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SYMPLECTIC SYMMETRIES OF 4-MANIFOLDS

WEIMIN CHEN AND SLAWOMIR KWASIK

Abstract. A study of symplectic actions of a finite group G on smooth 4-manifolds
is initiated. The central new idea is the use of G-equivariant Seiberg-Witten-Taubes
theory in studying the structure of the fixed-point set of these symmetries. The
main result in this paper is a complete description of the fixed-point set structure
(and the action around it) of a symplectic cyclic action of prime order on a minimal
symplectic 4-manifold with c

2

1 = 0. Comparison of this result with the case of locally
linear topological actions is made. As an application of these considerations, the
triviality of many such actions on a large class of 4-manifolds is established. In
particular, we show the triviality of homologically trivial symplectic symmetries of
a K3 surface (in analogy with holomorphic automorphisms). Various examples and
comments illustrating our considerations are also included.

1. Introduction

When studying smooth or locally linear, topological actions of a finite group G on
4-manifolds the central problem is to describe the structure of the fixed-point set and
the action around it. This together with the G-signature theorem of Atiyah-Singer
(cf. [1, 21]) leads to a wealth of information about the action of G. For smooth
actions, there is additional information provided through the use of gauge theory (cf.
e.g. [7, 9, 17, 3]). Indeed, the G-signature theorem (and gauge theory in the case
of smooth actions) imposes restrictions on the symmetries of 4-manifolds through the
fixed-point set and the action around it. However, in general no substantial insight
can be obtained without more specific knowledge of the latter. In fact, Freedman’s
4-dimensional topological surgery theory (cf. [14, 15]) allows various constructions of
periodic homeomorphisms on simply-connected 4-manifolds. In particular, in the case
of topological, locally linear actions results of Edmonds (cf. [10]) demonstrate great
flexibility of such actions, and the work of Edmonds and Ewing (cf. [11]) shows that
for locally linear, pseudofree (i.e. free in the complement of a finite subset) cyclic
topological actions of prime order, the G-signature theorem holds most of the key to
the existence. As for smooth finite group actions, a basic question is what additional
restrictions the smooth structures of the 4-manifolds may impose on the fixed-point
set and the action around it (e.g. nonsmoothability of topological actions).

In this paper, we initiate a study on a class of symmetries of smooth 4-manifolds,
which we call symplectic symmetries. These are smooth finite group actions which
preserve some symplectic structure on the 4-manifold. We recall that a symplectic
structure is a closed, non-degenerate 2-form; in particular, the manifold is symplectic.

The first author was supported in part by NSF grant DMS-0304956.
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The study of symplectic structures on smooth 4-manifolds is one of the most rapidly
growing research area in manifold topology in recent years (cf. e.g. [20, 27, 18, 8, 40]).
One of the fundamental problems in this study is to understand what restrictions a
symplectic structure may impose on the underlying smooth structure of the 4-manifold.
Thus the following seems to be a very natural question: how restrictive the structure
of the fixed-point set and the action around it could be for symplectic symmetries of
a smooth 4-manifold, and how this may depend on the underlying smooth structure
of the 4-manifold ?

Our approach to this question is based on an equivariant version of the work of C.H.
Taubes in [38, 39] (i.e. the G-equivariant Seiberg-Witten-Taubes theory). The basic
observation is that when the equivariant versions of Taubes’ theorems are applied, the
canonical class of the symplectic 4-manifold is represented by a set of 2-dimensional
symplectic subvarieties which is invariant under the group action. In principle, the
structure of the fixed-point set and the action around it can be recovered from the
induced action on the 2-dimensional symplectic subset. This is most effective when
the symplectic 4-manifold is minimal with c21 = 0; indeed in this case, the set of
the 2-dimensional symplectic subvarieties representing the canonical class is relatively
simple. While this paper focuses mainly on the structure of the fixed-point set, the
question as how the symplectic symmetries may depend on the underlying smooth
structure is investigated in [5].

When studying finite group actions on manifolds it is often important and bene-
ficial to consider an induced action on some algebraic invariants associated with the
manifold. There is an abundance of such situations, for example, the notion of a
Reidemeister torsion and classification of lens spaces (cf. [30]), the classical Hurwitz
theorem about rigidity of group actions on surfaces of genus ≥ 2, rigidity of holomor-
phic actions on K3 surfaces (cf. [2]). The mentioned rigidity of group actions for the
real and complex surfaces asserts that these actions are trivial if they are homologically
trivial, i.e., inducing a trivial action on homology.

In this paper, we shall mainly consider actions which are either homologically trivial
(over Q coefficients), or slightly more generally, induce a trivial action on the second
rational homology. (We remark, however, that our method is applicable to much more
general situations.) Our first result is the following rigidity theorem.

Theorem A: Let M be a symplectic 4-manifold which has trivial canonical class
(over Q coefficients) and nonzero signature, and obeys b+2 ≥ 2. Then any homologically
trivial (over Q coefficients), symplectic action of a finite group G onM must be trivial.

It should be pointed out that if the action is not required to be homologically trivial,
then there are nontrivial holomorphic (in particular symplectic) automorphisms of
Kählerian K3 surfaces (cf. [32]). Moreover, the condition b+2 ≥ 2 in the theorem is
necessary because there exist nontrivial holomorphic involutions on Enriques surfaces
(where b+2 = 1) which are homologically trivial (cf. [31]). Finally, note that the
nonvanishing of signature is also necessary as there is an abundance of homologically
trivial, symplectic finite group actions on the standard symplectic 4-torus.
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Note that the 4-manifold M in Theorem A has a unique Seiberg-Witten basic class
by work of Taubes [38, 39]. Hence for any other symplectic structure on M which
defines the same orientation, the canonical class is also trivial. In particular, for the
case of K3 surfaces (given with the canonical orientation), we arrived at the following

Corollary A: A homologically trivial symplectic symmetry of a K3 surface is trivial.

Remarks: There is an open question (due to A. Edmonds, cf. [22], Problem 4.124
(B)) as whether any homologically trivial, smooth actions of a finite group on a K3
surface must be trivial. The question was motivated by the corresponding rigidity
for holomorphic actions (cf. [2]), which was known to be false for topological ones
(cf. [10]). Corollary A answers the question affirmatively for symplectic symmetries.
For smooth actions in general, the homological rigidity was only known to be true for
involutions (cf. [25, 36]).

Our main result in this paper is a complete description of the structure of the
fixed-point set for a symplectic cyclic action of prime order on a minimal symplectic
4-manifold M with c21 = 0 and b+2 ≥ 2, which induces a trivial action on H2(M ;Q).
For simplicity, we shall only state the result for the case of pseudofree actions (i.e.,
actions with only isolated fixed points). Note that in this case, the induced action
on the tangent space at a fixed point is called the local representation. (The general
case where the fixed point set may contain 2-dimensional components is addressed in
Theorem 3.2, with some refined statements contained in Proposition 3.7.)

Theorem B: Let M be a minimal symplectic 4-manifold with c21 = 0 and b+2 ≥ 2,
which admits a nontrivial, pseudofree action of G ≡ Zp, where p is prime, such that the
symplectic structure is preserved under the action and the induced action on H2(M ;Q)
is trivial. Then the set of fixed points of G can be divided into groups each of which
belongs to one of the following five possible types. (We set µp ≡ exp(2πip ).)

(1) One fixed point with local representation (z1, z2) 7→ (µkpz1, µ
−k
p z2) for some

k 6= 0 mod p, i.e., with local representation contained in SL2(C).
(2) Two fixed points with local representation (z1, z2) 7→ (µ2kp z1, µ

3k
p z2), (z1, z2) 7→

(µ−k
p z1, µ

6k
p z2) for some k 6= 0 mod p respectively. This type of fixed points

occurs only when p > 5.
(3) Three fixed points, one with local representation (z1, z2) 7→ (µkpz1, µ

2k
p z2) and

the other two with local representation (z1, z2) 7→ (µ−k
p z1, µ

4k
p z2) for some k 6=

0 mod p. This type of fixed points occurs only when p > 3.
(4) Four fixed points, one with local representation (z1, z2) 7→ (µkpz1, µ

k
pz2) and

the other three with local representation (z1, z2) 7→ (µ−k
p z1, µ

3k
p z2) for some

k 6= 0 mod p. This type of fixed points occurs only when p > 3.
(5) Three fixed points, each with local representation (z1, z2) 7→ (µkpz1, µ

k
pz2) for

some k 6= 0 mod p. This type of fixed points occurs only when p = 3.

Combined with the G-signature theorem, Theorem B implies the following rigidity
for the corresponding homologically trivial actions.
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Corollary B: Let M be a minimal symplectic 4-manifold with c21 = 0 and b+2 ≥ 2,
which admits a homologically trival (over Q coefficients), pseudofree, symplectic Zp-
action for a prime p > 1. Then the following conclusions hold.

(a) The action is trivial if p 6= 1 mod 4, p 6= 1 mod 6, and the signature of M
is nonzero. In particular, if the signature of M is nonzero, then for infinitely
many primes p the manifold M does not admit any such nontrivial Zp-actions.

(b) The action is trivial as long as there is a fixed point of type (1) in Theorem B.

Remarks: (1) Corollary B shows that symplectic symmetries are far more restrictive
than topological ones. Indeed, there is the following theorem of Edmonds (cf. [10]).

Let M be a closed simply-connected 4-manifold. Then there is a locally linear,
pseudofree, homologically trivial action of Zp on M for every prime p > 3.

On the other hand, one should compare the nonexistence results in Corollary B
with a theorem of Edmonds (cf. [26]) which is of a purely topological nature.

Let M be a closed simply-connected 4-manifold with b2 ≥ 3. If a finite group G
acts on M locally linearly, pseudofreely, and homologically trivially, then G must be a
cyclic group.

