with the seond quantized Dira operators D̂/
A
, A ∈ A. In general, there is

an obstrution to this alled the Faddeev-Mikelsson anomaly, and to overome

this one has to introdue a Lie group extension Ĝ, not neessarily entral, of

G that ats in the Fok bundle. The Faddeev-Mikelsson anomaly is then

essentially the lass of the Lie group extension Ĝ.

When M = S1
and P is the trivial G-bundle, we are dealing with S1

-entral

extensions of loop groups LG as in [PreSe℄. However, it was �rst notied in

the pioneering works of J. Mikelsson, [Mi℄ and L. Faddeev, [Fad℄ that when

dimM > 1 the group multipliation in Ĝ depends also on the elements A ∈ A

and hene is no longer an S1
-entral extension of Lie groups.

We give a new interpretation of ertain nonommutative versions of Faddeev-

Mikelsson anomaly (see for example [Ra℄, [LaMiRy℄ and [ArnMi℄) and show

that the analogous Lie group extensions Ĝ an be replaed with a Lie groupoid

extension of the ation Lie groupoid A ⋊ G, where A is now some relevant

abstrat analog of the spae of onnetion one-forms. Then at the level of

Lie groupoids, this extension proves out to be an S1
-entral extension and

hene one may apply the general theory of these extensions developed by K.

Behrend and P. Xu in [BeXu℄. This makes it possible to onsider the Faddeev-

Mikelsson anomaly as the lass of this Lie groupoid extension or equivalently

as the lass of a ertain di�erentiable S1
-gerbe over the quotient stak [A/G].

We also give examples from nonommutative gauge theory where our onstru-

tion an be applied.

The onstrution may also be used to give a geometri interpretation of the

(lassial) Faddeev-Mikelsson anomaly in Yang-Mills theory when dimM = 3.
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1. Introdution

1.1. Obstrution to anonial quantization of fermions in Yang-Mills the-

ory (a.k.a Faddeev-Mikelsson anomaly).

1.1.1. Dira operators. Suppose that (M, gM ) is a ompat oriented Riemannian

spin manifold of dimension d = 2n + 1 without boundary and let S be the spin

bundle of the spin manifold M .

Let G be a �nite dimensional semi-simple ompat Lie group and ρ : G −→
AutC(V ) a unitary omplex representation of G with respet to an inner produt

(·, ·)V on V , i.e. (ρ(g)x, ρ(g)y) = (x, y) for all g ∈ G and x, y ∈ V . Next suppose

that π : P −→M is an arbitrary prinipal G bundle and form the assoiated vetor

bundle E = P ×ρ V . One an show that sine ρ is unitary the assoiated vetor

bundle E is a Hermitean vetor bundle with Hermitean metri hE .
Denote by A the spae of g = Lie(G) valued onnetion 1-forms on P and by Ge

the based gauge transformation group. It is known that A/Ge is a smooth in�nite

dimensional I.L.H. manifold, [Pay℄. To eah A ∈ A one an assoiate a Dira

operator D/A : Γ(E ) −→ Γ(E ), where E := S ⊗ E. This extends to an operator on

H = L2(E ), the Hilbert spae of square integrable setions of the vetor bundle E .

The domain of D/A in H is known to be H1(M ;S), the �rst Sobolev spae, [Boss℄.

One knows from funtional analysis that D/A is a Fredholm operator sine it is

ellipti and the manifold M is ompat. Thus dimkerD/A <∞ and dim cokerD/A <
∞. Moreover, the gauge transformation group Ge ats on H and the Dira operator

D/A satis�es the following equivariane ondition

gD/Ag
−1 = D/Ag

for all g ∈ Ge.

1.1.2. Fok bundle. For eah A ∈ A s.t. 0 /∈ spe(D/A) the operator D/A produes a

deomposition

H = H+(A)⊕H−(A),

where the spaesH± are the orresponding eigenspaes to the positive and negative

eigenvalues of the Dira operator D/A, respetively. Corresponding to this deompo-

sition there exists an irreduible Dira representation of the representation of the

algebra CAR(H) =: Cℓ(H⊕H̄) (the algebra of anonial antiommutation relations

or the algebra of fermion �elds) on the Fok spae

FA :=
∧(
H+(A) ⊕ H̄−(A)

)
=

∧
H+(A) ⊗

∧
H̄−(A)

=
⊕

p,q

( p∧
H+(A) ⊗

q∧
H̄−(A)

)
,
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where physially the subspae

∧p
H+(A) ⊗

∧q
H̄−(A) onsists of the states with

p partiles and q antipartiles, all of positive energy.

1

A CAR-representation

ψA : CAR −→ End(FA) is determined by giving a vauum vetor |0A〉 ∈ FA
haraterized by the property that

ψ∗
A(u)|0A〉 = 0 = ψA(v)|0A〉, for all u ∈ H−(A), v ∈ H+(A).

De�nition 1.1. Two representations of the CAR-algebra are said to be equivalent

if it is possible to represent them in the same Fok spae in suh a way that both

orresponding vauum vetors will be of �nite norm.

Theorem 1.2. Two di�erent polarizations H = H+ ⊕ H− = W+ ⊕ W− de�ne

equivalent Dira representations of the CAR-algebra if and only if the projetions

pr−W+
:W+ −→ H− and pr+W−

:W− −→ H+ are Hilbert-Shmidt.

Theorem 1.3 (Shale-Stinespring). Two Dira representation of the CAR-algebra

de�ned by a pair of polarizations H+ and H′
+ are equivalent if and and only if

there is g ∈ Ures(H) suh that H′
+ = g · H+. In addition, in order that an element

g ∈ U(H) is implementable in the Fok spae, i.e. there is a unitary operator

ĝ ∈ U(F) suh that

ĝψ∗(v)ĝ−1 = ψ∗(gv), for all v ∈ H,

and similarly for the ψ(v)'s, one must have g ∈ Ures(H).

Here Ures(H) is the group of unitary operators g in the polarized Hilbert spae

H = H+ ⊕H− suh that the o�-diagonal bloks are Hilbert-Shmidt operators.

One would like to glue somehow the di�erent CAR-algebra representations FA
into an in�nite-dimensional Hilbert bundle F over A with a ontinuous setion

sF : A −→ F suh that sF (A) = |0A〉 (a Dira representation if �xed by a given

vauum vetor so this way it is possible to de�ne what we mean by a ontinuously

varying family of CAR-representations). First, to onstrut a bundle of Fok spaes

one an use the following trik:

One replaes the operator D/A with the operator D/A − λ, where λ ∈ R, λ /∈
spe(D/A). This way, one obtains a deomposition

H = H+(A, λ) ⊕H−(A, λ),

with the orresponding (irreduible) Fok spae representation

ρA,λ : CAR(H) −→ End(FA,λ)

of the CAR-algebra.

The Fok spaes FA,λ depend on the hoie of the vauum level λ. However, for
λ, µ /∈ spe(D/A) there exists a natural projetive isomorphism

FA,λ ≡ FA,µ mod C
×, (1.1)

allowing us to glue the di�erent Fok spaes FA,λ together into an in�nite dimen-

sional projetive Fok bundle PF over A, [Ara℄. One an show that sine A is

ontratible as an a�ne spae, there exists a trivial vetor bundle F = A×F0 over

A whose projetivization is projetively isomorphi to PF .
Now the �bre of F at A ∈ A is equal to FA ∼= F0 but unfortunately for the

energy polarization H = H+(A) ⊕ H−(A) the map A 7→ |0A〉 does not de�ne a

ontinuous setion of F (or equivalently the map A −→ Gr(H) : A 7→ H+(A)
isn't ontinuous). This problem is resolved by intoduing another family W (A) of
polaritations H =W (A)⊕W (A)⊥ parametrized by A ∈ A suh that

1

Here H̄
−

denotes the abstrat omplex onjugate spae to H
−
. It is a opy of H

−
with the

salars ating in a onjugate way: λ · ξ̄ = (λ · ξ)−; we don't suppose that there is a omplex

onjugation operation de�ned inside the Hilbert spae H.
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(1) The map A −→ Gr(H) : A 7→W (A) is ontinuous;

(2) The orresponding CAR-algebra representations ρA and ρW (A) indued by

the two polarizations are equivalent.

To onstrut suh a family of polarizations one proeeds as follows (see [Mi5℄ for

details): Eah A ∈ A de�nes a Grassmannian manifold Grres(A) onsisting of all

losed subspaes W ⊆ H suh that the di�erene prH+(A) − prW ∈ L(H) is a

Hilbert-Shmidt operator. One an show that these spaes an be glued together

to form a loally trivial �bre bundle over A, alled the Grasmannian bundle Gr.
The question now is that does this bundle admit a global setion A 7→W (A)? If it

does the W (A)'s give us a family of polarizations with the required properties.

Lukily, the answer to our question is �yes�. This is beause Gr happens to be

an assoiated bundle to an Ures(H)-bundle P −→ A,

Gr = P ×Ures(H) Grres(H),

where the �bre of P at A ∈ A is

PA = {g ∈ U(H) | g · H+ ∈ Grres(A)}

and Grres(H) is the restrited Grassmannian of Segal and Wilson (see Appendix

A). Now

Grres(H) ∼= Ures(H)/(U(H+)× U(H−))

and by a result of N. Kuiper the subgroup U(H+) × U(H−) is ontratible and so

Gr has a global setion if and only if P is trivial. This happens to be the ase sine

A is ontratible as an a�ne spae.

1.1.3. Seond quantizing gauge transformations. After a ertain neessary renor-

malization proess, introdued by Mikelsson in [Mi3℄, on operations on the one-

partile Hilbert spae H (e.g. the ation of gauge transformation group) one would

hope to lift the ation of G on A to an ation on F so that the diagram

F
ΓA(g) //

��

F

��
A

g // A

ommutes and

ΓA(g)D̂/AΓ
−1
A (g) = D̂/Ag ,

where D̂/A is the seond quantized Dira operator. Unfortunately, there is an ob-

strution to this. To study this, it is useful to swith to the Lie algebra piture.

