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SYMMETRIES AND EXOTIC SMOOTH STRUCTURES ON A K3

SURFACE

WEIMIN CHEN AND SLAWOMIR KWASIK

Abstract. Smooth and symplectic symmetries of an infinite family of distinct ex-
otic K3 surfaces are studied, and comparison with the corresponding symmetries of
the standard K3 is made. The action on the K3 lattice induced by a smooth finite
group action is shown to be strongly restricted, and as a result, nonsmoothability of
actions induced by a holomorphic automorphism of a prime order ≥ 7 is proved and
nonexistence of smooth actions by several K3 groups is established (included among
which is the binary tetrahedral group T24 which has the smallest order). Concerning
symplectic symmetries, the fixed-point set structure of a symplectic cyclic action of
a prime order ≥ 5 is explicitly determined, provided that the action is homologically
nontrivial.

1. Introduction

The main purpose of this paper is to investigate the effect of a change of a smooth
structure on the smooth symmetries of a closed, oriented 4-dimensional smoothable
manifold. The influence of symmetries on smooth structures on a manifold is one of
the basic questions in the theory of differentiable transformation groups. The follow-
ing classical theorem of differential geometry gives a beautiful characterization of the
standard sphere Sn among all simply connected manifolds. It led to an extensive study
of various degrees of symmetry for the (higher dimensional) exotic spheres in the 1960s
and 70s (cf. [30]). Lawson and Yau even found that there exist exotic spheres which
support no actions of small groups such as S3 or SO(3) (cf. [34]). See [47] for a survey.

Theorem (A Characterization of Sn). Let Mn be a closed, simply connected man-
ifold of dimension n, and let G be a compact Lie group which acts smoothly and
effectively on Mn. Then dimG ≤ n(n + 1)/2, with equality if and only if Mn is
diffeomorphic to Sn.

The subject of symmetries of exotic smooth 4-manifolds, on the other hand, has
been so far rather an untested territory. Our investigations of smooth symmetries of
4-manifolds have been focused on the case of K3 surfaces. These manifolds exhibit
surprisingly rich geometric structures and have been playing one of the central roles
in both the theory of complex surfaces and topology of smooth 4-manifolds.
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To be more specific, we will study symmetries of an infinite family of distinct, closed,
oriented smooth 4-manifolds, each of which is orientation-preservingly homeomorphic,
but not diffeomorphic, to a K3 surface (canonically oriented as a complex surface).
These exotic K3 surfaces, originally due to Fintushel and Stern, are obtained by
performing the knot surgery construction simultaneously on three disjoint embedded
tori representing distinct homology classes in a Kummer surface (cf. [18], compare
also [24]). It is known that none of these 4-manifolds support a complex structure (cf.
[18, 25]), however, one may arrange the knot surgeries so that each of these manifolds
supports a symplectic structure compatible with the given orientation (cf. [18]).

AK3 surface is a simply-connected complex surface with trivial canonical bundle. It
is known that all K3 surfaces are deformation equivalent as complex surfaces (therefore
diffeomorphic as oriented smooth 4-manifolds), and that all K3 surfaces are Kähler
surfaces (cf. [3]). There is an extensive study on finite subgroups of the automorphism
group of a K3 surface, beginning with the fundamental work of Nikulin [44]. Special
attention has been given to those subgroups of automorphisms which induce a trivial
action on the canonical bundle of the K3 surface. (Such automorphisms are called
symplectic; in Nikulin [44] they were called algebraic.) A finite group G is called a
K3 group (resp. symplectic K3 group) if G can be realized as a subgroup of the
automorphism group (resp. symplectic automorphism group) of a K3 surface. Finite
abelian groups of symplectic automorphisms of a K3 surface were first classified by
Nikulin in [44]; in particular it was shown that a finite symplectic automorphism must
have order ≤ 8. Subsequently, Mukai [42] determined all the symplectic K3 groups
(see also [31, 51]). There are 11 maximal ones, all of which are characterized as certain
subgroups of the Mathieu group M23. Finally, a cyclic group of prime order p > 7 is
a K3 group (necessarily non-symplectic) if and only if p ≤ 19 (cf. [44, 38]).

We recall three relevant properties of automorphism groups of K3 surfaces. First,
a finite-order automorphism of a K3 surface preserves a Kähler structure, hence by
the Hodge theory, it is symplectic if and only if the second cohomology contains a
3-dimensional subspace consisting of invariant elements of positive square. Secondly,
since a symplectic automorphism acts trivially on the canonical bundle, it follows
that the induced representation at a fixed point (called a local representation) lies
in SL2(C); in particular, the fixed point is isolated. (Such actions are called pseud-
ofree.) Finally, a nontrivial automorphism of a K3 surface must act nontrivially on
the homology (cf. [3]).

Finite groups of automorphisms of a K3 surface are primary sources of smooth
and symplectic symmetries of the standard K3. (In fact, no examples of smooth
symmetries of the standard K3 are known to exist that are not automorphisms of a
K3 surface.) Thus in analyzing symmetry properties of an exotic K3 surface, we will
use these automorphisms as the base of our comparison.

We shall now state our main theorems. In what follows, we will denote by Xα a
member of the infinite family of exoticK3 surfaces of Fintushel and Stern we alluded to
earlier. (A detailed review of their construction along with some relevant properties
will be given in Section 2; we point out here that the index α stands for a triple
(d1, d2, d3) of integers which obey 1 < d1 < d2 < d3 and are pairwise relatively prime.)
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The induced action on the quadratic form and the fixed-point set structure are two
fundamental pieces of information associated with a finite group action on a simply-
connected 4-manifold. In this regard, we have

Theorem 1.1. Let G ≡ Zp where p is an odd prime. The following statements are
true for a smooth G-action on Xα.

(1) The induced action is trivial on a 3-dimensional subspace of H2(Xα;R) over
which the cup-product is positive definite.

(2) For p ≥ 7, there is a G-invariant, orthogonal decomposition of the intersection
form on H2(Xα;Z) as

3

(

0 1
1 0

)

⊕ 2(−E8)

where the induced G-action on each hyperbolic summand is trivial.

Remark 1.2. (1) For a smooth Zp-action on a homotopy K3 surface, Theorem 1.1
holds true automatically when p ≥ 23 because in this case the action is necessarily
homologically trivial. However, when p < 23, nothing is known in general about the
induced action on the K3 lattice. For a prime order symplectic automorphism of a K3
surface, Nikulin showed in [44] that the action on the K3 lattice is unique up to conju-
gacy, which was explicitly determined in [41, 23] by examing some concrete examples
of the action. In particular, Theorem 1.1 (2) is false for symplectic automorphisms of
a K3 surface (cf. the proof of Corollary 1.3).

(2) The G-invariant, orthogonal decomposition in Theorem 1.1 (2) gives severe
restrictions on the induced integral G-representation onH2(Xα;Z); in particular, when
p > 7 the action must be homologically trivial because Aut (E8) contains no elements
of order > 7. Note that one does not expect such a result in general, as for each prime
p with p < 23, there exists an automorphism of a K3 surface of order p, which is
necessarily homologically nontrivial.

(3) Let F be the fixed-point set. A general result of Edmonds (cf. Proposition 3.1)
constrains the number of 2-dimensional components of nonzero genus in F by equating
the first Betti number of F (if nonempty) and the number of summands of cyclotomic
type in the induced integral G-representation on the second homology. For a smooth
Zp-action on a homotopy K3 in general, there are no summands of cyclotomic type
when p ≥ 13, and consequently F does not contain any 2-dimensional non-spherical
components in these cases. However, when p = 7 or 11, such a summand does occur.
In fact, for both p = 7 and p = 11, there exists an automorphism of a K3 surface of
order p which fixes a regular fiber of an elliptic fibration on the K3 surface (cf. [38]).
With the above observations, note that Theorem 1.1 (2) implies that for a smooth
Zp-action on Xα of order p = 7 or 11, F contains at most 2-dimensional spherical
components (cf. Lemma 4.5), which is in contrast with the case of the standard K3
we mentioned earlier. Finally, a calculation with the Lefschetz fixed point theorem
indicates that for p ≥ 7, F also has a fairly large size, e.g., χ(F ) ≥ 10. (In contrast
a symplectic automorphism of a K3 surface of order 7 has only three isolated fixed
points, hence χ(F ) = 3.)
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We have seen from the discussions in Remark 1.2 that for any prime p ≥ 7, a smooth
Zp-action on Xα differs in many aspects from an automorphism of a K3 surface. In
particular, we note the following relative nonsmoothability result as a corollary of
Theorem 1.1.

Recall that each Xα is homeomorphic to a K3 surface. Thus any finite-order auto-
morphism of a K3 surface induces a locally linear topological action on Xα after we
fix a homeomorphism between Xα and the standard K3.

Corollary 1.3. Any locally linear topological action induced by an automorphism of
a K3 surface of a prime order ≥ 7 is nonsmoothable on Xα.

Proof. Let g be an automorphism of a K3 surface of a prime order p ≥ 7. If g is
non-symplectic, then g is not smoothable on Xα by Theorem 1.1 (1). Suppose g is a
symplectic automorphism. Then by Nikulin [44], we have p = 7, and moreover, the
action of g is pseudofree with 3 isolated fixed points. Suppose g is smoothable on Xα.
Then by Theorem 1.1 (2) and Lemma 4.5, the trace of the action of g on H2(Xα;Z) is
at least 8, so that by the Lefschetz fixed point theorem (cf. Theorem 3.4), the Euler
number of the fixed point set of g is at least 10. A contradiction.

�

Next we turn our attention to smooth involutions, i.e., smooth Z2-actions on Xα.
Let g : Xα → Xα be any smooth involution. Since Xα is simply-connected, g can be
lifted to the spin bundle over Xα, where there are two cases: (1) g is of even type,
meaning that the order of lifting to the spin bundle is 2, or (2) g is of odd type,
meaning that the order of lifting to the spin bundle is 4. Moreover, g has 8 isolated
fixed points in the case of an even type, and g is free or has only 2-dimensional fixed
components in the case of an odd type (cf. [1, 6]).

Theorem 1.4. Suppose g : Xα → Xα is an odd type smooth involution. Then the
fixed-point set of g belongs to one of the following three possibilities:

(1) An empty set.
(2) A disjoint union of two tori.
(3) A disjoint union of spheres or tori where the number of tori is at most one.

Let τ be an anti-holomorphic involution on a K3 surface. (Note that τ is holo-
morphic with respect to some other complex structure on the smooth 4-manifold, cf.
[13].) Then τ falls into one of the following three types according to the fixed point
set Fix(τ) of τ (cf. [45]); in particular, τ is of odd type:

• Fix(τ) = ∅,
• Fix(τ) is a union of two tori,
• Fix(τ) is a union of orientable surfaces of genus ≤ 10, such that the number
of non-spherical components in Fix(τ) is at most one.

Corollary 1.5. A locally linear topological Z2-action induced by an anti-holomorphic
involution is nonsmoothable on Xα if it has a fixed component of genus ≥ 2. (Note
that such anti-holomorphic involutions do exist, cf. [45].)

Remark 1.6. There are previously known examples of locally linear topological ac-
tions on closed 4-manifolds which are not smoothable. For example, there is a locally
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linear, pseudofree, homologically trivial topological action of order 5 on CP2#CP2

which can not be realized as an equivariant connected sum of two copies of CP2 (cf.
[16]). By the main result of [27], the action is not smoothable with respect to any
smooth structure on CP2#CP2. (For more recent examples of nonsmoothable actions
on closed 4-manifolds, see e.g. [36, 37], and for nonsmoothable actions on non-closed
4-manifolds, see [32].) However, the nonsmoothability in Corollary 1.3 and Corollary
1.5 is of a different nature; the action is smooth (even holomorphic) for one smooth
structure but not smoothable with respect to some (in fact infinitely many) other
smooth structures.

Our investigation of the possible effect of a change of smooth structures on the
smooth symmetries of a closed, oriented smoothable 4-manifold is based on the fol-
lowing simple fact. Suppose M4 is a simply-connected, oriented smooth 4-manifold
with an orientation-preserving smooth action of a finite group G. Let L be the prim-
itive sublattice of H2(M4;Z) spanned by the Seiberg-Witten basic classes of M4 (we
assume b+2 (M

4) > 1). Then the induced G-action on H2(M4;Z) preserves L as it
preserves the set of Seiberg-Witten basic classes. One can try to analyze the G-action
on H2(M4;Z) through the actions on L and L⊥, the orthogonal complement of L
in H2(M4;Z). With this understood, a crucial ingredient in our investigation is the
following property of Xα: L is isotropic and of rank 3, such that

L⊥/L = 2(−E8).

(See Lemma 4.2 for more details.) Furthermore, one can arrange Xα such that each
Seiberg-Witten basic class is fixed under the action up to a change of signs; in partic-
ular, an odd order G must act trivially on L. Given this, Theorem 1.1 follows readily
by analyzing the corresponding action on L⊥/L = 2(−E8) where G is cyclic of a prime
order ≥ 7.

The above mentioned property ofXα can be further exploited to prove non-existence
of effective smooth G-actions on Xα for a certain kind of finite groups G. For instance,
suppose G is of odd order and there are no nontrivial G-actions on the E8 lattice (e.g.
G is a p-group with p > 7), then any smooth G-actions on Xα must be homologically
trivial, and therefore, by a theorem of McCooey [39] G must be abelian of rank at
most 2 (cf. Corollary 4.4). In particular, a nonabelian p-group with p > 7 can not
act smoothly and effectively on Xα. We remark that while for a given finite group G,
we do not know a priori any obstructions to the existence of a smooth G-action on a
homotopy K3 surface, a non-existence result of this sort for Xα may be in fact purely
topological in nature.

The following non-existence theorem of smooth actions on Xα covers the cases of
several K3 groups, hence it must not be purely topological in nature. Its proof requires
a deeper analysis of the induced actions on the E8 lattice.

Theorem 1.7. Let G be a finite group whose commutator [G,G] contains a subgroup
isomorphic to (Z2)

4 or Q8, where in the case of Q8 the elements of order 4 in the
subgroup are conjugate in G. Then there are no effective smooth G-actions on Xα.

A complete list of symplectic K3 groups along with their commutators can be found
in Xiao [51], Table 2. By examing the list we note that among the 11 maximal K3
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groups the following can not act smoothly and effectively on Xα (cf. Corollary 5.4):

M20, F384, A4,4, T192,H192, T48.

We also note that the binary tetrahedral group T24 of order 24 is the K3 group of the
smallest order which can not act smoothly and effectively on Xα by Theorem 1.7.

As we mentioned earlier, each exotic K3 Xα supports an orientation-compatible
symplectic structure. In order to investigate how symplectic symmetries may depend
on the underlying smooth structure of a 4-manifold, we also analyzed finite group
actions on Xα which preserve an orientation-compatible symplectic structure.

Recall that Aut(E8 ⊕E8) is a semi-direct product of Aut(E8)×Aut(E8) by Z2 (cf.
[48]). Thus for any smooth G-action on Xα, where G ≡ Zp for an odd prime p, there
is an associated homomorphism

Θ = (Θ1,Θ2) : G = Zp → Aut(E8)×Aut(E8).

The following theorem gives a complete description of the fixed-point set structure of
a symplectic Zp-action on Xα for p ≥ 5, provided that both homomorphisms Θ1,Θ2 :
Zp → Aut(E8) are nontrivial. Note that this implies that p = 5 or p = 7.

Theorem 1.8. Let F ⊂ Xα be the fixed-point set of a symplectic Zp-action of a prime

order p ≥ 5 such that both Θ1,Θ2 are nontrivial. Set µp ≡ exp(2πip ). Then

(1) if p = 5, there are two possibilities:

(i) F consists of 14 isolated fixed points, two with local representation (z1, z2) 7→
(µk

pz1, µ
k
pz2), six with local representation (z1, z2) 7→ (µ4k

p z1, µ
3k
p z2), two with

local representation (z1, z2) 7→ (µ2k
p z1, µ

4k
p z2), and four with local representation

(z1, z2) 7→ (µ3k
p z1, µ

3k
p z2), for some k 6= 0 (mod p).