(2) Corollary B should also be compared with the (stronger) results of Peters (cf.
[35]) on homological rigidity of holomorphic actions on Kählerian elliptic surfaces.
However, we would like to point out that Peters’ result relies essentially on the fact
that a homologically trivial holomorphic automorphism on an elliptic surface preserves
the holomorphic elliptic fibration, which does not have an analog in the symplectic
category. Moreover, symplectic 4-manifolds are a much larger class of manifolds than
Kähler surfaces (cf. [18]) (note that this is true even for the case of c21 = 0, cf. [13]), and
symplectic automorphisms are much more flexible than holomorphic automorphisms
— the former form an infinite dimensional Lie Group while the latter only a finite
dimensional one.

(3) It is essential that the symplectic automorphisms in Theorem A and Corollary
B are of finite order, i.e. our rigidity for symplectic automorphisms is a phenomenon
of finite group actions. The necessity of being finite order can be easily seen from the
following example: Let φ : M → M be any Hamiltonian symplectomorphism. Then
the group G ≡ {φn|n ∈ Z} acts on M homologically trivially because φ is homotopic
to identity. Of course, G will be of infinite order in general.

In comparison, the group of holomorphic automorphisms of (compact) Kähler man-
ifolds preserving the Kähler form is compact (cf. [24, 16]); in particular, the group is
automatically finite if the Kähler manifold admits no nonzero holomorphic vectorfields.
This is certainly not true in the symplectic category.

(4) Theorem A may be regarded as a special case of Corollary B(b). In fact,
when applying the equivariant versions of Taubes’ theorems in [38, 39] in the context
of Theorem A, the 2-dimensional symplectic subvarieties representing the canonical
class must be empty because the canonical class is trivial in this case. This has the
consequence that the action is pseudofree, and that the fixed-point set consists of only
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type (1) fixed points in Theorem B, which is nonempty because the 4-manifold has
nonzero signature.

The rest of the paper is contained in two sections. The first one, which consists of
two parts, gives a proof of Theorem A. We present the proof of Theorem A separately
so as to illustrate the general philosophy of our paper while keeping the necessary
technicalities at bay. The second section contains discussion of symplectic Zp-actions
(not necessarily pseudofree) on a minimal symplectic 4-manifold with c21 = 0 and
b+2 ≥ 2, and gives a proof for Theorem B and Corollary B. It also contains some
examples which illustrate our considerations.

Acknowledgments: We would like to thank Reinhard Schultz for turning our at-
tention to problems discussed in this paper. We also wish to thank an anonymous
referee whose extensive comments have led to a much improved exposition.

2. The Proof of Theorem A

This section is divided into two parts. In part 1 we first briefly discuss the G-
equivariant Seiberg-Witten-Taubes theory, then we use it to show that the fixed points
of the action are isolated, with local representations all contained in SL2(C). In part
2 we combine the fixed-point data in part 1 with the G-signature theorem to show
that the action is trivial.

Part 1: Let M be a smooth, oriented 4-manifold with an orientation-preserving
action of a finite group G. We shall begin by considering the G-equivariant Seiberg-
Witten theory on M (which is equivalent to the Seiberg-Witten theory on the orbifold
M/G, cf. [4]).

More concretely, we fix a Riemannian metric g onM such that G acts via isometries.
Suppose there exists a G-SpinC structure on M, i.e. a lifting of the pricipal SO(4)-
bundle of orthonormal frames on M to a principal SpinC(4)-bundle as G-bundles.
Then there are associated U(2) vector G-bundles (of rank 2) S+, S− with det(S+) =
det(S−), and a G-equivariant Clifford multiplication which maps T ∗M into the skew
adjoint endomorphisms of S+ ⊕ S−.

With the preceding understood, we consider theG-equivariant Seiberg-Witten equa-
tions associated to the G-SpinC structure

DAψ = 0 and P+FA =
1

4
τ(ψ ⊗ ψ∗) + µ

which are equations for pairs (A,ψ), where A is a G-equivariant U(1)-connection on
det(S+) and ψ ∈ Γ(S+) is a G-equivariant smooth section of S+. As for the notations
involved, here DA : Γ(S+) → Γ(S−) is the Dirac operator canonically defined from
the Levi-Civita connection on M and the U(1)-connection A on det(S+), P+ is the
orthogonal projection onto the subspace of self-dual G-equivariant 2-forms, τ (which
is canonically defined from the Clifford multiplication) is a map from the space of
endomorphisms of S+ into the space of imaginary valued self-dual G-equivariant 2-
forms, and µ is a fixed, imaginary valued self-dual G-equivariant 2-form which is added
in as a perturbation term. Note that the G-equivariant Seiberg-Witten equations are



6 WEIMIN CHEN AND SLAWOMIR KWASIK

invariant under the gauge transformations (A,ψ) 7→ (A − 2ϕ−1dϕ, ϕψ), where ϕ are
circle valued G-invariant smooth functions on M .

Let b2,+G be the dimension of the maximal subspace of H2(M ;R) over which the
cup-product is positive and the induced action of G is trivial. Then as in the non-
equivariant case, the space MG of gauge equivalence classes of the solutions to the G-
equivariant Seiberg-Witten equations is compact, and when b2,+G ≥ 2, it is an orientable
smooth manifold (if nonempty) for a generic choice of (g, µ), whose cobordism class is
independent of the data (g, µ). An invariant, denoted by SWG(S+), can be similarly
defined, which, for instance when dimMG = 0, is a signed sum of the points in
MG. Moreover, there is an involution I on the set of G-SpinC structures which obeys
det(I(S+)) = − det(S+) and SWG(I(S+)) = ±SWG(S+).

Given the above terminology and notation, we claim the following

Lemma 2.1. Let (M,ω) be a symplectic 4-manifold with trivial canonical class c1(K).

Suppose a finite group G acts on M via symplectic automorphisms such that b2,+G ≥ 2.
Then the canonical bundle K is isomorphic to the trivial bundle M ×C as G-bundles,
where G acts on the second factor of M × C trivially.

Proof. Fix a G-equivariant ω-compatible almost complex structure J , and let g =
ω(·, J(·)) be the associated G-equivariant Riemannian metric. Then there is a canon-
ical SpinC-structure on M such that the associated U(2) bundles are given by S0

+ =

I ⊕ K−1 and S0
− = T 0,1M , where I is the trivial complex line bundle. Clearly, this

canonical SpinC-structure is a G-SpinC structure on M , with I being understood as
the G-bundle M × C where G acts on the second factor trivially.

According to Taubes [38], there is a canonical (up to gauge equivalence) connection
A0 on K

−1 = det(S0
+), such that if we set u0 = (1, 0) ∈ Γ(I⊕K−1), then for sufficiently

large r > 0, (A0,
√
ru0) is the only solution (up to gauge equivalence) to the Seiberg-

Witten equations

DAψ = 0 and P+FA =
1

4
τ(ψ ⊗ ψ∗) + µ,

where µ = − i
4rω+P+FA0

, and furthermore, (A0,
√
ru0) is a non-degenerate solution.

In the present situation, observe that A0 is G-equivariant, so is the perturbation
µ = − i

4rω + P+FA0
. Hence (A0,

√
ru0), which is G-equivariant, is also a solution to

the G-equivariant Seiberg-Witten equations. We claim that (A0,
√
ru0) is the only

solution up to G-invariant gauge equivalence. To see this, suppose (A,
√
ru) is another

solution. Then (A,
√
ru) = (A0 − 2ϕ−1dϕ, ϕ · √ru0) for some circle valued smooth

function ϕ on M , from which we see that ϕ is G-invariant. Hence the claim. Now
note that (A0,

√
ru0) is also non-degenerate as a solution to the G-equivariant Seiberg-

Witten equations. This implies that SWG(S
0
+) = ±1.

By the assumption b2,+G ≥ 2, we have SWG(I(S
0
+)) = ±1 as well, where I is the

involution on the set of G-SpinC structures, and I(S0
+) = K ⊕ I. Thus for any

r > 0, theG-equivariant Seiberg-Witten equations associated to theG-SpinC structure
I(S0

+), with perturbation µ = − i
4rω + P+FA0

, has a solution (A,ψ). If we write

ψ =
√
r(α, β) ∈ Γ(K ⊕ I), then according to Taubes [39], the zero locus α−1(0), if

nonempty, will pointwise converge, as r → +∞, to a set of finitely many J-holomorphic
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curves with multiplicity, which represents the Poincaré dual of c1(K). Since c1(K) is
trivial, α−1(0) must be empty when r is sufficiently large. The section α of K is
G-equivariant, and is nowhere vanishing for large r, hence it defines isomorphism of
G-bundles between K andM×C, where G acts trivially on the second factor ofM×C.

�

Lemma 2.1 provides an important information about the structure of the fixed-point
set MG of an action of G on M . This information is summarized in the following

Corollary 2.2. Let (M,ω) be a symplectic 4-manifold with trivial canonical class
c1(K). Suppose a finite group G ≡ Zp, p > 1 prime, acts on M via symplectic

automorphisms such that b2,+G ≥ 2. Then the fixed-point set MG ≡ {m ∈ M : gm =
m,∀g ∈ G}, if nonempty, consists of finitely many isolated points, such that with
respect to an ω-compatible almost complex structure on M , the complex representation
of G ≡ Zp at each of these fixed points is given by (z1, z2) 7→ (µkpz1, µ

−k
p z2) for some

k 6= 0 mod p. (Here µp ≡ exp(2πip ).)

