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A HYPERELLIPTIC VIEW ON TEICHMULLER SPACE. I

SASHA ANAN'IN AND EDUARDO C. BENTO GONCALVES

ABSTRACT. We explicitly describe the Teichmiiller space 7 Hy, of hyperelliptic surfaces in terms of natural
and effective coordinates as the space of certain (2n — 6)-tuples of distinct points on the ideal boundary of
the Poincaré disc. We essentially use the concept of a simple earthquake which is a particular case of a
Fenchel-Nielsen twist deformation. Such earthquakes generate a group that acts transitively on 7 H,. This
fact can be interpreted as a continuous analog of the well-known Dehn theorem saying that the mapping
class group is generated by Dehn twists. We find a simple and effective criterion that verifies if a given
representation of the surface group 713 in the group of isometries of the hyperbolic plane is faithful and
discrete. The article also contains simple and elementary proofs of several known results, for instance,
of W. M. Goldman’s theorem [Goll] characterizing the faithful discrete representations as having maximal
Toledo invariant (which is essentially the area of the representation in the two-dimensional case).

1. Introduction

This article is an attempt to an elementary study of Teichmiiller spaces and we hope it does not
require from the reader any specific knowledge in the field. We try to avoid the analytic methods typical
in the classic theory and worry more about the way of the proofs than about the facts per se, having
no prejudice against proving well-known ones. Such elementary approach is motivated by its possible
extension to complex hyperbolic Teichmiiller spaces and originates from [Anal].

Let ¥ = D/m X be a hyperelliptic Riemann surface of genus g > 2, where D stands for the Poincaré
disc. It is well known [Mac] (and proven in Proposition 4.1) that the extension H,, of the fundamental
group 71X with an isometry of D induced by the hyperelliptic involution of X is a group with generators
r1,...,7, and defining relations r,, ...71 = 1, rf =1, where n = 2g+2. Moreover, every 7; is a reflection
in some point ¢; € D. In other words, a hyperelliptic surface can be described as a certain geometric
configuration of n points.

The following two concepts are crucial in this article. As is easy to see, while moving the points
gi—1 and ¢; along the geodesic they generate and preserving the distance between these two points,
new configurations provide new hyperelliptic surfaces, i.e., the relation 7, ...r7; = 1 remains valid.
We call such a deformation a simple earthquake (SE for short). This concept is nothing more than
a particular case of a Fenchel-Nielsen twist deformation [ImT)]. It appears naturally in the context of
[Anal]. The earthquake group &,, i.e., the formal group generated by the SEs, acts on the Teichmiiller
space T H,, of the group H,.

The other concept is the area of a surface. It is better to call this area the Toledo invariant of a
representation. The remarkable results of W. M. Goldman [Goll, Corollary C] and D. Toledo [Tol] say
that a representation is faithful and discrete if (and only if, in the case of the classic hyperbolic geometry)
the ‘area’ of the representation is ‘maximal.” In literature (see, for instance, [BIW] and [KMa]), there
are several proofs of Toledo’s theorem and neither of them is simple.

First, we study hyperelliptic surfaces. We prove the analog of W. M. Goldman’s theorem for hy-
perelliptic surfaces (Theorem 3.15). The Teichmiiller space 7 H,, turns out to be supplied with natural
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coordinates: The space T H,, can be described as the space of all (2n — 6)-tuples (21, 22, ..., 22n—6) Of
distinct points on the ideal boundary 0D that appear in the cyclic order z1, 29, . . . , 22, ¢ When running
once over D (Corollary 3.17). These coordinates are natural in the sense that they have a clear geo-
metric nature and are not related to any arbitrary choice. Also, they are effective and easily calculable.
Besides, following these ideas, we arrive at a simple and effective criterion allowing to verify that a
given representation is faithful and discrete. It is worthwhile mentioning a curious fact (we did not find
it in literature) : Every pentagon, i.e., every! representation ¢ : Hs — PU(1,1) such that o(r;) # 1,
is faithful and discrete (Corollary 3.16). (A complex hyperbolic version of this fact is discussed in [Anal,
Conjecture 1.2].)