(ii) F = F1 ⊔ F2, where F1 consists of 4 isolated fixed points with local representa-
tions

(z1, z2) 7→ (µq
pz1, µ

−q
p z2), evaluated at q = 1, 2, 3, 4,

and F2 is divided into groups of fixed points of the following two types where the
number of groups is less than or equal to 2 (in particular, F2 may be empty):

– 3 isolated points, two with local representation (z1, z2) 7→ (µ−3k
p z1, µ

−k
p z2)

and one with local representation (z1, z2) 7→ (µ3k
p z1, µ

3k
p z2), and one fixed

(−2)-sphere with local representation z 7→ µk
pz, for some k 6= 0 (mod p),

– a fixed torus of self-intersection 0.

(2) if p = 7, F consists of 10 isolated fixed points, two with local representation
(z1, z2) 7→ (µ2k

p z1, µ
3k
p z2), two with local representation (z1, z2) 7→ (µ−k

p z1, µ
−k
p z2), two

with local representation (z1, z2) 7→ (µ2k
p z1, µ

4k
p z2), and four with local representation

(z1, z2) 7→ (µ−2k
p z1, µ

k
pz2), for some k 6= 0 (mod p).

Remark 1.9. (1) We remark that by the work of Edmonds and Ewing [16], the fixed-
point set structure of a pseudofree action in Theorem 1.8 can be actually realized by
a locally linear, topological action on Xα. On the other hand, none of the known
obstructions to smoothability of topological actions (see Section 3) could rule out the
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possibility that the fixed-point set structure may be realized by a smooth or even
symplectic action.

(2) Since the case of small primes p is missing in Theorem 1.1, Theorem 1.8 can be
viewed as a complement to Theorem 1.1. We remark that the homological triviality
of actions in Theorem 1.1 for the case of p > 7 plus the detailed information about
the (homologically nontrivial) Z5 and Z7 actions in Theorem 1.8 put considerable
limitations on the symplectic actions of an arbitrary finite group on Xα.

The proof of Theorem 1.8 is based on a combination of the pseudoholomorphic
curve techniques developed in our previous work [10] and a delicate exploitation of the
induced actions on the E8 lattice. Note that the latter is possible only because of the
property L⊥/L = 2(−E8) of Xα. For a general homotopy K3 surface, a symplectic
Zp-action could have a much more complicated fixed-point set structure. However, if
the finite group which acts symplectically on a homotopy K3 has a relatively com-
plicated group structure (e.g., a maximal symplectic K3 group), then the fixed-point
set structure can also be explicitly determined. This observation was systematically
exploited in our subsequent paper [11] where the following problem was investigated.

Problem Let X be a homotopy K3 surface supporting an effective action of a
“large” K3 group via symplectic symmetries. What can be said about the smooth
structure on X?

In particular, a characterization of the “standard” smooth structure of K3 in terms
of symplectic symmetry groups was obtained (compare with the corresponding char-
acterization of Sn at the beginning of the introduction). See [11] for more details.

The current paper is organized as follows.
In Section 2 we give a detailed description of the Fintushel-Stern exotic K3’s that

are to be considered in this paper, along with their relevant properties.
In Section 3 we collect various known results concerning topological and smooth

actions of finite groups on 4-manifolds. These results are used in our paper (sometimes
successfully and sometimes not) to measure the difference between the symmetries of
the standard and exotic K3 surfaces. In particular, these results are the criteria used
in the proof of Theorem 1.8, with which the fixed-point set structure of the group
action is analyzed.

Sections 4, 5 and 6 contain proofs of Theorem 1.1, Theorem 1.4, Theorem 1.7 and
Theorem 1.8.

2. The Fintushel-Stern exotic K3’s

The construction of this type of exotic K3’s was briefly mentioned in the paper of
Fintushel and Stern [18]. In this section we give a detailed account of one particular
family of such exotic K3’s that are used in this paper, along with proofs of some
relevant properties that will be used in later sections.
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The exotic K3 surfaces are the 4-manifolds that result from performing the knot
surgery construction in [18] simultaneously on three disjoint embedded tori in a Kum-
mer surface. We begin with a topological description of a Kummer surface (following
[24]) and establish some relevant properties of the three disjoint tori in it.

Let S1 be the unit circle in C. Let T 4 denote the 4-torus S1 × S1 × S1 × S1 and
ρ : S1 → S1 denote the complex conjugation respectively. Moreover, we shall let
ρ̂ denote the corresponding diagonal involution on T 4 or T 2 ≡ S1 × S1. Then the
underlying 4-manifold X of a Kummer surface is obtained by replacing each of the
16 singularities (±1,±1,±1,±1) in T 4/〈ρ̂〉 by a (−2)-sphere. More precisely, for each
of the 16 singularities we shall remove a regular neighborhood of it and then glue
back a regular neighborhood of an embedded (−2)-sphere (which abstractly is a D2-
bundle over S2 with Euler number −2). Since the gluing is along RP3 which has the
property that a self-diffeomorphism is isotopic to identity if and only if it is orientation-
preserving (cf. [4]), the resulting 4-manifolds for different choices of the gluing map are
diffeomorphic to each other. In fact, they can be identified by a diffeomorphism which
is identity on T 4/〈ρ̂〉 with a regular neighborhood of the 16 singularities removed and
sends the corresponding embedded (−2)-spheres diffeomorphically onto each other.
Our 4-manifold X is simply a fixed choice of one of these 4-manifolds. As for the
orientation of X, we shall orient T 4 by dθ0 ∧ dθ1 ∧ dθ2 ∧ dθ3, where θj, j = 0, 1, 2, 3,
is the angular coordinate (i.e. z = exp(iθ), z ∈ S1) on the (j +1)-th copy of S1 in T 4,
and the manifold X is oriented by the orientation on T 4/〈ρ̂〉, whose smooth part is
contained in X.

For j = 1, 2, 3, let πj : T
4/〈ρ̂〉 → T 2/〈ρ̂〉 be the map induced by the projection

(z0, z1, z2, z3) 7→ (z0, zj).

There is a complex structure Jj on T 4, which is compatible with the given orientation
on T 4, such that πj : T 4/〈ρ̂〉 → T 2/〈ρ̂〉 is holomorphic. Let X(j) be the minimal
complex surface obtained by resolving the singularities of T 4/〈ρ̂〉. Then πj induces an
elliptic fibration X(j) → T 2/〈ρ̂〉 ≡ S2. After fixing an identification between X(j) and
X in the manner described in the preceding paragraph, we obtain three C∞-elliptic
fibrations (cf. [20]) πj : X → S2.

Given this, the three disjoint tori in X which will be used in the knot surgery are
some fixed regular fibers Tj = π−1

j (δj , i) of πj : X → S2, where δj ∈ S1, j = 1, 2, 3, are

not ±1 and are chosen so that their images are distinct in S1/〈ρ〉. (Note that T1, T2,
T3 are disjoint because the z0-coordinates δ1, δ2, δ3 have distinct images in S1/〈ρ〉.)

Concerning the relevant properties of the tori T1, T2 and T3, we first observe

Lemma 2.1. The three disjoint tori T1, T2 and T3 have the following properties.

(1) There are homology classes v1, v2, v3 ∈ H2(X;Z) such that vi · [Tj ] = 1 for
i = j and vi · [Tj ] = 0 otherwise. In particular, [T1], [T2], [T3] are all primitive
classes and span a primitive sublattice of rank 3 in H2(X;Z).

(2) There are orientation compatible symplectic structures on X with respect to
which T1, T2 and T3 are symplectic submanifolds.

Proof. Observe that for each torus Tj, there is a sphere Sj in the complement of the
other two tori in X which intersects Tj transversely at a single point. For instance,
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for the torus T1, S1 may be taken to be the proper transform of the section

T 2 × {1} × {1}/〈ρ̂〉
of the fibration π1 : T

4/〈ρ̂〉 → T 2/〈ρ̂〉 in the complex surface X(1). Here S1 is regarded
as a sphere in X under the fixed identification between X(1) and X. Part (1) of the
lemma follows immediately.

Next we show that there are orientation compatible symplectic structures on X
with respect to which all three tori T1, T2 and T3 are symplectic. To see this, let θj,
j = 0, 1, 2, 3, be the angular coordinate (i.e. z = exp(iθ), z ∈ S1) on the (j + 1)-th
copy of S1 in T 4. Then the following is a symplectic 2-form on T 4 which is equivariant
with respect to the diagonal involution ρ̂:

∑

(i,j,k)

(dθ0 ∧ dθi + dθj ∧ dθk)

where the sum is over (i, j, k) = (1, 2, 3), (2, 3, 1) and (3, 1, 2). This gives rise to a
symplectic structure on the orbifold T 4/〈ρ̂〉. One can further symplectically resolve
the orbifold singularities to obtain a symplectic structure on X as follows. By the
equivariant Darboux’ theorem, the symplectic structure is standard near each orbifold
singularity. In particular, it is modeled on a neighborhood of the origin in C2/{±1}
and admits a Hamiltonian S1-action with moment map µ : (w1, w2) 7→ 1

4 (|w1|2+ |w2|),
where w1, w2 are the standard coordinates on C2. Fix a sufficiently small r > 0 and
remove µ−1([0, r)) from T 4/〈ρ̂〉 at each of its singular point. Then X is diffeomorphic
to the 4-manifold obtained by collapsing each orbit of the Hamiltonian S1-action on
the boundaries µ−1(r), which is naturally a symplectic 4-manifold (cf. [35]). It is clear
from the construction that all three tori T1, T2 and T3 are symplectic, and moreover,
the symplectic structures are orientation compatible.

�

Following [18], we call any Laurent polynomial

P (t) = a0 +

n
∑

j=1

aj(t
j + t−j)

in one variable with coefficient sum

a0 + 2

n
∑

j=1

aj = ±1, aj ∈ Z

an A-polynomial. According to [18], given any three A-polynomials P1(t), P2(t), P3(t),
one can perform the so-called knot surgeries simultaneously along the tori T1, T2, T3 to
obtain an oriented 4-manifold XP1P2P3

, which is orientation-preservingly homeomor-
phic to X and has Seiberg-Witten invariant

SWXP1P2P3
= P1(t1)P2(t2)P3(t3),

where tj = exp(2[Tj ]), j = 1, 2, 3. We remark that the homology classes of XP1P2P3

are naturally identified with those of X, and here [Tj ] in tj = exp(2[Tj ]) denotes the
Poincaré dual of the class in H2(XP1P2P3

;Z) which corresponds to the class of the
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torus Tj in X under the identification. (In this paper, we shall use [Tj] to denote
either the homology class of the torus Tj or the cohomology class that is Poincaré
dual to Tj . The actual meaning is always clear from the context.) Moreover, when
P1(t), P2(t), P3(t) are monic (i.e., the coefficient an = ±1), the 4-manifold XP1P2P3

admits orientation compatible symplectic structures because of Lemma 2.1 (2).
We shall consider one particular infinite family of (P1(t), P2(t), P3(t)) where each

A-polynomial is monic and has the form

Pj(t) = 1− (tdj + t−dj ), j = 1, 2, 3.

Here d1, d2, d3 are integers which obey 1 < d1 < d2 < d3 and are pairwise relatively
prime. We denote the corresponding 4-manifold XP1P2P3

by X(d1, d2, d3).

Lemma 2.2. For any orientation compatible symplectic structure ω on X(d1, d2, d3),
one has [Tj ]·[ω] 6= 0 for all j. If we assume (without loss of generality) that [Tj ]·[ω] > 0
for all j, then the canonical class is given by

c1(K) = 2

3
∑

j=1

dj [Tj ].

Proof. Recall that β ∈ H2 is called a Seiberg-Witten basic class if exp(β) appears in
the Seiberg-Witten invariant with nonzero coefficient. Given this, the Seiberg-Witten
basic classes of X(d1, d2, d3) are the classes 2

∑3
j=1 bjdj [Tj ] where bj = −1, 0, or 1.

We first observe that for any orientation compatible symplectic structure ω on
X(d1, d2, d3), the canonical class c1(K) must equal 2

∑3
j=1 bjdj[Tj ] where each of

b1, b2, b3 is nonzero. The reason is as follows. According to Taubes [50], for any complex
line bundle E, if 2c1(E)−c1(K) is a Seiberg-Witten basic class, then the Poincaré dual
of c1(E) is represented by the fundamental class of a symplectic submanifold; in par-
ticular, c1(E) · [ω] > 0 if c1(E) 6= 0. Now observe that if say c1(K) = 2(d2[T2]+d3[T3])
(i.e. b1 = 0), then since both 2(±d1[T1] − d2[T2] − d3[T3]) are Seiberg-Witten basic
classes, both ±d1[T1] have a positive cup product with [ω], which is a contradiction.

By replacing [Tj ] with −[Tj] if necessary, we may assume without loss of generality

that c1(K) = 2
∑3

j=1 dj [Tj ]. With this understood, note that for each j = 1, 2, 3,

2dj [Tj ]− 2
∑3

k=1 dk[Tk] is a Seiberg-Witten basic class, hence by Taubes’ theorem in
[50], dj [Tj ] is Poincaré dual to the fundamental class of a symplectic submanifold,
which implies that [Tj ] · [ω] > 0. The lemma follows easily.

�

Lemma 2.3. (1) Let f : X(d1, d2, d3) → X(d′1, d
′
2, d

′
3) be any diffeomorphism. Then

for j = 1, 2, 3, one has dj = d′j and f∗([T ′
j ]) = ±[Tj]. (Here [T ′

j ] denotes the cor-

responding class of X(d′1, d
′
2, d

′
3).) In particular, X(d1, d2, d3) are distinct smooth 4-

manifolds for distinct triples (d1, d2, d3).
(2) Let ω be any orientation compatible symplectic structure on X(d1, d2, d3) and f

be any self-diffeomorphism such that f∗[ω] = [ω]. Then f∗[Tj ] = [Tj ] for j = 1, 2, 3.

Proof. Observe that f must be orientation-preserving, because under an orientation-
reversing diffeomorphism the signature changes by a sign of −1. Consequently, f∗
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sends the Seiberg-Witten basic classes of X(d′1, d
′
2, d

′
3) to those of X(d1, d2, d3). In

particular, there are bj ∈ Z, j = 1, 2, 3, with each bj = −1, 0 or 1 such that

f∗(2d′1[T
′
1]) = 2

3
∑

j=1

bjdj [Tj ].

By Lemma 2.1 (1), there are homology classes v1, v2, v3 such that vi · [Tj ] = 1 for i = j
and vi · [Tj ] = 0 otherwise. Taking cup product of each side of the above equation with
v1, v2, v3, we see that d′1 is a divisor of dj if bj 6= 0. Since by assumption d′1 > 1 and
d1, d2, d3 are pairwise relative prime, it follows that there exists exactly one bj which
is nonzero. Applying the same argument to f−1, we see that one actually has d′1 = dj
and f∗([T ′

1]) = ±[Tj ]. Since each of the triples (d1, d2, d3) and (d′1, d
′
2, d

′
3) is assumed

to be in the ascending order, we must have d′j = dj and f∗([T ′
j ]) = ±[Tj ] for j = 1, 2, 3,

as claimed in (1).
If ω is an orientation compatible symplectic structure on X(d1, d2, d3) and f is a

self-diffeomorphism such that f∗[ω] = [ω], then f∗[Tj ] = [Tj ], j = 1, 2, 3, must be true
because [Tj ] · [ω] 6= 0 by Lemma 2.2.

�

In the remaining sections, we will abbreviate the notation and denote the exotic K3
X(d1, d2, d3) by Xα.

3. Recollection of various known results

In this section we collect some theorems (known to date) and some observations
that are scattered in the literature, which may be used to provide obstructions to the
existence of certain smooth finite group actions on 4-manifolds. (In fact, many of these
obstructions also apply to locally linear topological actions.) For symplectic actions
of a finite group on a minimal symplectic 4-manifold with c21 = 0, there are further
results in terms of the fixed-point set structure of the action. These will be briefly
reviewed at the beginning of Section 6, and details may be found in [10].

Borel spectral sequence. We review here some relevant results about locally linear
topological actions of a finite group on a closed simply-connected 4-manifold. The
main technique for deriving these results is the Borel spectral sequence, cf. e.g. [5].

Let G ≡ Zp, where p is prime, act locally linearly on a closed simply-connected
4-manifold M via orientation-preserving homeomorphisms, and let F be the fixed-
point set of the action. We first review a result due to Edmonds which describes
a relationship between the fixed-point set F and the existence of certain types of
representations of G on H2(M) induced by the action of G on M .