De�nition 1.4. Seond quantization of an in�nitesimal gauge transformation is

the map dΓA : D(A) ⊆ Lie(G) −→ End(FA) haraterized by

[dΓA(X), ψ∗
A(v)] = ψ∗

A(X · v), for all v ∈ H, (1.2)

〈0A|dΓA(X)|0A〉 = 0. (1.3)

Here we may hoose the domain D(A) of dΓA(X) to be the set

D(A) = {X ∈ Lie(G) | [ǫA, X ] is Hilbert-Shmidt},

where ǫA = ± on H±(A). Moreover, supposing there exists a desribed lift ΓA :
G −→ End(F) we should have

ΓA(e
iX) = eidΓA(X), for all X ∈ Lie(G).

In view of this, equation (1.2) an be written as

ΓA(e
iX)ψ∗

A(v)Γ
−1
A (eiX) = ψ∗

A(e
iX · v), for all X ∈ Lie(G), v ∈ H

relating De�nition 1.4 to Theorem 1.3.
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Next, we introdue the so alled Gauss law generators ating on (Shrödinger

wave) funtions φ : A −→ H,

GA(X) = X + LX ,

where A ∈ A, X ∈ Lie(G) and the Lie derivative LX is de�ned so that

(
LXφ

)
(A) =

d

dt
φ(Ae

tX

)
∣∣∣
t=0

Their seond quantization is de�ned to be

dΓ(GA(X)) = dΓA(X) + LX ,

where X ∈ Lie(G). The renormalization proedure makes it possible to onsider

dΓA(X) ating on F0 instead of FA. Now the seond quantized Gauss law genera-

tors do not have anymore the same Lie algebra braket as Lie(G) but instead

[dΓ(GA(X)), dΓ(GA(Y ))] = dΓ([GA(X), GA(Y )]) + c(X,Y ;A),

where c(X,Y ;A) is a Map(A,R)-valued Lie algebra oyle of Lie(G) alled the

Shwinger term. This is the sought obstrution term. The onnetion with bundle

gerbes omes from a transgression map τ ,

H3(A/Ge,Z) −→ H3(A/Ge,R) ∼= H3
DR(A/Ge)

τ
−→ H2(Lie(G),Map(A,R))

studied in [CaMuWa℄.

In [CaMiMu℄ Carey, Mikelsson and Murray onstruted expliitly the bundle

gerbe in question using a olletion of loal determinant line bundles on the smooth

Fréhet manifold A/Ge that satisfy ertain ompatibility onditions. Let us reall

this onstrution brie�y.

De�ne for all λ ∈ R the open subsets

Uλ = {A ∈ A | λ /∈ spe(D/A)} ⊆ A.

These form an open over for A. Over eah intersetion Uλµ := Uλ ∩ Uµ there

exists a line bundle Detλν , whose �bre Detλν(A) at A ∈ A is related to (1.1) by

the equation

FA,λ = Detλµ(A) ⊗FA,µ

(thus giving the phase) and de�ned so that

Detλµ(A) =

max∧ (
H+(A, λ) ∩H−(A, µ)

)

for λ < µ andDetµλ := Det−1
λµ . The phase is related to the arbitrariness in �lling the

Dira sea between vauum levels λ and µ. Suh a �lling orresponds to an exterior

produt v1∧v2∧ . . .∧vm of a omplete orthonormal set of eigenvetors D/Avi = λivi
with λ < λi < µ. A rotation of the eigenvetor basis gives a multilipliation of

the exterior produt by the determinant of the rotation. Now, sine the exterior

produt satis�es the 'exponential law'

max∧
(V ⊕W ) =

max∧
V ⊗

max∧
W

for �nite dimensional vetor spaes V and W , one sees that over the triple inter-

setions Uλλ′λ′′ := Uλ ∩ Uλ′ ∩ Uλ′′

Detλλ′ ⊗Detλ′λ′′ = Detλλ′′ ,

so that the olletion {Detλµ} of loal line bundles de�ne a bundle gerbe on A.

These loal determinant line bundles are atually Ĝ-equivariant, where Ĝ is the

group extension of G integrating the Lie algebra extension of Lie(G) determined by

the Swhinger term, and so desend to the moduli spae A/Ge giving us the bundle
gerbe whose Dixmier-Douady lass transgresses to the Shwinger term.
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�

1.2. Main results. We use di�erentiable gerbes of Behrend and Xu [BeXu℄ in-

stead of bundle gerbes to desribe geometrially the nonommutative version of

Faddeev-Mikelsson anomaly. This allows us to onsider situations where a rele-

vant generalized gauge transformation group G (e.g. Up(H)) no longer ats freely

and transitively on some spae of generalized onnetion one-formsA (e.g. Grp(H)).
This is often the ase with nonommutative gauge theories, where it is hard to �nd

a relevant gauge group ating niely enough.

In this piture the nonommutative Faddeev-Mikelsson anomaly is given by the

gerbe lass ω ∈ H2([A/G], S1) of a ertain S1
-gerbe over the quotient stak [A/G]

or equivalently by the lass of a ertain S1
-Lie groupoid extension of the ation

groupoid A ⋊ G whih we onstrut. When A/G exists as a nie manifold (e.g. a

Banah or an I.L.H. manifold) satisfying the smooth partition of unity property

one knows that [A/G] ∼= A/G and H2([A/G], S1) ∼= H2(A/G, S1) ∼= H3(A/G,Z),
where the last ohomology group lassi�es bundle gerbes, [Steve℄.

It was proven in [LaMi℄ that in dimension equal to three and at the level of

Lie group entensions one an revive the atual Faddeev-Mikelsson anomaly in

(lassial) Yang-Mills theory from a nonommutative Faddeev-Mikelsson anomaly.

Namely, one an pull-bak the nonommutative Faddeev-Mikelsson anomaly Lie

algebra oyle and it proves out that this represents the same lass as the original

Faddeev-Mikelsson anomaly oyle. Hene our methods may also be used to

desribe the original Faddeev-Mikelsson anomaly on a ompat Riemannian spin

manifold M , when dimM = 3.

Aknowledgments. The author would like to thank Professor Jouko Mikelsson

for introduing the problem and giving many helpful omments. The work was �-

nanially supported by the Finnish Aademy of Siene and Letters, Vilho, Yrjö and

Kalle Väisälä Foundation. The author would also like to thank Erwin Shrödinger

International Institute for Mathematial Physis for hospitality where the work was

initiated in summer 2006.

2. NCG field theory examples

Here we give two examples from nonommutative gauge theory in whih it is

di�ult to �nd any relevant gauge transformation group G ating freely and tran-

sitively on the spae of onnetions A. In that ase [A/G] is no longer a smooth

manifold but rather a (di�erentiable) stak and hene bundle gerbes on it are not

de�ned anymore. However, the author thinks one might be able to develop some

G-equivariant bundle gerbe approah to Faddeev-Mikelsson anomalies in this set-

ting, but sine we atually work at the level of Lie groupoids we prefer to speak

about quotient staks instead in the spirit of [BeXu℄.

2.1. Universal Yang-Mills theory of Rajeev. Here we follow [MiRa℄, [Ra℄ and

[Mi1℄.

2.1.1. Generalized Fredholm determinants. LetH be a omplex in�nite dimensional

separable Hilbert spae with a given polarization H = H+ ⊕ H−. Let Lp, where
p ≥ 1, denote the Shatten ideal, i.e. the spae of linear operators A : H −→ H s.t.

‖A‖
p
p = Tr(A∗A)p/2 <∞.

Eah Lp is a omplete metri spae with respet to the norm ‖·‖p.
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Now for eah A ∈ Lp de�ne

Rp(A) = −1 + (1 +A) exp
[ p−1∑

j=1

(−1)j
Aj

j

]
.

De�nition 2.1 (Generalized Fredholm determinants). Let A ∈ Lp and de�ne

detp(1 +A) := det(1 +Rp(A)).

We have the following formula

log detp(1 +A) = Tr
(
(−1)p

Ap

p
+ (−1)p+1A

p+1

p+ 1
+ · · ·

)

so that log detp(1 + A) an be thought of as a regularization of det(1 + A), where
the �rst p− 1 terms have been subtrated in the expansion of log(1 +A).

The regularized determinants are not multipliative but instead we have the

following proposition

Proposition 2.2. For eah p ∈ N+
there is a symmetri polynomial γp(A,B) of

two variables A,B ∈ 1 + Lp suh that

detp AB = detpA · detpB · e
γp(A,B).

De�nition 2.3. ωp(A,B) = detpB · e
γp(A,B)

.

When A is invertible it is known that

ωp(A,B) =
detp AB

detpA
.

More over, for A,B,C ∈ 1 + Lp

ωp(A,BC) = ωp(AB,C) · ωp(A,B).

2.1.2. Generalized determinant line bundles. Let H be a omplex in�nite dimen-

sional separable Hilbert spae with a given polarization H = H+ ⊕H−. We �x an

orthonormal basis {en}n∈Z of H suh that en ∈ H+ for n > 0 and en ∈ H− for

n ≤ 0.
LetGLp(H) denote the group onsisting of all invertible bounded linear operators

of the form (
a b
c d

)
,

where a : H+ −→ H+, d : H− −→ H−, c : H+ −→ H− and b : H− −→ H+ are

linear operators suh that b, c ∈ L2p. The group GLp(H) has a natural metri

topology de�ned by

d(g, g′) = ‖a− a′‖+ ‖d− d′‖+ ‖b− b′‖2p + ‖c− c
′‖2p .

This makes GLp(H) into a Banah-Lie group.

De�nition 2.4 (Grassmannian manifold). Let Bp(H) be the (losed) normal sub-

group of the blok triangular operators in GLp(H) with c = 0. De�ne the in�nite-
dimensional p :th Shatten Grassmannian by

Grp(H) := GLp(H)/Bp(H).

As a homogeneous spae of a Banah-Lie group, Grp(H) is a Banah-Lie group.

The points of Grp an be thought of as in�nite-dimensional losed subspaes

W ⊆ H suh that

(1) The projetion prH+
:W −→ H+ is a Fredholm operator;

(2) The projetion prH−
:W −→ H− belongs to the Shatten ideal L2p.
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De�nition 2.5. A basis w = {wn}n=1,2,... of W ∈ Grp is said to be admissible

(with respet to the basis {en}n>0 of H+) if w+−1 ∈ Lp, where w+ is the (in�nite)

matrix de�ned by

prH+
wi =

∑

j>0

(w+)jiej.