Proof. Let m ∈ MG be any fixed point. By the equivariant Darboux’ theorem, one
can choose an ω-compatible almost complex structure on M which is integrable near
m, such that there are holomorphic coordinates z1, z2 near m within which ω =
i
2 (dz1 ∧ dz̄1 + dz2 ∧ dz̄2) and the action of G is given by (z1, z2) 7→ (µm1

p z1, µ
m2

p z2) for
some m1,m2, where m1 6= 0 mod p. Moreover, dz1 ∧ dz2 defines a local section of the
canonical bundle K, with the induced action of G given by

dz1 ∧ dz2 7→ µ−(m1+m2)
p dz1 ∧ dz2.

By Lemma 2.1, K and M ×C are isomorphic as G-bundles, where G acts trivially on
the second factor of M × C. This implies that m1 +m2 = 0 mod p, from which the
corollary follows easily.

�

Part 2: For readers’ convenience, we first recall a version of the G-signature theorem
which will be used in this paper.

Let M be a closed, oriented smooth 4-manifold, and let G ≡ Zp be a cyclic group of
prime order p which acts on M effectively via orientation-preserving diffeomorphisms.
Then the fixed point setMG, if nonempty, will be in general a disjoint union of finitely
many isolated points and 2-dimensional orientable submanifolds. Moreover, at each

isolated fixed point, G defines a local complex representation (z1, z2) 7→ (µkpz1, µ
kq
p z2)

for some k, q 6= 0 mod p, where q is uniquely determined, and k is determined up to a
sign. (Here µp ≡ exp(2πip )).

With the preceding understood, we state the G-signature theorem (cf. [21]).

Theorem 2.3. (G-signature theorem for prime order cyclic actions)

|G| · sign(M/G) = sign(M) +
∑

m

defm +
∑

Y

defY

where m stands for an isolated fixed point, and Y for a 2-dimensional component of
MG. The terms, defm and defY (which are called signature defect), are given by the
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following formulae:

defm =

p−1
∑

k=1

(1 + µkp)(1 + µkqp )

(1− µkp)(1− µkqp )

if the local representation at m is given by (z1, z2) 7→ (µkpz1, µ
kq
p z2), and

defY =
p2 − 1

3
· (Y · Y )

where Y · Y is the self-intersection of Y .

Now back to the proof of Theorem A. Without loss of generality we may assume
that G ≡ Zp where p > 1 is prime. Suppose now that G acts trivially on H∗(M ;Q).

Then b2,+G = b+2 ≥ 2 so that Corollary 2.2 is true. The Lefschetz fixed point theorem

together with Corollary 2.2 implies that the fixed-point set MG is nonmepty and
consists of finitely many isolated points. Indeed, the classical formula relating the
Euler characteristic χ(M) and the signature sign(M), i.e.,

2χ(M) + 3 sign(M) = c21(K)[M ],

gives χ(M) = −3
2 sign(M) 6= 0. Moreover, we would like to point out that the number

of fixed points |MG| equals the Euler characteristic χ(M) (cf. [23]).
On the other hand, by Corollary 2.2 we observe that, in the G-signature theorem

|G| · sign(M/G) = sign(M) +
∑

m

defm +
∑

Y

defY ,

defm is independent of m and is given by

defm =

p−1
∑

k=1

(1 + µkp)(1 + µ−k
p )

(1− µkp)(1− µ−k
p )

and there are no terms defY . With sign(M/G) = sign(M) and |MG| = χ(M) =
−3

2 sign(M), the G-signature theorem gives rise to

defm =
1

|MG| · (p− 1) · sign(M) =
2

3
(1− p).

Theorem A follows easily from the following explicit calculation of defm, which con-
tradicts the above equation.

Lemma 2.4. defm = 1
3(p − 1)(p − 2).

Proof. It turns out that defm can be computed in terms of Dedekind sum s(q, p) (cf.
[21], page 92), where

s(q, p) =

p
∑

k=1

((
k

p
))((

kq

p
))

with

((x)) =

{

x− [x]− 1
2 if x ∈ R \ Z

0 if x ∈ Z.

(Here [x] stands for the greatest integer less than or equal to x.)
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In fact, equation (24) in [21], page 180, gives

defm = −4p · s(q, p), with q = −1.

One then computes 6p · s(q, p) by (cf. [21], equations (10) and (9) on page 94)

6p · s(q, p) = (p − 1)(2pq − q − 3p

2
)− 6fp(q),

where fp(q) =
∑p−1

k=1 k[
kq
p ]. Since fp(−1) =

∑p−1
k=1 k · (−1) = 1

2 (1− p)p, one obtains

defm =
1

3
(p− 1)(p − 2)

as claimed. �

Remark 2.5. (1) The calculation of defm remains valid if q = −1 is replaced by the
equivalent (i.e. congruent mod p) value of q = p− 1.

(2) It is quite instructive to compare the proof of homological rigidity of holomorphic
actions on Kählerian K3 surfaces in [2, 34] with our proof of rigidity of symplectic
actions on smooth 4-manifolds. Both consists of the same two basic steps. First,
one shows that the fixed-point set of the action consists of isolated fixed points with
specific representations around them. In the holomorphic case this is a rather obvious
observation, whereas in the symplectic case one needs to use deep results of Taubes
on the Seiberg-Witten theory. Next, the holomorphic Lefschetz fixed point theorem is
used to reach a contradiction for the K3 case. Here the Kähler condition as well as the
holomorphicity of the action are crucial; in particular the argument uses information
about the action that is encoded in the quadratic form of the K3 surfaces (via the
Hodge decomposition and the holomorphic Lefschetz fixed point theorem). In our
proof the contradiction is reached by computing with the G-signature theorem. This
has the advantage of being applicable to any smooth (or even locally linear topological)
actions on 4-manifolds.

3. Symplectic Zp-actions on 4-manifolds with c21 = 0

In this section we push further the techniques of G-equivariant Seiberg-Witten-
Taubes theory to the case where c21 = 0. The balk of this section constitutes an
analysis of the structure of the fixed-point set of a symplectic Zp-action on a minimal
symplectic 4-manifold with c21 = 0 and b+2 ≥ 2, which induces a trivial action on the
second rational cohomology. The results are summarized in Theorem 3.2 below (with
some refined statements contained in Proposition 3.7). Theorem B is a special case of
Theorem 3.2 where the action is pseudofree. We set µp ≡ exp(2πip ) throughout.

Let (M,ω) be a symplectic 4-manifold and let G ≡ Zp, where p > 1 and is prime, act

on M via symplectomorphisms. Then the fixed-point set MG, if nonempty, consists
of two types of connected components in general: an isolated point or an embedded
symplectic surface. Moreover, the local representation at each isolated fixed point may

be written as (z1, z2) 7→ (µkpz1, µ
kq
p z2), where the local complex coordinates (z1, z2)

are compatible with the symplectic structure ω; in particular, the intergers k, q are
uniquely determined in their congruence classes (mod p).
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Now suppose b2,+G ≥ 2 (recall that b2,+G is the dimension of the maximal subspace
of H2(M ;R) over which the cup-product is positive and the induced action of G is
trivial). Then as we argued in the proof of Lemma 2.1, given any G-equivariant ω-
compatible almost complex structure J , there is a solution (A,ψ), with ψ ∈ Γ(K ⊕ I),
to the G-equivariant Seiberg-Witten equations with perturbation µ = − i

4rω+P+FA0

for any r > 0. Moreover, if we write ψ =
√
r(α, β), then as r → +∞ the zero set

α−1(0) will pointwise converge to a union of finitely many J-holomorphic curves ∪iCi

such that c1(K) is Poincaré dual to the fundamental class of
∑

i niCi for some ni > 0.
Since α is a G-equivariant section of K, we arrived at the following observations.

• The set ∪iCi is invariant under the action of G.
• For any fixed point m ∈ MG, if m ∈ M \ ∪iCi, then α(m) 6= 0 for sufficiently
large r > 0. Lemma 2.1 and hence Corollary 2.2 hold true locally near m. As a
consequence, we see that m is an isolated fixed point with local representation
contained in SL2(C).

We summarize the preceding discussion in the following

Lemma 3.1. Suppose b2,+G ≥ 2. Then given any G-equivariant ω-compatible almost
complex structure J , the canonical class c1(K) is represented by the fundamental class
of

∑

i niCi for some ni > 0, where {Ci} is a finite set of J-holomorphic curves which
has the following significance.

• The set ∪iCi is invariant under the action of G.
• Let m be a fixed point not contained in ∪iCi. Then m must be an isolated
fixed point with local representation contained in SL2(C). In particular, any
2-dimensional component in MG is contained in ∪iCi.

Lemma 3.1 allows us to extract information about the fixed-point set MG and the
action around it by analyzing the action of G in a neighborhood of ∪iCi. While this
requires a priori knowledge about the structure of ∪iCi, it can be determined with
various additional assumptions on the canonical class of the manifold. In fact, we will
show that when (M,ω) is minimal with c21 = 0, each connected component of ∪iCi

is either a nonsingular elliptic curve, or may be identified with a singular fiber of an
elliptic fibration. With these understood, we now state

Theorem 3.2. Let (M,ω) be a minimal symplectic 4-manifold with c21 = 0 and b+2 ≥ 2,
which admits a nontrivial action of G ≡ Zp, where p is prime, such that the symplectic
structure is preserved under the action and the induced action on H2(M ;Q) is trivial.
Then for any G-equivariant ω-compatible almost complex structure J , there are J-
holomorphic curves {Ci} and positive integers {ni}, such that ∪iCi is G-invariant and
the Poincaré dual of the canonical class c1(K) is represented by the fundamental class
of

∑

i niCi. Furthermore, the following statements describe the structure of ∪iCi as
well as that of the fixed-point set MG.

(1) If a fixed point is not contained in ∪iCi, it must be isolated with local repre-
sentation contained in SL2(C).