Next, we show that the earthquake group &, acts transitively on 7 H,, (Theorem 4.5). This fact can
be considered as a continuous analog? of the well-known Dehn theorem saying that the mapping class
group can be generated by the Dehn twists. (The Dehn twists we use are ‘integer’ SEs.) Then we prove
a discrete variant of Theorem 4.5 — a sort of the Dehn theorem: The subgroup of index 2 in Aut H,, is
generated by the ‘integer’ SEs (Theorem 4.6).

Finally, we prove W. M. Goldman’s theorem [Goll, Corollary C] in general case (Theorem 5.1).
The idea of the proof is reflected by the title of this article. We pretend to view a general Riemann
surface ¥ as if it were a hyperelliptic one and, with a certain precaution, apply to ¥ the methods
developed in the previous sections. As in the hyperelliptic case, we establish an effective and simple
criterion of discreteness of a representation of GG,, := w1 X that involves the construction of a natural
fundamental domain (Remark 5.10). This fundamental domain allows to visualize the universal family
F — T, of Riemann surfaces, where 7T, denotes the classic Teichmiiller space: G, acting fibrewise on
the trivial bundle D x 7, — T, provides F = D x 7,,/G,,. The union of the natural fundamental domains
over all fibres is a fundamental domain for the action of G,, on D x 7,,. Yet, we cannot describe 7,, as
explicitely as T H,,. Nevertheless, it is easy to extend the action of &, to T, (see Remark 5.24).

Our way of proving the discreteness of a representation, where SEs are extensively used, resembles
a kind of hidden Maskit combination theorems [Mas]. We think that there is no satisfactory complex
hyperbolic analog of these theorems. The reason is that it is quite difficult to deduce the discreteness of
a ‘cocompact’ group from the discreteness of its ‘noncocompact’ subgroups appearing after cutting the
corresponding manifold. In our approach, we escape passing to ‘noncocompact’ groups.

As expected, the complex hyperbolic Toledo theorem [Tol] can be easily proven (see [Ana2]) by lit-
erally repeating the arguments presented in this article. Another (unexpected) consequence of our
methods is the fact that T, is fibred twice over T H,, C T,. Moreover, every point in 7, is uniquely
determined by its projections to T H,, [Ana2].

Acknowledgements. We are very grateful to Fedor Bogomolov, Pedro Walmsley Frejlich, Carlos
Henrique Grossi Ferreira, Nikolay Gusevskii, and Maxim Kontsevich for their interest to our work.

2. Preliminaries

In our notation, we follow [AGr], except that, for the sake of convenience, we change the hermitian
metric in order to have the curvature —1.

Let W be a two-dimensional C-vector space equipped with a hermitian form of signature +—. For a
nonisotropic p € CPW, define a hermitian form in T, CPW =~ (—,p)p* as (t1,t2) := —4(p,p) (v, v2),
where t1,ty € T, CPW, t; = (—,p)vi, and v; € p-. The set BW of negative points in CPW is simply
the open Poincaré disc. The set BW of nonpositive and the set SW of isotropic points in CPW form
the closed Poincaré disc and its boundary; all geometrical objects we deal with live in BW. For distinct
p1,p2 € BW, denote by Gp1,p2], G(p1,p2), G(p1,p2], G <p1, p2>-, etc. the geodesic segments oriented
from p; to ps : closed, open, semiopen, full geodesic, etc.

IWe interpret as PU(1,1) the group of all orientation-preserving isometries of I.
2Maxim Kontsevich convinced us that &, is not finite-dimensional modulo the kernel of its action on T Hy,.
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Let B? denote a closed disc and let ¢ : B2 — BW be a piecewise smooth map such that ¢(9B?) is the
union of a finite number of geodesics and such that ¢~ (SW) C OB is finite. Clearly, [w = [ P, where
¢ Oy
w and P stand for the Kéhler form and its potential. In particular, for pi,p2, p3 € BW, the oriented
area of the triangle A(py, p2, p3) is given by?

