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ANOMALIES IN GAUGE THEORY AND GERBES OVER
QUOTIENT STACKS

VESA TAHTINEN

ABsTrRACT. In Yang-Mills theory one is interested in lifting the action of the
gauge transformation group G = G(P) on the space of connection one-forms
A = A(P), where P — M is a principal G-bundle over a compact Riemannian
spin manifold M, to the total space of the Fock bundle 7/ — A in a consistent
way with the second quantized Dirac operators lﬁA, A € A. In general, there is
an obstruction to this called the Faddeev-Mickelsson anomaly, and to overcome
this one has to introduce a Lie group extension G, not necessarily central, of
G that acts in the Fock bundle. The Faddeev-Mickelsson anomaly is then
essentially the class of the Lie group extension G.

When M = S! and P is the trivial G-bundle, we are dealing with S'-central
extensions of loop groups LG as in [PreSe]. However, it was first noticed in
the pioneering works of J. Mickelsson, and L. Faddeev, [Fad] that when
dim M > 1 the group multiplication in G depends also on the elements A € A
and hence is no longer an S'-central extension of Lie groups.

We give a new interpretation of certain noncommutative versions of Faddeev-
Mickelsson anomaly (see for example [Ral, and [ArnMil) and show
that the analogous Lie group extensions G can be replaced with a Lie groupoid
extension of the action Lie groupoid A x G, where A is now some relevant
abstract analog of the space of connection one-forms. Then at the level of
Lie groupoids, this extension proves out to be an S'-central extension and
hence one may apply the general theory of these extensions developed by K.
Behrend and P. Xu in [BeXu|. This makes it possible to consider the Faddeev-
Mickelsson anomaly as the class of this Lie groupoid extension or equivalently
as the class of a certain differentiable S'-gerbe over the quotient stack [A/G].
We also give examples from noncommutative gauge theory where our construc-
tion can be applied.

The construction may also be used to give a geometric interpretation of the
(classical) Faddeev-Mickelsson anomaly in Yang-Mills theory when dim M = 3.
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1. INTRODUCTION

1.1. Obstruction to canonical quantization of fermions in Yang-Mills the-
ory (a.k.a Faddeev-Mickelsson anomaly).

1.1.1. Dirac operators. Suppose that (M, g™) is a compact oriented Riemannian
spin manifold of dimension d = 2n 4+ 1 without boundary and let S be the spin
bundle of the spin manifold M.

Let G be a finite dimensional semi-simple compact Lie group and p : G —
Autc(V) a unitary complex representation of G with respect to an inner product
(,)v on V,ie. (p(g)z,p(g)y) = (x,y) for all g € G and z,y € V. Next suppose
that m : P — M is an arbitrary principal G bundle and form the associated vector
bundle £ = P x, V. One can show that since p is unitary the associated vector
bundle E is a Hermitean vector bundle with Hermitean metric h?.

Denote by A the space of g = Lie(G) valued connection 1-forms on P and by G,
the based gauge transformation group. It is known that A/G. is a smooth infinite
dimensional I.L.H. manifold, [Pay]. To each A € A one can associate a Dirac
operator P, : I'(§) — I'(&), where & := S ® E. This extends to an operator on
H = L?(&), the Hilbert space of square integrable sections of the vector bundle &.
The domain of 0, in H is known to be H!(M; S), the first Sobolev space, [Boss].

One knows from functional analysis that D, is a Fredholm operator since it is
elliptic and the manifold M is compact. Thus dimker ), < co and dim coker D, <
00. Moreover, the gauge transformation group G, acts on H and the Dirac operator
D, satisfies the following equivariance condition

9Dag™" =Dy,

for all g € G..

1.1.2. Fock bundle. For each A € A s.t. 0 ¢ spec(lD,) the operator P, produces a
decomposition

H="H(A)aH (A),

where the spaces H. are the corresponding eigenspaces to the positive and negative
eigenvalues of the Dirac operator J),, respectively. Corresponding to this decompo-
sition there exists an irreducible Dirac representation of the representation of the
algebra CAR(H) =: C/(H@®H) (the algebra of canonical anticommutation relations
or the algebra of fermion fields) on the Fock space

Fa = /\(M(A)@;fz,(A)) = AH+(4) © \H-(4)
= D (A e AH-(4),

p,q
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where physically the subspace A\” Hy(A) ® A?H_(A) consists of the states with
p particles and ¢ antiparticles, all of positive energy. 0 a CAR-representation
a4 : CAR — End(F4) is determined by giving a vacuum vector [04) € Fa
characterized by the property that

Yi(uw)]04) =0=14(v)[04), forallueH_(A),veHL(A).

Definition 1.1. Two representations of the CAR-algebra are said to be equivalent
if it is possible to represent them in the same Fock space in such a way that both
corresponding vacuum vectors will be of finite norm.

Theorem 1.2. Two different polarizations H = Hy ® H_ = W & W_ define
equivalent Dirac representations of the CAR-algebra if and only if the projections
pry, Wi — H_ and priy : W_ — H, are Hilbert-Schmidt.

Theorem 1.3 (Shale-Stinespring). Two Dirac representation of the CAR-algebra
defined by a pair of polarizations H, and M’  are equivalent if and and only if
there is g € Upes(M) such that H!, = g-H. In addition, in order that an element
g € U(H) is implementable in the Fock space, i.e. there is a unitary operator
g € U(F) such that

g (0)g~t = (gv), for allv € H,
and similarly for the ¥ (v)’s, one must have g € Uys(H).

Here U,.s(H) is the group of unitary operators g in the polarized Hilbert space
H = Hy @& H_ such that the off-diagonal blocks are Hilbert-Schmidt operators.

One would like to glue somehow the different CAR-algebra representations F4
into an infinite-dimensional Hilbert bundle F over A with a continuous section
s A — F such that sz(A) = |04) (a Dirac representation if fixed by a given
vacuum vector so this way it is possible to define what we mean by a continuously
varying family of CAR-representations). First, to construct a bundle of Fock spaces
one can use the following trick:

One replaces the operator ), with the operator D, — A, where A € R\ ¢
spec(,). This way, one obtains a decomposition

H= H-l‘(Aa )‘) @ H—(Aa )‘)a
with the corresponding (irreducible) Fock space representation
pax: CAR(H) — End(Fa,»)

of the CAR-algebra.
The Fock spaces F4 » depend on the choice of the vacuum level A. However, for
A, 1o ¢ spec(p,) there exists a natural projective isomorphism

Far=Fa, modC*, (1.1)

allowing us to glue the different Fock spaces F4 ) together into an infinite dimen-
sional projective Fock bundle PF over A, [Ara]. One can show that since A is
contractible as an affine space, there exists a trivial vector bundle 7 = A x Fy over
A whose projectivization is projectively isomorphic to PF.

Now the fibre of F at A € A is equal to F4 = Fy but unfortunately for the
energy polarization H = H;(A) @ H_(A) the map A — [04) does not define a
continuous section of F (or equivalently the map A — Gr(H) : A — H4(A)
isn’t continuous). This problem is resolved by intoducing another family W(A) of
polaritations H = W(A) ® W(A)L parametrized by A € A such that

1Here #{_ denotes the abstract complex conjugate space to H_. It is a copy of H_ with the
scalars acting in a conjugate way: A -& = (A -&)7; we don’t suppose that there is a complex
conjugation operation defined inside the Hilbert space H.
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(1) The map A — Gr(H) : A— W(A) is continuous;
(2) The corresponding CAR-algebra representations p4 and pyy(4) induced by
the two polarizations are equivalent.

To construct such a family of polarizations one proceeds as follows (see [Mi5] for
details): Each A € A defines a Grassmannian manifold Gr,.s(A) consisting of all
closed subspaces W C H such that the difference pry, 4y — pry € L(H) is a
Hilbert-Schmidt operator. One can show that these spaces can be glued together
to form a locally trivial fibre bundle over A, called the Grasmannian bundle Gr.
The question now is that does this bundle admit a global section A — W (A)? If it
does the W(A)’s give us a family of polarizations with the required properties.