(2) The following is a list of all possibilities for a connected component of ∪iCi:
(I) An embedded torus with self-intersection 0.
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(II) A cusp sphere with self-intersection 0.
(III) A nodal sphere with self-intersection 0.
(IV) A union of two embedded (−2)-spheres intersecting at a single point with

tangency of order 2.
(V) A union of embedded (−2)-spheres intersecting transversely.

(3) Accordingly, the possibilities for the associated fixed-point data are listed below,
if the connected component of ∪iCi contains at least one fixed point:
(i) For a type I component, there are three possibilities: (a) it is entirely fixed

by G, (b) it contains four isolated fixed points each of which having a local
representation contained in SL2(C), and (c) it contains three isolated fixed
points, all having the same local representation which is either (z1, z2) 7→
(µkpz1, µ

k
pz2) or (z1, z2) 7→ (µkpz1, µ

2k
p z2) for some k 6= 0 mod p. Moreover,

case (b) occurs only when p = 2 and case (c) occurs only when p = 3.
(ii) For a type II component, there are two isolated fixed points contained in

it. One of them is the cusp-singularity, which has local representation
(z1, z2) 7→ (µ2kp z1, µ

3k
p z2) while the other fixed point has local representa-

tion (z1, z2) 7→ (µ−k
p z1, µ

6k
p z2), for some k 6= 0 mod p. This case occurs

only when p ≥ 5.
(iii) A type III component contains only one isolated fixed point, which is the

nodal point, with local representation contained in SL2(C).
(iv) A type IV component contains three isolated fixed points, one of which is

the intersection of the two (−2)-spheres. As for local representations, the
intersection point always has (z1, z2) 7→ (µkpz1, µ

2k
p z2), and for each of the

other two fixed points, there are two possibilities: (z1, z2) 7→ (µ−k
p z1, µ

4k
p z2)

which occurs only when p > 3, or (z1, z2) 7→ (µ−k
p z1, µ

−2k
p z2) which occurs

only when p = 3, for some k 6= 0 mod p.
(v) For a type V component, there are three possibilities: (a) it contains at

least one 2-dimensional component of MG, (b) it contains only a number
of isolated fixed points whose local representations are all contained in
SL2(C), and (c) it contains exactly four isolated fixed points, one of which
has local representation (z1, z2) 7→ (µkpz1, µ

k
pz2) and each of the other three

has (z1, z2) 7→ (µ−k
p z1, µ

3k
p z2) for some k 6= 0 mod p. The last possibility

occurs only when p 6= 3.

(We would like to point out that the fixed points in Theorem B are slightly reor-
ganized. For instance, for type (2) fixed points in Theorem B the range of possible
primes p is p > 5, while in Theorem 3.2 (3) (ii), the range is p ≥ 5. This is because
when p = 5, the two fixed points contained in the type II component all have local rep-
resentation in SL2(C), therefore are classified in Theorem B as type (1) fixed points.
Similar remarks apply to other cases as well.)

The proof of Theorem 3.2 may be divided into two stages. In the first stage, we
determine the structure of ∪iCi, while in the second stage, we analyze the action of G
in a neighborhood of ∪iCi. The following lemma is the starting point for stage 1.
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Lemma 3.3. Assume (M,ω) is minimal with c21 = 0. Then c1(K) ·Ci = 0 for all Ci,
and C2

i ≥ 0 unless Ci is an embedded (−2)-sphere.

Proof. Note that for any Ci,

c1(K) · Ci =
∑

j

njCj · Ci ≥ niC
2
i .

Thus if c1(K) · Ci < 0, C2
i < 0 also, so that

C2
1 + c1(K) · Ci ≤ (−1) + (−1) = −2.

By the adjunction formula (cf. [28])

C2
i + c1(K) · Ci + 2 ≥ 2 · genus(Ci),

Ci is an embedded sphere with C2
i = −1, which contradicts the minimality of (M,ω).

Hence c1(K) · Ci ≥ 0 for all Ci, which implies c1(K) · Ci = 0 for all Ci because
0 = c21 =

∑

i nic1(K) · Ci.
To see the last statement, we note that the adjunction formula with c1(K) ·Ci = 0

gives rise to C2
i ≥ 2·genus(Ci)−2, which implies that C2

i ≥ 0 unless Ci is an embedded
(−2)-sphere.

�

Let {Λα} be the set of connected components of ∪iCi, where we write Λα = ∪i∈IαCi

for some index set Iα. Denote by |Iα| the cardinality of Iα.
First of all, note that for any α and any i ∈ Iα,

0 = c1(K) · Ci =
∑

j∈Iα

njCj · Ci =
∑

j 6=i

njCj · Ci + niC
2
i .

It follows from Lemma 3.3 that if |Iα| ≥ 2, then Λα is a union of embedded spheres
with self-intersection −2. To analyze the case of |Iα| = 1, we need the following refined
version of the adjunction formula we used earlier: Let C be a J-holomorphic curve,
with δ double points and a number of branch points indexed by j, then

C2 + c1(K) · C + 2 = 2 · genus(C) + 2δ +
∑

j

2κj

where κj denotes the Milnor number of the branch point indexed by j (cf. [29],
Theorem 7.3). Furthermore, it is well-known that if the Milnor number equals 1, then
the branch point must be the cusp-singularity defined by the equation z2 + w3 = 0.
Now suppose |Iα| = 1 and C is the J-holomorphic curve contained in Λα. Then we
have C2 = c1(K) · C = 0, which implies that C is either an embbeded torus, or an
immersed sphere with one double point (i.e. a nodal sphere), or a sphere with one
cusp-singularity (i.e. a cusp sphere), all with self-intersection 0.

To further analyze the components Λα with |Iα| ≥ 2, we observe the following

Lemma 3.4. Let Λα be any connected component such that |Iα| ≥ 2 and there exist
i, j ∈ Iα with Ci · Cj ≥ 2. Then |Iα| = 2, and if we denote by C1, C2 the two
J-holomorphic curves contained in Λα, then one of the following is true.

(1) C1, C2 intersect at a single point with tangency of order 2.
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(2) C1, C2 intersect at two distinct points transversely.

Proof. Note that 0 = c1(K) · Ci =
∑

k∈Iα
nkCk · Ci ≥ njCj · Ci + niC

2
i implies

2nj ≤ njCi · Cj ≤ −niC2
i = 2ni.

Similarly, one has 2ni ≤ 2nj , hence ni = nj. Moreover, one must also have Ci ·Cj = 2
and |Iα| = 2. The lemma follows easily.

�

Next we analyze the components Λα with |Iα| ≥ 2 and Ci · Cj = 1 for any distinct
i, j ∈ Iα. In this case, Λα is a union of embedded (−2)-spheres with transverse
intersections. Such a configuration can be conveniently represented by a graph Γα,
where each Ci ⊂ Λα corresponds to a vertex vi ∈ Γα, and each intersection point
in Ci ∩ Cj corresponds to an edge connecting the vertices vi, vj. Moreover, one
can associate a matrix Qα = (qij), where qii = 1 for any i ∈ Iα, qij = −1

2 for
any distinct i, j ∈ Iα with Ci · Cj 6= 0, and qij = 0 otherwise. Now observe that
(
∑

k∈Iα
nkCk) · Ci = c1(K) · Ci = 0 for all i ∈ Iα, so that the matrix Qα satisfies the

conditions (ii), (iii) and (i)’ in Lemma 2.10 of [2], which implies that Qα is positive
semi-definite. By Lemma 2.12 (ii) in [2], the graph Γα must be one from the list in

Figure 1 below (cf. [2], page 20), with n ≥ 2 if Γα is of type Ãn.
We shall summarize the analysis on ∪iCi by categorizing the components {Λα} of

∪iCi into the following three types.

(A) |Iα| = 1 and Λα is either an embbeded torus, or a nodal sphere, or a cusp
sphere, all with self-intersection 0.

(B) |Iα| = 2 and Λα is a union of two embedded (−2)-spheres intersecting at a
single point with tangency of order 2.

(C) |Iα| ≥ 2 and Λα is a union of embedded (−2)-spheres intersecting transversely.
The corresponding graph Γα is one from the list in Figure 1. Note that we
allow n = 1 in type Ãn graphs, which represents case (2) of Lemma 3.4.

We end the discussion in stage 1 of the proof by identifying the G-invariant com-
ponents of ∪iCi under the assumption that G induces a trivial action on H2(M ;Q).

Lemma 3.5. Assume G induces a trivial action on H2(M ;Q). Then the following
hold true.

(1) If a component Λα is not G-invariant, then Λα must be of type (A).
(2) If a component Λα is G-invariant, then each J-holomorphic curve Ci ⊂ Λα

must also be G-invariant.

Proof. First, if a component Λα is not G-invariant, then for any Ci ⊂ Λα, Ci is disjoint
from g ·Ci for any 1 6= g ∈ G. Particularly, C2

i = (g ·Ci) ·Ci = 0 because G induces a
trivial action on H2(M ;Q). Clearly such a component Λα is of type (A).

Secondly, suppose Λα is G-invariant. Then if for some Ci ⊂ Λα, g ·Ci 6= Ci for some
g ∈ G, then |Iα| ≥ 2, and hence Λα is either of type (B) or type (C). In any case,
−2 = C2

i = (g · Ci) · Ci ≥ 0, which is a contradiction.
�
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Ãn (n+ 1 vertices, n ≥ 1)

D̃n (n+ 1 vertices, n ≥ 4)

Ẽ6

Ẽ7

Ẽ8

Figure 1.