(2.1) Area A(p1,p2,p3) = 2arg ( - <p1,p2><p2,p3><p3,p1>)

(see, for instance, [Gol2] or [AGr, Subsection 5.9]). This formula works for triangles having no coinciding
isotropic vertices. Obviously, the area of A(p, p,q) vanishes for isotropic p. Thus, Area A(p1, p2, ps) is
continuous while p1, p2, p3 run over BV, assuming different isotropic vertices not to coincide during the
deformation.

Integrating a Kéhler potential over a closed piecewise geodesic path C' (not necessarily simple),
we obtain the ‘area’ of the ‘polygon limited by C.” In order to express this area in explicit terms, take

an arbitrary ‘centre’ ¢ € BW. Let p1,pe,...,p, be successive vertices of C. Define
n

(2.2) Area(c; C') := Area(c; p1,p2; - - -, Pn) i= ZAYG&A(C,IH,MH)
i=1

(the indices are modulo n). Intuitively, this area does not depend on the choice of c. We prefer to give
a formal proof of this fact since it can be useful when we will deal with other invariants different from
the Toledo one.

2.3. Remark. For arbitrary ¢, p, ¢, p1, D2, - - -, Pk q1,q2; - - -, @1 € BW, we have

Area’(c;puplup27 ce 3y PEG,91,492, - - - an) = Area’(c;puplup27 e 7]%7‘1) + Area(C§QaQ17Q2a e 7Ql7p)

because Area A(c, q,p) + Area A(c, p,q) = 0.

So, in order to prove that (2.2) is independent of ¢, we can assume n = 3 and the p;’s pairwise
distinct. Now, it follows from (2.1) that

Area A(c;p1,p2,p3) = 2arg (<P1,p2><]927p3><p37291>) mod 27

for ¢ different from the isotropic p;’s. For such ¢, the independence follows from the continuity of
the triangle area. It is immediate that Area(c;p1,p2,ps) = AreaA(p1,p2,ps) for ¢ = p;. Therefore,
it remains to observe that Area(c;pi,pa2,p3s) = Area A(p1,pa,p3) for ¢ isotropic and the p;’s pairwise
distinct and isotropic, which is straightforward.

For n > 5, let H,, denote the group generated by r1,72,...,r, with the defining relations r? = 1,
i=1,...,n,and r,...rar; = 1. For even n, there is a unique fully characteristic torsion-free subgroup
G, of index 2 in H,,. It is constituted by the words of even length in 7;’s. As is well known (see also
Proposition 4.1), Gy, is the fundamental group of a closed orientable Riemann surface of genus & — 1.
For odd n, there is a torsion-free subgroup 7T,, of index 4 in H,, which is the fundamental group of a
closed orientable Riemann surface of genus n — 3 (see, for instance, [AGG, Subsection 2.1]).

Let £ := PUW denote the Lie group of all orientation-preserving isometries of BW. Denote by
RH, and RG,, the spaces of faithful discrete representations of H, and of G,, into L, respectively.
The spaces H,, := T H,, := RH,/L and T, := TG,, := RG,, /L are the Teichmiiller spaces of the groups
H,, and G,,, i.e., the spaces of conjugacy classes of the above representations. Each of the two connected

3The function arg takes values in [—m,7]. In the presented formula, the values of arg lie in fact in -3, 5]
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components 7, and 7, of T, can be interpreted as the classic Teichmiiller space. (The latter appears
if we take for £ the Lie group of all isometries of BW.) Similarly, we introduce H;=. The part of 7,
corresponding to hyperelliptic surfaces possesses infinitely many connected components [Mac] which are
copies of H;* provided by the action of the mapping class group.

It is easy to see that the involutions in £ are exactly the reflections in points in BW. Explicitly,

<$’q>q), geBW,? = 1.
(¢;9)

in terms of SUW, such a reflection R(q) is given by R(q) :  — z(x -2
Note that R(q)R(q) = —1.

3. Hyperelliptic Teichmiiller Space
Let o : H, — L be a representation. For an arbitrary p € BW, define

(3.1) Area(p; 0) := Area(p1,p2,...,Pn),

where pg := p and p; := o(r;)pi—1 (the indices are modulo n). Clearly, we can also define the p;’s
starting from p = p; € BW for an arbitrary j instead of j = n.