Luckily, the answer to our question is “yes”. This is because Gr happens to be
an associated bundle to an U,.s(H)-bundle P — A,

Gr="rP XUpes (H) Gryes (H),
where the fibre of P at A € A is
Py={g€UH)|g - Hs €Grres(A)}

and Gr,.s(H) is the restricted Grassmannian of Segal and Wilson (see Appendix
A). Now

Grres(H) &= Ures(H)/(UH4) x UH-))
and by a result of N. Kuiper the subgroup U(Hy) x U(H_) is contractible and so
Gr has a global section if and only if P is trivial. This happens to be the case since
A is contractible as an affine space.

1.1.3. Second quantizing gauge transformations. After a certain necessary renor-
malization process, introduced by Mickelsson in [Mi3], on operations on the one-
particle Hilbert space H (e.g. the action of gauge transformation group) one would
hope to lift the action of G on A to an action on F so that the diagram

Ta(9)

F—>F

L,

g

A—=A
commutes and . A
La(9)PaT 3 (9) = Do
where iDA is the second quantized Dirac operator. Unfortunately, there is an ob-
struction to this. To study this, it is useful to switch to the Lie algebra picture.

Definition 1.4. Second quantization of an infinitesimal gauge transformation is
the map dI'4 : Z(A) C Lie(G) — End(F4) characterized by

[dT4(X),¥4a(v)] = Y4(X-v), forallveH, (1.2)
(04]dT4(X)|04) = O.

Here we may choose the domain Z(A) of dT'4(X) to be the set
P(A) = {X € Lie(G) | [ea, X] is Hilbert-Schmidt},

where €4 = + on H4(A). Moreover, supposing there exists a described lift T'4 :
G — End(F) we should have

Ca(e™) =M for all X € Lie(G).
In view of this, equation (I.2) can be written as
La(e )y ()T (e™) = ¢ (e -v), for all X € Lie(G), v € H
relating Definition [[L4] to Theorem [[.3l
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Next, we introduce the so called Gauss law generators acting on (Schrédinger
wave) functions ¢ : A — H,
Ga(X)=X+Lx,
where A € A, X € Lie(G) and the Lie derivative Lx is defined so that

d etX
(£x0)(4) = Zo(a™™)
Their second quantization is defined to be
dT(GA(X)) =dTa(X) + Lx,

where X € Lie(G). The renormalization procedure makes it possible to consider
dl' 4(X) acting on Fy instead of F4. Now the second quantized Gauss law genera-
tors do not have anymore the same Lie algebra bracket as Lie(G) but instead

[dT(GA(X)), dT(GA(Y))] = dT([Ga(X), Ga(Y)]) + ¢(X, Y A),

where ¢(X,Y; A) is a Map(A, R)-valued Lie algebra cocycle of Lie(G) called the
Schwinger term. This is the sought obstruction term. The connection with bundle
gerbes comes from a transgression map T,

H3(A/Ge,Z) — H3(A/Ge,R) = H} (A/G.) — H*(Lie(G), Map(A,R))
studied in [CaMuWal.
In [CaMiMu| Carey, Mickelsson and Murray constructed explicitly the bundle
gerbe in question using a collection of local determinant line bundles on the smooth
Fréchet manifold A/G. that satisfy certain compatibility conditions. Let us recall

this construction briefly.
Define for all A € R the open subsets

Uy={Aec A|X¢spec(D,)} C A

These form an open cover for A. Over each intersection Uy, := Uy N U, there
exists a line bundle Dety,, whose fibre Dety, (A) at A € A is related to (L) by
the equation

t=0

Fax= Det,\#(A) ® Fapu
(thus giving the phase) and defined so that

max

Detr,(A) = /\ (H4(A,X) NH_(A,p))

for A < pand Det,y := Det;;. The phase is related to the arbitrariness in filling the
Dirac sea between vacuum levels A and p. Such a filling corresponds to an exterior
product v1 Ava A. .. Avy, of a complete orthonormal set of eigenvectors D, v; = \;jv;
with A < A; < p. A rotation of the eigenvector basis gives a multiliplication of
the exterior product by the determinant of the rotation. Now, since the exterior
product satisfies the ’exponential law’

max max max

ANvew) = Ave AW
for finite dimensional vector spaces V and W, one sees that over the triple inter-
sections Uxxav := Ux NUx N Uxn

Detyx ® Detyryr = Detyyr,

so that the collection {Dety,} of local line bundles define a bundle gerbe on A.
These local determinant line bundles are actually G-equivariant, where G is the
group extension of G integrating the Lie algebra extension of Lie(G) determined by
the Scwhinger term, and so descend to the moduli space A/G, giving us the bundle
gerbe whose Dixmier-Douady class transgresses to the Schwinger term.
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1.2. Main results. We use differentiable gerbes of Behrend and Xu [BeXu] in-
stead of bundle gerbes to describe geometrically the noncommutative version of
Faddeev-Mickelsson anomaly. This allows us to consider situations where a rele-
vant generalized gauge transformation group G (e.g. U,(H)) no longer acts freely
and transitively on some space of generalized connection one-forms A (e.g. Grp(H)).
This is often the case with noncommutative gauge theories, where it is hard to find
a relevant gauge group acting nicely enough.

In this picture the noncommutative Faddeev-Mickelsson anomaly is given by the
gerbe class w € H?([A/G],S") of a certain S'-gerbe over the quotient stack [A/G]
or equivalently by the class of a certain S'-Lie groupoid extension of the action
groupoid A x G which we construct. When A/G exists as a nice manifold (e.g. a
Banach or an I.LL.H. manifold) satisfying the smooth partition of unity property
one knows that [A/G] = A/G and H?([A/G],S') = H*(A/G,S') = H3(A/G,7),
where the last cohomology group classifies bundle gerbes, [Steve].

It was proven in [LaMi| that in dimension equal to three and at the level of
Lie group entensions one can revive the actual Faddeev-Mickelsson anomaly in
(classical) Yang-Mills theory from a noncommutative Faddeev-Mickelsson anomaly.
Namely, one can pull-back the noncommutative Faddeev-Mickelsson anomaly Lie
algebra cocycle and it proves out that this represents the same class as the original
Faddeev-Mickelsson anomaly cocycle. Hence our methods may also be used to
describe the original Faddeev-Mickelsson anomaly on a compact Riemannian spin
manifold M, when dim M = 3.

Acknowledgments. The author would like to thank Professor Jouko Mickelsson
for introducing the problem and giving many helpful comments. The work was fi-
nancially supported by the Finnish Academy of Science and Letters, Vilho, Yrjé and
Kalle Viisild Foundation. The author would also like to thank Erwin Schrédinger
International Institute for Mathematical Physics for hospitality where the work was
initiated in summer 2006.

2. NCG FIELD THEORY EXAMPLES

Here we give two examples from noncommutative gauge theory in which it is
difficult to find any relevant gauge transformation group G acting freely and tran-
sitively on the space of connections A. In that case [A/G] is no longer a smooth
manifold but rather a (differentiable) stack and hence bundle gerbes on it are not
defined anymore. However, the author thinks one might be able to develop some
G-equivariant bundle gerbe approach to Faddeev-Mickelsson anomalies in this set-
ting, but since we actually work at the level of Lie groupoids we prefer to speak
about quotient stacks instead in the spirit of [BeXul].

2.1. Universal Yang-Mills theory of Rajeev. Here we follow [MiRa], [Ra] and
[Mi1].

2.1.1. Generalized Fredholm determinants. Let H be a complex infinite dimensional
separable Hilbert space with a given polarization H = H, & H_. Let LP, where
p > 1, denote the Schatten ideal, i.e. the space of linear operators A : H — H s.t.