De�nition 2.6. Let

Ep := {(g, q) | g ∈ GLp, q ∈ GL(H+), aq
−1 − 1 ∈ Lp} ⊆ GLp ×GL(H+),

where g =

(
a b
c d

)
, be the group whose group multipliation is given by

(g1, q1)(g2, q2) = (g1g2, q1q2)

and topology by the norm

‖(g, q)‖ = ‖a‖+ ‖d‖ + ‖b‖2p + ‖c‖2p + ‖a− q‖p .

Then Ep is a Banah-Lie group.

De�nition 2.7. De�ne GLp = GL(H+) ∩ (1 + Lp), where p ∈ N ∪ {∞}; L0 =
{�nite rank operators}, L∞ = {ompat operators}.

De�nition 2.8 (Stiefel manifolds). The in�nite-dimensional p :th Shatten-Stiefel

manifold

Stp := Ep/Bp,

where the ation of k =

(
α β
0 γ

)
∈ Bp is given by

(g, q) · k = (gk, qα).

The Stiefel manifold Stp parametrizes all admissible basis of all in�nite-dimensio-

nal planes W ∈ Grp, see [Mi1℄. It is in a natural way a prinipal GLp-bundle over
Grp, the GLp ation being given by the basis transformations and the anonial

projetion Stp −→ Grp is hosen to be the mapping assoiating to the basis w the

plane W spanned by the vetors in w.

De�nition 2.9 (Generalized determinant line bundles). Let

Detp := (Stp × C)/GLp,

where the right ation of GLp on Stp × C is de�ned so that

(w, λ) · t = (wt, λωp(w+, t)
−1).

One an show that Detp is a holomorphi line bundle over Grp where the proje-
tion map is given by [(w, λ)] 7→ the plane spanned by {w1, w2, . . .}. Moreover, the

group GLp ats on the base manifold Grp but the ation doesn't lift to the bundle

Detp for p ≥ 1.
Naturally there is also the dual determinant line bundle Det∗p −→ Grp.

Lemma 2.10. Setions of Det∗p an be identi�ed with funtions ψ : Stp −→ C suh

that

ψ(wt) = ψ(w)ωp(w, t), t ∈ GLp.
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2.1.3. The Abelian extension of GLp.

Lemma 2.11. There are smooth funtions α(g, q;w) on Ep × Stp s.t.

α(g, q;wt)

α(g, q;w)
= −

ωp(w+, t)

ωp((gwq−1)+, qtq−1)
.

Theorem 2.12 (Mikelsson and Rajeev, [MiRa℄). Let H be a omplex in�nite

dimensional separable Hilbert spae with a given polarization H = H+⊕H−. There

is an Abelian extension of GLp =: GLp(H) by Map(Grp,C
∗) whih ats on Detp.

The extension is

ĜLp = (Ep ×Map(Grp,C
∗))/N,

where N is the normal subgroup onsisting of elements (1, q, µq), where µq(w) =
α(1, q, w)−1 · ωp(w+, q

−1)−1, q ∈ GLp.

Remark 2.13. As a orollary, one obtains the Abelian Lie group extension Ûp(H)
of Up(H) ⊆ GLp(H) by the group Map(Grp,C

∗) by restrition.

2.1.4. Canonial formalism for universal gauge theory. The on�guration spae in

Universal Yang-Mills theory is by de�nition

Ã =
{
bounded Hermitean Ã : H −→ H

∣∣∣ Ã ∈
(
Lp L2p

L2p Lp

)}
.

The subgroup Up ⊆ GLp of unitaries plays the role of the gauge transformation

group ating on the manifold Ã by the rule

Ã 7→ g̃Ãg̃−1 + g̃[ǫ, g̃−1].

The operator g̃[ǫ, g̃−1] is indeed of type

(
Lp L2p

L2p Lp

)

sine we know that for Shatten ideals

Lp · Lq ⊆ Lr,

where 1/r = 1/p+ 1/q.
The spae of �eletri �elds� is

Ẽ =
{
bounded Hermitean Ẽ : H −→ H

∣∣∣ Ẽ ∈
(
Lp/(p−1) L2p/(2p−1)

L2p/(2p−1) Lp/(p−1)

)}
.

The phase spae of universal Yang-Mills theory is de�ned to be the diret sum

Ã ⊕ Ẽ . This spae has a natural exterior derivative operator d̃ : Ã ⊕ Ẽ −→ Ã ⊕ Ẽ ,

d̃(Ã, Ẽ) := ([ǫ, Ẽ], [ǫ, Ã]+),

where [·, ·]+ means the anti-ommutator. The elements of the form (Ã, 0) ∈ Ã ⊕ Ẽ

are said to be of odd degree and respetively the elements of the form (0, Ẽ) ∈ Ã⊕Ẽ

are said to be of even degree. Clearly, d̃ maps even operators to odd operators and

vie versa. Furthermore, d̃2(Ã, Ẽ) = 0, sine ǫ2 = 1.

The exterior derivative operator d̃ makes it possible to de�ne the urvature F̃
for every Ã ∈ Ã,

F̃ := d̃Ã+ Ã2.

This is an even operator in the sense we just de�ned. The urvature transforms

ovariantly under gauge transformation, F̃ 7→ g̃F̃ g̃−1
.

De�nition 2.14. We say that a generalized vetor potential/onnetion 1-form

Ã ∈ Ã is �at if its urvature F̃ = 0.
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Proposition 2.15. The spae of �at onnetions in universal Yang-Mills theory

with gauge transformation group Up(H) an be identi�ed with the p :th Shatten

Grassmannian

Grp(H) ∼= Up/(U(H+)× U(H−)).

2.1.5. Generalized Fok bundles over Gr2(H). An exellent referene for this sub-

setion is [Mi4℄.

First, reall from [PreSe℄ the geometri onstrution of the Fermioni Fok spae

as the spae of holomorphi setions of a omplex line bundle Det∗1 over Gr1. We

want to generalize this to higher dimensional ases.

We suppose our Shatten Grassmannian Gr2(H) is de�ned by a splitting H =
H+ ⊕H−.

De�nition 2.16. Let F ∈ Gr2(H+ ⊕H−) and let H = F ⊕ F⊥
be the assoiated

splitting. We de�ne the generalized Fok spae FF by

FF := Γ(Det∗2(F ⊕ F
⊥)),

where Det∗2(F ⊕ F
⊥) −→ Gr2(F ⊕ F

⊥) is the dual of the 2 :nd determinant line

bundle Det2(F ⊕ F
⊥).

Now the problem with the above onstrution is that the Fok spaes FF depend

on a hoie of admissible basis f in eah F ∈ Gr2(H+ ⊕H−):

Lemma 2.17. Fix an admissible basis f = {f1, f2, . . .} of F ∈ Gr2(H+ ⊕ H−).

Then a setion ψ̃F ∈ Γ(Det∗2(F ⊕ F⊥)) an be identi�ed with a funtion ψF :
St 2(F ⊕ F

⊥) −→ C satisfying

ψF (wt) = ψF (w) · ω2(w
(f), t), t ∈ GL2(F ⊕ F⊥), (2.1)

where w(f) is the matrix relating the F -projetion to the basis {fn}, i.e.

prF (wn) =
∑

j

w
(f)
jn fj

and

ω2(w
(f), t) =

det2 w
(f)t

det2 w(f)
.

In fat, what we have onsruted is a �bre bundle over St 2(H+ ⊕H−) and not

over Gr2(H+⊕H−). We need to modify the situation a bit to obtain a bundle over

Gr2(H+ ⊕H−) and for this we proeed as follows.

Sine the de�nition of a setion ψ depends on f we shall write expliitly ψ =
ψ(w, f) and onsider these also as funtions of f .

Proposition 2.18. Funtions ψF : St 2(F ⊕ F
⊥)× St 2(F ⊕ F

⊥) −→ C satisfying

equation (2.1) and

ψF (w, ft) = ψF (w, f) · ω2(w
(f), t−1), t ∈ GL2(F ⊕ F⊥) (2.2)

an be identi�ed with setions of a vetor bundle F ′
over Gr2(H+⊕H−) whih is a

tensor produt of the determinant bundle Det2(H+⊕H−) and a trivial Fok bundle

B (with �bre FH+
) over Gr2(H+ ⊕H−).

De�nition 2.19. We de�ne the generalized Fok bundle F ′
over Gr2(H+ ⊕ H−)

by

F ′ := B ⊗Det2.

Motivated by this, one may de�ne the obstrution to anonial quantization

in universal Yang-Mills theory to be the lass of the Abelian Lie group extension

Û2(H) −→ U2(H).
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2.2. NCG theory model of Langmann, Mikelsson and Rydh. Our refer-

enes in this setion are [LaMiRy℄, [G-BV℄ and [Con℄.

2.2.1. The spae of generalized vetor potentials. Let (H, D0) be a tame p+ sum-

mable K-yle over the

∗
-algebra

A = {A ∈ B(H) | [|D0|, A] ∈ L
p+(H), [D0, A] ∈ B(H)}

with π : A −→ U(H) the orresponding unitary representation and Γ : H −→ H a

grading operator. Denote by ǫ = D0/|D0| the sign of the (abstrat) Dira operator.

Using the representation π, the equivalene lasses α ∈ A := Ω1
D0

(A ) an then be

presented in the form

α = a0[D0, a1], a0, a1 ∈ A , or α = a0[ǫ, a1], a0, a1 ∈ A .

It follows that all the operators α ∈ A satisfy the ondition [ǫ, α] ∈ B(H).

2.2.2. Gauge transformation group. We assume our (Hermitean) vetor bundle E

on A to be trivial and of rank one, i.e. E = A . Hene the gauge group U(E ) is
given by

U(E ) = Up+ = {u ∈ A | uu∗ = u∗u = 1}.

Any element g ∈ Up+(H) satis�es [ǫ, g] ∈ Lp+. This is seen to be the group of

unitaries in the group

GLp+ := {g ∈ A | g is invertible}.

2.2.3. Family of (abstrat) Dira operators over A. We onsider bounded pertur-

bations DA of the `free Dira operator ' D0 that are of the form DA = D0 + A,
where A ∈ A and the sign operator FA := DA/|DA| satis�es

FA = F ∗
A = F−1

A ∈ B(H), FA − ǫ ∈ L
p+.