Next we enter stage 2 of the proof where we analyze the action of G in a neigh-
borhood of ∪iCi. For this purpose, we need to introduce the following terminology.
Let C be any G-invariant J-holomorphic curve which is not fixed by G. Suppose C is
parametrized by an equivariant J-holomorphic map f : Σ →M , where Σ is a Riemann
surface with a G ≡ Zp holomorphic action. Let zi ∈ Σ, i = 1, 2, · · · , k, be the fixed
points of G, and for each i, let gi ∈ G be the unique element whose action near zi is
given by a counterclockwise rotation of angle 2π

p . Set pi = f(zi), which is a fixed point

of G, and let (mi,1,mi,2), where 0 ≤ mi,1,mi,2 < p, be a pair of integers such that

the action of gi on the tangent space at pi is given by (w1, w2) 7→ (µ
mi,1
p w1, µ

mi,2
p w2).
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We would like to point out that (mi,1,mi,2) is uniquely determined up to order by the
J-holomorphic curve C, and f is embedded near zi iff one of mi,1,mi,2 equals 1. We
shall call (mi,1,mi,2) a pair of rotation numbers at pi associated to C. Note that when
C has no double points, each fixed point pi has a unique pair of rotation numbers
associated to C.

We shall consider specially the case where Σ is a Riemann sphere and the J-
holomorphic curve C satisfies c1(K) · C = 0. (Note that every Ci in ∪iCi satisfies
this condition, cf. Lemma 3.3.) It is clear that there are exactly two fixed points
z1, z2 of the G ≡ Zp action on Σ. The following congruence relation for the rotation
numbers will be frequently used later in the proof.

Lemma 3.6. Suppose C is a sphere and c1(K) · C = 0. Then

2
∑

i=1

(mi,1 +mi,2) = 0 mod p

where (mi,1,mi,2), i = 1, 2, are the rotation numbers associated to C.

Proof. To see this, let f : S2 →M be a G-equivariant J-holomorphic parametrization
of C. Then the virtual dimension of the moduli space of the corresponding equivariant
J-holomorphic maps at f , which is the index of a first order elliptic differential operator
of Cauchy-Riemann type over the orbifold S2/G, is of even dimension 2df , where

df = −1

p
c1(K) · C + 2−

2
∑

i=1

mi,1 +mi,2

p
.

(See the Riemann-Roch theorem for orbit spaces in [1], or Lemma 3.2.4 in [6] for
the case of general orbifold Riemann surfaces.) The said congruence relation on the
rotation numbers follows easily from df ∈ Z and the assumption c1(K) · C = 0.

�

With the preceding understood, the next proposition finishes the proof of Theorem
3.2, and moreover, it provides a refinement for some of the statements in Theorem 3.2.

Proposition 3.7. Under the assumptions in Theorem 3.2, the following hold true for
any G-equivariant J , where Λα is a connected component of ∪iCi which contains at
least one fixed point of G.

(1) Let Λα = C be a G-invariant, type (A) component. Then there are three
possibilities:
(i) C is an embedded torus. In this case, C is either fixed entirely by G, or

it contains four isolated fixed points if p = 2, or it contains three isolated
fixed points if p = 3. The rotation numbers at each fixed point are all the
same, which is (1, 1) if p = 2, and either (1, 1) or (1, 2) if p = 3.

(ii) C is a cusp sphere. This case occurs only if p ≥ 5. There are two isolated
fixed points, one is the cusp-singularity and the other is a smooth point,
with the rotation numbers being (2, 3) and (1, p − 6) respectively if p > 5,
and (2, 3) and (1, 4) if p = 5.
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(iii) C is a nodal sphere. It contains one isolated fixed point, the nodal point,
with two pairs of rotation numbers both equaling (1, p − 1).

(2) Let Λα be a type (B) component. This case occurs only when p ≥ 3. In this
case each of the (−2)-spheres in Λα contains two isolated fixed points, where
one of them is the intersection of the two spheres, with the rotation numbers
associated to either sphere being (1, 2), while the other fixed point has rotation
numbers (1, p − 4) if p > 3, and (1, 2) if p = 3.

(3) Let Λα be a type (C) component. Then there are four possibilities:
(i) Λα contains a 2-dimensional component of MG, with n = 4 mod p if Λα

is represented by a type D̃n graph and n = −1 mod p if Λα is represented
by a type Ãn graph.

(ii) Λα is of type Ãn and the intersection of each pair of spheres is an isolated
fixed point, with rotation numbers (1, p − 1) associated to either sphere.

(iii) Λα is of type Ã2 where the three spheres intersect at a single point; there
are four isolated fixed points, one occurs at the intersection point and each
of the other three is contained in each one of the three spheres, with the
rotation numbers associated to each sphere being (1, 1) at the intersection
point and (1, |p − 3|) at each of the other three fixed points. This case
occurs only if p 6= 3.

(iv) Λα is of type Ã1 which contains four isolated fixed points. The rotation
numbers at each fixed point is (1, 1), and this case occurs only if p = 2.

Proof. (1) (i) Suppose C is an embedded torus. Since C2 = 0, a regular neighbor-
hood of C has boundary T 3. If C is not fixed by G, then the induced G-action
on T 3 must be free. Such actions are classified (e.g. see Theorem 4.3 and Table
4.4 in [37]). In particular, since C contains a fixed point by assumption, and p is
prime, it follows that this happens only if p = 2 or p = 3. Moreover, the quo-
tient space T 3/G is naturally a Seifert manifold with base S2, and with normalized
Seifert invariant (−2, (2, 1), (2, 1), (2, 1), (2, 1)) if p = 2, and (−1, (3, 1), (3, 1), (3, 1)) or
(−2, (3, 2), (3, 2), (3, 2)) if p = 3. The statement about rotation numbers follows easily
from the description of the normalized Seifert invariant above.

(ii) Suppose C is a cusp sphere. Then C is not fixed by G because it is not a
smooth surface. Moreover, C contains two isolated fixed points, one of which is the
cusp-singularity. Because near the cusp-singularity, C can be parametrized by a J-
holomorphic map z 7→ (z2, z3 + · · · ), it is easily seen that the rotation numbers are
(2, 3). Let (1,m), where 1 < m < p, be the rotation numbers at the other fixed
point, near which C is embedded. Then by Lemma 3.6, the congruence relation
(2 + 3) + (1 +m) = 0 mod p must hold. It follows easily that p ≥ 5, and moreover,
m = p− 6 when p > 5 and m = 4 when p = 5.

(iii) Suppose C is a nodal sphere. Again C can not be fixed by G because it is
immersed, and furthermore, the double point must be a fixed point which is easily
seen the only fixed point contained in C. There are two pairs of rotation numbers. A
simple inspection shows that they are both (1, p − 1).

(2) Suppose Λα is a type (B) component. Then by Lemma 3.5, Λα is G-invariant
and so is each of the embedded (−2)-spheres in Λα. Note that neither of the two
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spheres is fixed by G. This is because if one of them is fixed by G, so is the other as
they intersect at a point with tangency of order 2. This, however, is impossible.

It is clear that each of the embedded (−2)-spheres contains two isolated fixed points
where one of the fixed points is the intersection of the two spheres. It remains only
to check the rotation numbers at each fixed point. For the intersection point, if we
choose a local complex coordinate system (w1, w2) such that one of the embedded
(−2)-spheres is defined by w2 = 0, then the other embedded (−2)-sphere is locally
parametrized by z 7→ (z, z2 + · · · ). It follows easily that the rotation numbers associ-
ated to either embedded (−2)-sphere is (1, 2) at the intersection point. On the other
hand, if we let (1,m) be the rotation numbers at the other fixed point on the sphere,
then the congruence relation in Lemma 3.6 gives (1 + 2) + (1 +m) = 0 mod p, which
implies that p ≥ 3, and moreover, m = p− 4 if p > 3 and m = 2 if p = 3.

(3) Suppose Λα is a type (C) component. Then by Lemma 3.5, each embedded
(−2)-spheres in Λα is G-invariant. There are two possible scenarios: (a) a regular
neighborhood of Λα in M is a plumbing of embedded (−2)-spheres, (b) Λα consists of
three embedded (−2)-spheres which intersect at a single point.

Let’s first consider scenario (a). It is clear that if there are two distinct spheres in
Λα with one intersection point not fixed by G, then we must have p = 2 and Λα is
of type Ã1, with each sphere containing two isolated fixed points of rotation numbers
(1, 1). (This case is listed as (3) (iv) in the proposition.) Now suppose the intersection
of any two distinct spheres in Λα is fixed by G. Then a sphere in Λα which intersects
with more than two other spheres must be entirely fixed by G, because a Zp-action
on S2 can not have more than two fixed points unless it is trivial. In particular, Λα

contains a 2-dimensional component of MG if the graph representing Λα is of type
D̃n, Ẽ6, Ẽ7 or Ẽ8.

We need to further discuss the cases where Λα is of type Ãn or D̃n.
First we assume Λα is of type D̃n, and show that n = 4 mod p. The case where

n = 4 is trivial, so we assume n > 4. Then there are two vertices in the representing
graph Γα, each of which connects to three other vertices, and moreover, there is a
linear sub-graph consisting of (n−3) vertices, with these two vertices at each end. We
denote by v0, v1, · · · , vk the vertices along the linear sub-graph, where k = n− 4.

According to [33], a regular neighborhood of the configuration of embedded (−2)-
spheres represented by the linear sub-graph may be obtained by an S1-equivariant
plumbing where the S1-action is linear on each sphere. On the other hand, the action
of G on each embedded (−2)-sphere is conjugate to a linear action. It follows that there
is an S1-equivariant plumbing such that theG ≡ Zp action on the regular neighborhood
is induced by the inclusion Zp ⊂ S1. The congruence relation n = 4 mod p follows
from this consideration.