AllP = Tr(A*A)P/? < .
A,

Each LP is a complete metric space with respect to the norm |- ,.
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Now for each A € LP define

Ry(A) = —1+ (1+ A)exp {i(_w‘f;__j]

Definition 2.1 (Generalized Fredholm determinants). Let A € £P and define
dety(1 + A) :=det(1 + R,(A4)).
We have the following formula

log det, (1 + A) = Tr((=1)P 1P+1Ap+1
o) et + = ( — — 4 (= - .. )
gdety(144) = Te((-1)/ 2=+ (<11 2
so that logdet,(1 + A) can be thought of as a regularization of det(1 + A), where
the first p — 1 terms have been subtracted in the expansion of log(1 + A).
The regularized determinants are mot multiplicative but instead we have the

following proposition

Proposition 2.2. For each p € Nt there is a symmetric polynomial ~y,(A, B) of
two variables A, B € 1 + LP such that
det, AB = det, A - det, B - e (AB)
Definition 2.3. w,(A, B) = det,B - e7»(45),
When A is invertible it is known that
wp(A, B) = 7d§2§pAAB .

More over, for A, B,C € 1+ LP
wp(A, BC) = wy(AB,C) - wy(A4, B).

2.1.2. Generalized determinant line bundles. Let H be a complex infinite dimen-
sional separable Hilbert space with a given polarization H = H4 & H_. We fix an
orthonormal basis {e;,}nez of H such that e, € Hy for n > 0 and e, € H_ for
n < 0.

Let GL,(#) denote the group consisting of all invertible bounded linear operators

of the form
a b
c d )’

where a : Hy — Hiy,d:H_o — H_,c: Hy — H_and b: H_ — H, are
linear operators such that b,c € £?*. The group GL,(#) has a natural metric
topology defined by

d(g,9') = lla = a'l| + [ld = d'l| + [Ib = V'l 5, + lle = I3, -
This makes GL,(#) into a Banach-Lie group.
Definition 2.4 (Grassmannian manifold). Let B,(#) be the (closed) normal sub-

group of the block triangular operators in GL,(H) with ¢ = 0. Define the infinite-
dimensional p:th Schatten Grassmannian by

Grp(H) := GL,(H)/Byp(H).
As a homogeneous space of a Banach-Lie group, Gr,(#) is a Banach-Lie group.

The points of Gr, can be thought of as infinite-dimensional closed subspaces
W C H such that

(1) The projection pry, : W — H is a Fredholm operator;
(2) The projection pry; : W — H_ belongs to the Schatten ideal £2P.
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Definition 2.5. A basis w = {w,}n=1,2,.. of W € Gr), is said to be admissible
(with respect to the basis {e, }n>0 of Hy) if wy —1 € LP, where w is the (infinite)
matrix defined by

pra, wi = Y (wy)jies.
7>0

Definition 2.6. Let
&, :={(9,9) | g € GLy, ¢ € GL(H4), ag~' — 1 € £P} C GL, x GL(H),

where g = ( Z Z ), be the group whose group multiplication is given by
(91,01)(92: 2) = (9192, 01G2)

and topology by the norm

(g, DIl = llall + [I2ll + 11bll,, + llelly, + lla = gll, -
Then &, is a Banach-Lie group.

Definition 2.7. Define GL? = GL(H) N (1 + £P), where p € NU {oo}; L0 =
{finite rank operators}, L = {compact operators}.

Definition 2.8 (Stiefel manifolds). The infinite-dimensional p :th Schatten-Stiefel
manifold

Stp := &,/ By,

where the action of k = < ) € B, is given by

a B
0 v
(9,q) - k = (gk, qo).
The Stiefel manifold St,, parametrizes all admissible basis of all infinite-dimensio-
nal planes W € Gr,, see [Mil]. It is in a natural way a principal GLP-bundle over
Grp, the GL? action being given by the basis transformations and the canonical

projection St, —+ Gr,, is chosen to be the mapping associating to the basis w the
plane W spanned by the vectors in w.

Definition 2.9 (Generalized determinant line bundles). Let
Det, := (St, x C)/GLP,
where the right action of GL? on St, x C is defined so that
(w,\) - t = (wt, dwp(wy,t)™1).

One can show that Det, is a holomorphic line bundle over Gr, where the projec-
tion map is given by [(w, )] — the plane spanned by {w1,ws,...}. Moreover, the
group GL, acts on the base manifold Gr, but the action doesn’t lift to the bundle
Det,, for p > 1.

Naturally there is also the dual determinant line bundle Det; — Gryp.

Lemma 2.10. Sections of Det, can be identified with functions ¢ : St, — C such
that

Y(wt) = P(w)wp(w,t), te GLP.
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2.1.3. The Abelian extension of GL,.
Lemma 2.11. There are smooth functions a(g,q;w) on &, x St, s.t.

alg, q;wt) wp(wy ,t)

a(g, ¢;w) wp((gwg=1) 4, qtqg™1)’

Theorem 2.12 (Mickelsson and Rajeev, [MiRal). Let H be a complex infinite
dimensional separable Hilbert space with a given polarization H = Hy ®H_. There
is an Abelian extension of GL, =: GL,(H) by Map(Gr,, C*) which acts on Dety,.
The extension is

GL, = (&, x Map(Gr,, C*))/N,
where N is the normal subgroup consisting of elements (1,q, pq), where pg(w) =
a(l,q,w)™t - wy(wy, g 1)L, g € GLP.

Remark 2.13. As a corollary, one obtains the Abelian Lie group extension LA[,,(’H)
of U,(H) C GL,(H) by the group Map(Gr,, C*) by restriction.

2.1.4. Canonical formalism for universal gauge theory. The configuration space in
Universal Yang-Mills theory is by definition

[L2r [P
The subgroup U, C GL, of unitaries plays the role of the gauge transformation
group acting on the manifold A by the rule

A P ~ P 2p
A:{bounded HermiteanA:”;'-L_y,a.[‘Ae ( Lr L )}

A gAg " + gle 571,
The operator gle, g~!] is indeed of type

Le o r2e
(& %)

since we know that for Schatten ideals
LP-L1C L,

where 1/r=1/p+1/q.
The space of “electric fields” is

~ ) - - £r/(p=1)  p2p/(2p-1)
g = {bounded Hermltean FE H — H ‘ FE S ( EQP/(QP*U [,p/(pfl) ) }
The phase space of universal Yang-Mills theory is defined to be the direct sum

A @ E. This space has a natural exterior derivative operator d : A® & — A® E,
d(A, E) = ([eﬂ E]ﬂ [eﬂ A]Jr)v

where [-,-]; means the anti-commutator. The elements of the form (4,0) € A® &
are said to be of odd degree and respectively the elements of the form (0, E) c Apé
are said to be of even degree. Clearly, d maps even operators to odd operators and
vice versa. Furthermore, d?(A, E) = 0, since €2 = 1.

The exterior derivative operator d makes it possible to define the curvature F
for every A € A,

= dA + A%

This is an even operator in the sense we just deﬁned The curvature transforms
covariantly under gauge transformation, F gFg

Definition 2.14. We say that a generalized vector potential/connection 1-form
A € Ais flat if its curvature F = 0.
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Proposition 2.15. The space of flat connections in universal Yang-Mills theory
with gauge transformation group U,(H) can be identified with the p :th Schatten
Grassmannian

Grp(H) = Uy /UH 1) x UH-)).

2.1.5. Generalized Fock bundles over Gra(H). An excellent reference for this sub-
section is [Mid].

First, recall from [PreSe| the geometric construction of the Fermionic Fock space
as the space of holomorphic sections of a complex line bundle Det] over Gr;. We
want to generalize this to higher dimensional cases.

We suppose our Schatten Grassmannian Gra(H) is defined by a splitting H =
HiOH_.

Definition 2.16. Let F' € Gro(H+ @& H_) and let H = F & F* be the associated
splitting. We define the generalized Fock space Fr by
Fr :=T(Dets(F @ FL)),

where Dety(F @ F+) — Gro(F @ F1) is the dual of the 2:d determinant line
bundle Dets(F & F1).

Now the problem with the above construction is that the Fock spaces Fr depend
on a choice of admissible basis f in each F' € Grao(H4+ ® H_):

Lemma 2.17. Fiz an admissible basis f = {f1, f2,...} of F' € Gra(Hy & H_).
Then a section ¢r € T'(Dets(F @ F1)) can be identified with a function g :
Sto(F @ Ft) — C satisfying

Yp(wt) = hp(w) - wr(w 1), te GLA(F & FL), (2.1)
where w(f) is the matriz relating the F-projection to the basis {fn}, i.e.

pro(w,) =Y wilf;
J

and
_ detowt

~ detgw()

In fact, what we have consructed is a fibre bundle over Sto(H @ H_) and not
over Gra(Hy4 @ H_). We need to modify the situation a bit to obtain a bundle over
Gra(H4+ @ H_) and for this we proceed as follows.