Following the ideas of [La1℄ and [La2℄, one an see that the sign operator FA
an thus be thought as an element of the weak-Lp Grassmannian Grp+(H) de�ned
analogously with the Shatten Grassmannian Grp(H) exept that now we require

that the projetion prH−
: W −→ H− belongs to the weak-Lp spae Lp+ instead

of the Shatten ideal Lp. More over, the Grassmannian Grp+ has a natural ation

of the group GLp+.
This motivates us to onsider the obstrution of anonially quantizing fermions

in this NCG gauge theory model as the lass of the group extension Ûp+ ating on

the total spae of the determinant line bundle Detp+ −→ Grp+ analogously with

what we did in the ase of universal Yang-Mills theory.

The group extension ĜLp+ an be onstruted in the same vein as in [ArnMi℄.

However, one has to pay attention to the properties of generalized traes, [LaMiRy℄.

3. Differentiable S1
-gerbes and S1

-Lie groupoid entral extensions

The main referene in this setion is [BeXu℄.

3.1. Staks. Let S be either the ategory of all �nite dimensional C

∞
-manifolds

with C

∞
-maps as morphisms, or the ategory of all (in�nite dimensional) C

∞
-

Banah manifolds with the orresponding smooth maps. We endow S with the

Grothendiek topology, whose overing families {Ui −→ X} are loal di�eomor-

phisms Ui −→ X suh that the total map

∐
i Ui −→ X is surjetive.

De�nition 3.1. A ategory �bered in groupoids X −→ S is a ategory X, together

with a funtor π : X −→ S, suh that the following two onditions are satis�ed:

(1) For every arrow V −→ U in S, and every objet x of X lying over U ,
π(x) = U , there exists an arrow y −→ x in X lying over V −→ U , i.e.
π(y −→ x) = V −→ U .
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(2) For every ommutative diagram W −→ V −→ U in S and arrows z −→ x
lying over W −→ U and y −→ x, there exists a unique arrow z −→ y lying

over W −→ V , suh that the omposition z −→ y −→ x equals z −→ x.

Example 3.2. Manifolds X ∈ Ob(S) give groupoid �brations. To see this, let X
denote the ategory where

Ob(X) = {(S, u) | S ∈ Ob(S), u ∈ HomS(S,X)}

and a morphism (S, u) −→ (T, v) of objets is a morphism f : S −→ T suh that

u = v ◦ f , i.e. an X morphism.

De�nition 3.3. Let π : X −→ S be a ategory �bered in groupoids. Then X is

alled a stak over S if the following three axioms are satis�ed:

(1) For any C

∞
manifold X ∈ Ob(S), any two objets x, y ∈ Ob(X) lying over

X , and any two isomorphims φ, ψ : x −→ y over X suh that φ|Ui = ψ|Uj
for all Ui in a overing family {Ui −→ X}, then φ = ψ.

(2) For any X ∈ Ob(S), any two objets x, y ∈ Ob(X) lying over X , a overing

family {Ui −→ X}, and a olletion of isomorphisms φi : x|Ui −→ y|Ui suh
that φi|Ui ×X Uj = φj |Ui ×X Uj for all i, j, there exists an isomorphism

φ : x −→ y suh that φ|Ui = φi for all i.
(3) For every X ∈ Ob(S), every overing family {Ui −→ X}, every family {xi}

of objets xi in the �bre XUi
, and every family of morphims {φij}, φij :

xi|Ui×XUj −→ xj |Ui×XUj satisfying the oyle ondition φjk ◦φij = φik
in the �bre XUi×XUj×XUk

, there exists an objet x over X , together with

isomorphisms φi : x|Ui −→ xi suh that φij ◦ φi = φj over Uij .

Remark 3.4. Here ondition (2) means that morphisms glue and ondition (3) says

that objets glue (desent data is e�etive). Conditions (1) and (2) imply that for

�xed X ∈ Ob(S), x, y ∈ XX , Isom(x, y) is a sheaf on S/X .

The morphisms of staks are morphisms of their underlying groupoid �brations.

Example 3.5 (Manifolds). For every manifold X ∈ Ob(S) the groupoid �bration

X is a stak.

Example 3.6 (Quotient staks). Let G ∈ Ob(S) be a Lie group ating on a

manifold X ∈ Ob(S). De�ne the quotient stak [X/G] as the ategory whose

objets are prinipal G-bundles π : P −→ S, where all manifolds and struture

maps are in S, together with a G-equivariant morphism α ∈ HomS(P,X). A

morphism in [X/G] is a Cartesian diagram in S

P ′
p //

π′

��

P

π

��
S′

f // S

suh that α ◦ p = α′
. The projetion funtor π[X/G] : [X/G] −→ S assoiates to a

prinipal G-bundle π : P −→ S its base spae S and to a morphism as above the

map f : S′ −→ S in S. Choosing X = •, a point, one obtains the lassifying stak

BG.
If G ats properly and freely, i.e. X −→ X/G is a G-bundle, then [X/G] ∼= X/G,

see [Hein℄, Remark 1.6.

De�nition 3.7. A stak X over S is alled di�erentiable or a C

∞
stak, if there

exists a manifold X ∈ Ob(S) and a surjetive representable submersion x : X −→
X. In this ase X together with the struture morphism x is alled an atlas for X

or a presentation of X.
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Example 3.8 (Quotient staks). An atlas is given by the quotient map X −→
[X/G], de�ned by the trivial G-bundle G×X −→ X and α : G ×X −→ X being

the ation map.

3.2. Lie groupoids.

De�nition 3.9. A Lie groupoid Γ = X1 ⇒ X0 onsists of

• Two smooth manifolds X1 ∈ Ob(S) (the morphisms or arrows) and X0 ∈
Ob(S) (the objets or points);

• Two smooth surjetive submersions s : X1 −→ X0 the soure map and

t : X1 −→ X0 the target map;

• A smooth embedding e : X0 −→ X1 (the identities or onstant arrows);

• A smooth involution i : X1 −→ X1, (the inversion) also denoted x 7→ x−1
;

• A multipliation

m : Γ(2) −→ Γ,

(x, y) 7→ x · y,

where Γ(2) = X1 ×s,t X1 = {(x, y) ∈ X1 ×X1 | s(x) = t(y)}. Notie, that

Γ(2)
is a smooth manifold, sine s and t are submersions. We require the

multipliation map m to be smooth and that

(1) s(x · y) = s(y), t(x · y) = t(x),
(2) x · (y · z) = (x · y) · z,
(3) e is a setion of both s and t,
(4) e(t(x)) · x = x = x · e(s(x)),
(5) s(x−1) = t(x), t(x−1) = s(x),
(6) x · x−1 = e(t(x)), x−1 · x = e(s(x)),
whenever (x, y) and (y, z) are in Γ(2)

.

Remark 3.10. When S is the ategory of smooth Banah manifolds, we all Γ =
X1 ⇒ X0 a Banah-Lie groupoid.

De�nition 3.11. A morphism of Lie groupoids (Ψ, ψ) : [X ′
1 ⇒ X ′

0] −→ [X1 ⇒ X0]
are the following ommutative diagrams:

X ′
1

t′

��
s′

��

Ψ // X1

t

��
s

��

X1
Ψ // X ′

1

X ′
0

ψ // X0 X ′
0

e′

OO

ψ // X0

e

OO

X ′
1 ×s′,t′ X

′
1

Ψ×Ψ //

m′

��

X1 ×s,t X1

m

��

X ′
1

Ψ //

i′

��

X1

i

��
X ′

1
Ψ // X1 X ′

1
Ψ // X1

Example 3.12. A Lie group G is a Lie groupoid over a point, G⇒ •.

Example 3.13. Let M be a di�erentiable manifold and G a Lie group ating

smoothly on M from the right. The ation groupoid M × G ⇒ M , denoted by

M ⋊G, is de�ned by the following data:

• s(x, g) = x;

• t(x, g) = xg, so that a pair

(
(x, g), (x′, g′)

)
is deomposable i� x′ = xg;

• m
(
(x, g), (xg, g′)

)
= (x, gg′);

• i(x, g) = (xg, g−1);
• e(x) = (x,1G).
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3.3. Gerbes and S1
-entral extensions of Lie groupoids.

Example 3.14. Let G be a Lie group and BG its lassifying stak. As we have

seen, this is a stak, but it is in fat a rather speial stak. This is beause

(1) Every manifold X has at least one prinipal G bundle over it, namely the

trivial G bundle;

(2) Any two prinipal G bundles are loally isomorphi.

These two fats lead to the de�nition of a gerbe over a stak.

De�nition 3.15. Let X and R be staks over S and π : R −→ X a morphism of

staks. Then π : R −→ X is alled a gerbe over (the stak) X, if

(1) π has loal setions, i.e. there is an atlas p : X −→ X and a setion

s : X −→ R of π|X , where by a setion we mean there exists a natural

isomorphism φ : π ◦ s⇒ p of funtors.

(2) Loally over X all objets of R are isomorphi, i.e. for any two objets

t1, t2 ∈ XT and lifts s1, s2 ∈ RT with π(si) ∼= ti, there is a overing {Ti −→
T } suh that s1|Ti

∼= s2|Ti
.

A gerbe π : R −→ X is trivial, if it admits a global setion, i.e. if there exists a

morphism of staks σ : X −→ R satisfying π ◦ σ ∼= idX.

De�nition 3.16. A gerbe R −→ X is alled an S1
-gerbe if there is an atlas

p : X −→ X and a setion s : X −→ R suh that there is an isomorphism

Φ : Aut(s/p) := (X ×R X)×X×XX X ∼= S1 ×X

as a family of groups over X suh that on X ×X X the diagram

Aut(s ◦ pr1/p ◦ pr1)
∼= //

pr∗1Φ

))SSSSSSSSSSSSSS
Aut(s ◦ pr2/p ◦ pr2)

pr∗2Φ

uukkkkkkkkkkkkkk

X ×X X × S
1

where the horizontal map is the isomorphism given by the universal property of the

�bre produt, ommutes. This means that the automorphism groups of objets of

R are entral extensions of those of X by S1
.

De�nition 3.17. Let Γ = X1 ⇒ X0 be a Lie groupoid. An S1
-entral extension

of X1 ⇒ X0 onsists of

(1) a Lie groupoid R1 ⇒ X0 and a morphism of Lie groupoids (π, id) : [R1 ⇒

X0] −→ [X1 ⇒ X0],
(2) a left S1

ation on R1, making π : R1 −→ X1 a left prinipal S1
bundle.

The ation must satisfy (s · x)(t · y) = st · (xy), for all s, t ∈ S1
and

(x, y) ∈ R1 ×X0
R1.