3.2. Lemma. Area(p; ) is independent of the choice of p. If o(r;) # 1 for all i, then Area(p; 0) = nr
mod 27.

Proof. Without loss of generality, we can assume that o(r;) # 1 for all ¢ and choose a representative
R(¢;)) € SUW, ¢; € BW, for every o(r;). Hence, p; # p;y1 if p is isotropic. It follows from the
defining relations of H,, that R(q,)...R(q1) = €, where ¢ = £1. Take representatives p; € W so that
pi = R(q;)pi—1. In particular, p;1, = ep;. It follows from (2.1) that

Area(p; 0) = 2arg ((p1,p2)(p2,p3) - - - (Pn, Pnt1)) mod 2.
Since R(q;) € SUW and R(q;)R(gq;) = —1, we obtain

0 # (i, pit1) = (Pi» R(¢i+1)pi) = (R(qi+1)pis R(qiv1)R(qit1)pi ) = —(pit1, pi)-
So, Area(p; 9) = 2argi™ = nm mod 27, being Area(p; 0) continuous in p g

3.3. Remark. For a given representation ¢ : H, — L, define oJ : H,, — L by oJ(r;) := 0(rn—:).
Obviously, AreapJ = — Areap. In other words, changing the cyclic

order of the generators alters the sign of the area. Dito Dit1

In the sequel, we assume without loss of generality that Area o > 0.

3.4. Remark. Let p;_o € BW be a fixed point of o(riri—1). Then, Pi-1

by taking ¢ = p;—2 = p;, we can see that c
2

Area A(c,pi—3,pi—2) = Area A(c, pi—2,pi—1) = Ditn—
= Area A(c,p;—1,p;) = AreaA(e, pi, pit1) =0 Pitn—3

and, hence, Area g < (n —4)7. When Areap = (n — 4)m, we say that Area g is mazimal.

If o(r;) = 1, then Areap < (n—5)7 : ‘excluding’ the generator r; we deal in fact with a representation
of Hn—l'

Analogously, if o(r;r7;—1) = 1, then ‘excluding’ the generators r;_; and r;, we arrive at the repre-
sentation ¢ : H,—2 — L. Note that Areap = Area’ since p;_o = p; and AreaA(c,p;—2,pi—1) =
— Area A(c, pi—1,pi). Therefore, Areap < (n — 6)7 in this case.
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3.5. Definition. Let ¢1,q2 € BW be distinct. Clearly, h? := R(q2)R(q1) Pi_1 ®
for some hyperbolic h € L. Tt is easy to see that R(hiqy) = h'R(qx)h~?,
k =1,2, and that R(g2)R(q1) = R(h'q2)R(h'q1) for every t € R.

Let o : H, — L be a representation such that h? := o(riri—1) is hyper-
bolic. For every ¢ € R, define a representation oF;(t) : H, — L as follows:
0E;(t)(r;) :== o(rj) if j ¢ {i — 1,1} and oE;(t)(r;) := h'o(r;)h™", otherwise.

This defines a partial right action of the group (R, +) on representations. Di
We call E;(t) a simple earthquake involving q;—1,q; (SE for short), where ;
o(rj) = R(¢;), 7 =1,2,...n. Denote by E; := E;(1) the Dehn twist involving
gi—1,¢; (DT for short).

L J

3.6 Definition. If a cycle of isotropic points p1,p2,...,pr € SW, k>3, Pi-1 ,
is listed in the counterclockwise (clockwise) sense (in particular, the points
have to be pairwise distinct), the cycle is said to be positive (negative).

3.7. Remark. Given p1,p2,q1,q2 € SW, the cycle p1, q1,p2, q2 is positive
or negative if and only if G(p1, p2) and G(q1,¢2) intersect in a single point.

If the cycles p1,pa,...,pr € SW, k > 3, and pg, pr+1,p1 € SW are positive,
then the cycle p1,ps, ..., Dk, Pr+1 1S positive.

qi—1

3.8. Remark. Suppose that o(r;r;—1) is hyperbolic. Then Area o = Area ,
oFE;(t). Indeed, taking for p;,_o a fixed point of o(r;7;—1), we can see that Pi—2
the p;’s are independent of ¢ and so is Area pFE;(t). (See the picture close to Remark 3.4.)

