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ASYMPTOTIC INTEGRATION AND DISPERSION FOR

HYPERBOLIC EQUATIONS

TOKIO MATSUYAMA† AND MICHAEL RUZHANSKY∗

Abstract. The aim of this paper is to establish time decay properties and disper-
sive estimates for strictly hyperbolic equations with homogeneous symbols and with
time-dependent coefficients whose derivatives belong to L1(R). For this purpose,
the method of asymptotic integration is developed for such equations and repre-
sentation formulae for solutions are obtained. These formulae are analysed further
to obtain time decay of Lp–Lq norms of propagators for the corresponding Cauchy
problems. It turns out that the decay rates can be expressed in terms of certain
geometric indices of the limiting equation and we carry out the thorough analysis
of this relation. This provides a comprehensive view on asymptotic properties of
solutions to time-perturbations of hyperbolic equations with constant coefficients.
Moreover, we also obtain the time decay rate of the Lp–Lq estimates for equations
of these kinds, so the time well-posedness of the corresponding nonlinear equations
with additional semilinearity can be treated by standard Strichartz estimates.

1. Introduction

This paper is devoted to several aspects of strictly hyperbolic equations of higher
orders or of strictly hyperbolic systems with time-dependent coefficients. In particu-
lar, we will investigate the following topics:

• representation of solutions of equations of higher order;
• dispersive estimates for solutions.

Equations of orders larger than two appear often in the analysis of large first order
systems and in the analysis of coupled equations of higher orders. In the present paper
we will restrict our attention to the investigation of equations with homogeneous
symbols (at the same time making a suitable preparation for the further development
of this topic for equations with low order terms). In fact, we will concentrate on
scalar equations of some order m ∈ N keeping in mind that in the case of a system
its dispersion relation (the determinant) will be of such form, so the information on
solution to the Cauchy problem for the dispersion relation will imply the information
on solutions to the Cauchy problem of the original system. On one hand, we will
introduce several techniques allowing to deal with equations of higher orders. On the
other hand, already for the second order equations the new method that we propose
in this paper will yield certain improvements and extensions of known results. In
particular, we will improve the result on the decay rates in the dispersive estimates
already for the time-dependent wave equation, as well as the time decay rate for
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the standard Kirchhoff equation, thus also improving the corresponding Strichartz
estimates. It will also allow the inclusion of mixed terms in second order equations (a
question which is known to be very delicate if we want to treat problems outside the
perturbation framework). We will allow time-dependent coefficients and will assume
that their derivatives are in L1(R). It is known that this property is satisfied in
many situations, for example in applications to Kirchhoff equations and systems,
etc. This will also allow us to obtain a comprehensive view on time-perturbations of
equations with constant coefficients, in which case the assumption of the integrability
of derivatives of coefficients is quite natural. For the purposes of this paper, we will
develop the asymptotic integration method for hyperbolic partial differential equations
with time-dependent coefficients. While this method is relatively well-known in the
theory of ordinary differential equations (see e.g. Hartman [7]), its use in partial
differential equations appears to be new.
We note that equations with constant coefficients have been thoroughly studied by

Sugimoto in a series of papers [24, 25, 26] who described several interesting geometric
quantities responsible for the rate of the time decay of Lp–Lq norms of their propa-
gators. In particular, one has to look at the level sets of the characteristic roots of
the symbol and at the orders with which tangent lines touch these sets. These orders
become responsible for the time decay rate in the corresponding dispersion estimates
and for indices of the subsequent Strichartz estimates. In fact, the appearing indices
are related to the oscillation indices of integral kernels of the propagators, viewed as
oscillatory integrals, and their classification is well studied in the singularity theory
(e.g. [1]).
The case of strictly hyperbolic equations with constant coefficients with lower order

terms has been thoroughly investigated in [22]. In particular, properties of charac-
teristic roots are crucial in determining exact decay rates and the complete analysis
is quite lengthy and involved. For example, in the case of equations of dissipative
types analysed in [21] the decay rate is determined by properties of characteristics for
small frequencies. A general analysis of this type is necessary for application to large
systems, such as Grad systems in gas dynamics, or to Fokker-Planck equations, in
which case the Galerkin approximation produces a sequence of scalar equations with
orders going to infinity, see e.g. [19]. Applications to such problems give a strong
additional motivation to the investigation of equations of higher orders of the type
of those treated in this paper.
To become more precise, we consider the Cauchy problem for an mth order strictly

hyperbolic equation with time-dependent coefficients, for function u = u(t, x):

(1.1) L(t, Dt, Dx)u ≡ Dm
t u+

∑

|ν|+j=m
j≤m−1

aν,j(t)D
ν
xD

j
tu = 0, t 6= 0,

with the initial condition

(1.2) Dk
t u(0, x) = fk(x) ∈ C∞

0 (Rn), k = 0, 1, · · · , m− 1, x ∈ R
n,

where Dt = −i∂t and Dν
x = (−i∂x1

)ν1 · · · (−i∂xn
)νn, i =

√
−1, for ν = (ν1, . . . , νn).

Denoting by Liploc(R) the space of all functions which are locally Lipschitz on R, we
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assume that each aν,j(t) belongs to Liploc(R) and satisfies

(1.3) a′ν,j(t) ∈ L1(R) with |ν|+ j = m.

Moreover, following the standard definition of equations of the regularly hyperbolic
type (e.g. Mizohata [15]), we will assume that the symbol of the differential operator
L(t, Dt, Dx) has real and distinct roots ϕ1(t; ξ), . . . , ϕm(t; ξ) for ξ 6= 0, and that

(1.4) L(t, τ, ξ) = (τ − ϕ1(t; ξ)) · · · (τ − ϕm(t; ξ)),

(1.5) inf
|ξ|=1,t∈R

j 6=k

|ϕj(t; ξ)− ϕk(t; ξ)| > 0.

Let us point out the main difficulties when trying to establish dispersive estimates
(i.e. the time decay estimates for the Lp–Lq norms) for equation (1.1). Contrary to
the energy methods, for dispersive estimates we need to have a good idea about the
propagators for the Cauchy problem (1.1)–(1.2). Thus, we need to make advances in
the following two problems:

• to derive representation formulae for propagators for the Cauchy problem
(1.1)–(1.2) with time-dependent coefficients. Ideally these propagators would
be in the form of oscillatory integrals;

• to analyse the obtained representation formulae for propagators taking into
account the geometric properties of characteristics which we know should be
responsible for the time decay rates of Lp–Lq norms of propagators.

Thus, the aim of the paper is twofold. First, we will present representation formulae
for propagators for such equations. For this purpose we will develop the asymptotic
integration method which is a parameter dependent version of the asymptotic inte-
gration of ordinary differential equations (see e.g. [7]). We will trace the dependence
on the parameter (which is the frequency in this case) which is essential for further
investigation. This method, however, will present somewhat surprising results. For
example, the amplitudes of propagators expressed in this form will have symbolic be-
haviour of type (0, 0) rather than the usual (1, 0). Nevertheless, this will be enough
to carry out the second aim of this part which is the further investigation of the time
decay properties of the propagators. The price that we will have to pay is that we
may have to assume additional regularity of the Cauchy data for high frequencies.
However, this is not so bad because estimates for bounded times already will require
similar regularity assumptions.
We will analyse the obtained representations to derive time asymptotics of Lp–Lq

norms of the necessary oscillatory integrals. There are several important differences
with the case of the wave equation, where level sets of characteristics are nothing else
but spheres, so one can simply apply the stationary phase method to the obtained os-
cillatory integrals. Now the critical points may be degenerate so the stationary phase
method (especially in the parameter depending setting that we have here) does not
work. In fact, the non-degeneracy of critical points is a rather strong assumption for
higher order equations, where degeneracy of higher order may easily happen (exam-
ples of this are e.g. in [25]). That is why we will allow them to be degenerate of a
finite order, and the time decay rates will depend on this order. On the other hand,
van der Corput type estimates that are normally used in place of the stationary phase
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in such problems are essentially one-dimensional, and they do not take into account
the geometric properties of characteristics (phases and characteristics do come from
a hyperbolic equation after all). So, we need to apply a parameter dependent version
(now time is the parameter) of van der Corput’s lemma uniformly in n− 1 directions
of non-vanishing higher order curvatures. Moreover, this has to be done uniformly
with respect to the time dependence of the propagators. In fact, we will relate the
time-decay rates to the Sugimoto’s indices of levels sets of characteristic roots of the
limiting equation, thus establishing a more or less complete picture of perturbation
properties of dispersive estimates for strictly hyperbolic equations with homogeneous
symbols. For example, in the case of convex level sets one introduces the convex
index γ which is the largest order of tangency of tangent lines to the level sets of
characteristics of the limiting equation and it turns out that the Lp–Lq norm of the

corresponding propagator decays as t−
n−1

γ . In the case of the second order equations
one has γ = 2 and so one recovers that standard rate of decay of the wave equation
(see [4, 5, 10, 23]), and many other known results for the time independent wave type
second order equations. We also note that such index γ does not play any role for
Lp–Lp estimates, where singularities of the projection from the canonical relations to
the base space start playing a role (see e.g. survey paper [18]). The inclusion of mixed
derivatives in the symbols may influence the value of γ. Moreover, mixed terms may
make the analysis more complicated. Already for the second order equations this
was demonstrated by Hirosawa and Reissig in [8], for the problem of the influence of
oscillations in coefficients.
In addition, methods introduced in this paper may be applied to the study of

strictly hyperbolic systems. For example, let A(t, Dx) be the first order m × m
pseudo-differential system, with entries aij(t, ξ) being homogeneous with respect to
ξ of order one and such that ∂taij(·, ξ) ∈ L1(R) for all ξ ∈ Rn. We consider the
evolution equation

(1.6) ∂tU = iA(t, Dx)U, U(0, x) = f(x), x ∈ R
n.

Let us assume that system (1.6) is uniformly strictly hyperbolic (see Mizohata [15]),
i.e. that its characteristics ϕk(t; ξ), k = 1, · · · , m, are real, and satisfy condition (1.5).
Then the strict hyperbolicity implies that we can diagonalise it similar to Lemma 2.1.
Thus, system (1.6) splits into m scalar first order equations of the form

∂tvk = iϕk(t;Dx)vk, k = 1, . . . , m,

for function vk related to the original vector function U . The condition on the inte-
grability of time-derivatives of A implies that there is a limiting system A±(t, ξ) =
limt→±∞A(t, ξ) with characteristics ϕ±

k (ξ) = limt→±∞ ϕk(t; ξ), which exist since we
assume that ∂tϕk(·; ξ) ∈ L1(R). Therefore, solutions vk(t, x) can be analysed using
estimates for oscillatory integrals that we establish in §4. Details of this analysis are
different from those for the scalar equation (1.1), especially in the way of keeping
track of the representation form for the time derivatives of the solution, so we omit
the analysis of systems from this paper and it will appear elsewhere, together with
its specific applications and with refinements of the analysis of high frequencies. We
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will also not discuss the case of oscillations in this paper, but we refer to, for exam-
ple, the survey [17], for the overview of the case of the wave equations. The case of
oscillations in higher order equations will appear elsewhere.
Thus, in §2 we will discuss the asymptotic integrations of the ordinary differential

equations corresponding to our problem. Using these implicit representations, we will
succeed to obtain the asymptotic integrations of (1.1)–(1.2). The precise statement
will be given in §3.
Let us now give an informal overview of this method. Writing equation (1.1) as a

system for

U =
(
|D|m−1u, |D|m−2Dtu, . . . , D

m−1
t u

)T

and taking the Fourier transform with respect to x, we can reduce it to the first order
Cauchy problem

(1.7) DtU = A(t; ξ)U, U(0) = U0.