When R1 −→ X1 is topologially trivial, then R1
∼= X1 × S

1
and the entral

extension is determined by a groupoid 2-oyle of X1 ⇒ X0 with values in S1
.

This is a smooth map

c : Γ(2) =
{
(x, y) ∈ X1 ×X1 | s(x) = t(y)

}
−→ S1

satisfying the oyle ondition

c(x, y)c(xy, z)c(x, yz)−1c(y, z)−1 = 1

for all (x, y, z) ∈ Γ(3)
. The groupoid struture on R1 ⇒ X0 is given by

(x, λ1) · (y, λ2) = (xy, λ1λ2c(x, y)),

for all (x, y) ∈ Γ(2)
and λ1, λ2 ∈ S

1
.
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Proposition 3.18 (Behrend, Xu, [BeXu℄). Let X1 ⇒ X0 be a Lie groupoid and X

its orresponding di�erential stak of X•-torsors. There is one-to-one orrespon-

dene between S1
-entral extensions of X1 ⇒ X0 and S1

-gerbes R over X whose

restrition to X0 : R|X0
admits a trivialization.

3.4. Sheaf ohomology on di�erentiable staks. Let π : X −→ S be a dif-

ferentiable stak. Following [Laum℄ and [Hein℄ one an de�ne sheaves of Abelian

groups on X.

De�nition 3.19. A sheaf F of Abelian groups on π : X −→ S is determined by

the following data

(1) For eah morphism of staks X −→ X where X ∈ Ob(S) is a manifold, a

sheaf FX−→X of Abelian groups on X in the usual sense, i.e. an Abelian

group FX−→X(U) assoiated to eah open U ⊆ X , et.

(2) For any 2-ommuting triangle

X
f //

h   @
@@

@@
@@

ϕ
=⇒

Y

g
��~~

~~
~~

~

X

(3.1)

with an isomorphism ϕ : g ◦ f −→ h of funtors, there exists a morphism

of sheaves Φf,ϕ : f∗FY−→X −→ FX−→X (often denoted simply by Φf )
ompatible for X −→ Y −→ Z. We require that Φf is an isomorphism,

whenever f is an open overing.

The sheaf F is alled Cartesian if all Φf are isomorphisms.

We denote the ategory of Abelian sheaves on X by Ab(X).

Proposition 3.20. The ategory Ab(X) is an Abelian ategory with enough in-

jetive objets, i.e. for every objet F ∈ Ob(Ab(X)) there exists an injetion

0 −→ F −→ I with I injetive.

De�nition 3.21. Let U be a manifold. A sheaf in the usual sense (i.e. de�ned

only on open subsets of U) is alled a small sheaf on U .

De�nition 3.22. Let X be a stak over S and F a sheaf over X. Let x ∈ Ob(XU ),
where U ∈ Ob(S) is a manifold. The small sheaf on U , whih maps the open subset

V ⊆ U to F(x | V ) is alled the small sheaf indued by F via x : U −→ X on U .
We denote it by Fx,U or simply FU , if there is no risk of onfusion.

Given a morphism in θ : y −→ x in X lying over a C

∞
map f : V −→ U in S,

there is an indued morphism of small sheaves over V

θ∗ : f−1Fx,U −→ Fy,V .

The ohomology of a sheaf F ∈ Sh(X) is de�ned in the same way as it is de�ned

for manifolds: One �rst de�nes the global setion funtor

Γ(X, ·) : Ab(X) −→ Ab,

where now

Γ(X,F) := lim
←−

Γ(X,FX−→X)

and the limit is taken over all atlases X −→ X, the transition funtions for a 2-

ommutative diagram X ′
f //

h   A
AA

AA
AA

A

ϕ
=⇒

X

g
��~~

~~
~~

~

X

are given by the restrition maps Φf,ϕ.
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Next one hooses an injetive resolution 0 −→ F
ε
−→ I• and sets

Hi(X,F) = hi(Γ(X, I•)).

Remark 3.23. For a Cartesian sheaf F over X the global setion funtor an be

de�ned by hoosing an atlas X −→ X and then setting

Γ(X,F) := ker
(
Γ(X,F) ⇒ Γ(X ×X X)

)
.

This is known to be independent of the hosen atlas X −→ X and moreover it

oinides with the previous de�nition, [Hein℄.

Theorem 3.24 (Giraud). Isomorphism lasses of S1
-gerbes over X are in one-to-

one orrespondene with H2(X, S1).

3.5. �eh and simpliial ohomology of staks.

De�nition 3.25. Let ∆ be the ategory whose objets are �nite ordered sets

[n] = {0 < 1 < · · · < n}, and whose morphisms are nondereasing monotone

funtions.

De�nition 3.26. Let A be a ategory. A simpliial objet A in A is a ontravariant

funtor A : ∆op −→ A

De�nition 3.27. A morphism of simpliial objets is a natural transformation

between the orresponding funtors, and the ategory SA of all simpliial objets

in A is just the funtor ategory A∆op

.

Proposition 3.28. To give a simpliial objet A in a ategory A, it is neessary and
su�ient to give a sequene of objets A0, A1, A2, . . . together with fae operators

∂i : Ap −→ Ap−1 and degeneray operators σi : Ap −→ Ap+1, where i = 0, 1, . . . , p,
satisfying the so alled simpliial identities:

∂i∂j = ∂j−1∂i, if i < j

σiσj = σj+1σi, if i ≤ j

∂iσj =





σj−1∂i, if i < j
id, if i = j or i = j + 1
σj∂i−1, if i > j + 1.

Proof. Omitted. See [Weib℄, Prop. 8.1.3. �

If one dualizes the onept of simpliial objets, one obtains osimpliial objets

and the following proposition:

Proposition 3.29. To give a osimpliial objet A in a ategory A, it is neessary
and su�ient to give a sequene of objets A0, A1, . . . together with ofae operators

∂i : Ap−1 −→ Ap and odegeneray operators σi : Ap+1 −→ Ap, where i =
0, 1, . . . , p, whih satisfy the osimpliial identities

∂j∂i = ∂i∂j−1, if i < j

σjσi = σiσj+1, if i ≤ j

σj∂i =





∂iσj−1, if i < j
id, if i = j or i = j + 1
∂i−1σj , if i > j + 1.

Proof. Omitted. See [Weib℄, Cor. 8.1.4. �

Remark 3.30. It is lear by the above, that if we have a ontravariant funtor F :
A −→ B, then F maps simpliial objets in A to osimpliial objets in B. In the

same way, a ovariant funtor F maps simpliial objets to simpliial objets, et.
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De�nition 3.31. Let A be a simpliial objet in an Abelian ategory A. The

assoiated, or unnormalized, hain omplex C(A) has its objets Cp = Ap, and its

boundary morphism d : Cp −→ Cp−1 is the alternating sum of the fae operators

∂i : Cp −→ Cp−1:

d = ∂0 − ∂1 + · · ·+ (−1)p∂p.

The simpliial identities for ∂i∂j imply that d2 = 0, so that we indeed have a

omplex.

We now ome bak to our original situation and de�ne for all p ≥ 0

Xp = X ×X . . .×X X︸ ︷︷ ︸
p+1 times

.

Sine X −→ X is a representable submersion, all Xp are manifolds. We want to

make X• = {Xp} into a simpliial manifold, i.e. a simpliial objet in the ategory

of manifolds:

· · · // ////// X2
////// X1

// // X0. (3.2)

First, note that Xp orresponds to the spae of hains of omposable p arrows in

the groupoid X1 ⇒ X0. De�ne the fae and degeneray maps so that

∂i(g1, . . . , gp) =





(g2, . . . , gp), if i = 0
(g1, . . . , gigi+1, . . . , gn), if 0 < i < p
(g1, . . . , gp−1), if i = p,

σi(g1, . . . , gp) = (g1, . . . , gi, 1, gi+1, . . . , gp).

Example 3.32. We laim that for a quotient stak [X/G] with the natural atlas

X −→ [X/G]

Xp = X ×X . . .×X X︸ ︷︷ ︸
p+1 times

∼= X ×

p∏

i=1

G.

This an be seen as follows. By de�nition X0 = X and the produt on the right

hand side is empty, thus the laim is true when p = 0. Next note that by [Hein℄ we

have X ×X X ∼= X ×G. This implies that

X ×X X ×X X ∼= (X ×X X)×X (X ×X X) ∼= (X ×G)×X (X ×G)
∼= X ×G×G.

Here the last isomorphism follows sine

(X ×G)×X (X ×G) =
{(

(x1, g1), (x2, g2)
)
∈ (X ×G)× (X ×G)

∣∣∣ x1 = x2

}
.

More generally, one may write for p > 2

Xp+1 = X ×X . . .×X X︸ ︷︷ ︸
p+2 times

∼=
(
X ×X . . .×X X

)

︸ ︷︷ ︸
p+1 times

×X

(
X ×X X

)

∼= Xp ×X (X ×G) ∼= Xp ×G

and the laim follows from this by indution.

Now, let F be a sheaf of Abelian groups on X. Every Xp has p + 1 anonial

projetions Xp −→ X, whih are all anonially isomorphi to eah other. We

hoose one of them and all it πp : Xp −→ X. Reall that πp as a map from a

manifold to a stak an be identi�ed with an objet of X lying over Xp. We denote
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the Abelian group F(πp) assoiated to the objet πp by the ontravariant sheaf

funtor F by F(Xp). By Remark 3.30 we have then a osimpliial Abelian group

F(X0)
//// F(X1) // //// F(X2)

//////// · · · . (3.3)

Sine the ategory of Abelian groups is an Abelian ategory, we may form the

assoiated ohain omplex to F(X•):

C(F(X•)) : F(X0)
∂ // F(X1)

∂ // F(X2)
∂ // · · ·

(3.4)

De�nition 3.33. The homology groups of the omplex (3.4) are denoted by

Ȟi(X•,F) = hi(F(X•))

and alled the �eh ohomology groups of F with respet to the overing X −→ X.

As usual, there exists also a map Ȟi(X•,F) −→ Hi(X,F). Moreover, we have

the following proposition

Proposition 3.34. Let F be a Cartesian sheaf of Abelian groups on a di�erentiable

stak X. Let X −→ X be an atlas and F•
the indued simpliial sheaf on the

simpliial manifold X•. Then there is an E1-spetral sequene:

Ep,q1 = Hq(Xp,Fp) =⇒ Hp+q(X,F).