Since the definition of a section i depends on f we shall write explicitly ¢ =
¥(w, f) and consider these also as functions of f.

w2(w(f) 1)

Proposition 2.18. Functions {r : Sto(F @ F1) x Sto(F @ F+) — C satisfying
equation (21]) and

vr(w, ft) = Yr(w, ) wa(w 17, teGLAF @ F*) (2:2)
can be identified with sections of a vector bundle F' over Gro(Hy ® H_) which is a

tensor product of the determinant bundle Deto(Hy ®@H_) and a trivial Fock bundle
B (with fibre F3,, ) over Gra(H4 @ H_).

Definition 2.19. We define the generalized Fock bundle ' over Gra(H & H_)
by
F' := B ® Dets.

Motivated by this, one may define the obstruction to canonical quantization
in universal Yang-Mills theory to be the class of the Abelian Lie group extension
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2.2. NCG theory model of Langmann, Mickelsson and Rydh. Our refer-
ences in this section are [LaMiRy], and [Conl.

2.2.1. The space of generalized vector potentials. Let (H, Dy) be a tame p™ sum-
mable K-cycle over the *-algebra

o ={A e B(M)|[|Dol, A] € LT (M), [Do, A] € B(H)}

with 7 : &/ — U(H) the corresponding unitary representation and I' : H — H a
grading operator. Denote by € = Dy /| Dyl the sign of the (abstract) Dirac operator.
Using the representation 7, the equivalence classes o € A := Q}jo («7) can then be
presented in the form

a =ag[Dg,a1], ag,a1 € &, or «a=apleai], ap,a; € .

It follows that all the operators o € A satisfy the condition [e, o] € B(H).

2.2.2. Gauge transformation group. We assume our (Hermitean) vector bundle &
on & to be trivial and of rank one, i.e. & = &7. Hence the gauge group U(&) is
given by

UE)=Upy ={ue o |uu” =u"u=1}.
Any element g € U, (H) satisfies [e,g] € £PT. This is seen to be the group of
unitaries in the group

GL,+ :={g € &/ | g is invertible}.

2.2.3. Family of (abstract) Dirac operators over A. We consider bounded pertur-
bations D4 of the ‘free Dirac operator’ Dy that are of the form Dy = Dy + A,
where A € A and the sign operator Fy := D 4/|D 4| satisfies

Fya=F;=F'€B(H), Fa—ecclP

Following the ideas of [Lal] and [La2|, one can see that the sign operator F4
can thus be thought as an element of the weak-£? Grassmannian Gryy () defined
analogously with the Schatten Grassmannian Gr,(H) except that now we require
that the projection pry, : W — H_ belongs to the weak-LP space £PT instead
of the Schatten ideal £P. More over, the Grassmannian Gr,4 has a natural action
of the group GL,.

This motivates us to consider the obstruction of canonically quantizing fermions
in this NCG gauge theory model as the class of the group extension L?p+ acting on
the total space of the determinant line bundle Det,; — Grp4 analogously with
what we did in the case of universal Yang-Mills theory.

The group extension C/}ier can be constructed in the same vein as in .
However, one has to pay attention to the properties of generalized traces, [LaMiRy].

3. DIFFERENTIABLE S'-GERBES AND S!-LIE GROUPOID CENTRAL EXTENSIONS
The main reference in this section is [BeXul.

3.1. Stacks. Let & be either the category of all finite dimensional C*°-manifolds
with C*°-maps as morphisms, or the category of all (infinite dimensional) C>-
Banach manifolds with the corresponding smooth maps. We endow & with the
Grothendieck topology, whose covering families {U; — X} are local diffeomor-
phisms U; — X such that the total map [[, U; — X is surjective.

Definition 3.1. A category fibered in groupoids X — & is a category X, together
with a functor 7 : X — &, such that the following two conditions are satisfied:
(1) For every arrow V. — U in &, and every object x of X lying over U,
m(x) = U, there exists an arrow y — z in X lying over V. — U, i.e.
mly —xz)=V —U.
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(2) For every commutative diagram W — V — U in & and arrows z — «
lying over W — U and y — x, there exists a unique arrow z — y lying
over W — V, such that the composition z — y — x equals z — .

Example 3.2. Manifolds X € Ob(&) give groupoid fibrations. To see this, let X
denote the category where

Ob(X) ={(S,u) | S € Ob(&),u € Homg(S, X)}

and a morphism (S,u) — (T, v) of objects is a morphism f : S — T such that
u =wvo f,ie. an X morphism.

Definition 3.3. Let 7 : X — & be a category fibered in groupoids. Then X is
called a stack over G if the following three axioms are satisfied:

(1) For any C™ manifold X € Ob(&), any two objects x,y € Ob(X) lying over
X, and any two isomorphims ¢, : ¢ — y over X such that ¢|U; = ¢|U;
for all U; in a covering family {U; — X}, then ¢ = 1.

(2) For any X € Ob(&), any two objects =,y € Ob(X) lying over X, a covering
family {U; — X}, and a collection of isomorphisms ¢; : z|U; — y|U; such
that ¢;|U; xx U; = ¢;|U; xx U; for all 4,7, there exists an isomorphism
¢ : x —> y such that ¢|U; = ¢; for all 7.

(3) For every X € Ob(&), every covering family {U; — X}, every family {x;}
of objects z; in the fibre Xy,, and every family of morphims {¢;;}, ¢i; :
z;i|U; x x U; — 2;|U; x x U; satisfying the cocycle condition ¢, 0 ¢i; = ik
in the fibre Xy, x yu;xxU,, there exists an object x over X, together with
isomorphisms ¢; : z|U; — x; such that ¢;; o ¢; = ¢; over Uj;.

Remark 3.4. Here condition (2) means that morphisms glue and condition (3) says
that objects glue (descent data is effective). Conditions (1) and (2) imply that for
fixed X € Ob(&), z,y € Xx, Isom(z,y) is a sheaf on &/X.

The morphisms of stacks are morphisms of their underlying groupoid fibrations.

Example 3.5 (Manifolds). For every manifold X € Ob(&) the groupoid fibration
X is a stack.

Example 3.6 (Quotient stacks). Let G € Ob(&) be a Lie group acting on a
manifold X € Ob(&). Define the quotient stack [X/G] as the category whose
objects are principal G-bundles 7 : P — S, where all manifolds and structure
maps are in &, together with a G-equivariant morphism o € Homg(P,X). A
morphism in [X/G] is a Cartesian diagram in &

p—Lr.p

S —=5

such that o o p = o’. The projection functor 7y, : [X/G] — & associates to a
principal G-bundle 7 : P — S its base space S and to a morphism as above the
map f: S — S in &. Choosing X = e, a point, one obtains the classifying stack
BG.

If G acts properly and freely, i.e. X — X /G is a G-bundle, then [X/G] = X/G,
see [Hein|, Remark 1.6.

Definition 3.7. A stack X over & is called differentiable or a C* stack, if there
exists a manifold X € Ob(&) and a surjective representable submersion z : X —
X. In this case X together with the structure morphism =z is called an atlas for X
or a presentation of X.
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Example 3.8 (Quotient stacks). An atlas is given by the quotient map X —
[X/G], defined by the trivial G-bundle G x X — X and a: G x X — X being
the action map.