If we denote

ϑj(t; ξ) =

∫ t

0

ϕj(s; ξ) ds, j = 1, . . . , m,

a natural candidate for the fundamental matrix for (1.7) is

Φ(t; ξ) = diag
(
eiϑ1(t;ξ), · · · , eiϑm(t;ξ)

)
.

So, we look for the solution of (1.7) in the form

U = Φ(t; ξ)V, with V (t; ξ) = ααα(ξ) + εεε(t; ξ),

where we want εεε(t; ξ) to decay as t→ ±∞. It can be checked that there is a matrix
A0(t; ξ) such that DtΦ = A0Φ and we get

DtU = Dt(ΦV ) = (DtΦ)V + ΦDtV = A0U + ΦDtεεε.

Thus, U becomes the solution of (1.7) if we choose V and εεε such that

(1.8) DtV ≡ Dtεεε = Φ−1(A− A0)ΦV.

In §2 we will show that, in fact, there exists a global-in-time solution V of equation
(1.8) of the required form V = ααα+εεε. Moreover, εεε satisfies the property that εεε(t; ξ) → 0
as t→ ±∞ for all ξ 6= 0. In addition, we will show the decay orders of both ααα(·) and
εεε(t; ·) and their derivatives. This will lead to an oscillatory integral representation of
solution u(t, x) of (1.1) of the form

(1.9) u(t, x) =

m−1∑

k=0

m∑

j=1

F−1
[
eiϑj(t;ξ)

(
αj
k,±(ξ) + εjk,±(t; ξ)

)
f̂k(ξ)

]
(x), t ≷ 0,

with amplitudes αj
k,±(ξ), ε

j
k,±(t; ξ) of the form of ααα and εεε above. In fact, Theorem

3.1 will also yield a similar representation for the derivatives of u(t, x) with respect
to time. The main difference with equations with time independent coefficients here
is that the amplitudes αj

k,±(ξ) and εjk,±(t; ξ) will have the symbolic behavior of the
type (0, 0) rather than the type (1, 0) usual for equations with constant coefficients.
Indeed, such choice of phases globally as ϑj(t; ξ) introduces low order errors in the
equation if we formally substitute (1.9) into (1.1) and as we know the lower order
terms may change the time decay properties in an essential way (this is especially
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apparent for Schrödinger equations, but is also true in the hyperbolic case). Thus,
the error should be somehow accounted for and the behaviour of amplitudes takes
care of this. In any case, since we know that the needed regularity of data comes from
other parts of the time-frequency phase space, we are still able to get the same time
decay rate under an additional regularity assumption in the high frequency zone. So
this difference does not change the final result in a big way.
Thus, in the second part of the paper we will use representation (1.9) to derive the

time decay of the Lp–Lq norms of u, which in turn leads to Strichartz estimates and
to well-posedness results for the corresponding semilinear equations in a rather (by
now) standard way, so we will derive the dispersive estimates and will omit the details
of the further standard analysis. In addition, in §4 we will present estimates for more
general oscillatory integrals. Such estimates may be used not only in the application
to the problem we are considering in this paper but in a wider range of applications.
The estimates will rely on estimates for parameter dependent oscillatory integrals
developed in [20]. We state such result here in Theorem 4.5. However, the meaning
of the parameter is different in our setting. Thus, in our problem here time acts as a
parameter while in problems for hyperbolic equations with constant coefficients but
with lower order terms considered in [22] the phase functions were not homogeneous
and their non-homogeneous contributions were considered to be a parameter from
the point of view of the perturbation theory. In principle, it should be possible to
combine problems with time-dependent coefficients with those with lower order terms
but this will be a subject of another paper – here we have an advantage of making
more use of the homogeneity of the symbols and hence also of phases, considerably
simplifying some arguments. The obtained results can be applied to the global in
time well-posedness problems of Kirchhoff equations of high orders and of Kirchhoff
systems. Such applications will be addressed elsewhere.
Let ϕ±

k (ξ) = limt→±∞ ϕk(t; ξ) be the limits of characteristic roots as will be shown
to exist in Proposition 2.3. Let us introduce the convex and non-convex Sugimoto
indices for the level sets of these functions. In the time independent setting these
indices have been introduced by Sugimoto in [24, 25]. These indices will determine
the decay rate of propagators for large frequencies.
Let ϕ ∈ C∞(Rn\0) be a homogeneous of order one function and let Σϕ = {ξ ∈ Rn :

ϕ(ξ) = 1} be its level set. Suppose first that Σϕ is convex. We define the convex

Sugimoto index γ(Σϕ) of Σϕ by

(1.10) γ(Σϕ) := sup
σ∈Σϕ

sup
P
γ(Σϕ; σ, P ) ,

where P is a plane containing the normal to Σϕ at σ and γ(Σϕ; σ, P ) denotes the
order of the contact between the line Tσ ∩ P (where Tσ is the tangent plane at σ),
and the curve Σϕ ∩ P .
In the case when the level set Σϕ is not convex, we get a weaker result based on the

van der Corput lemma. In this case we use the non-convex Sugimoto index γ0(Σϕ) of
Σϕ which we define as

(1.11) γ0(Σϕ) := sup
σ∈Σϕ

inf
P
γ(Σϕ; σ, P ) ,

where P and σ are the same as in the convex case.
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We note that for the second order equations we have γ = γ0 = 2 and the following
theorem covers the case of the wave equation as a special case, also improving the
corresponding result in [12]. We use the notation Lp

s(R
n) for the standard Sobolev

space with s derivatives over Lp(Rn), and by L̇p
s(R

n) we denote its homogeneous
version. The result on the dispersive estimates that we will prove among other things,
is as follows:

Theorem 1.1. Assume (1.3)–(1.5). Then the solution u(t, x) of (1.1) satisfies the

following estimates:
(i) Suppose that the set

Σϕ±
k
= {ξ ∈ R

n : ϕ±
k (ξ) = 1}

is convex for all k = 1, . . . , m, and set γ = max
k=1,...,m

γ(Σϕ±
k
). In addition, suppose that

(1 + |t|)ra′ν,j ∈ L1(R) for 1 ≤ r ≤ [(n − 1)/γ] + 1, and for all ν, j with |ν| + j = m.

Let 1 < p ≤ 2 ≤ q < +∞ and 1
p
+ 1

q
= 1. Then for all t ∈ R we have the estimate

(1.12) ‖Dl
tD

α
xu(t, ·)‖Lq(Rn) ≤

C(1 + |t|)−n−1

γ ( 1

p
− 1

q )
m−1∑

k=0

(
‖fk‖L̇p

Np+l+|α|−k
(Rn) + ‖fk‖L̇p

l+|α|−k
(Rn)

)
,

where Np =
(
n− n−1

γ
+
[
n−1
γ

]
+ 1
)(

1
p
− 1

q

)
, l = 0, . . . , m − 1, and α is any multi-

index.

(ii) Suppose that Σϕ±
k
is non-convex for some k = 1, . . . , m, and let us set γ0 =

max
k=1,...,m

γ0(Σϕ±
k
). In addition, suppose that (1+|t|)a′ν,j ∈ L1(R) for all ν, j with |ν|+j =

m. Let 1 < p ≤ 2 ≤ q < +∞ and 1
p
+ 1

q
= 1. Then for all t ∈ R we have the estimate

‖Dl
tD

α
xu(t, ·)‖Lq(Rn) ≤

C(1 + |t|)−
1

γ0
( 1

p
− 1

q )
m−1∑

k=0

(
‖fk‖L̇p

Np+l+|α|−k
(Rn) + ‖fk‖L̇p

l+|α|−k
(Rn)

)
,

where Np =
(
n− 1

γ0
+ 1
)(

1
p
− 1

q

)
, l = 0, . . . , m− 1, and α is any multi-index.

Remark 1.2. The way we formulate the estimates in Theorem 1.1 is to unify different

estimates for different parts of the solution. This may explain the appearance of two

norms in the right hand side of (1.12), for example, to account for both small and

large frequencies. The much more precise estimates are possible and they are stated

in Theorem 4.10.

Let us now make only a few short remarks to compare our results with what is
known for m = 2. In the constant coefficient case and p = 2 the estimates coincide
with those for constant coefficient equations considered in [24]. Also, in the case of
constant coefficients, the Sobolev index Np in the estimate (1.12) can be improved
since there is no addition of the integer part in its definition in this case. For the
detailed overview of constant coefficients case we refer to [22], and results in this
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direction for non-constant coefficients were announced in [14] and the detailed proofs
will appear elsewhere.
Further, in the time-dependent case, it can be already noted that the statement

of Theorem 1.1 goes beyond results available in certain energy classes. For example,
in the often considered case of the time–dependent wave equation (so that m = 2,
e.g. [8], [13], [16], [17], etc.) one obtains the estimate for ‖Dtu(t, ·)‖Lq(Rn) and
‖∇u(t, ·)‖Lq(Rn) only, and not for solution u itself. Moreover, the use of homogeneous
Sobolev spaces in (1.12) allows to gain more information in the low frequency region.
At the same time, also already for the case m = 2, we make the assumption on only
one derivative of the coefficients aν,j , which is another improvement compared with
the known literature. This improvement will be crucial in dealing with applications
to Kirchhoff equations.
We will denote 〈x〉 =

√
1 + |x|2. Constants may change from formula to formula,

although they are usually denoted by the same letter.
The authors thank Jens Wirth for remarks leading to an improvement of the man-

uscript.

2. Asymptotic integration of ODE

In this section we will construct the asymptotic integration of the ordinary differ-
ential equation. By applying the Fourier transform on Rn

x to (1.1), we get

(2.1) Dm
t v +

m∑

j=1

hj(t; ξ)D
m−j
t v = 0,

where

hj(t; ξ) =
∑

|ν|=j

aν,m−j(t)ξ
ν, ξ ∈ R

n

(note that there is a slight change of the meaning of j here compared to (1.1)). This
is the ordinary differential equation of homogeneous mth order with the parameter
ξ = (ξ1, . . . , ξn). As usual, the strict hyperbolicity (1.4)–(1.5) means that the charac-
teristic roots of (2.1) are real and distinct. We denote them by ϕ1(t; ξ), . . . , ϕm(t; ξ).
Notice that each ϕℓ(t; ξ) has a homogeneous degree of order one with respect to ξ.
In this section we will develop an asymptotic integration of the equation (2.1). Let
us start by writing (2.1) as the first order system. In (2.1) we put for brevity

Hj(t, ξ) = hj(t; ξ/|ξ|),
and denote

vj = |ξ|m−j−1Dj
tv, j = 0, 1, · · · , m− 1.