Recall that by a result of Kwasik and Schultz (cf. [33]), each integral representation
of Zp onH2(M) can be expressed as a sum of copies of the group ring Z[Zp] of Z-rank p,
the trivial representation Z of Z-rank 1, and the representation Z[µp] of cyclotomic type
of Z-rank p − 1, which is the kernel of the augmentation homomorphism Z[Zp] → Z.

Here µp ≡ exp(2πip ), which will be used throughout.
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Proposition 3.1. (cf. [14], Prop. 2.4) Assume that F is nonempty. Let b1(F ) be
the first Betti number of F in Zp-coefficients and let c be the number of copies of
G-representations of cyclotomic type in H2(M). Then b1(F ) = c. In particular, c = 0
if the G-action is pseudofree, and b1(F ) = 0 if the G-action is homologically trivial.

Another result of Edmonds gives some homological restrictions on the 2-dimensional
components of the fixed-point set F .

Proposition 3.2. (cf. [14], Cor. 2.6) If F is not purely 2-dimensional, then the
2-dimensional components of F represent independent elements of H2(M ;Zp). If F
is purely 2-dimensional, and has k 2-dimensional components, then the 2-dimensional
components span a subspace of H2(M ;Zp) of dimension at least k− 1, with any k− 1
components representing independent elements.

The next theorem, due to McCooey [39], is concerned with locally linear, homo-
logically trivial topological actions by a compact Lie group (e.g. a finite group) on a
closed 4-manifold.

Theorem 3.3. Let G be a (possibly finite) compact Lie group, and suppose M is
a closed 4-manifold with H1(M ;Z) = 0 and b2(M) ≥ 2, equipped with an effective,
locally linear, homologically trivial G-action. Denote by F the fixed-point set of G.

1. If b2(M) = 2 and F 6= ∅, then G is isomorphic to a subgroup of S1 × S1.
2. If b2(M) ≥ 3, then G is isomorphic to a subgroup of S1 × S1, and F 6= ∅.

G-index theorems. Here we collect some formulas which fall into the realm of G-
index theorems of Atiyah and Singer (cf. [2]). In particular, these formulas allow us to
relate the fixed-point set structure of the group action with the induced representation
on the rational cohomology of the manifold.

Let M be a closed, oriented smooth 4-manifold, and let G ≡ Zp be a cyclic group
of prime order p acting on M effectively via orientation-preserving diffeomorphisms.
Then the fixed-point set F , if nonempty, will be in general a disjoint union of finitely
many isolated points and orientable surfaces. Fix a generator g ∈ G. Then each
isolated fixed point m ∈ F is associated with a pair of integers (am, bm), where
0 < am, bm < p, such that the action of g on the tangent space at m is given by
the complex linear transformation (z1, z2) 7→ (µam

p z1, µ
bm
p z2). (Note that am, bm are

uniquely determined up to a change of order or a simultaneous change of sign modulo
p.) Likewise, at each connected surface Y ⊂ F , there is an integer cY with 0 < cY < p,
which is uniquely determined up to a sign modulo p, such that the action of g on the
normal bundle of Y in M is given by z 7→ µcY

p z.

Theorem 3.4. (Lefschetz Fixed Point Theorem). L(g,M) = χ(F ), where χ(F ) is the
Euler characteristic of the fixed-point set F and L(g,M) is the Lefschetz number of
the map g : M → M , which is defined by

L(g,M) =
4

∑

k=0

(−1)ktr(g)|Hk(M ;R).

Note that the above theorem holds true for topological actions, cf. [33].



SYMMETRIES AND EXOTIC SMOOTH STRUCTURES ON A K3 SURFACE 13

Theorem 3.5. (G-signature Theorem). Set

Sign(g,M) = tr(g)|H2,+(M ;R) − tr(g)|H2,−(M ;R).

Then

Sign(g,M) =
∑

m∈F

− cot(
amπ

p
) · cot(bmπ

p
) +

∑

Y⊂F

csc2(
cY π

p
) · (Y · Y ),

where Y · Y denotes the self-intersection number of Y .

Note that the G-signature Theorem is also valid for locally linear, topological actions
in dimension 4, cf. e.g. [26].

One can average the formula for Sign(g,M) over g ∈ G to obtain the following
version of the G-signature Theorem.

Theorem 3.6. (G-signature Theorem – the weaker version).

|G| · Sign(M/G) = Sign(M) +
∑

m∈F

defm +
∑

Y⊂F

defY .

where the terms defm and defY (called signature defects) are given by the following
formulae:

defm =

p−1
∑

k=1

(1 + µk
p)(1 + µkq

p )

(1− µk
p)(1− µkq

p )

if the local representation of G at m is given by (z1, z2) 7→ (µk
pz1, µ

kq
p z2), and

defY =
p2 − 1

3
· (Y · Y ).

The above version of the G-signature Theorem is more often used because the
signature defect defm can be computed in terms of Dedekind sum, cf. [29].

Now suppose that the 4-manifold M is spin, and that the G-action on M lifts to
the spin structures on M . Then the index of Dirac operator D gives rise to a character
of G. More precisely, for each g ∈ G, one can define the “Spin-number” of g by

Spin(g,M) = tr(g)|KerD − tr(g)|CokerD.

If we write KerD = ⊕p−1
k=0V

+
k , CokerD = ⊕p−1

k=0V
−
k , where V +

k , V −
k are the eigenspaces

of g with eigenvalue µk
p, then

Spin(g,M) =

p−1
∑

k=0

dkµ
k
p,

where dk ≡ dimC V +
k − dimC V −

k . Since both KerD and CokerD are quaternion vector

spaces, and the quaternions i and j are anti-commutative, it follows that V ±
0 are

quaternion vector spaces, and when p = |G| is odd, j maps V ±
k isomorphically to

V ±
p−k for 1 ≤ k ≤ p − 1. This particularly implies that d0 is even, and when p is odd,

dk = dp−k for 1 ≤ k ≤ p− 1.
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Theorem 3.7. (G-index Theorem for Dirac Operators, cf. [1]). Assume further that
the action of G on M is spin and that there are only isolated fixed points. Then
the “Spin-number” Spin(g,M) =

∑p−1
k=0 dkµ

k
p is given in terms of the fixed-point set

structure by the following formula

Spin(g,M) = −
∑

m∈F

ǫ(g,m) · 1
4
csc(

amπ

p
) · csc(bmπ

p
),

where ǫ(g,m) = ±1 depends on the fixed point m and the lifting of the action of g to
the spin structure.

We give a formula below for the sign ǫ(g,m) with the assumption that the action of
G preserves an almost complex structure on M (e.g. the action of G is via symplectic
symmetries) and that the order of G is odd.

Lemma 3.8. Assume further that M is simply-connected, spin, and |G| = p is an odd
prime. Then the action of G on M is spin. Moreover, if M is almost complex and
the action of G preserves the almost complex structure on M , then the “Spin-number”
can be computed by

Spin(g,M) = −
∑

m∈F

ǫ(g,m) · 1
4
csc(

amπ

p
) · csc(bmπ

p
)

+
∑

Y⊂F

ǫ(g, Y ) · (Y · Y )

4
csc(

cY π

p
) · cot(cY π

p
),

where the signs ǫ(g,m) and ǫ(g, Y ) are determined as follows. First, in the above for-
mula, am, bm and cY , which satisfy 0 < am, bm < p and 0 < cY < p, are uniquely de-
termined because the corresponding complex representations (z1, z2) 7→ (µam

p z1, µ
bm
p z2)

and z 7→ µcY
p z are chosen to be compatible with the almost complex structure which G

preserves. With this convention, ǫ(g,m) and ǫ(g, Y ) are given by

ǫ(g,m) = (−1)k(g,m), ǫ(g, Y ) = (−1)k(g,Y )

where k(g,m) and k(g, Y ) are defined by equations

k(g,m) · p = 2rm + am + bm, k(g, Y ) · p = 2rY + cY

for some rm, rY satisfying 0 ≤ rm < p and 0 < rY < p.

Proof. We first show that the action of G is spin. Let EG → BG be the universal
principal G-bundle. Then observe that a bundle E over M as a G-bundle corresponds
to a bundle E′ over EG ×G M whose restriction to the fiber M of the fiber bundle
EG ×G M → BG is E. With this understood, a G-spin structure on M corresponds
to a principal Spin(4)-bundle over EG ×G M whose restriction to the fiber M is a
spin structure on M . The obstruction to the existence of such a bundle is a class in
H2(EG×GM ;Z2) which maps to the second Stiefel-Whitney class w2(M) ∈ H2(M ;Z2)
under the homomorphism i∗ : H2(EG ×G M ;Z2) → H2(M ;Z2) induced by the inclu-
sion i : M → EG ×G M as a fiber. The obstruction vanishes because (1) w2(M) = 0
since M is spin, (2) the homomorphism i∗ : H∗(EG ×G M ;Z2) → H∗(M ;Z2) is a
monomorphism, which can be seen easily by the transfer argument (cf. [5]) given
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that the order |G| = p is odd. This proves that the action of G is spin. Note that
there is a unique G-spin structure because the G-spin structures are classified by
H1(EG×GM ;Z2) = 0. Here H1(EG ×GM ;Z2) = 0 because H1(M ;Z2) = 0 (since M
is simply-connected) and i∗ : H1(EG ×G M ;Z2) → H1(M ;Z2) is injective.

Now suppose M is almost complex and G preserves the almost complex structure
on M . Then the G-spin structure as the unique G-SpinC structure with trivial deter-
minant line bundle is given by a (unique) G-complex line bundle L over M such that
L2⊗K−1 = M ×C as a G-bundle where the action of G on C is trivial. Here K is the
canonical bundle of the almost complex structure. Moreover, the Dirac operator D is
simply given by the ∂̄-complex twisted with the complex line bundle L. The “Spin-
number” Spin(g,M) may be computed using the G-index Theorem for the ∂̄-complex
(i.e. the holomorphic Lefschetz fixed point theorem), cf. [2].

More concretely, let the action of g at a fixed point m ∈ F and a fixed component
Y ⊂ F be denoted by z 7→ µrm

p z and z 7→ µrY
p z respectively. Then L2⊗K−1 = M ×C

as a trivial G-bundle implies that

2rm + am + bm = 0 (mod p), 2rY + cY = 0 (mod p).

We shall impose further conditions that 0 ≤ rm < p and 0 < rY < p, and define
integers k(g,m), k(g, Y ) as in the lemma by

k(g,m) · p = 2rm + am + bm, k(g, Y ) · p = 2rY + cY .

With these understood, the contribution to Spin(g,M) from m ∈ F is

Im =
µrm
p

(1− µ−am
p )(1 − µ−bm

p )
= (−1)k(g,m)+1 · 1

4
csc(

amπ

p
) · csc(bmπ

p
),

and the contribution from Y ⊂ F is

IY =
µrY
p (1 + l)(1 + t/2)

1− µ−cY
p (1− n)

[Y ] = (−1)k(g,Y ) · (Y · Y )

4
csc(

cY π

p
) · cot(cY π

p
),

where l, t, n are the first Chern classes of L, TY and the normal bundle of Y in M .
The formula for Spin(g,M) follows immediately.

�

Seiberg-Witten equations. There are obstructions to the existence of smooth
finite group actions on 4-manifolds that come from Seiberg-Witten theory, based on
the ideas in Furuta [22]. See [6, 17, 21, 43].

Theorem 3.9. (cf. [17, 43]) Let M be a closed, oriented smooth 4-manifold with
b1 = 0 and b+2 ≥ 2, which admits a smooth G ≡ Zp action of prime order such
that H2(M ;R) contains a b+2 -dimensional subspace consisting of invariant elements
of positive square. Let c be a G-SpinC structure on M such that the G-index of the
Dirac operator indGD =

∑p−1
k=0 dkCk satisfies 2dk ≤ b+2 − 1 for all 0 ≤ k < p. Then the

corresponding Seiberg-Witten invariant obeys

SWM (c) = 0 (mod p).

Here Ck denotes the complex 1-dimensional weight k representation of G ≡ Zp.
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Theorem 3.10. (cf. [22, 21]) Suppose a smooth action of a finite group G on a
closed, spin 4-manifold M is spin. Let D be the Dirac operator on the spin 4-orbifold
M/G. Then either ind D = 0 or −b−2 (M/G) < ind D < b+2 (M/G).

We remark that when the action of G preserves an almost complex structure on
M , the index of the Dirac operator, ind D, for the 4-orbifold M/G can be calculated
using Lemma 3.8, or using the formula for the dimension of the corresponding Seiberg-
Witten moduli space in [8]. (See also [9].)

The Kirby-Siebenmann and the Rochlin invariants. Suppose a locally linear, topo-
logical action of a finite group G on a 4-manifold M is spin and pseudofree. Then
the quotient space M/G is a spin 4-orbifold with only isolated singular points. Let
N be the spin 4-manifold with boundary obtained from M/G by removing a regular
neighborhood of the singular set, and denote by ∂η the spin structure on ∂N induced
from that of N . Then the Kirby-Siebenmann invariant of N , denoted by ks(N), and
the Rochlin invariant of (∂N, ∂η), denoted by roc(∂N, ∂η), are constrained by the
following

Theorem 3.11. (cf. §10.2B in [19])

8 · ks(N) ≡ Sign(N) + roc(∂N, ∂η) (mod 16).

Note that a necessary condition for the G-action to be smoothable is ks(N) = 0.

4. Smooth cyclic actions

In this section, we give proofs of Theorem 1.1 and Theorem 1.4.

The following lemma, together with Lemma 2.3 (1), settles Theorem 1.1 (1) because
Lemma 2.3 (1) implies that the classes [Tj], j = 1, 2, 3, are fixed under the action of
Zp whenever p is odd.

Lemma 4.1. For any smooth action of a finite group G on Xα which fixes the classes
[Tj ], j = 1, 2, 3, there is a 3-dimensional subspace of H2(Xα;R) which is fixed under
G and over which the cup-product is positive definite.

Proof. By Lemma 2.1 (1), and since H2(Xα;Z) and H2(X;Z) are naturally identified,
there are classes vi, i = 1, 2, 3, in H2(Xα;Z) such that vi · [Tj] = 1 if i = j and
vi · [Tj ] = 0 otherwise.

For any given g ∈ G, we set v′j ≡ ∑|g|−1
k=0 (gk)∗vj . Then g∗v′j = v′j . Now for

sufficiently small ǫ > 0, we obtain three linearly independent classes

uj ≡ [Tj] + ǫv′j, j = 1, 2, 3,

which are all fixed by g, i.e., g∗uj = uj for j = 1, 2, 3. On the other hand, set
c ≡ max{|(v′1)2|+ 1, |(v′2)2|+ 1, |(v′3)2|+ 1} > 0. Then for any i, j,

ui · uj = [Ti] · [Tj ] + ǫ([Ti] · v′j + [Tj ] · v′i) + ǫ2v′i · v′j
= ǫ|g|([Ti] · vj + [Tj ] · vi) + ǫ2v′i · v′j

=

{

2ǫ|g|+ ǫ2v′i · v′j if i = j

ǫ2v′i · v′j if i 6= j
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and for any a1, a2, a3 ∈ R and any 0 < ǫ < 10−1c−1,

(

3
∑

i=1

aiui)
2 ≥ 2ǫ|g|(

3
∑

i=1

a2i )− 3c · ǫ2(
3

∑

i=1

a2i )

≥ ǫ(

3
∑

i=1

a2i ).

Consequently, for sufficiently small ǫ > 0, u1, u2, u3 span a 3-dimensional subspace of
H2(Xα;R) which is fixed under the action of G and over which the cup-product is
positive definite.

�

Recall that the Kummer surface X (as well as the exotic Xα) has intersection form

3H ⊕ 2(−E8), where H =

(

0 1
1 0

)

and

−E8 =

























−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1 1
1 −2 1

1 −2
1 −2

























.

The −E8 form is the intersection matrix of a standard basis {fj|1 ≤ j ≤ 8}, which
may be conveniently described by the graph in Figure 1, where two nodes are connected
by an edge if and only if the corresponding basis vectors have intersection product 1.

f1 f2 f3 f4 f5 f6 f7

f8

Figure 1.

We shall next exhibit some geometric representative of a standard basis for each of
the two (−E8)-summands in the intersection form of the Kummer surface X, which
plays a crucial role in analyzing the induced action on H2(Xα;Z) of a smooth finite
group action on the exotic K3 surface Xα.
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Lemma 4.2. There exist two disjoint geometric representatives of a standard basis of
the −E8 form in the Kummer surface X, which both lie in the complement of the tori
T1, T2, T3.