Moreover,

Hi(X,F) ∼= Hi(X•,F
•)

for all i ≥ 0, where the latter ohomology group is the simpliial ohomology of F•
.

Proof. See [De℄, [Hein℄. �

Corollary 3.35. Let X be a di�erentiable stak with an atlas X −→ X. Then

Hi(X, S1) ∼= Hi(X•, S
1)

for all i ≥ 0.

Example 3.36. Let again X = [X/G] be the quotient stak and F = S1
X
. By

Example 3.32 Xp
∼= X ×

∏p
i=1G. Hene for eah p ≥ 0 the indued small sheaves

of S1
on Xp are the sheaves S

1
,X×Gp . It follows now easily from Corollary 3.35 and

[Bry1℄, [De℄, [Gomi℄ that the ohomology groups Hi([X/G], S1) are isomorphi to

the G-equivariant ohomology groups of X . Espeially, the group

H2([X/G], S1) ∼= H2(X ×G•, S1
X×G•)

lassi�es the isomorphism lasses of G-equivariant gerbes on X in the sense of

Brylinski, [Bry1℄.

3.6. Faddeev-Mikelsson anomaly in terms of di�erentiable gerbes and

Lie groupoids. This setion ontains our main results.

3.6.1. In�nite-dimensional Lie groups of Mikelsson-Rajeev type.

De�nition 3.37. Let G be an I.L.H. (resp. Banah) Lie group (see Appendix

A). An extension of G by an I.L.H. (resp. Banah) Lie group N is a short exat

sequene with smooth homomorphisms

1 // N
i // Ĝ

q // G // 1

and with a smooth loal setion σ in the sense that there exists an open identity

neighborhood U ⊆ G on whih σ : U −→ Ĝ is smooth and q ◦ σ = idU .

Remark 3.38. One an use other lasses of in�nite dimensional manifolds and Lie

groups in the de�nition as well, see [MiKrie℄.
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The in�nite-dimensional Lie groups that we are interested in are those that

appear in Yang-Mills theories as gauge transformation groups or their extensions

([PreSe℄), [Mi1℄ and [ArnMi℄).

Let H be a omplex in�nite dimensional separable Hilbert spae with a given

polarization H = H+ ⊕ H−, where H± are losed subspaes of H. Let ǫ be the

assoiated sign operator ǫ : H −→ H, ǫ2 = 1 and ǫ|H±
= ±1H±

. Let GL(H) be the
general linear group of H onsisting of all invertible bounded linear operators of H.

De�nition 3.39. We say that an in�nite dimensional Lie group G is ofMikelsson-

Rajeev type, if it is of the form

G = GLIp :=
{
g =

(
a b
c d

)
∈ GL(H) | [ǫ, g] ∈ I2p

}
,

where Ip ⊆ K(H) is a two-sided ideal in the algebra B(H), p ∈ N+, equipped with

a Banah spae topology (Ip, ‖·‖Ip) and Ip ⊆ Iq is dense in Iq whenever p < q.
We de�ne GLIp

to be a Banah-Lie group with topology given by the norm

‖a‖+ ‖b‖I2p + ‖c‖I2p + ‖d‖ .

We may extend the de�nition to the value p = ∞ by de�ning I∞ := K(H) ⊆
B(H). Then we have a sequene of Banah-Lie groups

GLI1 ⊆ GLI2 ⊆ · · · ⊆ GLI∞ .

Example 3.40. One ould hoose for the Ip's the Shatten ideals Lp or the weak-
Lp spaes Lp+.

Let A be a ontratible Banah manifold. We assume that there exists a set of

mapsMap(A, S1) suh that this set has a struture of a Banah-Lie group (ompare

with [MiRa℄, Remark on page 388).

We assume that our Lie group extension is of the form

Ĝ = ĜLIp = (Ep ×Map(A, S1))/N,

where

Ep =: {(g, q) | g ∈ GLIp , q ∈ GL(H+), aq
−1 − 1 ∈ Ip} ⊆ GLIp ×GL(H+),

g =

(
a b
c d

)
and the group multipliation is given by

(g1, q1)(g2, q2) = (g1g2, q1q2).

The topology of Ep is not the produt spae topology, but given by the norm

‖(g, q)‖ = ‖a‖+ ‖d‖ + ‖b‖2p + ‖c‖2p + ‖a− q‖p .

Then Ep is a Banah-Lie group. Above, N is assumed to be a (losed) normal

Banah-Lie subgroup of Ep×Map(A, S1) onsisting of elements of the form (1, q, µq),

where µq ∈ Map(A, S1) depends smoothly on q ∈ GL(H+). This makes Ĝ into a

Banah-Lie group.

The group ĜLIp
is assumed to be a (nontrivial) Banah prinipal Map(A, S1)-

bundle overGLIp
with the obvious projetion map. Near the unit element 1 ∈ GLIp

the formula

ψ(g) = (g, a, 1) mod N,

where g =

(
a b
c d

)
∈ GLIp

, de�nes a loal setion ψ : U −→ ĜLIp
of the

prinipal Map(A, S1)-bundle p : ĜLIp −→ GLIp
.

De�nition 3.41. An extension of in�nite dimensional Lie groups p : Ĝ −→ G is

said to be of Mikelsson-Rajeev type if it is of the above form.
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A Lie group extension of Mikelsson-Rajeev type de�nes a loal Map(A, S1)-
valued (smooth) Lie group 2-oyle ω by

ψ(g1)ψ(g2) = ψ(g1g2)(1, 1, ω(g1, g2)),

where ω(g1, g2) ∈Map(A, S1). This an then be extended to a global Map(A, S1)-
valued (smooth) 2-oyle by translation giving an element in the Lie group oho-

mology [ω] ∈ H2(GLIp ,Map(A, S1)).
It follows from the de�nition that

Lie(ĜLIp) = Lie(GLIp)⊕Map(A, S1),

where the ommutator in Lie(ĜLIp) is given by

[(X,µ), (Y, ν)] = ([X,Y ], X · ν − Y · µ+ η(X,Y ; ·)),

where η is a Map(A, S1)-valued Lie algebra oyle on Lie(GLIp) and the Lie

derivative of a funtion ν on A to the diretion of the vetor �eld X de�ned by the

G ation on A is denoted by X · ν. Then at least in priniple, one an alulate the

Lie algebra oyle η as follows: Let exp(tX) and exp(tY ) be two one-parameter

subgroups on GLIp
. Then

∂2

∂t∂s
ψ(etX)ψ(esY )ψ(e−tX)ψ(e−sY )

∣∣∣
t=s=0

= ([X,Y ], 0, η(X,Y )).

3.6.2. From prinipal Map(A, S1)-bundles over G to line bundles over A × G. Let

A be a ontratible Banah manifold with a smooth right ation of a Lie group G
of Mikelsson-Rajeev type. We assume that a Lie group extension p : Ĝ −→ G of

Mikelsson-Rajeev type is given:

Map(A, S1) Ĝ

p

��
G

Here p : Ĝ −→ G is a prinipal Map(A, S1)-bundle.

Now, hoose an open over {Uα}α∈I of G and loal setions ψα : Uα −→ Ĝ.
Over the intersetions Uα ∩ Uβ , we have transition funtions φαβ : Uα ∩ Uβ −→
Map(A, S1) satisfying

ψα(g) = ψβ(g)φβα(g),

for all g ∈ Uα ∩ Uβ. We an use the transition funtions φαβ to onstrut a line

bundle over the produt A×G as follows. De�ne funtions φ̃βα : (Uα∩Uβ)×G → S1

so that

φ̃βα(A, g) :=
(
φβα(g)

)
(A) ∈ S1,

for all A ∈ A and g ∈ G. The funtions φ̃βα satisfy the following oyle property

φ̃γβ(A, g) · φ̃βα(A, g) = φγβ(g)(A) · φβα(g)(A) (3.5)

=
(
φγβ(g) · φβα(g)

)
(A)

= φγα(g)(A)

= φ̃γα(A, g),

and hene being transition funtions determine an S1
-bundle over A× G:

S1 P

π

��
A× G

(3.6)
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Remark 3.42. Note that the original Map(A, S1)-bundle p : Ĝ −→ G an be reon-

struted from the transition funtions of the S1
-bundle P −→ A× G.

3.6.3. Construting Lie groupoid operations on the line bundle over A × G � The

�Cut and reglue� proedure. Suppose that the Mikelsson-Rajeev type Lie group

extension p : Ĝ −→ G is given by the data of a hosen open trivializing overing {Uα}
of G with transition funtions φαβ : Uα ∩ Uβ −→ Map(A, S1) and loal 2-oyles

ωαβ,γ : Uα × Uβ −→ Map(A,R) de�ning the multipliation on Ĝ (this an always

be done starting from the global extension and then looking at the trivializations).

More preisely, suppose that f ∈ Uα, g ∈ Uβ , fg ∈ Uγ and λ, µ ∈ Map(A, S1).

Then the multipliation on the group Ĝ is de�ned (loally) by the smooth maps

mĜ
αβ,γ :

(
Uα ×Map(A, S1)

)
×
(
Uβ ×Map(A, S1)

)
−→ Uγ ×Map(A,S1),

mĜ
αβ,γ

(
(f, λ), (g, µ)

)
=

(
fg, λ(f · µ) e2πiωαβ,γ(·,f,g)

)
,

where f · µ is the funtion (f · µ)(A) = µ(Af ) and for �xed f and g

ωαβ,γ(·; f, g) : A −→ R, ωαβ,γ(A; f, g) := ωαβ,γ(f, g)(A). (3.7)

Denoting sαβ,γ = e2πiω(·,f,g), the following ompatibility ondition is satis�ed:

sαβ,γ(A; f, g) = φαα′(A; f)φββ′(Af ; g)φγγ′(A; fg)−1sα′β′,γ′(A; f, g), (3.8)

whenever f ∈ Uα ∩Uα′ , g ∈ Uβ ∩Uβ′
and fg ∈ Uγ ∩Uγ′

. This is just the ondition

that we an glue together the loal multipliation maps mĜ
αβ,γ to a well-de�ned

global smooth multipliation map mĜ : Ĝ × Ĝ −→ Ĝ.
Ignoring the various lower indies, the group 2-oyle ondition reads:

ω(g1g2, g3) + ω(g1, g2) = ω(g1, g2g3) + g1 · ω(g2, g3), (3.9)

where g1 · ω(·; g2, g3) : A −→ R is the funtion

g1 · ω(A; g2, g3) = ω(Ag1 ; g2, g3).