More concretely, the S1-equivariant plumbing is done as follows. For each i, 0 ≤ i ≤
k, regard the normal bundle of the embedded (−2)-sphere represented by the vertex
vi as the result of S1-equivariantly sewing D2 ×D2 to D2 ×D2 (here the second D2

in each D2 ×D2 represents the fiber of the normal bundle) by the matrix

(

−1 0
2 1

)

,
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where in polar coordinates on each factor D2, the S1-action on the first D2 × D2 is
given by (r, γ, s, δ) 7→ (r, γ+ui,1θ, s, δ+ vi,1θ), 0 ≤ θ ≤ 2π, and on the second D2×D2

it is given by (r, γ, s, δ) 7→ (r, γ+ui,2θ, s, δ+ vi,2θ), 0 ≤ θ ≤ 2π, for some ui,1, vi,1, ui,2,
vi,2 ∈ Z with u0,1 = 0, v0,1 = 1. Then the plumbing identifies the second D2 × D2

associated to the vertex vi to the first D2 × D2 associated to the next vertex vi+1

with the two factors of D2 switched. Moreover, the plumbing is equivariant so that
ui,2 = vi+1,1, vi,2 = ui+1,1 must hold.

With the preceding understood, the weights of the S1-action on each D2 ×D2 can
be determined from the following equation where i ≥ 0 (cf. [33], page 27)

(

ui,2
vi,2

)

=

(

−(i+ 1) 1− (i+ 1)
i+ 2 i+ 1

)(

u0,1
v0,1

)

.

On the other hand, the G ≡ Zp action on Λα is induced by Zp ⊂ S1, and the embedded
(−2)-sphere represented by vk is fixed by G ≡ Zp, so that uk,2 = 0 mod p must
hold. With u0,1 = 0 and v0,1 = 1, one has k = −uk,2 = 0 mod p, or equivalently,

n = 4 mod p. This finishes the proof for the case when Λα is of type D̃n.
Next we consider the case where Λα is of type Ãn. We will first show that n satisfies

the congruence relation n = −1 mod p (i.e. the number of vertices in Γα is divisible
by p) if one of the following conditions are satisfied: (1) one of the embedded (−2)-
spheres in Λα is fixed by G, or (2) one of the isolated fixed points in Λα has a pair of
rotation numbers (m1,m2) such that m1 +m2 6= 0 mod p.

Consider the linear graph Γ′
α obtained from Γα by removing any one of its edges.

Denote by v1, v2, · · · , vk the vertices along Γ′
α, where k = n+1. Then n = −1 mod p is

equivalent to k = 0 mod p, which is what we will show next. To see this, note that as
we argued earlier, there exists an S1-equivariant plumbing associated to Γ′

α, such that
the G ≡ Zp action is induced by the inclusion Zp ⊂ S1 from the S1-action associated
to the equivariant plumbing. Now suppose at the vertex vi the S1-actions on the two
copies of D2 ×D2 are given (in polar coordinates on each D2 factor) by (r, γ, s, δ) 7→
(r, γ + ui,1θ, s, δ + vi,1θ), 0 ≤ θ ≤ 2π, and (r, γ, s, δ) 7→ (r, γ + ui,2θ, s, δ + vi,2θ),
0 ≤ θ ≤ 2π, for some integers ui,1, vi,1, ui,2, vi,2. Then

(

uk,2
vk,2

)

=

(

−k 1− k
k + 1 k

)(

u1,1
v1,1

)

must be satisfied (cf. [33], page 27). On the other hand, because the G ≡ Zp action on
Λα is induced by the inclusion Zp ⊂ S1 from the S1-action associated to the equivariant
plumbing, it follows that the following equation must hold in congruence mod p:

(

u1,1
v1,1

)

=

(

0 1
1 0

)(

uk,2
vk,2

)

=

(

k + 1 k
−k 1− k

)(

u1,1
v1,1

)

which gives rise to the congruence relation k(u1,1+v1,1) = 0 mod p. Hence k = 0 mod p
as long as u1,1 + v1,1 6= 0 mod p.

To see that u1,1 + v1,1 6= 0 mod p, note that if one of the embedded (−2)-spheres
in Λα is fixed by G, which without loss of generality may be assumed to be the one
represented by the vertex v1, then u1,1 = 0 and v1,1 = 1, so that u1,1+ v1,1 6= 0 mod p.
If one of the isolated fixed points in Λα has a pair of rotation numbers (m1,m2) with
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m1 +m2 6= 0 mod p, then one may similarly assume that u1,1 = m1, v1,1 = m2, which
also implies u1,1 + v1,1 6= 0 mod p.

Therefore for scenario (a) it remains to show that if none of the embedded (−2)-
spheres in Λα is fixed by G, then the rotation numbers (associated to either sphere)
are (1, p− 1) at each fixed point. In particular, we will rule out the second possibility
in the preceding discussion, i.e., one of the isolated fixed points in Λα has a pair of
rotation numbers (m1,m2) such that m1 +m2 6= 0 mod p.

We begin by introducing the following notations. Let pi, 1 ≤ i ≤ k − 1, be the
intersection of the i-th sphere (i.e. the one represented by the vertex vi) with the
(i + 1)-th sphere, and pk be the intersection of the k-th sphere with the first sphere.
Let (1,mi), (1,m

′
i) be the rotation numbers associated to the i-th sphere at pi, pi−1

respectively (here p0 = pk).
First of all, some basic properties of the integers mi, m

′
i, 1 ≤ i ≤ k. Note first

that m′
i and mi−1 are mutually determined by each other in the congruence equation

m′
imi−1 = 1 mod p. Secondly, for each i, m′

i and mi satisfy the congruence relation
(1 +m′

i) + (1 +mi) = 0 mod p (cf. Lemma 3.6), which implies that either mi = m′
i =

p− 1 or 2 +m′
i +mi = p. Finally, with m′

imi−1 = 1 mod p, we see easily that exactly
one of the following is true:

• mi = m′
i = p− 1 for all 1 ≤ i ≤ k, or

• 2 +m′
i +mi = p for all 1 ≤ i ≤ k.

Next, we show that the second case, i.e., 2 +m′
i +mi = p for all 1 ≤ i ≤ k, can not

occur. To see this, we first observe that the sequence m1,m2, · · · ,mk is periodic with
a period l ≤ p− 3. This is because (1) 1+mi 6= 0 mod p implies that k = 0 mod p, so
that p ≤ k, (2) each mi satisfies 1 ≤ mi ≤ p− 3, hence there exist i, l with 1 ≤ i ≤ k,
1 ≤ l ≤ p− 3 such that mi = mi+l, (3) if mi = mi+l for some i and l, then it holds for
all i with that same l. Secondly, a contradiction is reached by showing that the period
l = 1. Indeed, l = 1 means that m1 = · · · = mk = m for some m with 1 ≤ m ≤ p− 3.
If we let m′ be the unique integer such that m′m = 1 mod p and 1 < m′ < p. Then
m′ +m+ 2 = p holds, which implies m = p− 1, a contradiction.

It thus remains to show that l = 1. To see this, recall that if we do S1-equivariant
plumbing on the linear graph Γ′

α of vertices v1, v2, · · · , vk with u1,1 = 1 and v1,1 = m′
1,

then for each i ≤ k, ui,2, vi,2 are related to u1,1, v1,1 by (cf. [33], page 27)
(

ui,2
vi,2

)

=

(

−i 1− i
i+ 1 i

)(

u1,1
v1,1

)

.

On the other hand, we have vi,2 = ui,2mi mod p, because the G ≡ Zp action on
Λα is the restriction of the S1-action associated to the equivariant plumbing to the
subgroup Zp ⊂ S1. By taking i = p (recall that p ≤ k), we obtain up,2 = v1,1 mod p and
up,2mp = vp,2 = u1,1 mod p. With u1,1 = 1, v1,1 = m′

1, we see that m′
1mp = 1 mod p,

which implies that m′
p+1 = m′

1, and hence mp+1 = m1. This last equality shows that
the period l is a divisor of p. Hence l = 1 because l ≤ p− 3 and p is prime.

This shows that either one of the embedded (−2)-spheres in Λα is fixed by G, or
the rotation numbers are (1, p − 1) at each of the isolated fixed points in Λα.

To complete the proof of Proposition 3.7, it remains to consider scenario (b) where
Λα consists of three spheres intersecting at a single point. In this case, it is clear that
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the intersection point must be fixed by G. Moreover, since the induced action of G on
the tangent space at this point has three distinct eigenspaces, it must be an isolated
fixed point and has rotation numbers (1, 1) associated to each sphere. There are
three other isolated fixed points in Λα, with each sphere containing one of them. The
rotation numbers are (1, 1) if p = 2, and (1, p− 3) if p 6= 2 by the congruence relation
in Lemma 3.6. Note that scenario (b) does not occur if p = 3, because otherwise the
rotation numbers (1, p − 3) would become (1, 0), implying that the normal direction
is fixed by G at the isolated fixed point.

�

We have thus proved Theorem 3.2, and particularly Theorem B in the introduction,
which is a special case where the action is pseudofree.

With the fixed-point set data in hand, we next give a proof of Corollary B by
appealing to the G-signature theorem (cf. Theorem 2.3).

Proof of Corollary B

First of all, because c21 = 0 and G acts trivially on H∗(M ;Q), one has

sign(M) = −2

3
χ(M) = −2

3
|MG|,

where |MG| is the number of fixed points. Consequently, the G-signature theorem
may be rewritten as

−2

3
(p− 1) · |MG| = −2

3
(p − 1) · χ(M) =

∑

m∈MG

defm.

We shall discuss separately two cases: (1) p = 2 or p = 3, and (2) p > 3.
Consider first the case p = 2 or p = 3. We remark that in this case we do not need

to use Theorem B, and the corresponding rigidity for the Zp-action is even true for
locally linear topological actions, cf. e.g. [10]. For the sake of completeness, we give
a proof here.