Proof. Recall that X is the 4-manifold obtained by replacing each of the 16 singu-
larities (±1,±1,±1,±1) in T 4/〈ρ̂〉 by a (−2)-sphere. We denote the (−2)-spheres by
Σ(±1,±1,±1,±1) accordingly and call them the exceptional (−2)-spheres in X.

On the other hand, recall from Section 2 that for j = 1, 2, 3, there is a minimal
complex surface X(j) and an elliptic fibration X(j) → S2, where X(j) is obtained by
resolving the singularities of T 4/〈ρ̂〉 and the elliptic fibration comes from the fibration
πj : T

4/〈ρ̂〉 → T 2/〈ρ̂〉 induced by the projection

(z0, z1, z2, z3) 7→ (z0, zj).

Note that πj : T 4/〈ρ̂〉 → T 2/〈ρ̂〉 has 4 singular fibers, which are over (±1,±1) ∈
T 2/〈ρ̂〉. We denote the proper transform of π−1

j (±1,±1) in X(j) by Σj(±1,±1),

which is also a (−2)-sphere.
Recall also that for each j we have fixed an identification betweenX and the complex

surfaceX(j). Note that under such an identification each exceptional (−2)-sphere inX
inherits an orientation from the corresponding complex curve inX(j). For the purpose
here we shall arrange the identifications between X and the complex surfaces X(j)
such that each of the exceptional (−2)-spheres in X inherits a consistant orientation,
and as a result, each of them is oriented and defines a homology class in H2(X;Z).
With such identifications between X and the complex surfaces X(j) fixed, we shall
regard the (−2)-spheres Σj(±1,±1) in X(j) as smooth surfaces in X, and call these
(−2)-spheres the proper transform (−2)-spheres in X. We orient each Σj(±1,±1) in
X by the canonical orientation of the corresponding complex curve in X(j).

With the choice of orientations on each (−2)-sphere (exceptional or proper trans-
form) understood, we observe that (1) any two distinct exceptional (−2)-spheres have
intersection product 0 because they are disjoint, and (2) a proper transform (−2)-
sphere and an exceptional (−2)-sphere have intersection product either 0 or 1, de-
pending on whether they are disjoint or not. The intersection product of two distinct
proper transform (−2)-spheres are described below.

Claim: Let κ, τ, κ′, τ ′ take values in {1,−1}. Then the following hold true: (1)
If (κ, τ) 6= (κ′, τ ′), then Σj(κ, τ) and Σj(κ

′, τ ′) are disjoint so that their intersection
product is 0, (2) If j 6= j′, then the intersection product of Σj(κ, τ) and Σj′(κ

′, τ ′) is 0
when κ 6= κ′ (in fact the two (−2)-spheres are disjoint), and is −1 when κ = κ′.

Accepting the above claim momentarily, one can easily verify that the following are
two disjoint geometric representatives of a standard basis of the −E8 form and that
both lie in the complement of the three tori T1, T2 and T3:

(1) f1 = −Σ3(1,−1) − Σ(1,−1,−1,−1) − Σ(1, 1,−1,−1), f2 = Σ(1, 1,−1,−1),
f3 = Σ2(1,−1)+Σ(1,−1,−1,−1), f4 = Σ(1, 1,−1, 1), f5 = Σ3(1, 1)+Σ(1,−1,−1, 1),
f6 = Σ(1, 1, 1, 1), f7 = −Σ2(1, 1)−Σ(1, 1, 1,−1)−Σ(1, 1, 1, 1), f8 = Σ1(1,−1)+
Σ(1,−1, 1, 1)
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(2) f1 = −Σ3(−1,−1)−Σ(−1,−1,−1,−1)−Σ(−1, 1,−1,−1), f2 = Σ(−1, 1,−1,−1),
f3 = Σ2(−1,−1) + Σ(−1,−1,−1,−1), f4 = Σ(−1, 1,−1, 1), f5 = Σ3(−1, 1) +
Σ(−1,−1,−1, 1), f6 = Σ(−1, 1, 1, 1), f7 = −Σ2(−1, 1) − Σ(−1, 1, 1,−1) −
Σ(−1, 1, 1, 1), f8 = Σ1(−1,−1) + Σ(−1,−1, 1, 1)

It remains to verify the claim. Note that part (1) of the claim follows from the
fact that the two proper transform (−2)-spheres lie in two distinct fibers of the C∞-
elliptic fibration πj : X → S2. To see part (2), we suppose j 6= j′. Then Σj(κ, τ) and
Σj′(κ

′, τ ′) are disjoint if κ 6= κ′ (because κ, κ′ are the z0-coordinates), and part (2) of
the claim holds true in this case. Therefore we shall assume κ = κ′. Without loss of
generality, we may assume that κ = κ′ = 1, and for simplicity we shall only check the
case where τ = τ ′ = 1 and j = 2, j′ = 3. With this understood, note that the fiber
class of π2 : X → S2, which is the class of the torus T2, equals

2 · Σ2(1, 1) + Σ(1, 1, 1, 1) + Σ(1, 1, 1,−1) + Σ(1,−1, 1, 1) + Σ(1,−1, 1,−1)

and the fiber class of π3 : X → S2, which is the class of the torus T3, equals

2 · Σ3(1, 1) + Σ(1, 1, 1, 1) + Σ(1, 1,−1, 1) + Σ(1,−1, 1, 1) + Σ(1,−1,−1, 1).

(Note that each C∞-elliptic fibration πj : X → S2 has 4 singular fibers, all of type I∗0 ,
cf. [3], page 201.) The assertion that the intersection product of Σ2(1, 1) and Σ3(1, 1)
equals −1 follows immediately from the fact that [T2] · [T3] = 0. This finishes the
verification of the claim above, and the proof of Lemma 4.2 is completed.

�

Lemma 4.3. Let G be a finite group acting on H2(Xα;Z) preserving the intersection
form and fixing each [Tj ], j = 1, 2, 3. Then there is an induced homomorphism Θ :
G → Aut (E8 ⊕ E8) such that the action of G on H2(Xα;Z) is trivial if and only if
the induced homomorphism Θ has trivial image.

Proof. Let ξk, ηk, 1 ≤ k ≤ 8, be the classes in H2(Xα;Z) corresponding to the two
standard bases of the −E8 form defined in the previous lemma. Then the intersection
form of Xα is isomorphic to 3H when restricted to the orthogonal complement of
Span (ξk, ηk|1 ≤ k ≤ 8). By Lemma 4.2 and Lemma 2.1 (1), there are classes wi ∈
H2(Xα;Z), i = 1, 2, 3, such that

wi · [Tj] =

{

0 if i 6= j
1 if i = j,

wi · ξk = wi · ηk = 0 and wi · wj = 0 ∀i, j, k.

Let Ω be the orthogonal complement of Span([T1], [T2], [T3]). We shall prove that
Ω = Span ([Tj ], ξk, ηk|j = 1, 2, 3, 1 ≤ k ≤ 8). To see this, observe that w1, w2, w3,
[T1], [T2], [T3], and ξk, ηk, 1 ≤ k ≤ 8, form a basis of H2(Xα;Z). For any class
x ∈ H2(Xα;Z), expand x in the above basis. Then by Lemma 4.2, there are no terms
of w1, w2, w3 in the expansion of x if and only if its intersection product with each of
[T1], [T2], [T3] is zero. This proves our claim about Ω.

SinceG fixes each [Tj ], j = 1, 2, 3, the orthogonal complement of Span([T1], [T2], [T3]),
which is Span ([Tj ], ξk, ηk|j = 1, 2, 3, 1 ≤ k ≤ 8), is invariant under the action of G.
The induced action of G on

Span ([Tj ], ξk, ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])
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gives rise to a homomorphism Θ : G → Aut (E8 ⊕ E8) by Lemma 4.2.
It remains to show that if Θ has trivial image, then the action of G on H2(Xα;Z)

is also trivial. To see this, let g ∈ G be any given element. Then for each α ∈
Span (ξk, ηk|1 ≤ k ≤ 8), there exists a uα ∈ Span ([T1], [T2], [T3]) such that g · α =
α+ uα. This gives, for each n ∈ Z+,

gn · α = α+ nuα because g · uα = uα.

It follows easily that uα = 0 since g is of finite order, and consequently, g · α = α.
For each wj , j = 1, 2, 3, there are ŵj ∈ Span (w1, w2, w3), uj ∈ Span ([T1], [T2], [T3])

and αj ∈ Span (ξk, ηk|1 ≤ k ≤ 8), such that

g · wj = ŵj + uj + αj.

Taking intersection product with [Tk], k = 1, 2, 3, we see that ŵj = wj , and taking
intersection product with αj = g · αj , we see that α2

j = 0, hence αj = 0 (because −E8

is negative definite). Consequently, we have g ·wj = wj +uj. Since g fixes uj and is of
finite order, we see as in the earlier argument that uj = 0, and therefore g · wj = wj.
Thus G acts trivially on H2(Xα;Z) if Θ has trivial image.

�

The following corollary gives Theorem 1.1 (2) for the case of p > 7.

Corollary 4.4. Let G be a p-group with p > 7. Then any smooth G-action on Xα

must act trivially on homology; in particular, G must be abelian of rank at most 2.

Proof. Since |G| is odd, the classes [Tj ], j = 1, 2, 3, are fixed under the G-action by
Lemma 2.3 (1). On the other hand, Θ : G → Aut (E8 ⊕ E8) must have trivial image
because the order of Aut (E8⊕E8) is 2

29 ·310 ·54 ·72 (cf. [48]), which is not divisible by
any prime p > 7. By Lemma 4.3, the inducedG-action onH2(Xα;Z) must be trivial. It
follows that the G-action is homologically trivial because H1(Xα;Z) = H3(Xα;Z) = 0
(Xα is simply-connected). The last assertion follows from McCooey’s theorem (cf.
Theorem 3.3).

�

The following lemma can be found in [15], however, for completeness we sketch its
proof here.

Lemma 4.5. The following are the only possibilities for integral representations of Zp

for p = 3, 5, 7 induced by Zp ⊂ Aut (E8):

Z3 : Z[Z3]⊕ Z5, Z[Z3]
2 ⊕ Z2, Z[Z3]⊕ Z[µ3]

2 ⊕ Z, and Z[µ3]
4

Z5 : Z[Z5]⊕ Z3 and Z[µ5]
2

Z7 : Z[Z7]⊕ Z.

Proof. Since p < 23, by a result of Reiner (cf. [12]) such a representation is of the
form Z[Zp]

r ⊕ Z[µp]
s ⊕ Zt, where pr + (p − 1)s + t = 8. By Hambleton and Riehm

[28], s must be even. Moreover, observe that Z[µp]
s and Zt are always orthogonal to

each other, so that if r = 0 one of s or t must be 0 as well because the form E8 is not
splittable. The lemma follows.

�
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We remark that the integral representations of Zp in the above lemma are all realized
by a subgroup of Aut (E8) of order p, cf. [15].

The following proposition settles the case of p = 7 in Theorem 1.1 (2).

Proposition 4.6. Suppose G ≡ Zp, where p = 3, 5, 7, acts smoothly on Xα such that
the integral G-representation given by Θ : G → Aut(E8 ⊕ E8) contains no summands
of cyclotomic type. Then the intersection form on H2(Xα;Z) may be decomposed as
3H ⊕ 2(−E8) such that each summand H or −E8 is invariant under the G-action.
Moreover, the action of G on each H-summand is trivial.

Proof. Recall that Aut (E8 ⊕ E8) is a semi-direct product of Aut (E8) × Aut (E8)
by Z2 (cf. [48]). Since the order |G| = p is odd, G maps trivially to Z2 under
Θ : G → Aut (E8 ⊕ E8) and hence it can not exchange the two E8-summands. It
follows that each of

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8), Span ([Tj ], ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)

is invariant under the action of G, and there are two induced integral representations
of G on E8 given by the action on

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

and

Span ([Tj ], ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

respectively.
We claim that there are classes ξ′k, η

′
k ∈ H2(Xα;Z) such that

(i) ξ′k = ξk, η
′
k = ηk (mod Span ([T1], [T2], [T3])),

(ii) Span (ξ′k|1 ≤ k ≤ 8), Span (η′k|1 ≤ k ≤ 8) are invariant under G.

Note that Span (ξ′k|1 ≤ k ≤ 8) and Span (η′k|1 ≤ k ≤ 8) split off two G-invariant
copies of −E8 from H2(Xα;Z). The orthogonal complement, which is isomorphic to
3H and is also G-invariant, contains Span ([T1], [T2], [T3]). A similar argument as in
the proof of Lemma 4.3 shows that the action of G is trivial on each copy of H.

It remains to verify the above claim. For simplicity, we shall only consider the case
of ξk’s, the other case is completely parallel. Let g ∈ G be a fixed generator.

The key point of the proof is that a summand of type Z or Z[Zp] in

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

can be lifted to a Z[Zp]-submodule of the same type in Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤
k ≤ 8). By Lemma 4.5 these are the only types of summands if there are no summands
of cyclotomic type (which is always the case when p = 7).

More concretely, let x be a generator of a Z-summand in

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

and let x′ be any lift of x in Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8). Then g · x′ = x′ + u
for some u ∈ Span ([T1], [T2], [T3]). As we argued in the proof of Lemma 4.3, this
implies that u = 0 and g · x′ = x′. Hence x′ generates a Z[Zp]-submodule of the same
type which is a lift of the original Z-summand.
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Let y be a generator of a Z[Zp]-summand (as a Z[Zp]-submodule). Pick any lift y′

of y in Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8), then y′ generates a free Z[Zp]-submodule
in Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8) which is a lift of the original Z[Zp]-summand
of the same type.

Now suppose the integral G-representation

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

is decomposed as Zt⊕Z[Zp]
r, and let {xi, yj |1 ≤ i ≤ t, 1 ≤ j ≤ r} be a set of generators

of the summands as Z[Zp]-submodules. Then the set

{xi, yj , g · yj , · · · , gp−1 · yj}
forms a Z-basis of

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3]).

Note that the intersection form on

Span (x′i, y
′
j , g · y′j , · · · , gp−1 · y′j),

i.e., the span of the lifts, is isomorphic to that on

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3]).

The existence of ξ′k’s follows immediately.
This completes the proof of the proposition.

�

Remark 4.7. In general, a summand of cyclotomic type may not be lifted to a
summand of the same type under a quotient homomorphism. For a simple example,
let us consider the integral Z2-representation on Z〈x〉 ⊕ Z〈y〉 which is defined by

g · x = x, g · y = −y + x.

One can check easily that the integral Z2-representation on the quotient modulo Z〈x〉,
which is of cyclotomic type, does not lift to a summand of the same type in Z〈x〉⊕Z〈y〉
because Z〈x〉 ⊕ Z〈y〉 = Z[Z2]〈(x− y)〉 is of regular type.

Likewise, a summand of cyclotomic type in a Z[Zp]-submodule of a Z[Zp]-module
may not be a summand of the same type in the Z[Zp]-module.

We end this section with a proof of Theorem 1.4. Recall that by Bryan [6], a smooth
involution g : Xα → Xα is of odd type if and only if b+2 (Xα/〈g〉) = 1. On the other
hand, one can easily check that this condition implies that one of the classes [T1], [T2]
and [T3] must be fixed by g. We assume without loss of generality that g∗[T1] = [T1].

Lemma 4.8. Let Σ be a non-spherical fixed component of g. Then (1) χ(Σ)+Σ2 = 0,
and (2) Σ · [T1] = 0.

Proof. First of all, let {Σj} be the set of fixed components of g. Then the Lefschetz
fixed point theorem and the G-signature theorem (cf. Theorem 3.4 and Theorem 3.6)
imply that

{

2 + t− (22− t) =
∑

j χ(Σj)

2(2 − t) = −16 +
∑

j
22−1
3 · Σ2

j ,
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where t denotes the dimension of the 1-eigenspace of g in H2(Xα;R). It follows easily
from the above equations that

∑

j(χ(Σj) + Σ2
j) = 0.

Now let {Σi} be the set of components in {Σj} such that Σ2
i < 0, and let {Σk} be

the set of components with Σ2
k ≥ 0. Then since 2d1[T1] is a Seiberg-Witten basic class,

by the generalized adjunction inequality,

genus(Σk) ≥ 1 +
1

2
(|2d1[T1] · Σk|+Σ2

k)

for each k. On the other hand, since Xα is even, Σ2
i ≤ −2 for each i, so that

genus(Σi) ≥ 1 +
1

2
Σ2
i .