3.2. Lie groupoids.

Definition 3.9. A Lie groupoid I' = X; = X consists of

e Two smooth manifolds X; € Ob(&) (the morphisms or arrows) and X, €
Ob(6) (the objects or points);

e Two smooth surjective submersions s : X; — X the source map and
t: X7 — X the target map;

e A smooth embedding e : Xo — X7 (the identities or constant arrows);
A smooth involution i : X1 — X1, (the inversion) also denoted z + z71;

A multiplication

m:T® — T,

(2,y) =z -y,
where T®) = X x,; X1 = {(2,y) € X1 x X1 | s(z) = t(y)}. Notice, that
I'®) is a smooth manifold, since s and ¢ are submersions. We require the
multiplication map m to be smooth and that

(1) s(z-y) =s(y), tx-y)=tx),

(2) z-(y-2)=(z-y) 2

(3) e is a section of both s and ¢,

(4) e(t(z)) -z =z =1z e(s(z)),

(5) s(z™!) =t(x), t(=™") = s(2),

6) -2t =e(t(x)), z7 ' -z=-e(s(x)),

whenever (z,y) and (y,2) are in '),

Remark 3.10. When & is the category of smooth Banach manifolds, we call T' =
X7 = Xy a Banach-Lie groupoid.

Definition 3.11. A morphism of Lie groupoids (¥, %) : [X] = X{] — [X1 = X(]
are the following commutative diagrams:

X, Y. x, X —=X{
A R N
X{ Xt ¢ X{ &Xl Xt Xl X{ —‘II>X1

Example 3.12. A Lie group G is a Lie groupoid over a point, G = e.

Example 3.13. Let M be a differentiable manifold and G a Lie group acting
smoothly on M from the right. The action groupoid M x G = M, denoted by
M x G, is defined by the following data:

o s(z,9) ==
e {(x,g) = xg, so that a pair ((z,g), (z’,g’)) is decomposable iff 2’ = zg;
. m((:ﬂ,g), (:Eg,g’)) = (z,99");

o i(z,9) = (xg,97");
o e(z) = (x,1¢g).
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3.3. Gerbes and S'-central extensions of Lie groupoids.

Example 3.14. Let G be a Lie group and BG its classifying stack. As we have
seen, this is a stack, but it is in fact a rather special stack. This is because
(1) Every manifold X has at least one principal G bundle over it, namely the
trivial G bundle;
(2) Any two principal G bundles are locally isomorphic.

These two facts lead to the definition of a gerbe over a stack.

Definition 3.15. Let X and R be stacks over & and 7 : R — X a morphism of
stacks. Then 7 : R — X is called a gerbe over (the stack) X, if
(1) 7 has local sections, i.e. there is an atlas p : X — X and a section
s: X — R of 7|x, where by a section we mean there exists a natural
isomorphism ¢ : w o s = p of functors.
(2) Locally over X all objects of R are isomorphic, i.e. for any two objects
t1,ta € X and lifts s1, 80 € Ry with 7 (s;) = ¢;, there is a covering {T; —
T} such that 31|Ti = 52|Ti-

A gerbe m: R — X is trivial, if it admits a global section, i.e. if there exists a
morphism of stacks o : X — R satisfying 7 o o = idx.

Definition 3.16. A gerbe /& — X is called an S'-gerbe if there is an atlas
p: X — X and a section s : X — R such that there is an isomorphism

@ Aut(s/p) = (X xo X) Xxxox X 28 x X
as a family of groups over X such that on X xx X the diagram

Aut(s o pry/p o pry)

pr1d Ay

X xx X xSt

Aut(s opry/popr;)

where the horizontal map is the isomorphism given by the universal property of the
fibre product, commutes. This means that the automorphism groups of objects of
2R are central extensions of those of X by S!.
Definition 3.17. Let I' = X; = X, be a Lie groupoid. An S'-central extension
of X1 = Xy consists of
(1) a Lie groupoid Ry = X and a morphism of Lie groupoids (7,id) : [R; =
Xo] — [Xl = Xo],
(2) a left S! action on R;, making 7 : Ry — X a left principal S bundle.
The action must satisfy (s - x)(t - y) = st - (zy), for all s,t € S! and
(:I:,y) e Ry X X, R.

When R; — X is topologically trivial, then R; = X; x S' and the central
extension is determined by a groupoid 2-cocycle of X, = Xy with values in S*.
This is a smooth map

c:T® = {(m,y) € Xy xXq|s(x) = t(y)} — St
satisfying the cocycle condition
c(a,y)e(zy, 2)e(z,yz) " te(y,2) "t =1
for all (x,y,2) € I'®). The groupoid structure on Ry = X is given by
(@, A1) - (y, A2) = (2y, Midec(z, y),
for all (z,y) € T® and A;, Ay € S'.
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Proposition 3.18 (Behrend, Xu, [BeXul). Let X1 = X¢ be a Lie groupoid and X
its corresponding differential stack of Xe-torsors. There is one-to-one correspon-
dence between S'-central extensions of X1 = Xo and S'-gerbes R over X whose
restriction to X : R|x, admits a trivialization.

3.4. Sheaf cohomology on differentiable stacks. Let 7 : X — & be a dif-
ferentiable stack. Following [Laum| and [Hein| one can define sheaves of Abelian
groups on X.

Definition 3.19. A sheaf F of Abelian groups on 7 : X — & is determined by
the following data

(1) For each morphism of stacks X — X where X € Ob(&) is a manifold, a
sheaf Fx__,x of Abelian groups on X in the usual sense, i.e. an Abelian
group Fx_x(U) associated to each open U C X, etc.

(2) For any 2-commuting triangle

f

X———y (3.1)
=

with an isomorphism ¢ : g o f — h of functors, there exists a morphism
of sheaves ®f, : f*Fy_x — Fx_x (often denoted simply by ®y)
compatible for X — Y — Z. We require that ®; is an isomorphism,
whenever f is an open covering.

The sheaf F is called Cartesian if all ®; are isomorphisms.
We denote the category of Abelian sheaves on X by 20b(X).

Proposition 3.20. The category Ab(X) is an Abelian category with enough in-
jective objects, i.e. for every object F € Ob(2Ab(X)) there exists an injection
0 — F — T with T injective.

Definition 3.21. Let U be a manifold. A sheaf in the usual sense (i.e. defined
only on open subsets of U) is called a small sheaf on U.

Definition 3.22. Let X be a stack over & and F a sheaf over X. Let x € Ob(Xy),
where U € Ob(&) is a manifold. The small sheaf on U, which maps the open subset
V CU to F(x | V) is called the small sheaf induced by F viax : U — X on U.
We denote it by F, y or simply Fy, if there is no risk of confusion.

Given a morphism in 0 : y — x in X lying over a C* map f:V — U in &,
there is an induced morphism of small sheaves over V
0% f Fau — Fyv.

The cohomology of a sheaf 7 € Sh(X) is defined in the same way as it is defined
for manifolds: One first defines the global section functor

D(X,-) : Ab(X) — Ab,
where now
F(%, .7) = ]&DF(X, ‘FXHX)
and the limit is taken over all atlases X — X, the transition functions for a 2-
f

N

==
X

commutative diagram X’ X are given by the restriction maps ®; .
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Next one chooses an injective resolution 0 — F — 7* and sets
H'(X,F) = h'(D(X,Z*)).

Remark 3.23. For a Cartesian sheaf F over X the global section functor can be
defined by choosing an atlas X — X and then setting

(X, F) = ker (F(X, F) = T(X xx X)).

This is known to be independent of the chosen atlas X — X and moreover it
coincides with the previous definition, [Hein].

Theorem 3.24 (Giraud). Isomorphism classes of S*-gerbes over X are in one-to-
one correspondence with H?(X,S").

3.5. Cech and simplicial cohomology of stacks.

Definition 3.25. Let A be the category whose objects are finite ordered sets
[n] = {0 < 1 < --- < n}, and whose morphisms are nondecreasing monotone
functions.

Definition 3.26. Let A be a category. A simplicial object A in A is a contravariant
functor A : AP — A

Definition 3.27. A morphism of simplicial objects is a natural transformation
between the corresponding functors, and the category S.A of all simplicial objects
in A is just the functor category A2™.