If p = 2, the local representation at each m ∈ MG is of the same type, which
is (z1, z2) 7→ (µkpz1, µ

−k
p z2) with k 6= 0 mod p. Hence defm = 1

3(p − 1)(p − 2) = 0
by Lemma 2.4. This contradicts the G-signature theorem when sign(M) 6= 0. The
case where p = 3 is similar. There is another type of local representation (z1, z2) 7→
(µkpz1, µ

k
pz2) with k 6= 0 mod p, for which a similar calculation as in Lemma 2.4 shows

that defm = −1
3(p−1)(p−2). For both types of local representations, defm > −2

3(p−1),

which contradicts the G-signature theorem when |MG| = −2
3 sign(M) 6= 0.

For the rest of the proof, we assume p > 3. Then the set of fixed points is divided
into groups of the first four types in Theorem B. We introduce the following notation.
For 1 ≤ k ≤ 4, let δk be the number of groups of type (k) in Theorem B, and let def(k)
be the total signature defect contributed by one group of type (k) (i.e., the sum of
defm with m running over one group of type (k) fixed points). With this notation, the
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G-signature theorem maybe be written as

−2

3
(p− 1)(δ1 + 2δ2 + 3δ3 + 4δ4) = δ1 · def(1) + δ2 · def(2) + δ3 · def(3) + δ4 · def(4).

A contradiction will be reached if for all k = 1, 2, 3 and 4,

def(k) ≥ −2k

3
(p− 1),

with the strict inequality holding for some k with δk > 0.
The following lemma gives an explicit formula for def(k), k ≤ 4.

Lemma 3.8. (1) def(1) =
1
3(p− 1)(p − 2) for all p > 1.

(2) def(2) = −8r if p = 6r + 1, def(2) = 8r + 8 if p = 6r + 5.

(3) def(3) = −8r if p = 4r + 1, def(3) = 2 if p = 4r + 3.

(4) def(4) = −8r if p = 3r + 1, def(4) = −4r if p = 3r + 2.

The proof of Lemma 3.8 is given in the appendix, which is a result of direct calcula-
tion. Accepting Lemma 3.8 momentarily, we shall complete the proof of Corollary B
for the case p > 3. Observe that def(1) > −2

3(p−1) for all p > 1, and def(2) ≥ −4
3(p−1)

with equality only if p = 1 mod 6, def(3) ≥ −6
3(p−1) with equality only if p = 1 mod 4,

and def(4) ≥ −8
3(p− 1) with equality only if p = 1 mod 6 (note that if p = 3r + 1 and

p is prime, then r must be even and p = 1 mod 6). Part (b) of Corollary B follows
from this immediately. As for part (a), observe that def(k) > −2k

3 (p − 1) for all k if
p 6= 1 mod 4, p 6= 1 mod 6. Hence when sign (M) 6= 0, one of δk is nonzero, from
which part (a) follows.

✷

We close this section with two examples. The first one shows that the “more exotic”
types of local representations in Theorem B indeed can occur, at least topologically.

Example 3.9. LetM be a homotopyK3 surface (i.e., a manifold homotopy equivalent
to a K3 surface), which is given with the canonical orientation such that sign(M) =
−16. In this example, we will show that there are locally linear, homologically trivial
topological actions of Z5 and Z7 on M with the fixed-point set consisting entirely
of type (3) and type (2) or (4) fixed points in Theorem B respectively. (Compare
Corollary B(a).) Our construction is based on the work of Edmonds and Ewing [11]
concerning realization of certain fixed-point data by a locally linear, topological Zp-
action of prime order on a simply-connected 4-manifold.

Note that a homologically trivial pseudofree action of Zp on M must have 24 fixed
points. Consider first the following fixed-point data where p = 5: Pick 24 points of
M , divide them evenly into two groups, and assign the points in each group with local
representations

(z1, z2) 7→ (µkpz1, µ
2k
p z2), (z1, z2) 7→ (µ−k

p z1, µ
4k
p z2), and (z1, z2) 7→ (µ−k

p z1, µ
4k
p z2)

evaluated at k = 1, 2, 3, 4.
In order to realize the above fixed-point data, we recall the GSF condition from

[11], which in the present case becomes

2 def(3) = sign(g,M), ∀g ∈ Z5.
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To verify the GSF condition, we note that the action is assumed to be homologically
trivial, so that sign(g,M) = sign(M) = −16 for any g ∈ Z5. On the other hand,
we have def(3) = −8 by Lemma 3.8. Hence the GSF condition is satisfied. Now for
p = 5, GSF is the only condition needed for the realization of the fixed-point data by
a homologically trivial action, cf. [11], Corollary 3.2. Consequently, there is a locally
linear topological action of Z5 onM with the fixed-point set consisting entirely of type
(3) fixed points in Theorem B.

Similar arguments lead to a locally linear, homologically trivial topological action
of Z7 on M with the fixed-point set consisting entirely of type (2) or type (4) fixed
points.

The purpose of the second example is to illustrate that when a certain additional
information about the canonical class and the symplectic structure is available, The-
orem 3.2 (together with Proposition 3.7) may yield rigidity for actions which are not
necessarily pseudofree.

Example 3.10. Consider a symplectic 4-manifold (M,ω) with the following proper-
ties: M is a homotopy K3 surface, ω defines an integral class [ω] ∈ H2(M ;R) (or
more generally, any sufficiently small perturbation of an integral class), c21 = 0, and
c1(K) · [ω] < 7. Note that (M,ω) must be minimal becauseM has an even intersection
form. Moreover, c21 = 0 implies sign(M) = −16, so that b+2 = 3.

We shall next prove that:

There are no nontrivial homologically trivial actions (not necessarily pseudofree) of
a finite group on M which preserve the symplectic structure ω.

To see this, suppose there is such an action. Without loss of generality, we may
assume that the action is cyclic of prime order p. By Theorem 3.2 and Proposition
3.7, there is a set of J-holomorphic curves {Ci} as described therein, such that c1(K)
is represented by the fundamental class of

∑

i niCi for some integers ni ≥ 1. Since [ω]
is integral, [ω] ·Ci ≥ 1 for all Ci. Now the property c1(K) · [ω] < 7 implies that in ∪iCi

there is no component Λα which is a union of embedded (−2)-spheres represented by

a graph of type other than Ãn or D̃4. With this understood, it follows easily that
there are only two types of 2-dimensional components in the fixed-point set, (1) an
embedded torus, (2) an embedded (−2)-sphere contained in a component Λα which

is represented either by a type Ãn graph or by a type D̃4 graph. Notice further that
a toroidal fixed component does not make any contribution to the signature defect
because it has self-intersection 0 (cf. Theorem 2.3).

With the preceding understood, we discuss separately the cases (i) the action is
pseudofree, (ii) the action has a (−2)-sphere fixed component.

For case (i), first note that we may assume that there are no fixed points whose
local representation is contained in SL2(C), because otherwise the action is trivial
by Corollary B(b). Then we see from Theorem 3.2 and Proposition 3.7 that the
number of fixed points, which equals χ(M) since the action is homologically trivial,
equals 2δ2 + 3δ3 + 4δ4, where δ2 is the number of cusp-sphere components Λα, δ3 is
the number of Λα which is a union of two (−2)-spheres, and δ4 is the number of Λα
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which is a union of three spheres. A contradiction is reached easily by observing that
χ(M) = 24, and that δ2 + 2δ3 + 3δ4 ≤ c1(K) · [ω] < 7.

For case (ii), we first assume that there is a component Λα which contains a fixed

(−2)-sphere and is represented by a type Ãn graph. Then there will be no component

represented by a type D̃4 graph because of the constraint c1(K)·[ω] < 7, and moreover,
by Proposition 3.7 (3), the number of (−2)-spheres in such a component Λα is divisible
by the order p of the action. It follows from c1(K) · [ω] < 7 that p = 2, 3 or 5.

Note that in the context of this example, the G-signature theorem is equivalent to
the following equation

−16(p − 1) =
∑

m

defm +
∑

Y

defY ,

where m,Y represent an isolated fixed point and a fixed (−2)-sphere respectively.

If p = 2, then defY = p2−1
3 · (Y · Y ) = −2 for any Y and the definition of defm

implies that defm = 0 for all m. We reach a contradiction to the G-signature theorem
because there are at most 3 fixed (−2)-spheres.

Suppose p = 3 next. Let δm, δY be the number of isolated fixed points m and fixed
(−2)-spheres Y respectively. Then δm, δY obey δm + 2δY = χ(M) = 24 (cf. [23]), and
moreover, it is clear that δY ≤ 2. As for the signature defects defm and defY , we note
that for p = 3 there are two types of local representations: (z1, z2) 7→ (µkpz1, µ

−k
p z2) or

(z1, z2) 7→ (µkpz1, µ
k
pz2). A similar calculation as in Lemma 2.4 shows that in both cases,

one has defm ≥ −1
3(p−1)(p−2) = −2

3 . On the other hand, defY = p2−1
3 ·(Y ·Y ) = −16

3 ,
which gives a contradiction to the G-signature theorem

−32 = −16(p − 1) ≥ δm · (−2

3
) + δY · (−16

3
) ≥ 24 · (−2

3
) + 2 · (−16

3
) = −80

3
.

Finally, let p = 5. First, we observe that there is exactly one component Λα of type
Ã4 which contains a fixed (−2)-sphere. Next we recall that if a (−2)-sphere is not
fixed, then it must contain exactly two fixed points, and if we let (1,m1), (1,m2) be the
corresponding rotation numbers, where 0 ≤ m1,m2 < p = 5, the congruence relation
(1+m1)+(1+m2) = 0 mod 5 must be satisfied (cf. Lemma 3.6). A simple inspection
shows that Λα contains, besides the fixed (−2)-sphere, three isolated fixed points of

local representation (z1, z2) 7→ (µkpz1, µ
kq
p z2) for some k 6= 0 mod p, with q = 1, 2, 3

respectively. On the other hand, for all other fixed points, where there is a total of
χ(M) − (3 + 2 · 1) = 19 (cf. [23]), the local representation is (z1, z2) 7→ (µkpz1, µ

−k
p z2)

for some k 6= 0 mod p. To see this, note that the type Ã4 component Λα contributes
at least 5 to c1(K) · [ω] < 7, so that there is at most one more component which must
be of type (A), i.e., consisting of a single J-holomorphic curve. The claim follows from
Proposition 3.7 (1) immediately.