Putting these two inequalities together, and with
∑

j(χ(Σj) + Σ2
j) = 0, we obtain

∑

k

|2d1[T1] · Σk| ≤ 0,

which implies that [T1] ·Σk = 0 for each k and χ(Σj) +Σ2
j = 0 for each j. The lemma

follows immediately.
�

Proof of Theorem 1.4

Let Σ be a fixed component of g with genus ≥ 1. We shall prove that Σ must be a
torus of self-intersection 0 and that the class [Σ] is a multiple of [T1] over Q. Theorem
1.4 follows easily from this and the result of Edmonds stated in Proposition 3.2.

We fix a g-equivariant decomposition H2(Xα;R) = H+ ⊕ H− where H+, H− are
positive definite and negative definite respectively. Since b+2 (Xα/〈g〉) = 1, there is a
1-dimensional subspace of H+ which is fixed under g. We fix a vector u ∈ H+ in this
subspace such that u2 = 1. Now because both [T1] and [Σ] are fixed under g, we may
write

[T1] = a1u+ β1 and [Σ] = a2u+ β2

for some a1, a2 ∈ R and β1, β2 ∈ H−. Note that our claim is trivially true if [Σ] = 0.
Assuming [Σ] 6= 0, and note that [T1] 6= 0, T 2

1 = 0, and Σ2 = −χ(Σ) ≥ 0, we must
have a1, a2 6= 0. We may assume without loss of generality that a1, a2 > 0. With this
understood, T 2

1 = 0, Σ2 = −χ(Σ) ≥ 0 and [T1] · Σ = 0 give rise to

a21 + β2
1 = 0, a22 + β2

2 ≥ 0, and a1a2 + β1 · β2 = 0.

It follows easily that

|β1 · β2| = a1a2 ≥ (|β2
1 | · |β2

2 |)1/2,
which implies by the triangle inequality that β1, β2 must be linearly dependent and
that the above must hold with equality. It follows easily that [Σ] is a multiple of [T1],
and that Σ is a torus of self-intersection 0.

✷
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5. Proof of Theorem 1.7 — Involutions in Aut(E8)

The proof of Theorem 1.7 requires a digression on the conjugacy classes of elements
of order 2 in Aut(E8). We shall give a brief review of this material next, which is
taken from Carter [7].

Let e1, e2, · · · , e8 be a standard basis of R8, i.e., (ei, ej) = δij . Then the E8 lattice
is the lattice generated by the set of vectors

Φ ≡ {±ei ± ej ,
1

2

8
∑

i=1

ǫiei|ǫi = ±1,
8
∏

i=1

ǫi = 1}.

Furthermore, Φ forms the root system of E8.
For any root r ∈ Φ, there is an associated reflection wr ∈ Aut(E8) defined by

wr(x) = x− (r, x)r.

It is known that Aut(E8) is generated by {wr|r ∈ Φ}.
According to Lemma 5 of [7], every involution v ∈ Aut(E8) can be written as a

product v = wr1 · wr2 · · · · · wrk , where k = l(v) equals the number of −1-eigenvectors
of v in R8, and r1, · · · , rk are mutually orthogonal roots. In particular, by changing v
to (−1) · v if necessary, we may assume that k = l(v) ≤ 4.

Let f1 = e1 − e2, f2 = e2 − e3, · · · , f6 = e6 − e7, f7 = e7 + e8, and

f8 =
1

2
(−e1 − e2 − e3 − e4 − e5 + e6 + e7 − e8).

Then one can easily check that f1, f2, · · · , f8 form a standard basis for the E8 lattice.
In particular, f1, f3, f5, f7 are mutually orthogonal roots.

Now according to [7] (see Lemma 11, Lemma 27, and Corollary (iv) following Propo-
sition 38 in [7]), an involution v ∈ Aut(E8) is conjugate to one of

wf1 , wf1 · wf3 , wf1 · wf3 · wf5

if l(v) ≤ 3, and when l(v) = 4, v has two different conjugacy classes represented by

wf1 · wf3 · wf5 · wf7 and wf1 · wf3 · wf5 · wf ′

7
,

where f ′
7 = e7 − e8. End of digression.

The following lemma is the starting point of our analysis.

Lemma 5.1. Suppose τ : Xα → Xα is a smooth involution which fixes the classes
[T1], [T2] and [T3] and such that Θ(τ) = (v1, v2) ∈ Aut(E8)× Aut(E8). (Recall that Θ
is the homomorphism in Lemma 4.3.) Then both v1, v2 are conjugate to the involution
wf1 · wf3 · wf5 · wf ′

7
in Aut(E8).

Proof. Since τ fixes the classes [T1], [T2] and [T3], b
+
2 (Xα/〈τ〉) = 3 by Lemma 4.1.

Consequently τ is an even type involution with 8 isolated fixed points by Bryan [6].
The key property of τ we need here is that for any x ∈ H2(Xα;Z), the intersection

product of x with τ · x is even (cf. [15]). To see this, represent x by a smooth surface
Γ in Xα which is away from the fixed-point set of τ , then perturb Γ slightly so that Γ
and τ(Γ) intersect transversely. It is easily seen that the intersection points of Γ and
τ(Γ) are paired up by τ , and hence the claim.
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With this understood, we observe that if v ∈ Aut(E8) is an involution which is
conjugate to any of the following 4 involutions

wf1 , wf1 · wf3 , wf1 · wf3 · wf5 , wf1 · wf3 · wf5 · wf7 ,

then there exists a root x ∈ Φ such that (v(x), x) = 1. It suffices to check this for the
above standard representatives of the conjugacy classes, which is done below.

If v = wf1 , we take x = f2. Then (v(x), x) = (f2+f1, f2) = 2−1 = 1. If v = wf1 ·wf3 ,
we take x = f4. Then (v(x), x) = (f4 + f3, f4) = 2 − 1 = 1. If v = wf1 · wf3 · wf5 ,
we take x = f6, and (v(x), x) = (f6 + f5, f6) = 1. If v = wf1 · wf3 · wf5 · wf7 , we take
x = f8, and (v(x), x) = (f8+f5, f8) = 1. (On the other hand, if v = wf1 ·wf3 ·wf5 ·wf ′

7
,

then a direct check shows that (v(fi), fi) = 0 (mod 2) for any 1 ≤ i ≤ 8.)
Consequently, by the classification of conjugacy classes of involutions in Aut(E8),

we conclude that the involutions v1, v2 in Θ(τ) = (v1, v2) ∈ Aut(E8) × Aut(E8) have
the following possibilities: either conjugate to wf1 · wf3 · wf5 · wf ′

7
or equal to 1, −1.

It remains to show that neither of v1, v2 can be 1 or −1. To this end, recall that
there are classes wi ∈ H2(Xα;Z), i = 1, 2, 3, which are dual to [Ti]. Moreover, since
τ fixes [T1], [T2] and [T3], for each i = 1, 2, 3, there are ui ∈ Span([T1], [T2], [T3]) and
αi ∈ Span(ξk, ηk|1 ≤ k ≤ 8) (the classes ξk, ηk are defined in Lemma 4.3) such that

τ · wi = wi + ui + αi.

(See the proof of Lemma 4.3 for details.) It follows easily from this that

tr(τ)|H2(Xα;Z) = 6 + tr(v1) + tr(v2).

On the other hand, τ has 8 isolated fixed points, so by the Lefschetz fixed point
theorem (cf. Theorem 3.4), tr(τ)|H2(Xα;Z) = 8− 2 = 6, which implies that

tr(v1) + tr(v2) = 0.

Consequently, if v1 = 1 or −1, v2 must be −1 or 1 respectively. Without loss of
generality, we assume that v1 = 1 and v2 = −1.

Now v1 = 1 means that τ acts trivially on

Span(ξk, [Tj ]|1 ≤ k ≤ 8, 1 ≤ j ≤ 3)/Span([T1], [T2], [T3]).

As we argued in the proof of Lemma 4.3, this implies that each ξk is fixed under τ .
We thus obtain a τ -invariant decomposition

H2(Xα;Z) = Span(ξk|1 ≤ k ≤ 8)⊕ Span(ξk|1 ≤ k ≤ 8)⊥.

(Here we use the fact that the intersection form on Span(ξk|1 ≤ k ≤ 8) is −E8 which is
unimodular.) Suppose Span(ξk|1 ≤ k ≤ 8)⊥ = Z[Z2]

r ⊕Zt⊕Z[µ2]
s is a decomposition

of the Z2-integral representation into a block sum of summands of regular, trivial and
cyclotomic types. Then correspondingly we have a decomposition

H2(Xα;Z) = Z[Z2]
r ⊕ Zt+8 ⊕ Z[µ2]

s.

Now tr(τ)|H2(Xα;Z) = 6 implies t + 8 − s = 6, which implies that s = t + 2 > 0.
However, τ is pseudofree and has a nonempty fixed-point set, so that s must be 0 by
Edmonds’ result (cf. Prop. 3.1). This is a contradiction, and the lemma follows.

�
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Lemma 5.1 suggests that one should study 2-subgroups of Aut(E8) whose elements
of order 2 are conjugate to wf1 ·wf3 ·wf5 ·wf ′

7
. To this end we need to recall a natual

subgroup of Aut(E8) which contains all the 2-subgroups up to conjugacy.
Consider the following two subgroups H0 and H1 of Aut(E8),

H0 = {(ǫi)|1 ≤ i ≤ 8, ǫi = ±1,
8
∏

i=1

ǫi = 1} ∼= (Z2)
7,

where H0 acts by coordinate-wise multiplications on R8 with respect to the standard
basis e1, · · · , e8, and

H1 = {σ|σ is a permutation of e1, · · · , e8} ∼= S8.

Let H ⊂ Aut(E8) be the subgroup generated by H0 and H1. Then H is a semi-direct
product of H0 by H1 with relations

(ǫi)σ = σ(ǫ′i), where ǫ′i = ǫσ(i), ∀ (ǫi) ∈ H0, σ ∈ H1.

In particular, the Sylow 2-subgroups of H has order 214 which is the same as the
order of Sylow 2-subgroups of Aut(E8). Thus by Sylow’s theorem, up to conjugacy in
Aut(E8) any 2-subgroup of Aut(E8) is contained in H.

Lemma 5.2. (1) Let v = (ǫi)v̂ ∈ H where (ǫi) ∈ H0 and v̂ ∈ H1. Then v is conjugate
to wf1 · wf3 · wf5 · wf ′

7
in Aut(E8) if and only if the following conditions are satisfied:

• either v̂ = 1 or v̂ = σ1σ2σ3σ4 where σi are disjoint transpositions,
• ǫi = ǫv̂(i) for any i and #{i|ǫi = −1} = 0 (mod 4),
• when v̂ = 1, #{i|ǫi = −1} = 4.

(2) Let v = (ǫi)v̂ ∈ H be of order 4 such that v2 is conjugate to wf1 · wf3 · wf5 · wf ′

7

in Aut(E8). Then there are the following two possibilities for v:

• Case (i) v̂2 = 1, where up to conjugacy in H, either
– v̂ = (12)(34) with ǫ1ǫ2 = ǫ3ǫ4 = −1, or
– v̂ = (12)(34)(56) with ǫ1ǫ2 = ǫ3ǫ4 = −1, and ǫ5ǫ6 = 1, or
– v̂ = (12)(34)(56)(78) with ǫ1ǫ2 = ǫ3ǫ4 = −1, and ǫ5ǫ6 = ǫ7ǫ8 = 1.

• Case (ii) v̂2 6= 1, where up to conjugacy in H, v̂ = σ1σ2 for two disjoint
4-cycles σ1, σ2 ∈ H1, and (ǫi) satisfies ǫi = ǫv̂(i) for any i.

Proof. (1) Note that up to conjugacy wf1 ·wf3 ·wf5 ·wf ′

7
may be characterized as the

only involution v ∈ Aut(E8) such that v 6= −1 and (v(r), r) = 0 (mod 2), ∀r ∈ Φ.
Now suppose v = (ǫi)v̂ ∈ H is an involution. Then

1 = v2 = (ǫi)v̂(ǫi)v̂ = (ǫi)(ǫv̂−1(i))v̂v̂,

which implies v̂2 = 1 and ǫi = ǫv̂(i) for any i.
Next we show that if v̂ 6= 1, then v̂ must be a product of 4 disjoint transpositions.

To see this, suppose there exist i 6= j such that v̂(i) = j and there exists a k(6= i, j)
such that v̂(k) = k, then for the root ei + ek ∈ Φ,

(v(ei + ek), (ei + ek)) = (ǫjej + ǫkek, ei + ek) = ǫk.

Hence if v is conjugate to wf1 ·wf3 ·wf5 ·wf ′

7
, then either v̂ 6= 1 or v̂ is a product of 4

disjoint transpositions.
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To see that #{i|ǫi = −1} = 0 (mod 4), note that

(v(f8), f8) =
1

4
(#{i|ǫi = 1} −#{i|ǫi = −1})

=
1

4
(8− 2#{i|ǫi = −1})

= 2− 1

2
#{i|ǫi = −1}.

Thus (v(f8), f8) = 0 (mod 2) if and only if #{i|ǫi = −1} = 0 (mod 4). When v̂ = 1,
v = (ǫi). Since v 6= 1 or −1, we must have #{i|ǫi = −1} = 4.

Now suppose v = (ǫi)v̂ which satisfies the conditions in (1) of the lemma. If v̂ = 1,
then v = (ǫi) where #{i|ǫi = −1} = 4. In particular, v 6= 1,−1. Moreover, for any
root r = ±ei ± ej ,

(v(r), r) = ǫi + ǫj = 0 (mod 2),

and for any root r = 1
2 (
∑

i±ei),

(v(r), r) =
1

4
(#{i|ǫi = 1} −#{i|ǫi = −1}) = 0.

Hence v is conjugate to wf1 ·wf3 ·wf5 ·wf ′

7
by the characterization of wf1 ·wf3 ·wf5 ·wf ′

7

we mentioned at the beginning of the proof. When v̂ = σ1σ2σ3σ4 where σi are disjoint
transpositions, the conditions ǫi = ǫv̂(i) for any i and #{i|ǫi = −1} = 0 (mod 4)
imply that v is conjugate to v̂ = σ1σ2σ3σ4 by an element of H0. On the other
hand, v̂ = σ1σ2σ3σ4 is clearly conjugate to (12)(34)(56)(78) in H1, which is exactly
wf1 · wf3 · wf5 · wf ′

7
. This proves part (1) of the lemma.

(2) Let v = (ǫi)v̂ be of order 4 such that v2 is conjugate to wf1 ·wf3 ·wf5 ·wf ′

7
. We

have v2 = (ǫi)(ǫv̂−1(i))v̂
2.

Case (i) where v̂2 = 1. Then by part (1) and up to conjugacy by an element of H1,

v2 = (ǫi)(ǫv̂−1(i))v̂
2 = (−1,−1,−1,−1, 1, 1, 1, 1).

This implies that for i = 1, 2, 3, 4, ǫiǫv̂(i) = −1, and in particular, v̂(i) 6= i. Up to
further conjugation by an element of H1, v̂ has the following three possibilities:

(12)(34), (12)(34)(56), (12)(34)(56)(78).

The corresponding conditions that (ǫi) must satisfy follow directly from

v2 = (ǫi)(ǫv̂−1(i)) = (−1,−1,−1,−1, 1, 1, 1, 1).

Case (ii) where v̂2 6= 1. Then v2 = (ǫi)(ǫv̂−1(i))v̂
2, which, as we have seen in part

(1), is conjugate to a product of 4 disjoint transpositions. This implies that v̂ is a
product of 2 disjoint 4-cycles and (ǫi)(ǫv̂−1(i)) = (1) implies that ǫi = ǫv̂(i) for any i.

�

We remark that with Lemma 5.2 one can easily show that any 2-group of order
≤ 8 (including Q8 in particular) as well as some other groups of small order (e.g. S3,
A4, or even S4) can be realized as a subgroup of H whose order 2 elements are all
conjugate to wf1 · wf3 · wf5 · wf ′

7
. (One may even attempt to classify these subgroups
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of H.) With this understood, the following lemma provides the additional constraints
needed for the case of Q8 in Theorem 1.7.

Lemma 5.3. Suppose Q8 acts on Xα smoothly, such that (1) the classes [T1], [T2] and
[T3] are fixed under the action, (2) the actions by the elements of order 4 of Q8 are
mutually conjugate. Then each element of order 4 of Q8 has exactly 4 isolated fixed
points in Xα.