It is easy to see that

Dtvj = |ξ|vj+1, j = 0, 1, · · · , m− 2,

holds. Then (2.1) can be written as

Dtvm−1 +

m−1∑

j=0

Hm−j(t, ξ)|ξ|vj = 0.
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Hence, if we put

H(t, ξ) =




0 1 . . . 0

0 0
. . . 0

...
. . .

. . . 1
−Hm(t, ξ) −Hm−1(t, ξ) . . . −H1(t, ξ)


 ,

then (2.1) can be written by

(2.2) Dtvvv = H(t, ξ)|ξ|vvv,
where vvv = T (v0, v1, . . . , vm−1).
We will use the following lemma.

Lemma 2.1 ([15] Proposition 6.4). Assume (1.3)–(1.5). Then there exists a matrix

N = N (t; ξ) of homogeneous degree 0 satisfying the following properties:
(i) NH(t, ξ) = DN , where

D = D(t; ξ) = diag {ϕ1(t; ξ/|ξ|), . . . , ϕm(t; ξ/|ξ|)} ,
(ii) inf

ξ∈Rn\0,t∈R
|detN (t; ξ)| > 0,

(iii) N (t; ξ) is C∞ in ξ 6= 0, C1 in t ∈ R and ∂tN (t; ξ) belongs to L1(R) for each

ξ 6= 0.

We will first derive the energy estimates.

Lemma 2.2. Assume (1.3)–(1.5). Let vvv = vvv(t; ξ) be a general solution of (2.2).
Then, for all t ∈ R, we have

(2.3) |vvv(t; ξ)|2 ≤ C|vvv(0; ξ)|2e
R +∞
−∞

2‖∂tN (s;ξ)‖ ds.

Proof. Multiplying (2.2) by N = N (t; ξ) from Lemma 2.1, we get

Dt(Nvvv)−NH|ξ|vvv − (DtN )vvv = 0.

Putting Nvvv = www, we have

(2.4) Dtwww −D|ξ|www − (DtN )vvv = 0,

since NH = DN by Lemma 2.1. This implies that

∂t|www|2 = 2Re (∂twww ·www) = 2Re (iD|ξ|www ·www) + 2Re (i(DtN )vvv ·www) .
Taking account that iD|ξ| = −iD|ξ| and D is real and diagonal, we have

Re (iD|ξ|www ·www) = 0,

hence,

(2.5) ∂t|www|2 ≤ 2‖∂tN‖|vvv||www|.
Here, |vvv| and |www| are equivalent to each other. Indeed, there exists C1, C2 > 0 such
that C1|vvv| ≤ |www| ≤ C2|vvv| on account of Lemma 2.1. Thus, integrating (2.5), we arrive
at

|vvv(t; ξ)|2 ≤ C

(
|vvv(0; ξ)|2 +

∫ |t|

0

‖∂tN (s; ξ)‖|vvv(s; ξ)|2 ds
)
.

Since ∂tN ∈ L1(R) by Lemma 2.1 (iii), we conclude from Gronwall’s lemma that
(2.3) is true. The proof of Lemma 2.2 is complete. �
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As a consequence of (2.4) in the proof of Lemma 2.2, we have derived

(2.6) Dtwww −D|ξ|www − (DtN )N−1www = 0,

where we put www = Nvvv. We can expect that the solution of (2.6) is asymptotic to the
solution of

(2.7) Dtyyy = D|ξ|yyy.
Let Φ(t; ξ) be the fundamental matrix of (2.7), i.e.,

Φ(t; ξ) = diag
{
eiϑ1(t;ξ), · · · , eiϑm(t;ξ)

}
,

where we put

ϑj(t; ξ) =

∫ t

0

ϕj(s; ξ) ds, j = 1, . . . , m.

Let us first analyse certain basic properties of characteristic roots ϕk(t; ξ) of (1.4).

Proposition 2.3. Let the operator L(t, Dt, Dx) satisfy the properties (1.4)–(1.5).
Then each ∂tϕk(t; ξ), k = 1, . . . , m, is homogeneous of order one in ξ, and there exist

a constant C > 0 such that

(2.8) |∂tϕk(t; ξ)| ≤ C|ξ| for all ξ ∈ R
n, t ∈ R, k = 1, . . . , m.

Moreover, if a′ν,j(·) ∈ L1(R) for all ν, j, then we have also ∂tϕk(·; ξ) ∈ L1(R) for all

ξ ∈ Rn. Furthermore, there exist functions ϕ±
k ∈ C∞(Rn\0), homogeneous of order

one, such that

(2.9) ∂αξ ϕk(t; ξ) → ∂αξ ϕ
±
k (ξ) as t→ ±∞,

for all ξ ∈ Rn, all α, and k = 1, . . . , m. Finally, we have the following formula for

the derivatives of characteristic roots:

(2.10) ∂tϕk(t; ξ) = −
∑

|ν|+j=m

a′ν,j(t)ϕk(t; ξ)
jξν
∏

r 6=k

(ϕk(t; ξ)− ϕr(t; ξ))
−1.

Proof. Let us show first that ϕk(t; ξ) is bounded with respect to t ∈ R, i.e.,

(2.11) |ϕk(t; ξ)| ≤ C|ξ|, for all ξ ∈ R
n, t ∈ R, k = 1, . . . , m.

We will use the fact that ϕk(t; ξ) are roots of the polynomial L of the form

L(t, τ, ξ) = τm + c1(t, ξ)τ
m−1 + · · ·+ cm(t, ξ)

with |cj(t, ξ)| ≤ M |ξ|j, for some M ≥ 1. Suppose that one of its roots τ satisfies
|τ(t, ξ)| ≥ 2M |ξ|. Then

|L(t, τ, ξ)| ≥ |τ |m
(
1− |c1(t, ξ|)

|τ | − · · · − |cm(t, ξ)|
|τ |m

)

≥ 2M |ξ|m
(
1− 1

2
− 1

4M
− · · · − 1

2mMm−1

)
> 0,

hence |τ(t, ξ)| ≤ 2M |ξ| for all ξ ∈ Rn. Thus we establish (2.11).
Differentiating (1.4) with respect to t, we get

∂L(t, τ, ξ)

∂t
=

∑

|ν|+j=m

a′ν,j(t)τ
jξν = −

m∑

k=1

∂tϕk(t; ξ)
∏

r 6=k

(τ − ϕr(t; ξ)).
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Setting τ = ϕk(t; ξ), we obtain

(2.12) ∂tϕk(t; ξ)
∏

r 6=k

(ϕk(t; ξ)− ϕr(t; ξ)) = −
∑

|ν|+j=m

a′ν,j(t)ϕk(t; ξ)
jξν ,

implying (2.10). Now, using (1.5), (2.11), and the assumption that a′ν,j(·) ∈ L1(R)

for all ν, j, we conclude that (2.8) holds and ∂tϕk(·; ξ) ∈ L1(R) for all ξ ∈ R
n and

k = 1, . . . , m. The homogeneity of order one of ∂tϕk(t; ξ) is an immediate consequence
of (2.12) and its derivatives.
Finally, setting

ϕ±
ℓ (ξ) = ϕk(0; ξ) +

∫ ±∞

0

∂tϕk(t; ξ) dt,

we get (2.9) with α = 0. Differentiating this equality with respect to ξ, we get (2.9)
for all α. The proof is complete. �

We note that under the assumptions of Proposition 2.3 the coefficients aν,j(t) of
the operator L(t, Dt, Dx) in (1.1) have limits a±ν,j as t→ ±∞, namely

a±ν,j = aν,j(0) +

∫ ±∞

0

a′ν,j(t) dt.

Functions ϕ±
k (ξ) are characteristics of the limiting strictly hyperbolic operator

(2.13) L±(Dt, Dx)u ≡ Dm
t u+

∑

|ν|+j=m
j≤m−1

a±ν,jD
ν
xD

j
tu,

and their geometric properties are responsible for the time decay of solutions to
the Cauchy problems for both operators L(t, Dt, Dx) and L±(Dt, Dx). This will be
analysed in §4. We also note that since operator L±(Dt, Dx) has constant coefficients
its solution can be represented as a sum of oscillatory integrals in the standard way.
The dependence of coefficients of L(t, Dt, Dx) on time brings corrections to the phases
and amplitudes of this representation.
Next we make the representation formulae of solutions for our equation. The fol-

lowing proposition is known as Levinson’s lemma (see Coddington and Levinson [6])
in the theory of ordinary differential equations, the new feature here is the additional
dependence on ξ. For the convenience of the readers, we shall prove it along the
method of Ascoli [2] and Wintner [27] (cf. Hartman [7]).

Proposition 2.4. Assume (1.3)–(1.5). Then, for every nontrivial solution v(t; ξ)
of (2.1), there exist vectors of C∞-amplitude functions ααα±(ξ) and error functions

εεε±(t; ξ) such that

(2.14) vvv(t; ξ) = N (t; ξ)−1Φ(t; ξ) (ααα±(ξ) + εεε±(t; ξ)) , t ≷ 0,

where

(2.15) εεε±(t; ξ) → 000 for any fixed ξ 6= 0 as t→ ±∞.

Furthermore we have

(2.16) Dtεεε±(t; ξ) = C(t; ξ) (ααα±(ξ) + εεε±(t; ξ)) ,
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where C(t; ξ) belongs to L1(R) in t, and has the following form:

(2.17) C(t; ξ) = Φ(t; ξ)−1(DtN (t; ξ))N (t; ξ)−1Φ(t; ξ).

Proof. We can expect that every solution www = www(t; ξ) of (2.6) is asymptotic to some
solution yyy = yyy(t; ξ) of (2.7). If we perform the Wronskian transform zzz = Φ(t; ξ)−1www,
then the system (2.6) reduces to a system Dtzzz = C(t; ξ)zzz, where C(t; ξ) is given by
(2.17).
We will now prove that (2.14)–(2.15) hold for every nontrivial solution v = v(t; ξ).

It follows from Lemma 2.2 that

|zzz(t; ξ)| ≤ ‖Φ(t; ξ)−1‖|www(t; ξ)| ≤ c|www(t; ξ)| ≤ c1|www(0; ξ)|
for all t ∈ R and some constant c1. Using this bound and equation Dtzzz = C(t; ξ)zzz,
we have

|Dtzzz(t; ξ)| ≤ ‖C(t; ξ)‖ |zzz(t; ξ)| ≤ c1|www(0; ξ)|‖C(t; ξ)‖,
hence Dtzzz(·; ξ) ∈ L1(R) on account of C(·; ξ) ∈ L1(R). Thus {zzz(t; ξ)}t∈R is a conver-
gent function, and there exists

lim
t→±∞

zzz(t; ξ) =: ααα±(ξ).