3.9. Lemma. Let o : H, — L be a representation with maximal Area . Then, for every i, there
exists a suitable ¢; € BW such that o(r;) = R(¢:), ¢i—1 # ¢, and o(r;r;—1) is hyperbolic. If we take
in (3.1) a fixed point of o(r;r;—1) for p;_o = p;, then the cycle p;, P11, ..., Pitn—3 € SW is positive.

Proof. The first three assertions follow from Remark 3.4 in view of the fact that the involutions
in £ are reflections in points. As in Remark 3.4, take ¢ = p;_s = p;. The four triangles indicated in
Remark 3.4 are degenerated. Hence, each of the remaining n — 4 ideal triangles should have area +.
In other words, the triangles A(e,pj_1,p;), j =i+ 1,...,i4+n — 3, are oriented in the counterclockwise
sense. This implies the fourth assertion m

3.10. Lemma. In the situation of Lemma 3.9, there are no three collinear points among the g;’s.
Moreover, q1,q2, - .., qn are successive vertices of a convex polygon.

Proof. Suppose that g;, qi, ¢; are collinear. Acting by E; or by Ejjrll gj—1 gj+1

several times, we can reach a position where gx_1,qx,q are collinear > g1
(we diminish |j — k| > 1). Next, applying Ej or Eljrll J J j+1

¥ several times, we arrive at collinear qx—1, gk, qx+1. Fi- /Qj dr.  q ‘Jj\ dr.  q

nally, by means of some Ej(t), we obtain g; = qit1-
This contradicts Lemma 3.9.

If g, and ¢; are on different sides from G <g;_1, ¢;>, then G <g;_1, ¢;> and Glgk, ¢/
intersect in some ¢ € BW. With a suitable Ej(t), we obtain g; = ¢, hence, g¢;, gk, ¢
become collinear g

3.11. Lemma. In the situation of Lemma 3.9, the points q;, j ¢ {i — 1,4}, are on the side of the
normal vector to G <q;—1,q;>.
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=i \ et

Ditn—3

Proof. Due to Lemma 3.10, we can assume all the points ¢;, j ¢ {i — 1,4}, on the opposite side of
the normal vector to G <g;—1,¢;>. By Lemma 3.10, this implies that ¢;_o is in the region given by the
normal vectors to G <¢;, ¢;—1> and to G <g;+1,¢;>, i.e., in the grey region on the first picture. On the
other hand, by Lemma 3.9, the cycle p;, pi+1, Pi+n—3 € SW is positive, where p,_o = p; € SW stands for
the attractor of o(r;r;—1). This implies that the geodesic G <p;1n—3,Pi—2> D ¢itn—2 = ¢i—2 IS entirely
on the side of the normal vector to G <p;, p;+1> as illustrated on the second picture. Therefore, the
point g;—o is in the region given by the normal vectors to G <¢;+1,¢;> and to G <p;, p;+1> and, thus,
the geodesics G <g;—2, ¢i+1> and G <¢;—1, ¢;> intersect in some point in BW (see the third picture) g

3.12. Definition. Let ¢ : H, — L be a representation such that o(r;r;—1) is hyperbolic. Denote
by b; € SW and by e; € SW the repeller and the attractor of o(r;r;—1). Put bﬁ = b, €l = e,

4 . N R . K2
bl := o(r;)b ", and €] := o(r;)el ", Tt follows from the defining relations of H,, that b"™"~2 = b; and
et 2 = ¢;. We call b, !, biTt eit! DT et T3 e SW the i-cycle of o.

i R 2 S At T A » Y

3.13. Proposition. Let o : H, — L be a representation with maximal Area o. Then the i-cycle of
o Is positive.

Proof. By Lemma 3.9, the cycles b}, bi™, ... bi*"™3 and el e/t ... eit" ™3 are positive. For suit-
able points ¢; € BW, we have o(r;) = R(g;). By Lemma 3.11, ¢; 42 and ¢;11 are in the region D given
by the normal vector to G <¢;—1, ;> = G[b, el]. So, j