Notie, that this ondition is equivalent to the assoiativity of the produt on Ĝ.
Reall, that groupoid multipliation in Γ = (A ⋊ G ⇒ A; s, t,m, i, e) is de�ned

by

m : Γ(2) = (A× G)×s,t (A× G) −→ A× G

=
{(

(A1, g1), (A2, g2)
)
∈ (A× G)× (A× G) | A2 = Ag11

}
−→ A× G,

m
(
(A1, g1), (A

g1
1 , g2)

)
= (A1, g1g2),

where

s : A× G −→ A, s(A, g) = A

is the soure map and

t : A× G −→ A, t(A, g) = Ag.

is the target map.

Now {A×Uα}α∈I is an open overing of A×G. We use the loal group 2-oyles

ωαβ,γ : Uα × Uβ −→ Map(A,R) to de�ne maps

cαβ,γ :
{(

(A1, g1), (A2, g2)
)
∈ (A×Uα)× (A×Uβ)

∣∣∣A2 = Ag11 , g1g2 ∈ Uγ

}
−→ S1,

cαβ,γ(A1, g1, A
g1
1 , g2) = e2πiωαβ,γ(A1,g1,g2).

We assume that the 2-oyles ωαβ,γ depend smoothly on the variable A ∈ A so

that the maps cαβ,γ are smooth as well, when we give the sets where the di�erent
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cαβ,γ are de�ned the manifold struture desribed below. It follows from (3.9) that

these satisfy the following oyle ondition

c(A1, g1, A
g1
1 , g2)c(A1, g1g2, A

g1g2
1 , g3) = c(Ag11 , g2, A

g2
2 , g3) · (3.10)

c(A1, g1, A
g1
1 , g2g3).

Next, we de�ne the following loal multipliation maps by

mαβ,γ :
{(

(A1, g1, λ), (A2, g2, µ)
)
∈ (A× Uα × S

1)× (A× Uβ × S
1)
∣∣∣A2 = Ag11 ,

g1 ∈ Uα, g2 ∈ Uβ , g1g2 ∈ Uγ , λ, µ ∈ S
1
}
−→ A× Uγ × S

1,

mαβ,γ

(
(A1, g1, λ), (A

g1
1 , g2, µ)

)
=

(
A1, g1g2, λµ · cαβ,γ(A1, g1, A

g1
1 , g2)

)
.

Notie, that the set where mαβ,γ is de�ned is an open subset of the manifold

(A× Uα × S
1)×s◦pr1,2;A;t◦pr1,2 (A× Uβ × S

1)

as the inverse image of the open set Uγ ⊆ G under the smooth map

mαβ : (A× Uα × S
1)×s◦pr1,2;A;t◦pr1,2 (A× Uβ × S

1) −→ G,

mαβ
(
(A1, g1, λ), (A

g1
1 , g2, µ)

)
= g1g2.

Moreover, (A×Uα×S
1)×s◦pr1,2;A;t◦pr1,2 (A×Uβ ×S

1) is indeed a manifold, sine

both maps s|A×Uα
◦pr1,2 and t|A×Uβ

◦pr1,2 are surjetive submersion as omposites

of surjetive submersions. Similarly, eah cαβ,γ is de�ned on an open subset of the

manifold

(A× Uα)×s|A×Uα;A;t|A×Uβ
(A× Uβ)

Sine the restritions P |A×Uα
=: π−1(A × Uα) −→ A× Uα of the S1

-bundle P
in (3.6) are trivial, i.e. there exists an S1

-bundle isomorphism

P |A×Uα
∼= A× Uα × S

1,

one an path together the various maps mαβ,γ to obtain a partial multipliation

map mP on the total spae P of the S1
-bundle π : P −→ A× G. Here by �partial

multipliation� we mean that not every pair of elements in P an be multiplied

together. The oyle ondtion (3.10) guarantees that the multipliation map mP

is assoiative. We want to make these arguments rigorous and show, that this

makes P ⇒ A a groupoid.

Proposition 3.43. (P ⇒ A,mP , sP , tP ) is a Banah-Lie groupoid, where the

soure and target map sP and tP are de�ned so that

sP = s ◦ π tP = t ◦ π.

Proof. First, note that sP and tP are surjetive submersions as ompositions of two

surjetive submsersions.

Next, hoose bundle isomorphisms giving loal trivializations

ϕα : A× Uα × S
1 ∼
−→ P |A×Uα

,

for eah α ∈ I. Hene for eah α ∈ I we have a ommutative diagram

A× Uα × S
1

∼=

ϕα //

pr1,2

��

P |A×Uα

π|A×Uα

��
A× Uα

id // A× Uα

where ϕα is an S1
-equivariant map of manifolds and pr1,2(A, g, λ) = (A, g). From

this we see that

sP |A×Uα
◦ ϕα = s|A×Uα

◦ pr1,2 = pr1,
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where

pr1 : A× Uα × S
1 −→ A, pr1(A, g, λ) = A.

and

sP |A×Uα
: P |A×Uα

−→ A, s|A×Uα
: A× Uα −→ A,

sP |A×Uα
= s|A×Uα

◦ π|A×Uα
.

Hene

sP |A×Uα
= pr1 ◦ ϕ

−1
α .

Similarly

tP |A×Uα
◦ ϕα = t|A×Uα

◦ pr1,2
or

tP |A×Uα
= t|A×Uα

◦ pr1,2 ◦ ϕ
−1
α .

We want to onstrut a global multipliation map

mP : P ×sP ,A,tP P −→ P

from the loal multipliation maps mαβ,γ introdued above. We denote by sP,α =
sP |A×Uα

for every α ∈ I and similarly tP,α = tP |A×Uα
. Then

P |A×Uα
×sP,α;A;tP,β

P |A×Uβ
⊆ P ×sP ,A,tP P.

De�ne (
P |A×Uα

×sP,α;A;tP,β
P |A×Uβ

)
γ

as the open subsetset of P |A×Uα
×sP,α;A;tP,β

P |A×Uβ
so that

(
P |A×Uα

×sP,α;A;tP,β
P |A×Uβ

)
γ
:=

(
mαβ ◦ (pr2 × pr2) ◦ (ϕ

−1
α × ϕ

−1
β )

)−1

(Uγ).

We may now de�ne mP ;αβ,γ :
(
P |A×Uα

×sP,α;A;tP,β
P |A×Uβ

)
γ
−→ P,

mP ;αβ,γ = ϕγ ◦mαβ,γ ◦ (ϕ
−1
α × ϕ

−1
β ).

This gives us a well-de�ned global multipliation map mP : P×s,tP −→ P , beause
of equation (3.8), that guarantees us that the loal multipliation maps at the group

extension level glue together.

The other maps in the de�nition of a Lie groupoid are de�ned on loal trivial-

izations P |A×Uα
∼= A× Uα × S

1
so that

eP (A) = (A, 1G, 1),

iP (A, g, λ) = (Ag, g−1, λ−1)

�

Proposition 3.44. P ⇒ A is an S1
-(Banah-Lie groupoid) entral extension of

the ation gropoid A⋊ G.

Proof. We �rst laim, that the following diagrams ommute:

P

tP

��
sP

��

π // A× G

t

��
s

��
A

id // A

(3.11)

P
π // A× G

A
id //

eP

OO

A

e

OO (3.12)
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P ×sP ,tP P
π×π//

mP

��

(A× G)×s,t (A× G)

m

��
P

π // A× G

(3.13)

P

iP

��

π // A× G

i

��
P

π // A× G

(3.14)

(1) Now, diagram (3.11) ommutes by de�nition.

(2) On loal trivializations of the S1
-bundle π : P −→ A× G, the elements of

the total spae P are of the form (A, g, λ), where A ∈ A, g ∈ G and λ ∈ S1
.

Hene

(π ◦ eP )(A) = π(A, 1G, 1) = (A, 1G) = e(A),

so that (3.12) ommutes.

(3) Again, loally

mP

(
(A1, g1, λ), (A

g1
1 , g2, µ)

)
=

(
A1, g1g2, c(A1, g1, A

g1
1 , g2)

)
π
7→ (A1, g1g2),

and on the other hand

(π × π)
(
(A1, g1, λ), (A

g1
1 , g2, µ)

)
=

(
(A1, g1), (A

g1
1 , g2)

)
m
7→ (A1, g1g2),

whih shows that (3.13) ommutes.

(4) On loal trivializations

(i ◦ π)(A, g, λ) = i(A, g) = (Ag, g−1) = π(Ag, g−1, λ−1) = (π ◦ iP )(A, g, λ).

This data gives us a morphism of Lie groupoids (π, id) : [P ⇒ A] −→ [A⋊G ⇒ A].
Moreover, π : P −→ A⋊G is a prinipal S1

-bundle by onstrution. The only thing

left is to hek that (s·x)(t·y) = (st)·(xy) for all s, t ∈ S1
and (x, y) ∈ P×sP ,A,tP P .

To see this, we look at the loal piture, again. Thus, let x = (A1, g1, λ) and

y = (Ag11 , g2, µ). Now

(s · x)(t · y) = (A1, g1, sλ) · (A
g1
1 , g2, µ) =

(
A1, g1g2, stλµ · c(A1, g1, A

g1
1 , g2)

)

= (st) · (xy).

�

By Example 2.26. in [L-GTuXu℄ the oyle ondition (3.10) of the family

{cαβ,γ} guarantees that it gives a 2-oyle in the simpliial ohomology H2(A ×

G•, S1) (i.e. an element of the �eh ohomology with respet to out groupoid over).

On the other hand this lass is the lass orresponding to the Morita equivalene

lass of the onstruted S1
-groupoid extension of A⋊ G under the isomorphism

Extsm(A⋊ G, S1) ∼= H2(A× G•, S1).

(see Proposition 2.17, [L-GTuXu℄). Next, reall from Example 3.36 that the Lie

groupoid A⋊ G orresponds to the quotient stak [A/G] and

H2(A× G•, S1) ∼= H2([A/G], S1).