If we set

(2.18) εεε±(t; ξ) = zzz(ξ, t)−ααα±(ξ),

then zzz(t; ξ) can be written as zzz(t; ξ) = ααα±(ξ) + εεε±(t; ξ) for t ≷ 0, and further,
εεε±(t; ξ) decays as t → ±∞ for any fixed ξ 6= 0, which proves (2.15). Since www(t; ξ) =
Φ(t; ξ)zzz(t; ξ), we get the formula (2.14). Finally, differentiating (2.18) with respect
to t and using the equation Dtzzz = C(t; ξ)zzz, we get (2.16). The proof of Proposition
2.4 is now complete. �

Finally, we will need the estimates for higher order derivatives of C(t; ξ) appearing
in Proposition 2.4.

Lemma 2.5. Assume (1.3)–(1.5). Then the µth derivatives for each entry cjk(t; ξ)
of C(t; ξ) satisfy

(2.19)
∣∣∂µξ cjk(t; ξ)

∣∣ ≤ c|ξ|−|µ|(1 + |t|)|µ|Ψ(t), j, k = 1, . . . , m,

for |µ| ≥ 1 and |ξ| ≥ 1, where

(2.20) Ψ(t) =
∑

|ν|+j=m
j≤m−1

∣∣a′ν,j(t)
∣∣ .

For 0 < |ξ| < 1 and |µ| ≥ 1, we have

(2.21)
∣∣∂µξ cjk(t; ξ)

∣∣ ≤ c|ξ|−|µ|(1 + |t|)|µ|Ψ(t), j, k = 1, . . . , m.

Moreover, assume that (1 + |t|)|µ|a′ν,j(t) ∈ L1(R) for all ν, j, and for some µ with

|µ| ≥ 1. Then we have ∂µξ cjk(t; ξ) ∈ L1(R).
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Proof. Since ϕj(t; ξ) is homogeneous of order one, we have

|∂µξ ϕj(t; ξ)| ≤ c|ξ|−|µ|+1 for ξ ∈ R
n \ 0, j = 1, . . . , m,

and hence,

|∂µξ ϑj(t; ξ)| ≤
∫ |t|

0

|∂µξ ϕj(s; ξ)| ds ≤ c|t||ξ|−|µ|+1, for ξ ∈ R
n \ 0, j = 1, . . . , m.

Thus we get, for every multi-index µ,

(2.22)
∣∣∂µξ eiϑj(t;ξ)

∣∣ ≤
{
c(1 + |t|)|µ|, |ξ| ≥ 1,

c(1 + |t|)|µ||ξ|−|µ|+1, 0 < |ξ| < 1.

Now let us go back to (2.17). It follows from (2.10) that ∂tN is represented by
a′ν,j. Hence, using (2.22) and differentiating (2.17) with respect to ξ, we conclude

that µth derivative of cjk(t; ξ) with respect to ξ is bounded by |ξ|−|µ|(1+ |t|)|µ|Ψ(t) for
|ξ| ≥ 1, where Ψ(t) is given in (2.20). ∂µξ cjk(t; ξ) ∈ L1(R) follows from the assumption

(1 + |t|)|µ|a′ν,j(t) ∈ L1(R) for all ν, j. The proof of Lemma 2.5 is complete. �

3. Representation of solution

In this section we will establish the representation formulae for solutions of the
Cauchy problem (2.1) in the form of the oscillatory integrals. Let

V (t; ξ) = T (vvv0(t; ξ), . . . , vvvm−1(t; ξ))

be the fundamental matrix of (2.6). This means that V (0; ξ) = I. Then it follows
from Proposition 2.4 that each vvvj(t; ξ) can be represented by

(3.1) vvvj(t; ξ) = N (t, ξ)−1Φ(t; ξ) (αααj,±(ξ) + εεεj,±(t; ξ)) .

Let u(t, x) be the solution to (1.1) with the Cauchy data Dk
t u(0, x) = fk(x). Put

ûuu(t, ξ) =
(
|ξ|m−1û(t, ξ), . . . , |ξ|m−1−lDl

tû(t, ξ), . . . , D
m−1
t û(t, ξ)

)T
.

Then we can write ûuu(t, ξ) = V (t; ξ)ûuu(0, ξ); thus we arrive at

(3.2) |ξ|m−1−lDl
tû(t, ξ) =

m∑

j=1

m−1∑

k=0

eiϑj(t;ξ)nlj(t; ξ)
(
αk
j,±(ξ) + εkj,±(t; ξ)

)
|ξ|m−1−kf̂k(ξ),

where nlj(t; ξ) is the entry of N (t; ξ)−1:

N (t; ξ)−1 =
(
nlj(t; ξ)

)
l=0,...,m−1

j=1,...,m

.

Summarizing the above argument, we have the representation formulae of (1.1)–
(1.2).

Theorem 3.1. Assume (1.3)–(1.5). Then there exists αj
k,±(ξ) and ε

j
k,±(t; ξ) such that

the solution u(t, x) of our problem (1.1)–(1.2) is represented by

Dl
tu(t, x) =

m∑

j=1

m−1∑

k=0

F−1
[
eiϑj(t;ξ)nlj(t; ξ)

(
αk
j,±(ξ) + εkj,±(t; ξ)

)
|ξ|l−kf̂k(ξ)

]
(x), t ≷ 0,
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for l = 0, . . . , m− 1, where

∣∣αk
j,±(ξ)

∣∣ ≤ c,
∣∣εkj,±(t; ξ)

∣∣ ≤ c

∫ +∞

|t|

Ψ(s) ds,

and Ψ(t) is defined by (2.20) from Lemma 2.5. For the higher order derivatives of

amplitude functions, we have, for |µ| ≥ 1,
∣∣∂µξ αk

j,±(ξ)
∣∣ ≤ c,

∣∣∂µξ εkj,±(t; ξ)
∣∣ ≤ c e

R |t|
0

(1+s)|µ|Ψ(s) ds, |ξ| ≥ 1,

∣∣∂µξ αk
j,±(ξ)

∣∣ ≤ c|ξ|−|µ|,
∣∣∂µξ εkj,±(t; ξ)

∣∣ ≤ c e
R |t|
0

(1+s)|µ|Ψ(s) ds|ξ|−|µ|, 0 < |ξ| < 1.

If in addition to (1.3)–(1.5), we further assume that (1 + |t|)|µ|a′ν,j(t) ∈ L1(R) for

some µ with |µ| ≥ 1, and for all ν, j, then the bound for each ∂µξ ε
k
j,±(t; ξ) is uniform

in t.

Proof of Theorem 3.1. We must determine the precise growth order of αk
j,±(ξ) and

εkj,±(t; ξ) with respect to ξ.

Lemma 3.2. Assume (1.3)–(1.5). Then there exists a constant c > 0 such that, for

j = 1, . . . , m and k = 0, . . . , m− 1,

∣∣αk
j,±(ξ)

∣∣ ≤ c,
∣∣εkj,±(t; ξ)

∣∣ ≤ c

∫ +∞

|t|

Ψ(s) ds.

Proof. Let us go back to (3.1). Then we have, by using Lemma 2.2,

(3.3) |αααj,±(ξ) + εεεj,±(t; ξ)| ≤
∣∣Φ(t; ξ)−1N (t; ξ)vvvj(t, ξ)

∣∣ ≤ c0

for j = 1, . . . , m. Since εεεj,±(t; ξ) decays to 000, it follows that

|αααj,±(ξ)| ≤ c0.

On the other hand, (2.16) is equivalent to the following integral equation:

εεεj,±(t; ξ) = i

∫ +∞

|t|

C(s; ξ) (εεεj,±(s; ξ) +αααj,±(ξ)) ds.

Thus combining this equation and (3.3), we get

|εεεj,±(t; ξ)| ≤ c0

∫ +∞

|t|

‖C(s; ξ)‖ ds ≤ c

∫ +∞

|t|

Ψ(s) ds.

The proof of Lemma 3.2 is finished. �

We need the estimates of higher order derivatives of amplitude functions.

Lemma 3.3. Assume (1.3)–(1.5). Then we have, for |µ| ≥ 1,
∣∣∂µξ αk

j,±(ξ)
∣∣ ≤ c, |ξ| ≥ 1,

∣∣∂µξ αk
j,±(ξ)

∣∣ ≤ c|ξ|−|µ|, 0 < |ξ| < 1,

(3.4)
∣∣∂µξ εkj,±(t; ξ)

∣∣ ≤ c e
R |t|
0

(1+s)|µ|Ψ(s) ds, |ξ| ≥ 1,

(3.5)
∣∣∂µξ εkj,±(t; ξ)

∣∣ ≤ c e
R |t|
0

(1+s)|µ|Ψ(s) ds|ξ|−|µ|, 0 < |ξ| < 1.
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In addition to (1.3)–(1.5), if we assume that (1 + |t|)|µ|C(t; ξ) ∈ L1(R) for some µ
with |µ| ≥ 1, then (3.4)–(3.5) is uniform in t.

Proof. Putting

Q(t, ξ) = (ααα0,±(ξ) + εεε0,±(t; ξ), · · · ,αααm−1,±(ξ) + εεεm−1,±(t; ξ))

we see that the matrix Q(t, ξ) satisfies

DtQ(t, ξ) = C(t; ξ)Q(t, ξ)

with the initial data

Q(0, ξ) = Φ(0; ξ)−1N (0; ξ)(vvv0(0; ξ), · · · , vvvm−1(0; ξ)) = N (0; ξ).

Then it follows from the theory of ordinary differential equations that Q(t, ξ) can be
written by Picard series:

(3.6) Q(t, ξ) =
(
I + i

∫ t

0

C(τ1; ξ) dτ1 + i2
∫ t

0

C(τ1; ξ) dτ1

∫ τ1

0

C(τ2; ξ) dτ2 + · · ·
)
N (0; ξ).

We note from Lemma 2.5 that

(3.7)
∥∥∂µξ C(t; ξ)

∥∥ ≤
{
c(1 + |t|)|µ|Ψ(t), |ξ| ≥ 1,

c(1 + |t|)|µ|Ψ(t)|ξ|−|µ|, 0 < |ξ| < 1.

where
Ψ(t) =

∑

j+|ν|=m
j≤m−1

|a′ν,j(t)| ∈ L1(R).

Differentiating (3.6) with respect to ξ, we have, by using (3.7),

(3.8)
∣∣∂µξ (αααj,±(ξ) + εεεj,±(t; ξ))

∣∣ ≤ c e
R |t|
0

(1+s)|µ|Ψ(s) ds

for all t ∈ R, |ξ| ≥ 1, |µ| ≥ 1 and j = 0, . . . , m−1, where we have used the following:

Fact. Let f(t) ∈ C(R). Then

e
R t

s
f(τ) dτ = 1 +

∫ t

s

f(τ1) dτ1 +

∫ t

s

f(τ1) dτ1

∫ τ1

s

f(τ2) dτ2 + · · · .

Since ∂t∂
µ
ξQ(t, ξ) =

(
∂t∂

µ
ξ εεε

j
k,±(t; ξ)

)
, we combine DtQ = CQ and (3.8) to deduce

that ∂t∂
µ
ξ εεε

j
±(0; ξ) exists and is uniformly bounded in |ξ| ≥ 1, which ensures the

existence of ∂µξ εεε
j
±(0; ξ). Using again (3.8) with t = 0, we conclude

∣∣∂µξαααj,±(ξ)
∣∣ ≤ c, |ξ| ≥ 1.