Proof. Let g ∈ Q8 be an order 4 element. Since [T1], [T2] and [T3] are fixed under
the action, b+2 (Xα/〈g〉) = b+2 (Xα/〈g2〉) = 3, and in particular, g2 is an even type
involution with 8 isolated fixed points. Since Fix(g) ⊂ Fix(g2), we see that g has at
most 8 isolated fixed points.

We shall prove next that the number of fixed points of g is either 4, 6 or 8. To see
this, note that the fixed points of g fall into two different classes according to their
local representations. Denote by s+ the number of fixed points where the weights of
the local representation are (1, 3) and denote by s− the number of fixed points where
the weights are (1, 1) or (3, 3). Note that if t is the dimension of the 1-eigenspace of
g in H2(Xα;R), the dimension of the (−1)-eigenspace must be 14− t, because g2 has
8 isolated fixed points so that the dimension of the 1-eigenspace of g2 is 14. Now by
the Lefschetz fixed point theorem (cf. Theorem 3.4) and the G-signature theorem (cf.
[29]), we have

{

2 + t− (14− t) = s+ + s−
4(6− t) = −16 + 2s+ + (−2)s−.

Here we use the fact that b+2 (Xα/g) = 3, and the fact that the signature defect at
a fixed point of g of type (1, 3) and type (1, 1) or (3, 3) is 2,−2 respectively, and
the signature defect at a fixed point of g2 is 0. The solutions for s+, s− (note that
s+ + s− ≤ 8) are s+ = 4 and s− = 0, 2 or 4. Our claim about the number of fixed
points of g follows immediately.

Now Q8 = {i, j, k|i2 = j2 = k2 = −1, ij = k, jk = i, ki = j} where by the
assumption the actions by i, j, k are all conjugate. In particular, they have the same
number of fixed points, which is either 4, 6 or 8. Suppose i, j, k all have 8 fixed points.
Then each of the 8 fixed points of −1 is also fixed by the entire group Q8. But one
of them must be a fixed point of i of type (1, 1) or (3, 3), which, however, contradicts
the relation j−1ij = i−1. Hence i, j, k can not have 8 fixed points each. Suppose i, j, k
each has 6 fixed points. Then i, j each fixes 6 of the 8 fixed points of −1, so that they
must have 4 common fixed points, which should also be fixed by k = ij. Let x1, · · · , x4
denote these 4 common fixed points, and let x5,x6 denote the other 2 fixed points of
i which is not fixed by j, and let x7, x8 be the remaining 2 points which are not fixed
by i. Since j−1ij = i−1, j has to switch x5, x6, so that j must fix both x7, x8 because
j has 6 fixed points. It follows easily that k = ij does not fix any of the points x5, x6,
x7, x8, which contradicts the assumption that k also has 6 fixed points. Hence i, j, k
each has 4 fixed points, and the lemma follows.

�

Proof of Theorem 1.7
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Let G be a finite group acting smoothly and effectively on Xα. Then the classes
[T1], [T2], [T3] are fixed by the commutator subgroup [G,G]. Moreover, under the
homomorphism Θ : G → Aut(E8⊕E8), [G,G] is mapped into the subgroup Aut(E8)×
Aut(E8) of index 2. We denote by Θi, i = 1, 2, the homomorphisms into Aut(E8) such
that Θ = (Θ1,Θ2) on [G,G].

Now suppose K is a subgroup of [G,G] which is isomorphic to (Z2)
4. Then by

Lemma 5.1, for every element g ∈ K such that g 6= 1, Θ1(g) ∈ Aut(E8) is conjugate
to wf1 · wf3 ·wf5 ·wf ′

7
. In particular, the trace of Θ1(g) equals 0 (cf. Lemma 5.2 (1)).

Now consider the 8-dimensional representation V of K induced by Θ1. We have

dimV K =
1

|K|
∑

g∈K

tr(g) =
1

|K|(8 +
∑

16=g∈K

tr(g)) =
8

16
,

which is a contradiction. This proves that if [G,G] contains (Z2)
4 as a subgroup, then

G can not act smoothly and effectively on Xα.
Next we assume K ⊂ [G,G] is a subgroup isomorphic to Q8, where

Q8 = {i, j, k|i2 = j2 = k2 = −1, ij = k, jk = i, ki = j}.
By the assumption in Theorem 1.7, the actions of order 4 elements are all conjugate,
so that by Lemma 5.3, each of i, j, k has 4 isolated fixed points. It then follows easily
from the Lefschetz fixed point theorem (cf. Theorem 3.4) that

tr(Θ1(g)) + tr(Θ2(g)) = −4, where g = i, j, k ∈ Q8.

On the other hand, each of Θ1(g), Θ2(g), g = i, j, k, is an order 4 element of Aut(E8)
whose square is conjugate to wf1 · wf3 · wf5 · wf ′

7
. From the description in Lemma 5.2

(2), the trace of each of Θ1(g),Θ2(g), g = i, j, k, is even and is bounded between −4
and 4. It follows that for l = 1, 2, tr(Θl(g)) = 0,−2,−4 where g = i, j, k ∈ Q8.

There are two possibilities which we will discuss separately. First, suppose for
g equaling one of i, j, k ∈ Q8, tr(Θ1(g)) = 0 or −4. Note that correspondingly
tr(Θ2(g)) = −4 or 0. So without loss of generality we may assume that tr(Θ1(i)) = −4
(i.e. g = i). Then from the description in Lemma 5.2 (2), we must have (up to con-
jugacy) Θ1(i) = (ǫi)v̂ with v̂ = (12)(34), ǫ1ǫ2 = ǫ3ǫ4 = −1, ǫl = −1 for l = 5, 6, 7, 8.
Note also in this case we have Θ1(−1) = (−1,−1,−1,−1, 1, 1, 1, 1).

We discuss the possibilities for tr(Θ1(j)). Suppose tr(Θ1(j)) = −4. Then Θ1(j) =
(ǫi)v̂ where v̂ is a product of 2 disjoint transpositions with each of 5, 6, 7, 8 being fixed,
and where ǫl = −1 for l = 5, 6, 7, 8. It follows easily that Θ1(k) = (ǫi)v̂ where v̂ fixes
5, 6, 7, 8 and ǫl = 1 for l = 5, 6, 7, 8. But this implies that tr(Θ1(k)) = 4 which is
a contradiction. Suppose tr(Θ1(j)) = −2. Then up to conjugacy without effecting
Θ1(i), Θ1(j) = (ǫi)v̂ where v̂ = σ1σ2(56)(7)(8) and ǫ7 = ǫ8 = −1. It follows that
Θ1(k) = (ǫi)v̂ with v̂ = σ′

1σ
′
2(56)(7)(8) but ǫ7 = ǫ8 = 1. Consequently tr(Θ1(k)) = 2

which is also a contradiction. Finally, suppose tr(Θ1(j)) = 0. Then either Θ1(j) =
(ǫi)v̂ with v̂ a product of 4 disjoint transpositions or with v̂ fixing each of 5, 6, 7, 8 and
exactly two of ǫ5, ǫ6, ǫ7, ǫ8 equal to −1. In any event, it follows that tr(Θ1(k)) = 0
also. Now tr(Θ1(j)) = tr(Θ1(k)) = 0 implies that tr(Θ2(j)) = tr(Θ2(k)) = −4, which
is a case that has been already shown impossible. Hence we have eliminated the first
possibility that for g equaling one of i, j, k ∈ Q8, tr(Θ1(g)) = 0 or −4.
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Next we consider the second possibility that for any g = i, j, k ∈ Q8, tr(Θ1(g)) = −2.
Then from the description in Lemma 5.2 (2), we see that each Θ1(g) = (ǫi)v̂, where v̂
is a product of 3 disjoint transpositions. This turns out to be impossible, because if
we assume without loss of generality that Θ1(i) = (ǫi)v̂ where v̂ = (12)(34)(56) (and
Θ1(−1) = (−1,−1,−1,−1, 1, 1, 1, 1)), then Θ1(j) = (ǫi)v̂ with v̂ = σ1σ2(56)(7)(8) or
v̂ = σ1σ2(5)(6)(78), which implies that Θ1(k) = (ǫi)v̂ where v̂ = σ′

1σ
′
2(5)(6)(7)(8)

or v̂ = σ′
1σ

′
2(56)(78) respectively. In any event, it contradicts the assumption that

tr(Θ1(k)) = −2, and hence our claim. This proves that if [G,G] contains Q8 as a
subgroup, then G can not act smoothly and effectively on Xα

The proof of Theorem 1.7 is thus completed.
✷

Corollary 5.4. The following maximal symplectic K3 groups

G = M20, F384, A4,4, T192,H192, T48

can not act smoothly and effectively on Xα.

Proof. The structures of these groups and their commutator subgroups are listed below
(cf. [42, 51]):

• G = M20 = 24A5, [G,G] = G = 24A5.
• G = F384 = 42S4, [G,G] = 42A4.
• G = A4,4 = 24A3,3, [G,G] = A2

4.
• G = T192 = (Q8 ∗Q8)×φ S3, [G,G] = (Q8 ∗Q8)×φ Z3.
• G = H192 = 24D12, [G,G] = 24Z3.
• G = T48 = Q8 ×φ S3, [G,G] = T24 = Q8 ×φ Z3.

The corollary is evident for all cases except for the case where G = F384. We shall
prove that in this case [G,G] = 42A4 contains a subgroup isomorphic to (Z2)

4. To
this end, we recall the structure of F384 (cf. [42], pages 190-191). F384 = 42S4 is a
semi-direct product of (Z4)

2 by S4, where (Z4)
2 = {(a, b, c, d)|a+b+c+d = 0} ⊂ (Z4)

4

modulo the diagonal subgroup. The action of S4 is given by permutations of the 4
coordinates. One can check directly that the (Z2)

2-subgroup of (Z4)
2 generated by

(2, 2, 0, 0) and (2, 0, 2, 0) are fixed under the action of (12)(34), (13)(24) ∈ A4 ⊂ S4,
hence the commutator [G,G] = 42A4 contains a subgroup isomorphic to (Z2)

4.
�

6. Symplectic cyclic actions

In this section we prove Theorem 1.8. The proof draws heavily on our previous work
[10] concerning the fixed-point set structure of a symplectic Zp-action on a minimal
symplectic 4-manifold with c21 = 0, which we shall recall first.

Let ω be an orientation compatible symplectic structure on Xα, and let G be a
finite group acting on Xα which preserves ω. Then by Lemma 2.3 (2), G fixes the
classes [T1], [T2], [T3], and therefore by Lemma 4.1, G acts trivially on a 3-dimensional
subspace of H2(Xα;R) which consists of elements of positive square. As we argued in
[10], a G-equivariant version of Taubes’ work in [49, 50] applies here, so that for any
G-equivariant ω-compatible almost complex structure J , the canonical class c1(K) is
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represented by a finite set of J-holomorphic curves {Ci} with positive weights {ni},
i.e., c1(K) =

∑

i niCi, which has the following properties:

• The set ∪iCi is G-invariant.
• Any fixed point of G in the complement of ∪iCi is isolated with local repre-
sentation contained in SL2(C).

One may further analyze the rest of the fixed points through the induced action
in a neighborhood of ∪iCi. To this end, it is useful to take note that the connected
components of ∪iCi may be divided into the following three types:

(A) A single J-holomorphic curve of self-intersection 0 which is either an embedded
torus, or a cusp sphere, or a nodal sphere.

(B) A union of two embedded (−2)-spheres intersecting at a single point with
tangency of order 2.

(C) A union of embedded (−2)-spheres intersecting transversely.

A type (C) component may be conveniently represented by one of the graphs of

type Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8 listed in Figure 2, where a vertex in a graph represents
a (−2)-sphere and an edge connecting two vertices represents a transverse, positive
intersection point of the two (−2)-spheres represented by the vertices.

With the preceding understood, the following lemma is specially tailored for the
present situation in order to control the number of type (B) or type (C) components.

Lemma 6.1. Let J be any ω-compatible almost complex structure on Xα, and let
c1(K) =

∑

niCi where {Ci} is a finite set of J-holomorphic curves and ni ≥ 1. Then
each Ci lies in the orthogonal complement of Span ([T1], [T2], [T3]).

Proof. The key point here is that some multiple of each [Tj ] can be represented by
J-holomorphic curves. The details of the proof go as follows.

First of all, by Lemma 2.2, we may assume without loss of generality that c1(K) =
2(d1[T1]+d2[T2]+d3[T3]). Because the classes −2(d2[T2]+d3[T3]), −2(d1[T1]+d3[T3])
and −2(d1[T1] + d2[T2]) are Seiberg-Witten basic classes, by the main theorem of
Taubes in [50], for a generic ω-compatible almost complex structure J ′, each dj [Tj]

for j = 1, 2, 3 is Poincaré dual to
∑Nj

k=1mj,kΓj,k, where mj,k ≥ 1 are integers and Γj,k

are (connected) embedded J ′-holomorphic curves which are disjoint for each fixed j.
Moreover, since Xα is minimal and J ′ is generic, all Γj,k have nonzero genus. We
further notice that for each fixed j the numbers Nj and mj,k and the genus of each
Γj,k are bounded by a constant independent of the almost complex structure J ′. We
take a sequense of generic J ′ converging in C∞ to the given J , and by passing to a
subsequence we may assume that Nj , mj,k and the genus of Γj,k are independent of
J ′ throughout.

By Gromov compactness theorem (cf. e.g. [40]), each Γj,k converges to a limit
∑Mj,k

l=1 nj,k,lCj,k,l where each Cj,k,l is a (nonconstant) J-holomorphic curve, nj,k,l ≥ 1

and ∪Mj,k

l=1 Cj,k,l is connected. Note that

c1(K) = 2(d1[T1] + d2[T2] + d3[T3]) = 2

3
∑

j=1

Nj
∑

k=1

Mj,k
∑

l=1

mj,knj,k,lCj,k,l.
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Ãn (n+ 1 vertices, n ≥ 1)

D̃n (n+ 1 vertices, n ≥ 4)

Ẽ6

Ẽ7

Ẽ8

Figure 2.

Furthermore, the fact that c1(K)2 = 0 and Xα is minimal allows us to analyze the

structure of ∪3
j=1 ∪Nj

k=1 ∪Mj,k

l=1 Cj,k,l, as shown in [10]. In particular, the connected

components of the union ∪3
j=1∪

Nj

k=1∪
Mj,k

l=1 Cj,k,l may be divided into the following three

types (the classification differs slightly from the one we mentioned earlier):

(a) A single J-holomorphic curve of self-intersection 0.
(b) A union of two embedded (−2)-spheres.
(c) A union of at least three embedded (−2)-spheres intersecting transversely.
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With the above preparation, we shall prove next that each Ci lies in the orthogonal
complement of Span ([T1], [T2], [T3]). It suffices to show that for each (j, k), Γj,k·Ci = 0,

or equivalently (
∑Mj,k

l=1 nj,k,lCj,k,l) · Ci = 0. We begin by recalling that c1(K) · Ci = 0

(cf. [10], Lemma 3.3), so that Ci is either disjoint from ∪3
j=1∪

Nj

k=1∪
Mj,k

l=1 Cj,k,l, in which

case (
∑Mj,k

l=1 nj,k,lCj,k,l) · Ci = 0 holds true automatically, or Ci is contained as one of
the J-holomorphic curves Cj,k,l.

At this point, we need to make use of the fact that Γ2
j,k = 0, whose proof is postponed

to the end of the proof of this lemma. Accepting it momentarily, we shall continue with

the proof of the lemma. It is clear that we only need to verify the case where ∪Mj,k

l=1 Cj,k,l

and Ci lie in the same component of ∪3
j=1 ∪

Nj

k=1 ∪
Mj,k

l=1 Cj,k,l. Since each ∪Mj,k

l=1 Cj,k,l is

connected and (
∑Mj,k

l=1 nj,k,lCj,k,l)
2 = Γ2

j,k = 0, it follows easily that if Ci lies in a

type (a) or (b) component of ∪3
j=1 ∪

Nj

k=1 ∪
Mj,k

l=1 Cj,k,l, then (
∑Mj,k

l=1 nj,k,lCj,k,l) · Ci = 0

holds true. It remains to check the case where Ci lies in a type (c) component. To

this end we recall that a type (c) component corresponds to a graph of type Ãn,

D̃n, Ẽ6, Ẽ7 or Ẽ8 as discussed in [3], Lemma 2.12 (ii). Each graph defines a positive
semi-definite quadratic form which is canonically associated with the intersection form
of the J-holomorphic curves Cj,k,l in the type (c) component. The key property we
will use here is that the positive semi-definite quadratic form has a 1-dimensional

annihilator. Now it is clear that (
∑Mj,k

l=1 nj,k,lCj,k,l)
2 = 0 implies that

∑Mj,k

l=1 nj,k,lCj,k,l

must be an annihilator for the positive semi-definite quadratic form, which implies

that (
∑Mj,k

l=1 nj,k,lCj,k,l) · Ci = 0.