Proposition 3.28. To give a simplicial object A in a category A, it is necessary and
sufficient to give a sequence of objects Ay, A1, As, ... together with face operators
0; : A, — Ap_1 and degeneracy operators o; : A, — Ap41, wherei=0,1,...,p,
satisfying the so called simplicial identities:

aiaj = 8j718i, 1f’L<]

0,05 = 0j4+104, if ¢ S_j
aj_lc’)i, ifi<yj
Oioj; = id, ifi=jori=j+1
O'jai_l, ifi>j+1.
Proof. Omitted. See [Weib], Prop. 8.1.3. O

If one dualizes the concept of simplicial objects, one obtains cosimplicial objects
and the following proposition:

Proposition 3.29. To give a cosimplicial object A in a category A, it is necessary
and sufficient to give a sequence of objects A°, AL, ... together with coface operators
0" . AP~ — AP and codegeneracy operators o' : APT! — AP where i =
0,1,...,p, which satisfy the cosimplicial identities

ot = 9o, if i < j

olot = ool ifi <y
o dloi=t ifi <y
ol = id, ifi=jori=j5+1
0 lod, ifi>j+1.
Proof. Omitted. See [Weib], Cor. 8.1.4. O

Remark 3.30. Tt is clear by the above, that if we have a contravariant funtor F' :
A — B, then F' maps simplicial objects in A to cosimplicial objects in B. In the
same way, a covariant functor F' maps simplicial objects to simplicial objects, etc.
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Definition 3.31. Let A be a simplicial object in an Abelian category A. The
associated, or unnormalized, chain complex C(A) has its objects C, = A, and its
boundary morphism d : C, — (), is the alternating sum of the face operators
81- : Cp — Cp_li

d:80*81+'~~+(71)p8p.
The simplicial identities for 9;0; imply that d*> = 0, so that we indeed have a
complex.

We now come back to our original situation and define for all p > 0

Xp:XXx...X;{X.
N———
p+1 times

Since X — X is a representable submersion, all X,, are manifolds. We want to
make X, = {X,} into a simplicial manifold, i.e. a simplicial object in the category
of manifolds:

-

t ﬁf XQ — Xl %E Xo. (32)

First, note that X, corresponds to the space of chains of composable p arrows in
the groupoid X; = Xg. Define the face and degeneracy maps so that

(g2, -5 0p)s ifi=0
8i(g1,...,gp): (91,---,9i9¢+1,---,gn), 1f0<z<p
(gla- .. 59}771)7 if ¢ =D,

oi(g1,-- -+ 9p) = (91, 9is L, Gig1s - -+, 9p)-

Example 3.32. We claim that for a quotient stack [X/G] with the natural atlas
X — [X/G]

p
Xp:Xxx...xxX%XxHG.
——— ——

p+1 times i=1

This can be seen as follows. By definition Xg = X and the product on the right
hand side is empty, thus the claim is true when p = 0. Next note that by [Hein| we
have X xx X 2 X x G. This implies that

XXxxXxzX 2 Xxx2X)xx (X xxX)2(XxG) xx (X xG)
X xGxG.

I

Here the last isomorphism follows since
(X x Q) xx (X xG) = {((:Cl,gl), (xg,gg) € (X xG)x (X xG) ’ 21 = m}.

More generally, one may write for p > 2

Xpt1 = Xxzp...xxpX= (X Xz ... xxX) ><X(X xxX)
—_— ——
pF2 times p+1 times

~ X, xx(XxG)=X,xG
and the claim follows from this by induction.
Now, let F be a sheaf of Abelian groups on X. Every X, has p + 1 canonical
projections X, — X, which are all canonically isomorphic to each other. We

choose one of them and call it m, : X, — X. Recall that 7, as a map from a
manifold to a stack can be identified with an object of X lying over X,,. We denote
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the Abelian group F(mp) associated to the object m, by the contravariant sheaf
functor F by F(X,). By Remark 330 we have then a cosimplicial Abelian group

F(Xo) == F(X1) —= F(Xo) —= . (3.3)
Since the category of Abelian groups is an Abelian category, we may form the
associated cochain complex to F(X,):

0 0

C(F(X,)) : F(Xo) F(Xo) 2L (3.4)

F(X1)

Definition 3.33. The homology groups of the complex ([3.4) are denoted by
H'(Xe, F) = h'(F(X.))

and called the Cech cohomology groups of F' with respect to the covering X — X.

As usual, there exists also a map H*(X,, F) — H*(X,F). Moreover, we have
the following proposition

Proposition 3.34. Let F be a Cartesian sheaf of Abelian groups on a differentiable
stack X. Let X — X be an atlas and F* the induced simplicial sheaf on the
simplicial manifold Xo. Then there is an E1-spectral sequence:
EY? = HY(X,,F,) = H"T(X,F).
Moreover, . '
H'(X,F) = H'(X,, F*)

for all i > 0, where the latter cohomology group is the simplicial cohomology of F*°.
Proof. See [De], [Heinl. O

Corollary 3.35. Let X be a differentiable stack with an atlas X — X. Then
H'(%,8') = H'(X,,S")

for all i > 0.
Example 3.36. Let again X = [X/G] be the quotient stack and F = S%. By
Example X, = X x [[?_, G. Hence for each p > 0 the induced small sheaves
of S' on X, are the sheaves S }Xxgp. It follows now easily from Corollary B35 and
[Bryl], [De], [Gomi] that the cohomology groups H*([X/G],S') are isomorphic to
the G-equivariant cohomology groups of X. Especially, the group

H*([X/G),8") = H*(X x G*, Sy o)
classifies the isomorphism classes of G-equivariant gerbes on X in the sense of
Brylinski, [Bryl].

3.6. Faddeev-Mickelsson anomaly in terms of differentiable gerbes and
Lie groupoids. This section contains our main results.

3.6.1. Infinite-dimensional Lie groups of Mickelsson-Rajeev type.

Definition 3.37. Let G be an L.L.H. (resp. Banach) Lie group (see Appendix
A). An extension of G by an IL.L.H. (resp. Banach) Lie group N is a short exact
sequence with smooth homomorphisms

~ q

1—=N—=¢ G——1

and with a smooth local section ¢ in the sense that there exists an open identity
neighborhood U C G on which ¢ : U — G is smooth and ¢ o o = idy.

Remark 3.38. One can use other classes of infinite dimensional manifolds and Lie
groups in the definition as well, see [MiKrie].
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The infinite-dimensional Lie groups that we are interested in are those that
appear in Yang-Mills theories as gauge transformation groups or their extensions
([PreSe]), [Mil] and [ArnMi]).

Let H be a complex infinite dimensional separable Hilbert space with a given
polarization H = Hy @& H_, where H are closed subspaces of H. Let € be the
associated sign operator € : H — H, €2 = 1 and €|, = +13,. Let GL(H) be the
general linear group of H consisting of all invertible bounded linear operators of .

Definition 3.39. We say that an infinite dimensional Lie group G is of Mickelsson-
Ragjeeuv type, if it is of the form
G =GLz» := {g = ( Ccl Z ) € GL(H) | [e, 9] 6121’},

where ZP C K(H) is a two-sided ideal in the algebra B(H), p € N4, equipped with
a Banach space topology (Z?, ||-||;,) and ZP C Z7 is dense in Z? whenever p < gq.
We define GLz» to be a Banach-Lie group with topology given by the norm

lall + 18l 22 + llell 20 + lldll -
We may extend the definition to the value p = oo by defining Z% := K(H) C
B(H). Then we have a sequence of Banach-Lie groups
GL71 CGLz2 C - C GLz.

Example 3.40. One could choose for the ZP’s the Schatten ideals £P or the weak-
LP spaces LPT,

Let A be a contractible Banach manifold. We assume that there exists a set of
maps Map(A, S1) such that this set has a structure of a Banach-Lie group (compare
with [MiRa], Remark on page 388).

We assume that our Lie group extension is of the form

G = GLz» = (&, x Map(A, S1))/N,
where
&, =:{(9,9) | g € GLzs, ¢ € GL(H4), ag" " — 1 € TP} C GLz» x GL(H4),

g= ( z Z ) and the group multiplication is given by

(91:q1)(92: @2) = (9192, 11G2).-
The topology of &, is not the product space topology, but given by the norm
(g )l = llall + ]l + [[blly,, + llella, + lla = qll,, -

Then &, is a Banach-Lie group. Above, N is assumed to be a (closed) normal
Banach-Lie subgroup of &, xMap(A4, S1) consisting of elements of the form (1, g, i),
where i, € Map(A, S*) depends smoothly on ¢ € GL(H,). This makes G into a
Banach-Lie group.