In a similar way, we get the bound for ∂µξαααj,±(ξ) in low frequency part 0 < |ξ| < 1.

If we combine these estimates with (3.8), we have the bound for ∂µξ εεεj,±(t; ξ):

∣∣∂µξ εεεj,±(t; ξ)
∣∣ ≤

{
c e

R |t|
0

(1+s)|µ|Ψ(s) ds, |ξ| ≥ 1,

c e
R |t|
0

(1+s)|µ|Ψ(s) ds|ξ|−|µ|, 0 < |ξ| < 1.

The proof of Lemma 3.3 is complete. �
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Completion of the proof of Theorem 3.1. The estimates of the amplitude and error
functions have been derived in Lemmas 3.2–3.3. The proof of Theorem 3.1 is now
finished. �

4. Estimates for oscillatory integrals; Proof of Theorem 1.1

The aim of this section is to establish time decay estimates for Lp–Lq norms of
propagators for the Cauchy problem (1.1), which gives the proof of Theorem 1.1.
The analysis of high frequencies will give estimates dependent on the geometry of the
level sets of characteristic roots of the equation. For small frequencies estimates are
independent of the geometry of the level set and are given by Proposition 4.1 below.
We recall that Theorem 3.1 assures in particular that the solution to the Cauchy
problem (1.1) is of the form

(4.1) u(t, x) =

m−1∑

k=0

m∑

j=1

F−1
[(
αj
k,±(ξ) + εjk,±(t; ξ)

)
eiϑj(t;ξ)f̂k(ξ)

]
(x), t ≷ 0.

The following Proposition 4.1 provides the time decay estimate for small frequencies
for each of the terms in this sum. To simplify the notation, we formulate it in a more
general form for general oscillatory integrals of the form

Ttf(x) =

∫

Rn

ei(x·ξ+ϑ(t;ξ))a(t, ξ)f̂(ξ) dξ.

In the analysis of oscillatory integrals in the sum (4.1) we will actually make time-
dependent cut-offs and analyse separately different ranges of frequencies. We can
obtain the following proposition for small frequencies |ξ| ≤ t−1. Higher frequencies
|ξ| ≥ t−1 will be analysed later. Thus, we introduce a cut-off function of the form
ψ((1 + |t|)ξ) for some ψ ∈ C∞

0 (Rn) such that ψ(ξ) ≡ 1 for |ξ| ≤ 1
2
, and 0 for

|ξ| ≥ 1. We recall that we use the notation L̇p
κ(R

n) for the homogeneous Sobolev
space Ẇ κ

p (R
n).

Proposition 4.1. Let Tt, t ∈ R, be an operator defined by

Ttf(x) =

∫

Rn

ei(x·ξ+ϑ(t;ξ))ψ((1 + |t|)ξ)a(t, ξ)f̂(ξ) dξ,

where ϑ(t; ξ) is real valued, positively homogeneous of order one in ξ. Assume that

the amplitude a(t, ξ) satisfies

(4.2) |ξ|κ|a(t, ξ)| ≤ C

for some κ ∈ R, and for all t ∈ R and all ξ ∈ suppψ((1 + |t|)ξ). Let 1 ≤ p ≤ 2 ≤
q ≤ +∞ be such that 1

p
+ 1

q
= 1. Then for t ∈ R we have the estimate

(4.3) ‖Ttf‖Lq(Rn) ≤ C(1 + |t|)−n( 1

p
− 1

q )‖f‖L̇p
−κ(R

n),

where constant C depends on n, p, q and the norm ‖|ξ|κa‖L∞.

Proof. We easily obtain

‖Ttf‖L2(Rn) ≤ C‖f‖L2
−κ(R

n)
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by the Plancherel identity. Thus (4.3) would follow by analytic interpolation from an
estimate:

(4.4) ‖Ttf‖L∞(Rn) ≤ C(1 + |t|)−n‖f‖L̇1
−κ(R

n).

In fact, since |a(t, ξ)||f̂(ξ)| ≤ C‖|ξ|κa‖L∞‖f‖L1
−κ(R

n), we can estimate

‖Ttf‖L∞(Rn) ≤
∫

|ξ|≤(1+|t|)−1

|a(t, ξ)||f̂(ξ)| dξ

≤C
(∫

|ξ|≤(1+|t|)−1

dξ

)
‖f‖L1

−κ(R
n) ≤ C(1 + |t|)−n‖f‖L̇1

−κ(R
n),

for all t ∈ R. This proves (4.4). The proof of Proposition 4.1 is complete. �

We now turn to the analysis of larger frequencies. The following proposition pro-
vides the necessary background to obtain the time decay estimate for large frequencies
for each of the terms in the sum (4.1). In fact, it will be used for frequencies |ξ| ≥ 1
but will be formulated here in a slightly more general form. The relation with the
sum (4.1) and a refinement for low frequencies will be also made in Proposition 4.6.

Proposition 4.2. Let Tt, t > 0, be an operator defined by

Ttf(x) =

∫

Rn

ei(x·ξ+ϑ(t;ξ))a(t, ξ)f̂(ξ) dξ,

where ϑ(t; ξ) is real valued, continuous in t, smooth in ξ ∈ Rn\0, homogeneous of

order one in ξ. Assume that the set

Σϕ = {ξ ∈ R
n\0 : ϕ(ξ) = 1}

is strictly convex and let γ = γ(Σϕ) be the convex Sugimoto index of Σϕ, as defined

in (1.10). Suppose that

|ϑ(t; ξ)| ≤ C(1 + t)|ξ| for all t > 0, ξ ∈ R
n,

and that there is some ϕ ∈ C∞(Rn\0), ϕ > 0, such that

(4.5) t−1∂αξ ϑ(t; ξ) → ∂αξ ϕ(ξ) as t→ ∞, for all ξ ∈ R
n\0, |α| ≤ γ.

Assume also that the amplitude a(t, ξ) satisfies

(4.6) |∂αξ a(t, ξ)| ≤ Cα for all |α| ≤ [(n− 1)/γ] + 1.

Let 1 < p ≤ 2 ≤ q <∞ be such that 1
p
+ 1

q
= 1. Then for t > 0 we have the estimate

(4.7) ‖Ttf‖Lq(Rn) ≤ Ct−
n−1

γ ( 1

p
− 1

q )‖f‖Lp
Np

(Rn),

where Np =
(
n− n−1

γ
+
[
n−1
γ

]
+ 1
)(

1
p
− 1

q

)
.

The number of derivatives Np =
(
n− n−1

γ
+
[
n−1
γ

]
+ 1
)(

1
p
− 1

q

)
required for the

estimate (4.7) is determined by the fact that the amplitude a(t, ξ) in (4.6) is in the
symbol class S0

0,0 rather than the usual S0
1,0. In fact, if a(t, ξ) satisfies inequalities

(4.8) |∂αξ a(t, ξ)| ≤ Cα〈ξ〉−|α| for all |α| ≤
[
n− 1

γ

]
+ 1,
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then we can take the Sobolev index Np =
(
n− n−1

γ

)(
1
p
− 1

q

)
for the estimate (4.7) to

hold. However, the method of asymptotic integration and the statement of Theorem
3.1 forces us to assume (4.6) rather than (4.8).
Let us now discuss other assumptions we make in this proposition from the point

of view of the original Cauchy problem (1.1). We recall from (2.13) that functions
ϕ±
k (ξ) are characteristics of the limiting strictly hyperbolic operator

(4.9) L±(Dt, Dx)u ≡ Dm
t u+

∑

|ν|+j=m
j≤m−1

a±ν,jD
ν
xD

j
tu,

and their geometric properties are responsible for the time decay of solutions to
the Cauchy problems for both operators L(t, Dt, Dx) and L

±(Dt, Dx). The fact that
ϕ±
k (ξ) are characteristics of (4.9), implies that they are real analytic for ξ 6= 0 and that

we have the following statement, which was established for operators with constant
coefficients by Sugimoto [24].

Proposition 4.3. Let ϕk(ξ), k = 1, . . . , m, be characteristics of operator (4.9), or-
dered by ϕ1(ξ) > ϕ2(ξ) > · · · > ϕm(ξ) for ξ 6= 0. Suppose that all the Hessians ϕ′′

k(ξ)
are semi-definite for ξ 6= 0. Then there exists a polynomial α(ξ) of order one such

that ϕm/2(ξ) > α(ξ) > ϕm/2+1 (if m is even) or α(ξ) = ϕ(m+1)/2(ξ) (if m is odd).
Moreover, the hypersurfaces Σk = {ξ ∈ R

n; ϕ̃k = ±1} with ϕ̃k(ξ) = ϕk(ξ) − α(ξ)
(k 6= (m+ 1)/2) are convex and γ(Σk) ≤ 2[m/2].

In particular, in our arguments we can replace ϕk by ϕ̃k since the addition of
a linear function does not change the decay rate nor the index γ(Σϕk

). This also
ensures that the limiting phase ϕ in Proposition 4.2 may be taken to be strictly
positive. Indeed, it can be taken to be nonzero, and if it is strictly negative we
simply replace ϕ by −ϕ. Moreover, the assumption that Σϕ is strictly convex in
Proposition 4.2 can be replaced by the assumption that it is only convex. Indeed,
since ϕ(ξ) is a characteristic root of (4.9), it is real analytic for ξ 6= 0. Then, the
convexity, the real analyticity and the compactness imply that it is actually strictly
convex. In particular, it also implies that γ(Σϕ) is finite and even.
In the case when the level set Σϕ in Proposition 4.2 is not convex, we get a weaker

result based on the one-dimensional van der Corput lemma. In this case we use the
non-convex Sugimoto index of Σϕ which was defined in (1.11) in the introduction.

Proposition 4.4. Let Tt, t > 0, be an operator defined by

Ttf(x) =

∫

Rn

ei(x·ξ+ϑ(t;ξ))a(t, ξ)f̂(ξ) dξ,

where ϑ(t; ξ) is real valued, continuous in t, smooth in ξ ∈ Rn\0, homogeneous of

order one in ξ. Let γ0 = γ0(Σϕ) be the non-convex Sugimoto index of the level

surface Σϕ = {ξ ∈ Rn\0 : ϕ(ξ) = 1}. Suppose that

|ϑ(t; ξ)| ≤ C(1 + t)|ξ| for all t > 0, ξ ∈ R
n,

and that there is some ϕ ∈ C∞(Rn\0), ϕ > 0, such that

t−1∂αξ ϑ(t; ξ) → ∂αξ ϕ(ξ) as t→ ∞, for all ξ ∈ R
n, |α| ≤ γ0.
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Assume also that the amplitude a(t, ξ) satisfies

(4.10) |∂αξ a(t, ξ)| ≤ Cα for all |α| ≤ 1.

Let 1 < p ≤ 2 ≤ q < +∞ be such that 1
p
+ 1

q
= 1. Then for t > 0 we have the estimate

(4.11) ‖Ttf‖Lq(Rn) ≤ Ct
− 1

γ0
( 1

p
− 1

q )‖f‖Lp
Np

(Rn),

where Np =
(
n− 1

γ0
+ 1
)(

1
p
− 1

q

)
.