We end the proof by showing that Γ2
j,k = 0. This follows from the fact that [Tj ]

2 = 0
by a standard argument involving the Sard-Smale theorem and the adjunction for-
mula for pseudoholomorphic curves (cf. [40]). The details are sketched below. The
dimension of the moduli space of J ′-holomorphic curves which contains Γj,k equals
d = 2(−c1(K) · Γj,k + genus(Γj,k) − 1). (Here we use the fact that Γj,k has nonzero
genus.) Since Γj,k is embedded, the adjunction formula

2 · genus(Γj,k)− 2 = Γ2
j,k + c1(K) · Γj,k

gives rise to d = Γ2
j,k − c1(K) ·Γj,k. Now J ′ is chosen generic so that d ≥ 0 must hold,

which implies that Γ2
j,k ≥ c1(K) · Γj,k. Again by the adjunction formula, we have

Γ2
j,k ≥ 1

2
(Γ2

j,k + c1(K) · Γj,k) = genus(Γj,k)− 1 ≥ 0.

With this, Γ2
j,k = 0 follows easily from (

∑Nj

k=1mj,kΓj,k)
2 = (dj [Tj ])

2 = 0.
�

The preceding lemma has the following useful corollary. Let Λ be a component of
∪iCi of either type (B) or type (C), and let C be a (−2)-sphere in Λ. Recall that the
orthogonal complement of Span ([T1], [T2], [T3]) is

Span ([Tj ], ξk, ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)
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where ξk, ηk are the classes in H2(Xα;Z) which correspond to the two standard bases
of the −E8 form defined in Lemma 4.2. We denote by C the projection into

Span ([Tj ], ξk, ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3]).

Since C has nontrivial self-intersection, its projection C must be nonzero. We denote
by LΛ the sublattice spanned by the projections of (−2)-spheres in Λ.

Lemma 6.2. For any component Λ, LΛ is contained in either

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

or
Span ([Tj ], ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3]),

and for any two distinct components Λ,Λ′, the corresponding sublattices LΛ, LΛ′ are
orthogonal to each other. Moreover, if Λ is of type (B), then LΛ = 〈−2〉 (i.e. LΛ is

a A1-root lattice), and if Λ is of type (C), represented by a graph of type Ãn, D̃n, Ẽ6,

Ẽ7 or Ẽ8 listed in Figure 2, then LΛ is a root lattice of the corresponding type (i.e. of
type An, Dn, E6, E7 or E8).

Proof. Let C be a (−2)-sphere in Λ. Write C = ξ + η, where

ξ ∈ Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

and
η ∈ Span ([Tj ], ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3]).

We claim that either ξ or η is zero. Suppose to the contrary that neither of them is
zero. Then since −E8 is negative definite and even, ξ2, η2 ≤ −2, which implies that
C2 = ξ2 + η2 ≤ −4. But this contradicts C2 = C2 = −2, and the claim follows.

Now for each (−2)-sphere C in Λ, its projection C lies in either

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

or
Span ([Tj ], ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3]).

Since Λ is connected, the projections of its (−2)-spheres must lie in the same lattice.
This proves that for any component Λ, LΛ is contained in either

Span ([Tj ], ξk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

or
Span ([Tj ], ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3]).

Similarly, one can show that for any two distinct components Λ,Λ′, the corresponding
sublattices LΛ, LΛ′ are orthogonal to each other.

Now let Λ be a type (B) component, which consists of two (−2)-spheres C1, C2

intersecting at a single point with tangency of order 2. Because

(C1 + C2)
2 = (−2) + 2 · 2 + (−2) = 0,

C1 + C2 must be 0 and hence LΛ = 〈−2〉 in this case. Suppose Λ is a type (C)

component represented by a graph Γ of type Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8 listed in Figure
2, and let {Ci} be the (−2)-spheres corresponding to the vertices in Γ. Then there
are weights {mi}, mi > 0, such that (1) (

∑

imiCi)
2 = 0, (2) there exists a weight
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1 = m0 ∈ {mi} which has the property that if the corresponding vertex (and the edge
connecting to it) in Γ is removed, the resulting graph is the Dynkin diagram for the
root lattice corresponding to Γ (cf. [3], Lemma 2.12 (ii)). It follows easily that LΛ is
isomorphic to the corresponding root lattice.

�

With the preceding preparation, we give a proof of Theorem 1.8 next.
We assume G ≡ Zp where p = 5 or 7. First, we observe that the main results in

[10] (Theorem B, Theorem 3.1 and Prop. 3.7) concerning the fixed-point set structure
of a symplectic Zp-action apply to the current situation, even though there was an
additional assumption in [10] that the symplectic Zp-action acts trivially on the second
homology. This is because the said additional assumption was mainly used to ensure
that the induced action of G on each component of the union of J-holomorphic curves
∪iCi leaves each (−2)-sphere in the component invariant if the component contains at
least one fixed point, which is automatically true in the current case. (Note that for

G ≡ Z5 or Z7, the graphs of type Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8 listed in Figure 2 do not have
any nontrivial G-symmetries except for the case of Ãn, in which G acts freely so that
the corresponding component of ∪iCi can not contain any fixed points of the G-action
on Xα.) With this understood, according to [10] the fixed points of G can be divided
into groups of the following types:

(1) One fixed point with local representation (z1, z2) 7→ (µk
pz1, µ

−k
p z2) for some

k 6= 0 mod p, i.e., with local representation contained in SL2(C).
(2) Two fixed points with local representation (z1, z2) 7→ (µ2k

p z1, µ
3k
p z2), (z1, z2) 7→

(µ−k
p z1, µ

6k
p z2) for some k 6= 0 mod p respectively. (This type of fixed points

occurs only when p > 5.)
(3) Three fixed points, one with local representation (z1, z2) 7→ (µk

pz1, µ
2k
p z2) and

the other two with local representation (z1, z2) 7→ (µ−k
p z1, µ

4k
p z2) for some

k 6= 0 mod p.
(4) Four fixed points, one with local representation (z1, z2) 7→ (µk

pz1, µ
k
pz2) and

the other three with local representation (z1, z2) 7→ (µ−k
p z1, µ

3k
p z2) for some

k 6= 0 mod p.
(Γ) The subset of fixed points which are contained in a component Λ of ∪iCi,

where Λ is of type (C) and is represented by graph Γ of type Ãn, D̃n, Ẽ6, Ẽ7

or Ẽ8, such that at least one of the (−2)-spheres in Λ is fixed under the action.

Note that according to [10], n = −1 (mod p) if Γ is of type Ãn, and n = 4

(mod p) if Γ is of type D̃n.
(T 2) An embedded torus of self-intersection 0.

We shall consider the cases p = 5 and p = 7 separately.

Case(a) p = 5. In this case, there are no type (2) fixed points. Moreover, by the
assumption that both Θ1,Θ2 are nontrivial, and by Lemma 4.5 and Lemma 6.2, there
are no type (Γ) fixed points unless Γ is of type Ã4 or D̃4. The next lemma further

eliminates type (Γ) fixed points where Γ is of type D̃4.
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Lemma 6.3. Let G ⊂ Aut(E8) be a subgroup of order 5. There are no sublattices of
E8 fixed under G, which are isomorphic either to a D4-root lattice or to a direct sum
of two copies of a A2-root lattice.

Proof. By Lemma 4.5, there are two different integral G-representations associated to
the subgroup G ⊂ Aut(E8): Z[Z5]⊕Z3 and Z[µ5]

2. The latter does not fix any vector
in the lattice, so we only need to consider the case of Z[Z5]⊕ Z3.

By Carter [7] (Table 3, page 23), an element of order 5 in Aut(E8) is uniquely
determined up to conjugacy by the characteristic polynomial. Hence a subgroup G of
order 5 whose corresponding integral G-representation is Z[Z5]⊕Z3 must be conjugate
to the subgroup generated by the permutation

e1 7→ e2, e2 7→ e3, e3 7→ e4, e4 7→ e5, e5 7→ e1, el 7→ el, l = 6, 7, 8,

where {e1, · · · , e8} is a standard basis of R8. Clearly, the roots of E8 which are fixed
under the permutation can be put in two groups

Ω1 = {±ei ± ej|i 6= j, i, j = 6, 7, 8}
and

Ω2 = {1
2

8
∑

i=1

ǫiei|ǫ1 = · · · = ǫ5,

8
∏

i=1

ǫi = 1}.

Note that for any roots r1, r2 ∈ Ω1, (r1, r2) = 0 if and only if r1 = ±(ei + ej) and
r2 = ±(ei − ej) (or vice versa), and (r1, r2) 6= 0 for any r1, r2 ∈ Ω2.

With these preparations, we shall prove next that there are no sublattices of E8

isomorphic to a D4-root lattice that are fixed under G. To see this, note that amongst
the three roots represented by the vertices other than the central one in a D4-Dynkin
diagram, exactly two of them must belong to Ω1, which are of the form ±(ei + ej),

±(ei−ej) for some i 6= j, i, j = 6, 7, 8. On the other hand, a root r = 1
2

∑8
i=1 ǫiei ∈ Ω2

is orthogonal to ±(ei + ej) if and only if ǫi = −ǫj. But such a root certainly is not
orthogonal to ±(ei − ej). Our claim follows easily.

It remains to show that G can not fix a direct sum of two copies of a A2-root lattice.
To see this, let r1, r2 be the two roots generating the first copy, and let r3, r4 generate
the second copy. Then note first that one of the ri’s must belong to Ω2. Assume it is
r1 without loss of generality. Then r3, r4, both being orthogonal to r1, must belong
to Ω1. Without loss of generality we may only consider the case r3 = e6 − e7 and
r4 = e7 − e8. The root r1, being orthogonal to both r3, r4, must be ±1

2(e1 + · · ·+ e8).
But then the root r2, which has the property that (r1, r2) = −1, can not be possibly
orthogonal to both r3, r4. A contradiction. The other cases are analogous, and this
finishes the proof of the lemma.

�

We remark that there are sublattices of E8 isomorphic to a A4-root lattice which
are fixed under G. For example, the following 4 roots

e6 − e7,−
1

2
(e1 + · · ·+ e5 + e6 − e7 − e8),

1

2
(e1 + · · ·+ e5 − e6 − e7 + e8), e6 + e7

generate a A4-root lattice which is fixed under G.
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With the preceding understood, let u, v, w and A be the number of groups of fixed
points of G of type (1), (3), (4) and (Ã4) respectively. We will next determine the pos-
sibilities of u, v, w and A using the Lefschetz fixed point theorem and the G-signature
theorem (i.e. Theorem 3.6). Note that since a fixed torus of self-intersection 0 makes
no contribution in the calculation with the Lefschetz fixed point theorem and the
G-signature theorem, we will ignore it in the consideration. The number of such com-
ponents in the fixed-point set will be determined later by the number of cyclotomic
summands in the integral representation on the middle homology.

To this end, recall that the total signature defect of a group of fixed points of
type (1), (3), (4) is 4, −8, and −4 respectively (cf. Lemma 3.8 of [10]). For the

total signature defect of a group of fixed points of type (Ã4), we note that such a
component Λ of ∪iCi contains exactly 1 fixed (−2)-sphere plus 3 isolated fixed points

of local representation (z1, z2) 7→ (µk
pz1, µ

kq
p z2) for some k 6= 0 (mod p) (where p = 5),

with q = 1, 2, 3 respectively (cf. [10]). The signature defect for each of the isolated
fixed points is correspondingly given by

Ip,q =

p−1
∑

k=1

(1 + µk
p)(1 + µkq

p )

(1− µk
p)(1 − µkq

p )
.

(Observe the relation Ip,q = −Ip,−q.) It follows easily that I5,1 = −4 and I5,2 = I5,3 = 0
(cf. [10], Appendix). Hence the total signature defect of a group of fixed points of

type (Ã4) is

−4 + 0 + 0 +
52 − 1

3
· (−2) = −20.

For i = 1, 2, let Z[Z5]
ri ⊕Zti ⊕Z[µ5]

si be the integral G-representation associated to
Θi : G → Aut(E8). Then by Lemma 4.5, there are the following three possibilities if
we assume both Θ1,Θ2 are nontrivial: (r1, t1, s1) = (r2, t2, s2) = (1, 3, 0), (r1, t1, s1) =
(r2, t2, s2) = (0, 0, 2) and (r1, t1, s1) = (1, 3, 0), (r2, t2, s2) = (0, 0, 2). The G-signature
theorem as stated in Theorem 3.6 and the Lefschetz fixed point theorem (cf. Theorem
3.4) give rise to the following equations:

{

1 + 3 · 2 + t1 − s1 + t2 − s2 + 1 = u+ 3v + 4w + 5A
p · (−r1 − t1 − r2 − t2) = −16 + 4u− 8v − 4w − 20A ( with p = 5).

The solution to the above system of equations is

(u, v) =

{

(2− w +A, 4− w − 2A) if (r1, t1, s1) = (r2, t2, s2) = (1, 3, 0)
(3− w +A, 2− w − 2A) if (r1, t1, s1) = (1, 3, 0), (r2 , t2, s2) = (0, 0, 2)

and (u, v, w,A) = (4, 0, 0, 0) if (r1, t1, s1) = (r2, t2, s2) = (0, 0, 2).
We shall further analyze the fixed-point set with help of the G-signature theorem

as stated in Theorem 3.5 and with help of the G-index theorem for Dirac operators as
stated in Lemma 3.8.

We consider first the cases where A = 0, i.e., there are no type (Ã4) fixed points.
To apply the G-signature theorem in Theorem 3.5, we fix a g ∈ G and recall, with
p = 5 below, that each isolated fixed point m of g is associated with a pair of integers
(am, bm), where 0 < am, bm < p, such that the action of g on the tangent space at m is
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given by the complex linear transformation (z1, z2) 7→ (µam
p z1, µ

bm
p z2), and moreover,

the contribution to Sign (g,Xα) from m is given by

δm = − cot(
amπ

p
) · cot(bmπ

p
).

Now divide the fixed points of g into three groups I, II, III according to their local
representations: group I consists of fixed points with local representation (z1, z2) 7→
(µk

pz1, µ
k
pz2) for some k 6= 0 (mod p), group II consists of fixed points with (z1, z2) 7→

(µk
pz1, µ

2k
p z2) for some k 6= 0 (mod p), and group III consists of fixed points with

(z1, z2) 7→ (µk
pz1, µ

4k
p z2) for some k 6= 0 (mod p). Then one observes that δm has

only two possible values for the fixed points in each of the groups I, II, III. For group
I, the values are − cot2(π5 ), − cot2(2π5 ), for group II, the values are − cot(π5 ) cot(

2π
5 ),

cot(π5 ) cot(
2π
5 ), and for group III, the values are cot2(π5 ), cot

2(2π5 ). We let x1, x2, y1, y2
and z1, z2 be the number of fixed points at which δm takes these values respectively.

By the G-signature theorem as stated in Theorem 3.5, we have

s1 + s2 − t1 − t2 = Sign (g,Xα) = −x1 cot
2(
π

5
)− x2 cot

2(
2π

5
)

−y1 cot(
π

5
) cot(

2π

5
) + y2 cot(

π

5
) cot(

2π

5
)

+z1 cot
2(
π

5
) + z2 cot

2(
2π

5
).

On the other hand, if we replace g by g2, δm will correspondingly be switched between
the two values it assumes, and consequently, we have

s1 + s2 − t1 − t2 = Sign (g2,Xα) = −x1 cot
2(
2π

5
)− x2 cot

2(
π

5
)

y1 cot(
π

5
) cot(

2π

5
)− y2 cot(

π

5
) cot(

2π

5
)

+z1 cot
2(
2π

5
) + z2 cot

2(
π

5
).