Propostion 3.18 produes then a gerbe R over the stak [A/G] whose gerbe lass is
the ohomology lass of the 2-oyle {cαβ,γ}.
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Remark 3.45. Note that the original multipliation in Ĝ an be reonstruted from

the assoiated S1
-groupoid extension P ⇒ A using (3.7). Sine we notied earlier

that the original Map(A, S1)-bundle p : Ĝ −→ G an be reonstruted from the

assoiated S1
-bundle π : P −→ A×G we onlude that the whole group extension Ĝ

with its original prinipal bundle struture an be reonstruted from the assoiated

S1
-gropoid extension P ⇒ A.

Appendix A. I.L.H. manifolds and Lie groups

Our referenes are [Bry2℄ and [Pay℄.

De�nition A.1. A topologial vetor spae E is alled an I.L.H. vetor spae if

E = lim
←−n

Hn is an inverse limit of separable Hilbert spaes Hn.

Hene, the topology of an I.L.H. vetor spae E is the inverse limit topology.

This is the oarsest topology whih makes all the projetion maps pn : E −→
Hn ontinuous. Often one wants to impose the following extra ondition in the

de�nition of an I.L.H. vetor spae:

• For every open ball B in Hn, we have

p−1
n (B) = p−1

n (B). (A.1)

Theorem A.2. Let X be a paraompat manifold, modelled on an I.L.H. vetor

spae E satisfying (A.1). Then for any open overing U = {Ui}i∈I of X there exists

a smooth partition of unity subordinate to U .

De�nition A.3. An I.L.H. topologial group G is alled an I.L.H. Lie group if it is

a smooth I.L.H. manifold with the group operations given by smooth I.L.H. maps.

De�nition A.4. Let P,B be smooth I.L.H. manifolds modelled on I.L.H. vetor

spaes E and F respetively, π : P −→ B a smooth I.L.H. map and G an I.L.H.

Lie group. Then (P,B,G, π) is an I.L.H. prinipal bundle if the transition maps

are smooth I.H.L. maps.

Let (P,M,G, π) be a smooth prinipal G-bundle on a losed manifold M , where

we assume all the manifolds to be �nite dimensional and that G is ompat. Let

E = adP := P ×G Lie(G), where G ats on Lie(G) by the adjoint ation, and

F := T ∗M ⊗ adP .

Example A.5. The spae A(P ) of smooth onnetions on P is an a�ne I.L.H

spae with tangent vetor spae C

∞(F ).

Example A.6. Let EG = AdP := P ×G G where G ats on itself by the adjoint

ation. Then the set G(P ) := C

∞(EG) is an I.L.H. Lie group modelled on C

∞(E).
It orresponds to the group of gauge transformations of the priniple G-bundle P ,
i.e. the group of automorphisms of P that over the identity.

Example A.7 (In�nite dimensional Grassmannian of Segal and Wilson). Let H be

a separable Hilbert spae with an orthogonal deomposition H = H+⊕H−. Reall

that for any two Hilbert spaes H1 and H2 the spae H.S.(H1,H2) of Hilbert-

Shmidt operators T : H1 −→ H2 is a Hilbert spae with norm ‖T ‖2 =
√
Tr(T ∗T ).

Let Grres(H) denote the set of losed subspaes W ⊆ H suh that

(1) The orthogonal projetion onto H+, pr
+
W :W −→ H+ is Fredholm;

(2) The orthogonal projetion onto H−, pr
−
W :W −→ H− is Hilbert-Shmidt.

Then Grres(H) is a Hilbert manifold modelled on H.S.(H+,H−).



26 VESA TÄHTINEN

Referenes

[Ara℄ H. Araki: Bogoliubov automorphisms and Fok representations of anonial antiommu-

tation relations, Contemporary mathematis, AMS, vol. 62, 1987.

[ArnMi℄ J. Arnlind, J. Mikelsson: Trae extensions, determinant bundles, and gauge group o-

yles, Letters in Mathematial Physis 62 (2002), 101�110.

[Be℄ K. Behrend: Cohomology of staks, http : //www.math.ubc.ca/ behrend/preprints.html

[BeXu℄ K. Behrend, P. Xu: Di�erentiable staks and gerbes, arXiv : math.DG/0605694.
[Boss℄ B. Booss-Bavnbek, K. Wojiehowski: Ellipti boundary problems for Dira operators,

Birkhauser, Boston, 1993.

[Bry1℄ J-L. Brylinski: Gerbes on omplex redutive Lie groups, arXiv : math.DG/0002158.
[Bry2℄ J-L. Brylinski: Loop spaes, harateristi lasses and geometri quantization,

Birkhäuser Boston, In., Boston, MA, 1993.

[CaMiMu℄ A. Carey, J. Mikelsson, M. Murray: Index theory, gerbes, and Hamiltonian quantiza-

tion, Commun. Math. Phys. 183 (1997) 707�722.

[CaMuWa℄ A. Carey, M. Murray, B. Wang: Higher bundle gerbes and ohomology lasses in gauge

theories, arXiv : hep − th/9511169v1.
[Con℄ A. Connes: Nonommutative geometry, Aademi Press, San Diego, 1994.

[De℄ P. Deligne: Théorie de Hodge, III, Inst. Hautes Études Si. Publ. Math. (1974), 5�77.

[Ek℄ C. Ekstrand: Shwinger terms from external �eld problems, PhD Thesis (Royal Institute

of Tehnology, Stokholm), 1999.

[Fad℄ L. Faddeev: Operator anomaly for the Gauss law, Phys. Lett. 145B, 1984.

[Gom℄ T. Gómez: Algebrai staks, arXiv : math.AG/9911199v1.
[Gomi℄ K. Gomi: Equivariant smooth Deligne ohomology, Osaka J. Math 42 (2005), 309�337.

[G-BV℄ J. M. Graia-Bondía, J. C. Várilly: Connes' nonommutative di�erential geometry and

the standard model, Journal of geometry and physis 12 (1993), 223�301.

[Hein℄ J. Heinloth: Some notes on di�erentiable staks, Mathematishes Institut Seminars (Y.

Tshinkel, ed.), p. 1�32, Universität Göttingen, 2004�05.

[MiKrie℄ A. Kriegl, P. W. Mihor: The onvenient setting of global analysis, Mathematial surveys

and monographs, volume 53, AMS, 1997.

[La1℄ E. Langmann: Quantum gauge theories and nonommutative geometry,

arXiv : hep − th/9608003v1.
[La2℄ E. Langmann: Fermion urrent algebras and Shwinger terms in (3 + 1)-dimensions,

arXiv : hep − th/9304114v2.
[LaMi℄ E. Langmann, J. Mikelsson: (3+1)-dimensional Shwinger terms and nonommutative

geometry, Phys. Lett. B338 (1994), 241�248.

[LaMiRy℄ E. Langmann, J. Mikelsson, S. Rydh: Anomalies and Shwinger terms in NCG �eld

theory models, J. Math. Phys. 42 (2001), no. 10, 4779�4801.

[Laum℄ G. Laumon, L. Moret-Bailly: Champs algébrigues, volume 39 of Ergebnisse der Mathe-

matik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin 2000.

[Met℄ D. Metzler: Topologial and smooth staks, arXiv : mathDG/0306176v1.
[Mi℄ J. Mikelsson: Chiral anomalies in even and odd dimensions, Commun. Math. Phys. 97,

1985.

[Mi1℄ J. Mikelsson: Current algebras and groups, Plenum monographs in nonlinear physis,

Plenum press, New York 1989.

[Mi2℄ J. Mikelsson: Two-Coyle of a Ka-Moody Group, Physial review letters, volume 55

(1985), 2099�2102.

[Mi3℄ J. Mikelsson: Regularization of urrent algebra, Constraint theory and quantization

methods (Montepuliano 1993), 72�79, World Si. Publ. River Edge, NJ, 1994.

[Mi4℄ J. Mikelsson: Commutator anomalies and the Fok bundle, Commun. Math. Phys.

127(1990), 285�294.

[Mi5℄ J. Mikelsson: Gerbes and quantum �eld theory. To be publ. in the Enylopedia of

Mathematial Physis (Elsevier), ed. by J-P Franoise, G.L. Naber, T-S Tsun

[MiRa℄ J. Mikelsson, S. G. Rajeev: Current algebras in d + 1 dimensions and determinant

bundles over in�nite dimensional Grassmannians, Commun. Math. Phys. 116 (1988),

365�400.

[Pay℄ S. Payha: Basi prerequisities in di�erential geometry and op-

eration theory in view of appliations to quantum �eld theory

http : //math.univ − bpclermont.fr/ paycha/publications.html

[PreSe℄ A. Pressley, G. Segal: Loop groups, Oxford mathematial monographs, Clarendon Press,

1986.

[Ra℄ S. G. Rajeev: Universal gauge theory, Physial review D, volume 42, number 8 (1990).



ANOMALIES IN GAUGE THEORY AND GERBES OVER QUOTIENT STACKS 27

[Sor℄ C. Sorger: Letures on moduli of prinipal G-bundles over algebrai urves,

http : //www.math.sciences.univ − nantes.fr/ sorger/publications.html.

[Steve℄ D. Stevenson: The geometry of bundle gerbes, PhD Thesis (University of Adeleide), 2000,

arXiv : math.DG/0004117v1.
[Weib℄ C. Weibel: An introdution to homologial algebra, Cambridge studies in advaned math-

ematis, volume 38.

[L-GTuXu℄ J-L. Tu, P. Xu, C. Laurent-Gengoux: Twisted K-theory of di�erentiable staks.

arXiv : math.KT/0306138.

Department of Mathematis and Statistis, University of Helsinki, P.O. Box 68

(Gustaf Hällströmin katu 2b), FI-00014 Helsinki, Finland

E-mail address: vesa.tahtinen�helsinki.fi


	1. Introduction
	1.1. Obstruction to canonical quantization of fermions in Yang-Mills theory (a.k.a Faddeev-Mickelsson anomaly)
	1.2. Main results
	Acknowledgments

	2. NCG field theory examples
	2.1. Universal Yang-Mills theory of Rajeev
	2.2. NCG theory model of Langmann, Mickelsson and Rydh

	3. Differentiable S1-gerbes and S1-Lie groupoid central extensions
	3.1. Stacks
	3.2. Lie groupoids
	3.3. Gerbes and S1-central extensions of Lie groupoids
	3.4. Sheaf cohomology on differentiable stacks
	3.5. Cech and simplicial cohomology of stacks
	3.6. Faddeev-Mickelsson anomaly in terms of differentiable gerbes and Lie groupoids

	Appendix A. I.L.H. manifolds and Lie groups
	References