We will first prove Proposition 4.2 and then indicate the changes necessary for the
proof of Proposition 4.4.

Proof of Proposition 4.2. First we observe that ‖Ttf‖L2 ≤ C‖f‖L2 by the Plancherel
identity. In order to simplify the proof somewhat, we will absorb the Sobolev index
Np into the amplitude a(t, ξ), so that we will estimate ||Ttf ||Lq in terms of ||f ||Lp,
and not in terms of ||f ||Lp

Np
. Thus, instead of (4.6), from now on we will assume that

the amplitude a(t, ξ) satisfies

|∂αξ a(t, ξ)| ≤ Cα〈ξ〉−k

for all |α| ≤ [(n − 1)/γ] + 1 and k = Np, so that estimate (4.7) would follow by
interpolation from the estimate

(4.12) ‖Ttf‖L∞(Rn) ≤ Ct−
n−1

γ ‖f‖L1(Rn),

and where we take k = N1 = n− n−1
γ

+
[
n−1
γ

]
+ 1. Note that since we assume that

the amplitude is bounded for small frequencies, we can work with standard Sobolev
spaces here. By using Besov spaces, we can microlocalise the desired estimate to
discs in the frequency space. Indeed, let {Φj}∞j=0 be the Littlewood-Paley partition
of unity, and let

‖u‖Bs
p,q

=

(
∞∑

j=0

(
2js‖F−1Φj(ξ)Fu‖Lq(Rn)

)q
)1/p

be the norm of the Besov space Bs
p,q. Then, because of the continuous embeddings

Lp ⊂ B0
p,2 for 1 < p ≤ 2, and B0

q,2 ⊂ Lq for 2 ≤ q < +∞ (see [3]), it is sufficient
to prove the uniform estimate for the operators with amplitudes a(t, ξ)Φj(ξ). Let us
denote

ϑ̃(t, ξ) = t−1ϑ(t, ξ),

so that by the assumption we have ϑ̃(t; ξ) → ϕ(ξ) as t→ ∞. Now, writing

Φj(ξ) = Φj(ξ)Ψ

(
ϑ̃(t; ξ)

2j

)

with some function Ψ ∈ C∞
0 (0,∞), we may prove the uniform estimate for operators

with amplitudes a(t, ξ)Ψ
(

eϑ(t;ξ)
2j

)
. Such choice of Ψ is possible due to our assumption
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that ϑ̃(t; ξ) → ϕ(ξ) as t→ ∞, and we restrict the analysis for large enough t. Let

(4.13) I(t, x) =

∫

Rn

ei(x·ξ+ϑ(t;ξ))a(t, ξ)Ψ

(
ϑ̃(t; ξ)

2j

)
dξ

be the kernel of the corresponding operator. Since we easily have the L2–L2 estimate
by the Plancherel identity, by analytic interpolation we only need to prove the L1–

L∞ case of (4.12). In turn, this follows from the estimate |I(t, x)| ≤ Ct−
n−1

γ , with
constant C independent of j.
Let κ ∈ C∞

0 (Rn) be supported in a ball with some radius r > 0 centred at the
origin. We split the integral in

I(t, x) = I1(t, x) + I2(t, x)

=

∫

Rn

ei(x·ξ+ϑ(t;ξ))a(t, ξ)κ
(
t−1x+ t−1∇ξϑ(t; ξ)

)
Ψ

(
ϑ̃(t; ξ)

2j

)
dξ

+

∫

Rn

ei(x·ξ+ϑ(t;ξ))a(t, ξ)(1− κ)
(
t−1x+ t−1∇ξϑ(t; ξ)

)
Ψ

(
ϑ̃(t; ξ)

2j

)
dξ.

We can easily see that |I2(t, x)| ≤ Ct−
n−1

γ . In fact, we can show |I2(t, x)| ≤ Ct−l for
l = [(n− 1)/γ] + 1 and then the required estimate simply follows since l > (n− 1)/γ.
Indeed, on the support of 1− κ, we have |x+∇ξϑ(t; ξ)| ≥ rt > 0. Thus, integrating

by parts with operator P =
x+∇ξϑ(t;ξ)

i|x+∇ξϑ(t;ξ)|2
· ∇ξ, we get

(4.14) I2(t, x) =
∫

Rn

ei(x·ξ+ϑ(t;ξ))(P ∗)l

[
a(t, ξ)(1− κ)

(
t−1x+ t−1∇ξϑ(t; ξ)

)
Ψ

(
ϑ̃(t; ξ)

2j

)]
dξ.

Using the fact that |∂αξ ϑ(t; ξ)| ≤ C(1 + t)|ξ|1−|α|, we readily observe from (4.14) that

the required estimate |I2(t, x)| ≤ Ct−l holds. Here we also used the condition (4.6)
which assures that we can perform the integration by parts [(n− 1)/γ] + 1 times.

Now we will turn to estimating I1(t, x). Recall that ϑ̃(t; ξ) = t−1ϑ(t; ξ) and

ϑ̃(t; ξ) → ϕ(ξ) as t→ ∞. Let us denote

Σt = {ξ ∈ R
n : ϑ̃(t; ξ) = 1}.

It can be readily checked that γ(Σt) → γ(Σϕ) = γ as t→ ∞. So we can restrict our
attention to t large enough for which we have γ(Σt) = γ. By rotation, we can always
microlocalise in some narrow cone around en = (0, . . . , 0, 1) and in this cone we can
parameterise

Σt = {(y, ht(y)) : y ∈ U}
for some open U ⊂ Rn−1. In other words, we have ϑ̃(t; y, ht(y)) = 1, and it follows
that ht is smooth and ∇ht : U → ∇ht(U) ⊂ Rn−1 is a homeomorphism. The function
ht is concave if Σt is convex. We claim that

(4.15) |∂αy ht(y)| ≤ Cα, for all y ∈ U and large enough t.
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Indeed, let us look at |α| = 1 first. From ϑ̃(t; y, ht(y)) = 1 we get that

∇yϑ̃+ ∂ξn ϑ̃ · ∇ht(y) = 0.

From homogeneity we have |∇ξϑ̃| ≤ C, so also |∇yϑ̃| ≤ C. By Euler’s identity we
have

(4.16) ∂ξn ϑ̃(t; en) = ϑ̃(t; en) → ϕ(en) > 0 as t→ ∞,

so we have |∂ξnϑ̃| ≥ c > 0 since we are in a narrow cone around en. From this it
follows that |∇yht(y)| ≤ C for all y ∈ U and t large enough. A similar argument
proves the boundedness of higher order derivatives in (4.15).
Now, let us turn to analyse the structure of the sets Σt. We have the Gauss map

ν : Σt ∋ ζ 7→ ∇ζ ϑ̃(t; ζ)

|∇ζ ϑ̃(t; ζ)|
∈ S

n−1,

and for x = (x′, xn) ∈ Rn−1 × R near the point −∇ζ ϑ̃(t; en) we define zt ∈ U by

(zt, ht(zt)) = ν−1(−x/|x|).
Then (−∇yht(y), 1) is normal to Σt at (y, ht(y)), so we get

− x

|x| =
(−∇yht(zt), 1)

|(−∇yht(zt), 1)|
and

x′

xn
= −∇yht(zt).

Making change of variables ξ = (λ̃y, λ̃ht(y)) and using ϑ̃(t; ξ) = λ̃, we get

I1(t, x) =

∫ ∞

0

∫

U

ei
eλ(x′·y+xnht(y)+t)a(t, λ̃y, λ̃ht(y))Ψ

(
λ̃

2j

)
κ0(t, x, y)

∣∣∣∣∣
dξ

d(λ̃, y)

∣∣∣∣∣ dydλ̃

=

∫ ∞

0

∫

U

ei
eλ(−xn∇yht(zt)·y+xnht(y)+t)

[
λ̃la(t, λ̃y, λ̃ht(y))

]
λ̃n−1−l ×

×Ψ

(
λ̃

2j

)
κ0(t, x, y)χ(t, y) dydλ̃(4.17)

=

∫ ∞

0

∫

U

eiλ(−∇yht(zt)·y+ht(y)+tx−1
n )ã(t, xn, λy, λht(y))λ

n−1−l ×

×Ψ

(
λ

2jxn

)
x−n+1+l−1
n κ0(t, x, y)χ(t, y) dydλ,

where κ0(t, x, y) = κ
(
t−1x+∇ξϑ̃(t; y, ht(y))

)
, and

ã(t, xn, λy, λht(y)) = (x−1
n λ)la

(
t, x−1

n λy, x−1
n λht(y)

)
,

and where we made a change λ̃ = x−1
n λ in the last equality. Here also we used∣∣∣ dξ

d(eλ,y)

∣∣∣ = λ̃n−1χ(t, y), where χ(t, y) and all of its derivatives with respect to y are

bounded because of (4.15).
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If we choose r in the definition of the cut-off function κ sufficiently small, then on
its support we have |x| ≈ |xn| ≈ t, and we can estimate

(4.18)

|I1(t, x)| ≤ Ct−n+l

∫ ∞

0

∣∣∣∣J(λ, zt)Ψ
(
λ

2jt

)
λn−1−l

∣∣∣∣ dλ

= Ct−n+l2j(n−l)

∫ ∞

0

∣∣∣∣J(2
jλ, zt)Ψ

(
λ

t

)
λn−1−l

∣∣∣∣ dλ

with

J(λ, zt) =

∫

U

eiλ(−∇yht(zt)·y+ht(y)+tx−1
n )ã(t, xn, λy, λht(y))κ0(t, x, y)χ(t, y) dy.

We will show that

(4.19) |J(λ, zt)| ≤ C(1 + λ)−
n−1

γ , λ > 0.

Then, if we take l = n− n−1
γ
, and use (4.18) and (4.19), we get

(4.20)

|I1(t, x)| ≤ Ct−
n−1

γ 2j
n−1

γ

∫ ∞

0

(2jλ)−
n−1

γ Ψ

(
λ

t

)
λ

n−1

γ
−1 dλ

= Ct−
n−1

γ

∫ ∞

0

λ−1Ψ

(
λ

t

)
dλ = Ct−

n−1

γ

∫ ∞

0

λ−1Ψ(λ) dλ

≤ Ct−
n−1

γ ,

which is the desired estimate for I1(t, x).
Let us now prove (4.19). It will, in turn, follow from Theorem 4.5 below. First of all

we note that since we assumed that |∂αξ a(t, ξ)| ≤ Cα〈ξ〉−N1 for all |α| ≤ [(n−1)/γ]+1

and N1 = n− n−1
γ

+
[
n−1
γ

]
+ 1, we get that

(4.21) |∂αy ã| ≤ C for all |α| ≤ [(n− 1)/γ] + 1.