Combining these two equations, one obtains

[(z1 − z2)− (x1 − x2)] cot
2(
π

5
)− 2(y1 − y2) cot(

π

5
) cot(

2π

5
)

−[(z1 − z2)− (x1 − x2)] cot
2(
2π

5
) = 0.

Lemma 6.4. cot(π5 )/ cot(
2π
5 ) satisfies the algebraic equation t2 − 4t− 1 = 0, which is

irreducible over Q.

Proof. We start with the equation 1 + µ5 + · · · + µ4
5 = 0, from which one sees that

cos(π5 ) satisfies 4t
2 − 2t− 1 = 0, and hence cos(π5 ) = (1 +

√
5)/4.

Now observe that
cot(2π5 )

cot(π5 )
= 1− 1

2 cos2(π5 )
.
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Using the fact that cos(π5 ) = (1 +
√
5)/4, one can check that cot(π5 )/ cot(

2π
5 ) is a

solution of t2 − 4t− 1 = 0, which is clearly irreducible over Q.
�

The preceding lemma implies the following relations

(z1 − z2)− (x1 − x2) = c, y1 − y2 = 2c for some c ∈ Z.

Now observe that type (1) fixed points contribute exclusively to z1 or z2, and we have
u = z1 + z2, and on the other hand, a group of type (3) or type (4) fixed points
contributes nontrivially to x1 (resp. x2) if and only if it contributes nontrivially to y1
(resp. y2), and we have

x1 = 2v1 + w1, x2 = 2v2 +w2, y1 = v1 + 3w1, y2 = v2 + 3w2

where v = v1 + v2 and w = w1 + w2. From these equations we obtain

2(z1 − z2) = 2(x1 − x2) + (y1 − y2) = 5(v1 + w1 − v2 − w2).

Since |z1 − z2| ≤ z1 + z2 = u < 5 in all the cases, we must have

z1 − z2 = v1 + w1 − v2 − w2 = 0.

In particular, note that u = z1 + z2 = 2z1 is an even number.
The solutions which satisfy the above constraints are given below (up to changing

from g to g2)

(a) x1 = x2 = 4, y1 = y2 = 2, z1 = z2 = 1, and (u, v, w) = (2, 4, 0),
(b) x1 = x2 = 3, y1 = y2 = 4, z1 = z2 = 0, and (u, v, w) = (0, 2, 2),
(c) x1 = 4, x2 = 2, y1 = 2, y2 = 6, z1 = z2 = 0, and (u, v, w) = (0, 2, 2),
(d) x1 = 2, x2 = 1, y1 = 1, y2 = 3, z1 = z2 = 1, and (u, v, w) = (2, 1, 1).

We next use Lemma 3.8 and Theorem 3.9 to rule out the cases (a), (b) where

x1 − x2 = y1 − y2 = z1 − z2 = 0 and x1 − z1 = 3.

Observe that by the formula for the “Spin-number” in Lemma 3.8, the contribution
to Spin (g,Xα) from a fixed point m is

νm = −(−1)k(g,m) · 1
4
· csc(amπ

5
) csc(

bmπ

5
),

where 0 < am, bm < 5 and k(g,m) · 5 = 2rm + am + bm for some 0 ≤ rm < 5. One
can check that νm takes values −1

4 csc
2(π5 ), −1

4 csc
2(2π5 ) if m belongs to group I; for

group II, the values of νm are 1
4 csc(

π
5 ) csc(

2π
5 ), −1

4 csc(
π
5 ) csc(

2π
5 ), and for group III,

the values are 1
4 csc

2(π5 ),
1
4 csc

2(2π5 ). The number of fixed points at which νm takes
these values is x1, x2, y1, y2, z1, z2 respectively.
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With the above understood, for the cases (a), (b) we obtain from Lemma 3.8

Spin (g,Xα) = −x1
4

csc2(
π

5
)− x2

4
csc2(

2π

5
)

+
y1
4
csc(

π

5
) csc(

2π

5
)− y2

4
csc(

π

5
) csc(

2π

5
)

+
z1
4
csc2(

π

5
) +

z2
4
csc2(

2π

5
)

=
z1 − x1

4
csc2(

π

5
) +

z2 − x2
4

csc2(
2π

5
)

= z1 − x1

= −3

because z1 − x1 = z2 − x2 and csc2(π5 ) + csc2(2π5 ) = 4.
On the other hand, there are integers d0, · · · , d4 such that

Spin (g,Xα) = d0 + d1µ5 + · · ·+ d4µ
4
5.

Since 1 + t+ · · ·+ t4 = 0 is irreducible over Q, one must have

d0 + 3 = d1 = · · · = d4.

With the fact that the index of the Dirac operator on Xα, which is given by the sum
d0 + · · ·+ d4, equals −Sign(Xα)/8 = 2, we obtain d0 = −2 and d1 = · · · = d4 = 1. By
Fang’s theorem (cf. Theorem 3.9), the Seiberg-Witten invariant

SWXα(0) = 0 (mod 5)

for the trivial SpinC-structure on Xα. (Note that the trivial SpinC-structure on Xα

is a G-SpinC structure because by Lemma 3.8, the action of G is spin.) However, this
is a contradiction, because by construction SWXα(0) = 1, cf. Section 2. This proves
our claim regarding the cases (a), (b).

For case (c), a similar calculation shows that

Spin (g,Xα) = −2 + 2µ2
5 + 2µ3

5

(i.e., d0 = −2, d2 = d3 = 2 and d1 = d4 = 0), which does not violate Fang’s theorem
(cf. Theorem 3.9). With d0 = −2, this set of fixed-point data does not violate Theorem
3.10 either.

For case (d), we have by a similar calculation that

Spin (g,Xα) = µ2
5 + µ3

5,

which violates Fang’s theorem, and so it is eliminated.
To finish the analysis for the cases where A = 0, it remains to check case (c) against

Theorem 3.11, a constraint coming from the Kirby-Siebenmann and the Rochlin in-
variants. One finds easily from the fixed-point set structure that the corresponding
4-manifold with boundary N has 14 boundary components: there are six L(5, 1), six
L(5, 2), and two L(5, 3). By Corollary 2.24 in [46], the Rochlin invariant of L(5, 1),
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L(5, 2), and L(5, 3) equals 4, 0, and 0 respectively. On the other hand, one finds easily
that Sign(N) = −8. The equation in Theorem 3.11 becomes

8 · ks(N) ≡ −8 + 6× 4 + 6× 0 + 2× 0 (mod 16),

which implies that ks(N) = 0. Hence case (c) can not be ruled out by Theorem 3.11.

Now we consider the cases where there are type (Ã4) fixed points, i.e., A 6= 0. Then
by the analysis in [10] (cf. Lemma 3.6 of [10]), we see that there exists a k 6= 0 (mod p)

such that the local representations of g at the 3 isolated points in a group of type (Ã4)
fixed points are

(z1, z2) 7→ (µ−3k
p z1, µ

−k
p z2), (z1, z2) 7→ (µ3k

p z1, µ
3k
p z2), (z1, z2) 7→ (µ−3k

p z1, µ
−k
p z2),

and the local representation at the fixed (−2)-sphere is z 7→ µk
pz (here p = 5). The

key observation is that the total contribution from a group of type (Ã4) fixed points
to Sign (g,Xα) equals −5, which is independent of g. More concretely, by a direct
calculation the total contribution is

−2 cot(
−3kπ

5
) · cot(−kπ

5
)− cot2(

3kπ

5
)− 2 csc2(

kπ

5
) = −5, ∀k.

Consequently, one can similarly introduce the numbers x1, x2, y1, y2, z1, z2 and v1, v2,
w1, w2 for the fixed points of type (1), type (3), or type (4) as in the case of A = 0,
and the same argument implies that

z1 − z2 = v1 + w1 − v2 − w2 = 0.

In particular, u = z1 + z2 = 2z1 is an even number.
With Lemma 6.3, the solutions (up to changing from g to g2) which satisfy these

constraints are

(i) x1 = x2 = y1 = y2 = 0, z1 = z2 = 2, and (u, v, w,A) = (4, 0, 0, 2),
(ii) x1 = 2, x2 = 1, y1 = 1, y2 = 3, z1 = z2 = 1, and (u, v, w,A) = (2, 1, 1, 1).
(iii) x1 = x2 = y1 = y2 = 0, z1 = z2 = 2, and (u, v, w,A) = (4, 0, 0, 1).

Next we use Lemma 3.8 and Fang’s theorem (cf. Theorem 3.9) to examine these
fixed-point data. To this end, we need to determine the possible values of the total
contribution of a group of type (Ã4) fixed points to the “Spin-number” Spin (g,Xα).
A direct calculation shows that for k = 1, 4, the total contribution is

−2

4
csc(

2π

5
) · csc(4π

5
)− 1

4
csc2(

3π

5
)− −2

4
csc(

π

5
) · cot(π

5
) = 0,

and for k = 2, 3, it is

2

4
csc(

4π

5
) · csc(3π

5
)− 1

4
csc2(

π

5
) +

−2

4
csc(

2π

5
) · cot(2π

5
) = 0.

As an immediate consequence we obtain that the “Spin-number”

Spin (g,Xα) =







2 in case (i)
µ2
5 + µ3

5 in case (ii)
2 in case (iii)

Note that case (ii) violates Fang’s theorem, hence is eliminated. However, the remain-
ing cases (i) and (iii) can not be ruled out by Theorem 3.10 (in both cases d0 = 2).
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It remains to show that the number of fixed tori in the fixed-point set is bounded
from above by one half of the number of copies of Z[µ5] in the associated integral
G-representation of Θ = (Θ1,Θ2) : G → Aut(E8 ⊕ E8). To see this, let H2(Xα;Z) =
Z[Z5]

r ⊕ Zt ⊕ Z[µ5]
s be the decomposition into summands of regular, trivial and cy-

clotomic types. Since the classes [T1], [T2], [T3] are fixed under the G-action on Xα,
we see that Z[µ5]

s is orthogonal to [T1], [T2], and [T3], hence is contained in

Span ([Tj ], ξk, ηk|j = 1, 2, 3, 1 ≤ k ≤ 8).

(Here ξk, ηk are the classes in H2(Xα;Z) which correspond to the two standard bases
of the −E8 form defined in Lemma 4.2.) The number s is bounded from above by
the number of copies of Z[µ5] in the associated integral G-representation of Θ follows
from Proposition 4.6 plus the fact that Z[µ5]

s is mapped injectively into

Span ([Tj ], ξk, ηk|j = 1, 2, 3, 1 ≤ k ≤ 8)/Span ([T1], [T2], [T3])

under the quotient map. Our claim then follows from Edmonds’ result (cf. Prop. 3.1).
The case of Theorem 1.8 where p = 5 follows easily.

Case(b) p = 7. In this case, there are no type (Γ) fixed points by Lemma 4.5 and
Lemma 6.2, because by the assumption Θ1,Θ2 are nontrivial. Moreover, there are no
fixed tori of self-intersection 0 either by Proposition 4.6. The next lemma eliminates
the possibility of having type (4) fixed points.

Lemma 6.5. Let G ⊂ Aut(E8) be a subgroup of order 7. There are no sublattices of
E8 fixed under G, which are isomorphic to a A2-root lattice.

Proof. By Carter [7] (Table 3, page 23), an element of order 7 in Aut(E8) is uniquely
determined up to conjugacy by the characteristic polynomial. Hence a subgroup G of
order 7, with the corresponding integral G-representation being Z[Z5]⊕Z3 (cf. Lemma
4.5), must be conjugate to the subgroup generated by the permutation

e1 7→ e2, e2 7→ e3, · · · , e6 7→ e7, e7 7→ e1, and e8 7→ e8,

where {e1, · · · , e8} is a standard basis of R8. The only roots which are fixed under the
permutation are

r = ±1

2
(e1 + e2 + · · ·+ e7 + e8),

which do not generate a A2-root lattice. The lemma follows.
�

With the preceding understood, we shall next determine the number of groups of
type (1), type (2), and type (3) fixed points, which is denoted by u, v, w respectively.
By Lemma 3.8 of [10], the total signature defect of each of such groups is 10, −8, and
2 respectively. The Lefschetz fixed point theorem and the G-signature theorem (as in
Theorem 3.6) give rise to the following equations

{

1 + 3 · 2 + 1 + 1 + 1 = u+ 2v + 3w
p · (−1− 1− 1− 1) = −16 + 10u − 8v + 2w ( with p = 7).

The solutions are (u, v, w) = (0, 2, 2), (1, 3, 1), (2, 4, 0).



SYMMETRIES AND EXOTIC SMOOTH STRUCTURES ON A K3 SURFACE 43

We examine these data with the G-signature theorem as in Theorem 3.5 and the
G-index theorem for Dirac operators in Lemma 3.8.

Let δ1, δ2, δ3 be the total contributions to Sign(g,Xα) of a group of fixed points
of type (1), type (2), type (3) respectively. With a direct calculation we list all the
possible values of them (in approximations) below, taken at k = 1, 2, 3 respectively.

• δ1 = 4.31194, 0.63596, 0.05210,
• δ2 = −4.49396, −1.10992, 1.60388,
• δ3 = −2.60388, 3.49396, 0.10992.

The cases where (u, v, w) = (1, 3, 1), (2, 4, 0) can be eliminated as follows. Consider
the case of (u, v, w) = (1, 3, 1) first. There are 3 groups of type (2) fixed points. If all
three values of δ2 are assumed, then because the sum of these three values of δ2 equals
−4 and Sign(g,Xα) = −2, the sum of the values of δ1 and δ3 must equal 2, which is
easily seen impossible by examining the possible values of δ1 and δ3. If not all three
values of δ2 are assumed, then there must be one value of δ2 which is assumed by at
least 2 groups of type (2) fixed points. By changing g ∈ G to a suitable power of g, we
may assume this value of δ2 is −4.49396. Then the sum of the rest of the values, one for
each of δ1, δ2, δ3, must be 2× 4.49396− 2 = 6.98792. But this is easily seen impossible
by examining the possible values. This ruled out the case where (u, v, w) = (1, 3, 1).
By a similar argument, the case where (u, v, w) = (2, 4, 0) can be also ruled out.

It remains to examine the case where (u, v, w) = (0, 2, 2). Observe first that for
each value of δ2, there is a unique value of δ3 such that the sum of the two val-
ues equals −1. It follows easily from this that the fixed points of g can be di-
vided into two groups, where each group consists of 5 points with local representa-
tions (z1, z2) 7→ (µ2k

p z1, µ
3k
p z2), (z1, z2) 7→ (µ−k

p z1, µ
−k
p z2), (z1, z2) 7→ (µ2k

p z1, µ
4k
p z2),

(z1, z2) 7→ (µ−2k
p z1, µ

k
pz2), (z1, z2) 7→ (µ−2k

p z1, µ
k
pz2) respectively, for some k 6= 0

(mod p). The question is whether the number k (mod p) (which is only determined
up to a sign) must be the same for the two groups. We will show that it must be the
same using Lemma 3.8.

To this end, we let ν2, ν3 be the total contributions to the “Spin-number” Spin(g,Xα)
of a group of fixed points of type (2), type (3) respectively. With a direct calculation
we list all the possible values of them (in approximations) below, taken at k = 1, 2, 3
respectively.

• ν2 = −1, −1, −1,
• ν3 = −0.44504, −1.80194, 1.24698.

On the other hand, Spin(g,Xα) =
∑p−1

l=0 dlµ
l
p where d0 is even and dl = dp−l for l 6= 0.

With the observation that

2 cos(
2π

7
) = 1.24698, 2 cos(

4π

7
) = −0.44504, 2 cos(

6π

7
) = −1.80194,

we can easily conclude that in Spin(g,Xα) =
∑p−1

l=0 dlµ
l
p, d0 = −2 and d1, · · · , d6

contain two 0’s and four 1’s if ν3 assumes two distinct values, and d1, · · · , d6 contain
four 0’s and two 2’s if ν3 assumes only one value. The former case violates Fang’s
theorem (cf. Theorem 3.9), so it can not occur. This proves that the number k
(mod p) in the local representations must be the same for the two different groups of
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fixed points. Finally, we note that since d0 = −2 in the “Spin-number” Spin(g,Xα) =
∑p−1

l=0 dlµ
l
p, the remaining case can not be ruled out by Theorem 3.10. Moreover, by

a similar argument as in the case of p = 5, one can check easily that Theorem 3.11 is
not violated either. The proof for the case of p = 7 in Theorem 1.8 is completed.
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