The group GLz» is assumed to be a (nontrivial) Banach principal Map(A, S*)-

bundle over GLz» with the obvious projection map. Near the unit element 1 € GLz»
the formula

¥(9) = (9,a,1) mod N,
where g = ( Z Z ) € GLz», defines a local section v : U — C/}izp of the
principal Map(A, S')-bundle p : GLz» — GLzs.

Definition 3.41. An extension of infinite dimensional Lie groups p : Q — G is
said to be of Mickelsson-Rajeev type if it is of the above form.
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A Lie group extension of Mickelsson-Rajeev type defines a local Map(A, S*)-
valued (smooth) Lie group 2-cocycle w by

Y(g1)¥(g92) = ¥(9192)(1,1,w(g1, 92)),

where w(g1,g2) € Map(A, S*). This can then be extended to a global Map(A, S!)-
valued (smooth) 2-cocycle by translation giving an element in the Lie group coho-
mology [w] € H?(GLz», Map(A, S1)).

It follows from the definition that

Lie(GLz») = Lie(GLz») ® Map(A, S'),
where the commutator in Lie((fiizp) is given by
[(Xa ,LL), (Yv V)] - ([Xﬂ Y]vX v—Y- Ht U(X,Y, ))7

where 7 is a Map(A, S*)-valued Lie algebra cocycle on Lie(GLz») and the Lie
derivative of a function v on A to the direction of the vector field X defined by the
G action on A is denoted by X - v. Then at least in principle, one can calculate the
Lie algebra cocycle 7 as follows: Let exp(tX) and exp(tY) be two one-parameter
subgroups on GLz». Then

82

i@ ) )ue™)| = (X Y] 0.n(X,Y).

3.6.2. From principal Map(A, S')-bundles over G to line bundles over A x G. Let
A be a contractible Banach manifold with a smooth right action of a Lie group G
of Mickelsson-Rajeev type. We assume that a Lie group extension p : G — G of
Mickelsson-Rajeev type is given:

G

lp

g

Map(A, S1)
Here p: G — G is a principal Map(A, S1)-bundle.

Now, choose an open cover {U,}aer of G and local sections ¢, : Uy — G.
Over the intersections U, N Ug, we have transition functions ¢as : Uo N Uz —>
Map(A, St) satisfying

Yal9) = ¥5(9)Pa(9),
for all g € Uy NUs. We can use the transition functions ¢.s to construct a line
bundle over the product A x G as follows. Define functions ¢g, : (UaNUg)xG — S*
so that 3
bpa(A,9) = (63a(9)) (4) € 57,

for all A € A and g € G. The functions (5[3& satisfy the following cocycle property

$r3(A,9) - DpalAs9) = 45(9)(A) - dsal9)(A) (3:5)
= (648(9) - d3a(9)) (4)
Pvalg)(A)
= ¢4, 9),
and hence being transition functions determine an S'-bundle over A x G:
St P (3.6)

lﬂ

AXG
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Remark 3.42. Note that the original Map(A, S*)-bundle p : G — G can be recon-
structed from the transition functions of the S'-bundle P — A x G.

3.6.3. Constructing Lie groupoid operations on the line bundle over A x G — The
“Cut and reglue” procedure. Suppose that the Mickelsson-Rajeev type Lie group
extensionp: G —» G is given by the data of a chosen open trivializing covering {U, }
of G with transition functions ¢as : Uy N Uz — Map(A, S') and local 2-cocycles
WagB,y : Ua x Ug — Map(A,R) defining the multiplication on G (this can always
be done starting from the global extension and then looking at the trivializations).
More precisely, suppose that f € Uy,g9 € Ug, fg € U, and A\, p € Map(A, S1).
Then the multiplication on the group G is defined (locally) by the smooth maps

mgﬁﬁ : (Ua x Map(A, Sl)) X (UB x Map(A, S’l)) — U, x Map(4, S1),

Mg, ((f, ), (g,u)) = (fg,)\(f 1) 62”“’“‘“("f“")),
where f -y is the function (f - u)(A) = u(Af) and for fixed f and g
Wap (5 F,9) A== R, wap~(4; f,9) 1= wap~(f9)(A). (3.7)
Denoting s,p,, = €27« (:/:9) the following compatibility condition is satisfied:
SapA (A5 1,9) = Gaar (A; [)bppr (AT59) by (A; £9) ™ 0040 (45 £, 9), (3.8)
whenever f € Uy, NUy, 9 € UsNUg and fg € UyNU,.. This is just the condition
that we can glue together the local multiplication maps mg& , toa well-defined

global smooth multiplication map m9:6xG6—¢.
Ignoring the various lower indices, the group 2-cocycle condition reads:

w(9192,93) +w(g1, g2) = w(g1, g293) + g1 - w(g2, g3), (3.9)
where g1 - w(+; g2, 93) : A — R is the function
g1 - w(A;92,93) = w(A; g2, 93).

Notice, that this condition is equivalent to the associativity of the product on G.
Recall, that groupoid multiplication in T' = (A x G = A;s,t,m,i,e) is defined
by

m:T® = (AXG) x5t (AXG) — AxG
{((Alagl)a(AQaQQ)) EAXG) X (AXG)| As :Agl} S AXG,

m((Alﬂgl)ﬂ (A?Ivgz)) = (A1,9192),

where

s:AxXG— A s(A,g)=A
is the source map and

t:AxG— A, t(Ag) = A9
is the target map.

Now {AxU,}«er is an open covering of Ax G. We use the local group 2-cocycles
wWag,y : Ua x Ug — Map(A, R) to define maps

CaBy * {((A1,91), (A27g2)) € (AX Ua) X (AX Uﬂ) A2 — A?l, gigs € U'y} N Sl,

g1 _ 2miwag,y(A1,91,92
00517(‘417917‘41 792)*6 g )'

We assume that the 2-cocycles wqs,, depend smoothly on the variable A € A so
that the maps cnp,4 are smooth as well, when we give the sets where the different
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cap,y are defined the manifold structure described below. It follows from (3.9) that
these satisfy the following cocycle condition

C(Alﬂ g1, Aih 5 g?)c(Alv 9192, A?Igz ) 93) = C(A?I , 92, Agz ) 93) : (310)
(A1, 91, AT, 9293).
Next, we define the following local multiplication maps by

Mapy {((Al,gl,)\), (Ag,gg,u)) € (Ax Uy x SY) x (A x Us x 1) ‘ Ay = AT

g1 eUaa gQEUBagl.QQ eUVa )‘auesl} —>AXU’YX515

maﬁn((z‘hagh)\), (Ai“,gz,u)) = (Al,glgm)\u : caﬂ,w(Ahgl,A“{l,gz))-
Notice, that the set where mqg  is defined is an open subset of the manifold
(A X Ua X Sl) XSOPTLz%A%tOPTLz (A X UB X Sl)
as the inverse image of the open set U, C G under the smooth map

meP . (Ax U, x SY X sopry g5Aitopr; (AxUg x SH —g,

m*” ((A1,gl,)\), (Afl,gmu)) = 19>

Moreover, (A x Uy X S*) X sopr, ;Astopr, , (A x Ug x S1) is indeed a manifold, since
both maps s|4xv, opr; » and tuxUﬂ opfu are surjective submersion as composites
of surjective submersions. Similarly, each c.g - is defined on an open subset of the
manifold

(A X Ua) X s| AxUa;Ast] axugy (A x Up)

Since the restrictions P|axy, =: 7 (A x Uy) — A x U, of the S'-bundle P
in ([B.8) are trivial, i.e. there exists an S'-bundle isomorphism
Plaxvu, 2 Ax U, x Sl,

one can patch together the various maps mqg,, to obtain a partial multiplication
map mp on the total space P of the S'-bundle 7 : P — A x G. Here by “partial
multiplication” we mean that not every pair of elements in P can be multiplied
together. The cocycle condtion ([B.I0) guarantees that the multiplication map mp
is associative. We want to make these arguments rigorous and show, that this
makes P = A a groupoid.