To continue we recall that the signature defect defm for an isolated fixed point m

with local representation (z1, z2) 7→ (µkpz1, µ
kq
p z2) for some k 6= 0 mod p is

Ip,q ≡
p−1
∑

k=1

(1 + µkp)(1 + µkqp )

(1− µkp)(1 − µkqp )
.
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A direct calculation (cf. Appendix: Proof of Lemma 3.8) gives

I5,−1 = 4, I5,1 = −4, I5,2 = 0, I5,3 = 0.

(Observe the relation Ip,q = −Ip,−q.) We reach a contradiction for p = 5 through the
G-signature theorem:

−16(5− 1) = 19I5,−1 + I5,1 + I5,2 + I5,3 +
52 − 1

3
· (−2)

or equivalently −64 = 56.
It remains to consider for case (ii) the possibility of having a component Λα which

is represented by a type D̃4 graph. In this situation, note that Λα must be the only
component (notice that the center vertex in the corresponding graph has weight 2, cf.
[2], Lemma 2.12 (ii) on page 20, so that Λα contributes at least 6 to c1(K) · [ω] < 7),
and besides the fixed (−2)-sphere, it also contains four isolated fixed points of rotation
numbers (1, p− 2). The rest of the fixed points are isolated, all of local representation
contained in SL2(C). By Lemma 2.4, the G-signature theorem implies

−16(p − 1) ≥ 4 · Ip,−2 −
2

3
(p2 − 1),

which is a contradiction because Ip,−2 = −Ip,2 = 1
6 (p− 1)(p− 5) (cf. Appendix: Proof

of Lemma 3.8).
We have thus shown that there are no nontrivial homologically trivial finite group

actions on M which preserve the symplectic structure ω.
Finally, we remark that there are indeed examples of such 4-manifolds (M,ω), which

actually have nontrivial canonical class c1(K). (This is the case which is not covered
in Theorem A.) In fact, such an M may be obtained by the knot surgery construction
of Fintushel and Stern [13]. More precisely, consider the K3 surface S4 which is the
hypersurface in P3:

S4 ≡ {[z0, z1, z2, z3] ∈ P3 | z40 − z41 + z42 − z43 = 0}
There is a holomorphic elliptic fibration π : S4 → P1 such that a generic fiber F of π is
a cubic curve in a hyperplane in P3 (cf. §3.2 of [19]). Let ω0 be the Kähler form on S4
which is obtained by restricting the Fubini-Study form to S4. Then [ω0] ∈ H2(S4;R)
is an integral class, and [ω0] · F = 3 since F is a cubic curve.

Now applying the knot surgery construction of Fintushel and Stern [13] to S4 at
a regular fiber of the holomorphic elliptic fibration with the Kähler form ω0 and
using the trefoil knot, one obtains a symplectic 4-manifold (M,ω), such that (1) M is
homeomorphic to S4, (2) the canonical class c1(K) is the Poincaré dual of 2F where
F is the fiber class of the holomorphic elliptic fibration. It follows easily that (M,ω)
satisfies the required conditions.

We wish to point out that the 4-manifold M constructed above is not a complex
surface (with either orientation). To see this, first note that M is not diffeomorphic to
any 4-manifold obtained by performing a log transform to a K3 surface (cf. [12, 13]).
In particular, M can not be a complex surface with Kodaira dimension ≤ 1 (cf. e.g.
[19], Lemma 3.3.4 and Theorem 3.4.12). On the other hand, M can not be a complex
surface of general type (necessarily with the opposite orientation) because it violates
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the Miyaoka-Yau inequality c21 ≤ 3c2. Hence M is not a complex surface. Note that
this in particular shows that the homological rigidity obtained in this example goes
beyond that of holomorphic actions on Kähler surfaces in Peters [35].

Appendix: Proof of Lemma 3.8

Recall that (cf. Theorem 2.3) for an isolated fixed point m ∈ MG, the signature
defect defm is given by the following expression if the local representation at m is

(z1, z2) 7→ (µkpz1, µ
kq
p z2) for some k 6= 0 mod p and q 6= 0 mod p:

Ip,q ≡
p−1
∑

k=1

(1 + µkp)(1 + µkqp )

(1− µkp)(1− µkqp )

With this notation, it is easily seen that

def(1) = Ip,−1,def(2) = Ip,−6 + Ip,(p+3)/2,def(3) = Ip,2 + 2Ip,−4,def(4) = Ip,1 + 3Ip,−3.

By Lemma 2.4, def(1) =
1
3 (p− 1)(p − 2) and Ip,1 = −Ip,−1 = −1

3(p− 1)(p − 2).
To calculate def(k) for k = 2, 3 and 4, we go back to the proof of Lemma 2.4. Recall

that Ip,q = −4p · s(q, p), and the Dedekind sum s(q, p) can be computed from

6p · s(q, p) = (p− 1)(2pq − q − 3p

2
)− 6fp(q)

where fp(q) =
∑p−1

k=1 k[
kq
p ]. Note that Ip,2 = −1

6(p− 1)(p − 5) follows directly from

fp(2) =

p−1
∑

k=1

k[
2k

p
] =

p−1
∑

k=(p+1)/2

k =
1

8
(3p− 1)(p − 1).

To calculate Ip,q for the other values of q, we recall the following equation from [21]
(equation (8) on page 94)

p−1
∑

k=1

[
kq

p
]2 − 2q

p
·
p−1
∑

k=1

k[
kq

p
] =

1

6p
(1− q2)(p− 1)(2p − 1)

and eliminate fp(q) from the expression for 6p · s(q, p). Consequently, we have

Ip,q = (−2pq

3
+
q

3
+

1

3q
+ p− 2p

3q
)(p − 1) +

2p

q
·
p−1
∑

k=1

[
kq

p
]2.

Next we evaluate
∑p−1

k=1[
kq
p ]

2 for q = −4,−6, p+3
2 and q = −3.

(1) q = −4. We shall consider separately the cases p = 4r + 1 and p = 4r + 3. For
p = 4r + 1, we have

p−1
∑

k=1

[
−4k

p
]2 =

r
∑

k=1

(−1)2 +
2r
∑

k=r+1

(−2)2 +
3r
∑

k=2r+1

(−3)2 +
4r
∑

k=3r+1

(−4)2 = 30r.
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For p = 4r + 3, we have

p−1
∑

k=1

[
−4k

p
]2 =

r
∑

k=1

(−1)2 +

2r+1
∑

k=r+1

(−2)2 +

3r+2
∑

k=2r+2

(−3)2 +

4r+2
∑

k=3r+3

(−4)2 = 30r + 13.

(2) q = −6. We shall consider separately the cases p = 6r + 1 and p = 6r + 5. For
p = 6r + 1, we have

p−1
∑

k=1

[
−6k

p
]2 =

6
∑

j=1

jr
∑

k=(j−1)r

(−j)2 = 91r.

For p = 6r + 5, we have

p−1
∑

k=1

[
−6k

p
]2 =

r
∑

k=1

(−1)2 +

4
∑

j=1

(j+1)r+j
∑

k=jr+j

(−j − 1)2 +

6r+4
∑

k=5r+5

(−6)2 = 91r + 54.

(3) q = p+3
2 . Observe that when k = (2l − 1) is odd, we have

[
kq

p
] =

{

l − 1 if l = 1, · · · , [p+3
6 ]

l if l = [p+3
6 ] + 1, · · · , p−1

2 ,

and when k = 2l is even, we have

[
kq

p
] =

{

l if l = 1, · · · , [p3 ]
l + 1 if l = [p3 ] + 1, · · · , p−1

2 .

A direct calculation gives

p−1
∑

k=1

[
kq

p
]2 =

[(p+3)/6]
∑

l=1

(l − 1)2 +

(p−1)/2
∑

l=[(p+3)/6]+1

l2 +

[p/3]
∑

l=1

l2 +

(p−1)/2
∑

l=[p/3]+1

(l + 1)2

=

{

r(18r2 + 13r + 3) if p = 6r + 1
(r + 1)(18r2 + 31r + 14) if p = 6r + 5.

(4) q = −3. We shall consider separately the cases p = 3r + 1 and p = 3r + 2. For
p = 3r + 1, we have

p−1
∑

k=1

[
−3k

p
]2 =

r
∑

k=1

(−1)2 +

2r
∑

k=r+1

(−2)2 +

3r
∑

k=2r+1

(−3)2 = 14r.

For p = 3r + 2, we have

p−1
∑

k=1

[
−3k

p
]2 =

r
∑

k=1

(−1)2 +
2r+1
∑

k=r+1

(−2)2 +
3r+1
∑

k=2r+2

(−3)2 = 14r + 4.
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Now plug these formulas back into the expression for Ip,q. We obtain

Ip,−4 =

{

4
3r(r − 4) if p = 4r + 1
2
3(2r

2 + 1) if p = 4r + 3,

Ip,−6 =

{

2r(r − 6) if p = 6r + 1
2r2 + 4r + 4 if p = 6r + 5,

Ip,(p+3)/2 =

{

2r(2− r) if p = 6r + 1
−2r2 + 4r + 4 if p = 6r + 5,

Ip,−3 =

{

r(r − 3) if p = 3r + 1
r(r − 1) if p = 3r + 2.

This gives the formulas of def(k) for k = 2, 3 and 4, and Lemma 3.8 follows.
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