To write J(λ, zt) in a suitable form, we change to polar coordinates (ρ, ω) with
y = ρω + zt, so that

(4.22) J(λ, zt) =

∫

Sn−2

∫ ∞

0

eiλF (ρ,zt,ω)β(ρ, zt, ω)ρ
n−2 dρdω,

with

F (ρ, zt, ω) = ht(ρω + zt)− ht(zt)− ρ∇yht(zt) · ω,(4.23)

β(ρ, zt, ω) = ã (t, xn, λ(ρω + zt), λht(ρω + zt))κ0(t, x, ρω + zt)χ(t, ρω + zt),(4.24)

where we can assume in addition that χ = 0 unless ρω + zt ∈ U , so both ρ and ω
vary over bounded sets.
Now we can apply the following result, which has appeared in [20] for more general

complex valued phases Φ, thus including the real-valued case of the phase function
F in (4.23). The estimate (4.19) follows from the following theorem with N = n− 1.

Theorem 4.5 ([20]). Consider the oscillatory integral

I(λ, ν) =

∫

RN

eiλΦ(x,ν)a(x, ν)χ(x) dx ,

where N ≥ 1, and ν is a parameter. Let γ ≥ 2 be an integer. Assume that
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(A1) there exists a sufficiently small δ > 0 such that χ ∈ C∞
0 (Bδ/2(0)), where

Bδ/2(0) is the ball with radius δ/2 around 0;
(A2) Φ(x, ν) is a complex valued function such that ImΦ(x, ν) ≥ 0 for all x ∈

suppχ and all parameters ν;
(A3) for some fixed z ∈ suppχ, the function

F (ρ, ω, ν) := Φ(z + ρω, ν), |ω| = 1,

satisfies the following conditions. Assume that for each µ = (ω, ν), func-

tion F (·, µ) is of class Cγ+1 on suppχ, and let us write its γth order Taylor

expansion in ρ at 0 as

F (ρ, µ) =

γ∑

j=0

aj(µ)ρ
j +Rγ+1(ρ, µ) ,

where Rγ+1 is the remainder term. Assume that we have

(F1) a0(µ) = a1(µ) = 0 for all µ;
(F2) there exists a constant C > 0 such that

∑γ
j=2 |aj(µ)| ≥ C for all µ;

(F3) for each µ, |∂ρF (ρ, µ)| is increasing in ρ for 0 < ρ < δ;
(F4) for each k ≤ γ + 1, ∂kρF (ρ, µ) is bounded uniformly in 0 < ρ < δ and µ;

(A4) for each multi-index α of length |α| ≤
[
N
γ

]
+1, there exists a constant Cα > 0

such that |∂αxa(x, ν)| ≤ Cα for all x ∈ suppχ and all parameters ν.

Then there exists a constant C = CN,γ > 0 such that

(4.25) |I(λ, ν)| ≤ C(1 + λ)−
N
γ for all λ ∈ [0,∞) and all parameters ν.

We refer to [20] and [22] for details. Now, the function F in (4.23) satisfies condition
(A3) of Theorem 4.5 because of the definition of the convex Sugimoto index γ and
because ht is concave. Since ∂αy ht, |α| ≤ γ, can be expressed via ∂αξ ϕ, |α| ≤ γ, and
since we have (4.16), it also follows from (2.9) and (4.5) that function F satisfies
property (F2) of Theorem 4.5. The proof of Proposition 4.2 is now complete. �

Let us now show that we can actually also insert the cut-off 1 − ψ((1 + |t|)ξ) in
Proposition 4.2 which is necessary for the analysis of the representation (4.1). Here
ψ ∈ C∞

0 (Rn) such that ψ(ξ) ≡ 1 for |ξ| ≤ 1
2
, and 0 for |ξ| ≥ 1. The case of high

frequencies |ξ| ≥ 1 (for solutions) is covered by Proposition 4.2, and the proof about
the insertion of 1 − ψ((1 + |t|)ξ) is similar to the proof of the following Proposition
4.6. So we now restrict to t−1 < |ξ| ≤ 1, since the case |ξ| < t−1 was covered in
Proposition 4.1.

Proposition 4.6. Let Tt, t 6= 0, be an operator defined by

(4.26) Ttf(x) =

∫

Rn

ei(x·ξ+ϑ(t;ξ))[1− ψ((1 + |t|)ξ)]a(t, ξ)f̂(ξ) dξ,

where ϑ(t; ξ), and γ are as in Proposition 4.2. Assume that the amplitude a(t, ξ)
satisfies a(t, ξ) = 0 for all |ξ| ≥ 1 and that

|∂αξ a(t, ξ)| ≤ Cα|ξ|−|α| for all |α| ≤ [(n− 1)/γ] + 1.
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Let 1 < p ≤ 2 ≤ q <∞ be such that 1
p
+ 1

q
= 1. Then for t 6= 0 we have the estimate

(4.27) ‖Ttf‖Lq(Rn) ≤ C|t|−n−1

γ ( 1

p
− 1

q )‖f‖L̇p
Np

(Rn),

where Np =
(
n− n−1

γ
+
[
n−1
γ

]
+ 1
)(

1
p
− 1

q

)
.

Proof. The proof of this proposition is almost the same as the proof of Proposition
4.2 with several differences that we will point out here. Again, by interpolation, it is
sufficient to prove estimate

‖Ttf‖L∞(Rn) ≤ C|t|−n−1

γ ‖f‖L1(Rn),

with amplitude a(t, ξ) satisfying

(4.28) |∂αξ a(t, ξ)| ≤ Cα|ξ|−N1−|α| for all |α| ≤ [(n− 1)/γ] + 1,

with N1 = n− n−1
γ

+
[
n−1
γ

]
+ 1.

Further differences concern estimates for I1(t, x) and I2(t, x). In general, since we
work with low frequencies |ξ| < 1 only, no Besov space decomposition is necessary,
so we do not need to introduce function Ψ and Φj , so we can take Ψ = 1.
Some additional complications are related to the fact that in principle derivatives

of the amplitudes of operators Tt from (4.26) may introduce an additional growth
with respect to t. In the estimate for I2(t, x) we performed integration by parts with
operator P . Now after integration by parts the amplitude of this integral in (4.14) is

(P ∗)l

[
[1− ψ((1 + |t|)ξ)]a(t, ξ)(1− κ)

(
t−1x+ t−1∇ξϑ(t; ξ)

)
Ψ

(
ϑ̃(t; ξ)

2j

)]
.

Now, if any of the ξ-derivatives falls on [1− ψ((1 + |t|)ξ)], we get an extra factor t
which is cancelled with t−1 in the definition of P . However, in this case we can then
restrict to the support of ∇ψ which is contained in the ball with radius (1+ |t|)−1, so
we are in the situation of low frequencies |ξ| ≤ t−1 again. Consequently, we can apply
Proposition 4.1 to this integral to actually get a better decay rate of Proposition 4.1.
If none of the derivatives in (P ∗)l fall on [1− ψ((1 + |t|)ξ)], the argument is the same
as in the proof of the estimate for I2(t, x) in Proposition 4.2.
The other main difference with the proof of Proposition 4.2 is in the estimate for

I1(t, x). Recall now that in formula (4.17) we made a change of variables λ̃ = x−1
n λ.

As it was then pointed out, if r in the definition of the cut-off function κ is chosen
sufficiently small, on its support we have |xn| ≈ |t|. On the other hand, we have

|ξ| ≈ λ̃ by the definition of λ̃, since we assume that the limiting phase function ϕ

is strictly positive. It then follows that (1 + |t|)ξ ≈ λ̃|xn| ≈ λ, and so the change

of variables λ̃ = x−1
n λ changes [1− ψ((1 + |t|)ξ)] into [1− ψ(λ)] in the amplitude of

I1(t, x). Justifying this argument, we can then continue as in the proof of Proposition
4.2. The crucial condition for the use of Theorem 4.5 is the boundedness of derivatives
of ã in (4.21). Here, every differentiation of a with respect to y introduces a factor
x−1
n λwhich is then cancelled in view of assumption (4.28). It follows that [(n−1)/γ]+1
y-derivatives of ã are bounded, implying the conclusion of Theorem 4.5. This yields
estimate (4.27) in the way that is similar to the proof of Proposition 4.2. �
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Let us now turn to prove Proposition 4.4.

Proof of Proposition 4.4. Let us show how the proof of Proposition 4.4 differs from

the proof of Proposition 4.2. We need to prove that |I(t, x)| ≤ Ct
− 1

γ0 , t > 0, for
I(t, x) as in (4.13). We note that γ0 ≥ 1, so to prove the estimate for I2(t, x) we can
show that |I2(t, x)| ≤ Ct−1. This can be done by integrating by parts with the same
operator P and using (4.10) instead of (4.6). As for the proof of the estimate for
I1(t, x), we can reason in the same way as in Proposition 4.2 to arrive at the estimate
(4.18), i.e.,

|I1(t, x)| ≤ Ct−n+l2j(n−l)

∫ ∞

0

∣∣∣∣J(2
jλ, zt)Ψ

(
λ

t

)
λn−1−l

∣∣∣∣ dλ

with the same operator

J(λ, zt) =

∫

U

eiλ(−∇yht(zt)·y+ht(y)+tx−1
n )ã(t, xn, λy, λht(y))κ0(t, x, y)χ(t, y) dy.

Now, instead of (4.19) we will show that

(4.29) |J(λ, zt)| ≤ Cλ
− 1

γ0 , λ > 0.

Then, taking l = n− 1
γ0
, we get the estimate |I1(t, x)| ≤ Ct

− 1

γ0 in the same way as in

estimate (4.20). Now, estimate (4.29) follows from Theorem 4.5 with N = 1. Indeed,
let us write J(λ, zt) in the form (4.22)–(4.24) with phase

F (ρ, zt, ω) = ht(ρω + zt)− ht(zt)− ρ∇zht(zt) · ω.
Now, by rotation we may assume that in some direction, say e1 = (1, 0, . . . , 0), we
have by definition of the index γ0 that

γ0 = min
{
k ∈ N : ∂kω1

F (ρ, zt, ω)|ω1=0 6= 0
}
.

Then by taking N = 1 and y = ω1 in Theorem 4.5, we get the required estimate
(4.29). �

Now we will state the corollary of the proof of Proposition 4.4 which is similar to
Proposition 4.6 to ensure its application to our Cauchy problem. The proof is similar
to the proof of Proposition 4.6.

Proposition 4.7. Let Tt, t 6= 0, be an operator defined by

Ttf(x) =

∫

Rn

ei(x·ξ+ϑ(t;ξ))[1− ψ((1 + |t|)ξ)]a(t, ξ)f̂(ξ) dξ,

where ϑ(t; ξ) and γ0 are as in Proposition 4.4. Assume that the amplitude a(t, ξ)
satisfies a(t, ξ) = 0 for all |ξ| ≥ 1 and that

|∂αξ a(t, ξ)| ≤ Cα|ξ|−|α| for all |α| ≤ 1.

Let 1 < p ≤ 2 ≤ q <∞ be such that 1
p
+ 1

q
= 1. Then for t 6= 0 we have the estimate

(4.30) ‖Ttf‖Lq(Rn) ≤ C|t|−
1

γ0
( 1

p
− 1

q )‖f‖L̇p
Np

(Rn),

where Np =
(
n− 1

γ0
+ 1
)(

1
p
− 1

q

)
.
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Let us finally estimate our Fourier multiplier for small t. For the analysis of very
small t we will use the following Littlewood-Paley type theorem.