Proposition 3.43. (P = A, mp,sp,tp) is a Banach-Lie groupoid, where the
source and target map sp and tp are defined so that

Ssp=soTm tp =tom.

Proof. First, note that sp and tp are surjective submersions as compositions of two
surjective submsersions.
Next, choose bundle isomorphisms giving local trivializations

%:Aanxslépuan,

for each a € I. Hence for each a € I we have a commutative diagram
Ax Uy x St 2—>P|AxUQ
prl,Zl lWIAxUQ
Ax U, id AxU,

where ¢, is an S'-equivariant map of manifolds and pryo(A4,9,A) = (4,9). From
this we see that

5P| AxU. © o = 8| AxU, ©Pry 2 = pry,
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where
pryc Ax Uy x S* — A, pry(A4,g,\) = A.
and
splaxuv, : Plaxu, — A, Slaxu, : Ax Uy, — A,
3P|A><Ua = 5|A><Ua o 7"'|A><Ua-
Hence
splaxu. =pry oyt

Similarly

tplaxu, © Yo = tlaxv, ©Pry 2
or

tplaxu, = tlaxu, oPrioo @y’
We want to construct a global multiplication map

mp: P Xsp pgtp P— P

from the local multiplication maps mqg,~ introduced above. We denote by sp o =
splaxuv, for every a € I and similarly tp, = tp|axv,. Then

P|A><Ua XSP,a;A;tPﬂ P|.A><UB g P XSp,.A,tp P
Define
(P|.A><Ua XSPVQ;A;tP,B P|A><Uﬂ)v

as the open subsetset of P|axu, X 5 aiastp g Plaxu, so that
-1
(fﬂAxulstmAﬁRﬁfﬂAxug)v:: GnaBO(panIHQ)O(wglX<p§5) (U)-

We may now define mp,qg. : (P|Aan Xspaip s P|Ang) — P,
' gl

MPiagy = Py 0 Magy 0 (05 X ‘PEI)-

This gives us a well-defined global multiplication map mp : Pxs+P — P, because
of equation (3.8)), that guarantees us that the local multiplication maps at the group
extension level glue together.

The other maps in the definition of a Lie groupoid are defined on local trivial-
izations Plaxu, = A x U, x St so that

€P(A) - (Aa 1Ga 1)3
ir(A g, A) = (A% g~ A7)
O

Proposition 3.44. P = A is an S'-(Banach-Lie groupoid) central extension of
the action gropoid A x G.

Proof. We first claim, that the following diagrams commute:

P—5AxG (3.11)

4

®

A—L >4
P—AxG (3.12)
A—L - 4
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™XTT

PXSPytPP—> (AXg) Xt (Axg) (313)
P z AxG
P—>AxG (3.14)
P—>AxgG

(1) Now, diagram (BII) commutes by definition.

(2) On local trivializations of the S'-bundle 7 : P — A x G, the elements of
the total space P are of the form (A, g, \), where A € A, g € G and \ € S*.
Hence

(moep)(A) =m(A,1g,1) = (4,1g) = e(4),
so that (B12) commutes.
(3) Again, locally

mP((Ah!h,)\)a (A“{l,gmu)) = (A1,9192,C(A1,91,A‘(171,92)) o (A1, 9192),
and on the other hand
(7T X W)((Augl,/\),(Aih,gz,M)) = ((Ahgl),(A‘(fl,%)) s (A1,9192)7

which shows that (3I3) commutes.
(4) On local trivializations

(iom)(A,g,\) =i(A,g)= (A%, g ) =7n(A%, g A1) = (moip)(A g,N).

This data gives us a morphism of Lie groupoids (m,id) : [P = A] — [Ax G =2 A].
Moreover, 7 : P — Ax G is a principal S!-bundle by construction. The only thing
left is to check that (s-x)(t-y) = (st)-(zy) for all s,t € S* and (z,y) € PXs, atp P
To see this, we look at the local picture, again. Thus, let ©+ = (A1, ¢91,A) and
y = (A", g2, 11). Now

(S'r)(ty) = (Al,gl,S/\) ! (A?17g2,‘u) = (Alvglg%St)‘M'C(AlaglaAglﬂQQ))
— (st)- (ay).
O
By Example 2.26. in [L-GTuXu| the cocycle condition (BI0) of the family
{cap,~} guarantees that it gives a 2-cocycle in the simplicial cohomology H?(A x
G*,S%) (i.e. an element of the Cech cohomology with respect to out groupoid cover).

On the other hand this class is the class corresponding to the Morita equivalence
class of the constructed S*-groupoid extension of A x G under the isomorphism

Ext*™ (A x G, S') =~ H*(Ax G*,S").

(see Proposition 2.17, [L-GTuXul). Next, recall from Example that the Lie
groupoid A x G corresponds to the quotient stack [A4/G] and

H*(AxG*,8") = H*([A4/G],S").

Propostion produces then a gerbe 9 over the stack [A/G] whose gerbe class is
the cohomology class of the 2-cocycle {cap 4}
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Remark 3.45. Note that the original multiplication in Q can be reconstructed from
the associated S'-groupoid extension P = A using (3.7). Since we noticed earlier
that the original Map(A4, S')-bundle p : G —> G can be reconstructed from the
associated S'-bundle 7 : P — Ax G we conclude that the whole group extension G
with its original principal bundle structure can be reconstructed from the associated
Sl-gropoid extension P = A.

APPENDIX A. I.L.H. MANIFOLDS AND LIE GROUPS

Our references are [Bry2| and [Pay].

Definition A.1. A topological vector space E is called an I.L.H. vector space if
E= @n ‘H,, is an inverse limit of separable Hilbert spaces H.,.

Hence, the topology of an L.LL.H. vector space E is the inverse limit topology.
This is the coarsest topology which makes all the projection maps p, : F —
‘H,, continuous. Often one wants to impose the following extra condition in the
definition of an I.L.H. vector space:

e For every open ball B in H,,, we have

pn'(B) =pn'(B). (A.1)

Theorem A.2. Let X be a paracompact manifold, modelled on an I.L.H. vector
space E satisfying (A1). Then for any open coveringUd = {U;}icr of X there exists
a smooth partition of unity subordinate to U.

Definition A.3. An I.L.H. topological group G is called an I.L.H. Lie group if it is
a smooth I.LL.H. manifold with the group operations given by smooth I.L.H. maps.

Definition A.4. Let P, B be smooth I.L.H. manifolds modelled on I.L.H. vector
spaces E and F' respectively, 7 : P — B a smooth I.LL.H. map and G an L.L.H.
Lie group. Then (P, B,G,n) is an I.L.H. principal bundle if the transition maps
are smooth I.LH.L. maps.

Let (P, M,G, ) be a smooth principal G-bundle on a closed manifold M, where
we assume all the manifolds to be finite dimensional and that G is compact. Let
E = ad P := P x¢ Lie(G), where G acts on Lie(G) by the adjoint action, and
F:=T"M ®adP.

Example A.5. The space A(P) of smooth connections on P is an affine I.L.H
space with tangent vector space C*(F).

Example A.6. Let Eg = Ad P := P X¢g G where G acts on itself by the adjoint
action. Then the set G(P) := C*°(E¢) is an LL.H. Lie group modelled on C*(E).
It corresponds to the group of gauge transformations of the principle G-bundle P,
i.e. the group of automorphisms of P that cover the identity.

Example A.7 (Infinite dimensional Grassmannian of Segal and Wilson). Let H be
a separable Hilbert space with an orthogonal decomposition H = H; @& H_. Recall
that for any two Hilbert spaces H; and Ho the space H.S.(H1,Hz) of Hilbert-
Schmidt operators T : H1 — H2 is a Hilbert space with norm ||T'||, = /Tr(T*T).
Let Gry.s(H) denote the set of closed subspaces W C H such that

(1) The orthogonal projection onto H., prj;, : W — H is Fredholm;
(2) The orthogonal projection onto H_, pry, : W — H_ is Hilbert-Schmidt.

Then Gr,.s(#) is a Hilbert manifold modelled on H.S.(H4, H_).
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