Lemma 4.8 ([9](Theorem 1.11)). Let h = h(ξ) be a tempered distribution on Rn

(n ≥ 1) such that

sup
0<l<+∞

lbmeas {ξ : |h(ξ)| ≥ l} < +∞,

for some 1 < b < +∞. Then the convolution operator with F−1[h] is Lp–Lq bounded

provided that 1 < p ≤ 2 ≤ q < +∞ and 1
p
− 1

q
= 1

b
, i.e. we have the estimate

∥∥F−1[h] ∗ u
∥∥
Lq ≤ C‖u‖Lp for all u ∈ Lp(Rn).

Using this fact, we obtain:

Proposition 4.9. Let Tt be an operator defined by

Ttf(x) =

∫

Rn

ei(x·ξ+ϑ(t;ξ))[1− ψ((1 + |t|)ξ)]a(t, ξ)f̂(ξ) dξ,

where ϑ(t; ξ) and a(t, ξ) are as in Propositions 4.2 or 4.4. Let n ≥ 1, 1 < p ≤ 2 ≤
q < +∞ and 1

p
+ 1

q
= 1. Then for small t we have the estimate

(4.31) ‖Ttf‖Lq(Rn) ≤ C‖f‖L̇p

eNp
(Rn),

where Ñp = n
(

1
p
− 1

q

)
.

In fact, the proof will yield the Besov norm B1,1
p on the right hand side of the

estimate, which is a known improvement for this type of estimates.

Proof. In the following argument we need not use the Van der Corpt lemma, and the
proof relies only on the Littlewood–Paley type theorem. We put K(t) = (1 + |t|)−1.
It suffices to prove (4.31) for p 6= q, since the case p = q = 2 follows from the

Plancherel theorem. Noting that ϑ(t; ξ) and is homogeneous of order one, and making
change of variable η = ξ

K(t)
and y = K(t)x, we get

(4.32) ‖Ttf‖Lq(Rn) = K(t)n−
n
q

∥∥∥F−1 [mt(η)] ∗ F−1
[
|η| eNp f̂(K(t)η)

]∥∥∥
Lq(Rn)

,

where we set

mt(η) = eiK(t)ϑ(t;η)a(t,K(t)η)(1− ψ(η))|η|− eNp, Ñp = n

(
1

p
− 1

q

)
.

Since a(t, ξ) is bounded, we have

meas {η : |mt(η)| ≥ l} ≤ meas
{
η : |η| ≤ C1/ eNp l−1/ eNp

}
= Cn/ eNp l−n/ eNp

for each l > 0. Hence it follows from Lemma 4.8 that the convolution operator with
mt is L

p–Lq bounded, which implies that
∥∥∥F−1[mt] ∗ F−1

[
|η| eNpf̂(K(t)η)

]∥∥∥
Lq(Rn)

≤ C
∥∥∥F−1

[
|η| eNpf̂(K(t)η)

]∥∥∥
Lp(Rn)

= CK(t)−n+n
p
− eNp‖f‖L̇p

eNp
(Rn),



DISPERSIVE ESTIMATES FOR HYPERBOLIC EQUATIONS 27

where we performed the transformations K(t)η = ξ and x
K(t)

= z in the last step.

Thus, combining this estimate with (4.32), we obtain the desired estimate (4.31).
The proof of Proposition 4.9 is complete. �

Proof of Theorem 1.1. The proof of Theorem 1.1 now follows from Proposition 4.1 for
low frequencies |ξ| < t−1, from Propositions 4.2 and 4.4 for large frequencies |ξ| ≥ 1,
and from Propositions 4.6 and 4.7 for intermediate frequencies t−1 ≤ |ξ| < 1. We
also use Proposition 4.9 for small times. We can note that all these propositions give
different Sobolev orders on the regularity of the Cauchy data.
Indeed, using representation formula for the solution established in Theorem 3.1,

we can write the solution as

u(t, x) =

m−1∑

k=0

uk(t, x),

with

uk(t, x) =

m∑

j=1

F−1
[(
αj
k,±(ξ) + εjk,±(t; ξ)

)
eiϑj(t;ξ)f̂k(ξ)

]
(x).

Now, we decompose

uk(t, x) = uk1(t, x) + uk2(t, x) + uk3(t, x)

=
m∑

j=1

F−1
[(
αj
k,±(ξ) + εjk,±(t; ξ)

)
ψ((1 + |t|)ξ)eiϑj(t;ξ)f̂k(ξ)

]
(x)

+

m∑

j=1

F−1
[(
αj
k,±(ξ) + εjk,±(t; ξ)

)
(1− ψ((1 + |t|)ξ))χ(ξ)eiϑj(t;ξ)f̂k(ξ)

]
(x)

+

m∑

j=1

F−1
[(
αj
k,±(ξ) + εjk,±(t; ξ)

)
(1− ψ((1 + |t|)ξ))(1− χ(ξ))eiϑj(t;ξ)f̂k(ξ)

]
(x),

with ψ, χ ∈ C∞
0 (Rn) such that ψ(ξ) = χ(ξ) ≡ 1 for |ξ| ≤ 1

2
, and 0 for |ξ| ≥ 1. Assume

conditions of part (i) of Theorem 1.1. Then we have estimates

(4.33) ‖uk1(t, ·)‖Lq(Rn) ≤ C(1 + |t|)−n( 1

p
− 1

q )‖fk‖L̇p
−k

(Rn),

by Proposition 4.1,

(4.34) ‖uk2(t, ·)‖Lq(Rn) ≤ C|t|−n−1

γ ( 1

p
− 1

q )‖fk‖L̇p
Mp−k

(Rn),

with Mp =
(
n− n−1

γ

)(
1
p
− 1

q

)
by Proposition 4.6, and

(4.35) ‖uk3(t, ·)‖Lq(Rn) ≤ C|t|−n−1

γ ( 1

p
− 1

q )‖fk‖Lp

Np−k
(Rn),

with Np =
(
n− n−1

γ
+
[
n−1
γ

]
+ 1
)(

1
p
− 1

q

)
, by Proposition 4.2. For small t we have

the estimate

(4.36) ‖uk2(t, ·)‖Lq(Rn) + ‖uk3(t, ·)‖Lq(Rn) ≤ C‖fk‖L̇p

eNp−k
(Rn),
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with Ñp = n
(

1
p
− 1

q

)
, by Proposition 4.9. Putting all these estimates (4.33)–(4.36)

together with similar estimates for derivatives, implies the statement of Theorem
1.1. �

As a corollary of this proof and all the propositions above, we have the following
refinement of Theorem 1.1, providing quantitatively different estimates for different
frequency regions.

Theorem 4.10. Assume (1.3)–(1.5). Let χ ∈ C∞
0 (R) be such that χ(ρ) ≡ 1 for

|ρ| ≤ 1
2
, and 0 for |ρ| ≥ 1. Let us denote

u1 = χ((1 + |t|)|D|)u, u2 = (1− χ((1 + |t|)|D|)χ(|D|)u, and

u3 = (1− χ((1 + |t|)|D|)(1− χ(|D|))u.

Then the solution u(t, x) of (1.1) satisfies the following estimates:
(i) Suppose that the sets

Σϕ±
k
= {ξ ∈ R

n : ϕ±
k (ξ) = 1}

are convex for all k = 1, . . . , m, and set γ = max
k=1,...,m

γ(Σϕ±
k
). In addition, suppose that

(1 + |t|)ra′ν,j ∈ L1(R) for 1 ≤ r ≤ [(n − 1)/γ] + 1, and for all ν, j with |ν| + j = m.

Let 1 < p ≤ 2 ≤ q < +∞ and 1
p
+ 1

q
= 1. Then we have the estimates

‖Dl
tD

α
xu1(t, ·)‖Lq(Rn) ≤ C(1 + |t|)−n( 1

p
− 1

q )
m−1∑

k=0

‖fk‖L̇p

l+|α|−k
(Rn), (t ∈ R),

‖Dl
tD

α
xu2(t, ·)‖Lq(Rn) ≤ C|t|−n−1

γ ( 1

p
− 1

q )
m−1∑

k=0

‖fk‖L̇p

l+|α|+Mp−k
(Rn), (|t| ≥ 1),

‖Dl
tD

α
xu3(t, ·)‖Lq(Rn) ≤ C|t|−n−1

γ ( 1

p
− 1

q )
m−1∑

k=0

‖fk‖Lp

l+|α|+Np−k
(Rn), (|t| ≥ 1),

‖Dl
tD

α
xu2(t, ·)‖Lq(Rn) + ‖Dl

tD
α
xu3(t, ·)‖Lq(Rn) ≤ C

m−1∑

k=0

‖fk‖L̇p

l+|α|+ eNp−k
(Rn), (|t| < 1),

withMp =
(
n− n−1

γ

)(
1
p
− 1

q

)
, Np =

(
n− n−1

γ
+
[
n−1
γ

]
+ 1
)(

1
p
− 1

q

)
, Ñp = n

(
1
p
− 1

q

)
,

l = 0, . . . , m− 1, and α any multi-index.

(ii) Suppose that Σϕ±
k
is non-convex for some k = 1, . . . , m, and set γ0 = max

k=1,...,m
γ0(Σϕ±

k
).

In addition, suppose that (1 + |t|)a′ν,j ∈ L1(R) for all ν, j with |ν| + j = m. Let
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1 < p ≤ 2 ≤ q < +∞ and 1
p
+ 1

q
= 1. Then we have the estimates

‖Dl
tD

α
xu1(t, ·)‖Lq(Rn) ≤ C(1 + |t|)−n( 1

p
− 1

q )
m−1∑

k=0

‖fk‖L̇p

l+|α|−k
(Rn), (t ∈ R),

‖Dl
tD

α
xu2(t, ·)‖Lq(Rn) ≤ C|t|−

1

γ0
( 1

p
− 1

q )
m−1∑

k=0

‖fk‖L̇p

l+|α|+Mp−k
(Rn), (|t| ≥ 1),

‖Dl
tD

α
xu3(t, ·)‖Lq(Rn) ≤ C|t|−

1

γ0
( 1

p
− 1

q )
m−1∑

k=0

‖fk‖Lp

l+|α|+Np−k
(Rn), (|t| ≥ 1),

‖Dl
tD

α
xu2(t, ·)‖Lq(Rn) + ‖Dl

tD
α
xu3(t, ·)‖Lq(Rn) ≤ C

m−1∑

k=0

‖fk‖L̇p

l+|α|+ eNp−k
(Rn), (|t| < 1),

with Mp =
(
n− 1

γ0

)(
1
p
− 1

q

)
, Np =

(
n− 1

γ0
+ 1
)(

1
p
− 1

q

)
, Ñp = n

(
1
p
− 1

q

)
, l =

0, . . . , m− 1, and α any multi-index.
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un caso notevole di stabilità, Univ. Nac. Tucumán, Revista A. 2 (1941), 131–140.
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