) i)
et ™3 = R(gitn_2)e; € D. In other words, the cycle
et =3 bl el is positive. Since the geodesics Glel, ef™!]

and G[bi, b intersect in ¢;4; € D N BW, we have
bitt et € D and the cycle b, ef, bit! et is positive eIt

J+1
b

i 2 T )

by Remark 3.7. The fact that the cycles e!, bt et

and ej+1,ej+"_3, el are positive implies that the cycle

et =3 el bt el is positive by Remark 3.7. Taking 1
into account that the cycle e!t"73 bl el is positive, €
by Remark 3.7, we get the positive cycle e§+"_3, b, el pit1
bZ:Jrl’ eé“. i

By induction on j > 4, we can assume that the cycle
eltn=3 pi el bl el is positive. The cycle eit™3

7 Yy Yy Fgr 9 Yy g 7 )

j i+1 . " i — i i
el, el is positive. Hence, the cycle el ™73 bl el ..., ¢
j j i+1 . o .
bl el el is positive by Remark 3.7. In particular,

JoJ LIl o S Jj i+l %
bl,e],e] " is positive. The geodesics Gle;,e; | and b
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G[bj bj+1] intersect (in ¢;+1 € BW). By Remark 3.7, the cycle b,ed b el s positive or negative.

19 Y% i1 [ 'i.;ll '_|7_1i
J g B g1 " :
5,01 e is positive a.nd.lm.plff thalt
is positive, et 73 bi el b el b el ™

Tt Vg B Vg L)

: i

K.DOY:_liflg ‘p}_l?t the cycle b;,¢;, ¢;
i B J

e;, b e

is positive by Remark 3.7 @

is positive, we infer that b}, e
. . . _ . P ix1
is positive. Since /™73 bi el vl,el elt

R R I Tt R I}

3.14. Proposition. Let ¢ : H,, — L be a representation with hyperbolic o(r;r;_1). If the i-cycle of
o is positive, then o € RH,,.

Proof. Taking b¢ for p;_» in (3.1), we obtain the points p;—2,p;—1,. .., Pitn—3 Which are in fact the
points b}, ek, bl biTH biF2 L b3 Since the i-cycle of g is positive, the cycle b, bitt b2 L i3
is positive and we conclude that Area g = (n — 4)m.

Following the natural orientation of SW, we draw an arc a; C SW from bg to eg for every j =
i,1+1,...,2+n — 3. The arcs a; are pairwise disjoint because the i-cycle is positive. We take an
arbitrary p;—1 € G(gi—1,¢;) and generate the points p; = o(r;)pj—1 so that pitn—_2,pi—1,pi € Gy,
where G := G[bg, eg]. We claim that p;—1,p;, . .. Pitn—2 are the successive vertices of a convex geodesic

i+2
€;

bi+n73

Ai4n—3

a;
n-gon P,. Indeed, p; € G, for j = 4,i+1,...,i +n — 3 because Gj41 = R(gj4+1)G;. For such j’s,
the vertices of the geodesic I'j11 := G <p;, pj+1> belong to a; and a;+1 (by convention, a;4n—2 = a;).
Hence, I'; and I'j4 intersect in p; and these are the only intersections between the I';’s. Since Area o =
Area(pi, pit1, - -, Ditn—1) = Area P, the sum of the interior angles of P, equals (n—2)7— Area P,, = 27.
By Poincaré’s Polyhedron Theorem, P, is a fundamental polygon for the group generated by o(r;) (it has
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one cycle of vertices) and g is faithful and discrete g

3.15. Theorem. Let ¢ : H, — L be a representation. Then the following statements are equivalent:
e o€ RH,, e Areap=+(n—4)m, e thei-cycleof g is positive or negative.

Proof explores standard arguments. We will deal with even n (similar arguments work for odd n).
Let 0 € RH,,. Clearly, |, € RG,. By definition, Area ¢ = Area(p1,pa,...,pn), Where p; = o(r;)p;j—1
for suitable p; € BW.

Let P, be a simple geodesic polygon such that the sum of its interior angles equals 27 and let
V1,2, ...,V stand for the successive vertices of P, listed in the counterclockwise sense. Let g; denote
the middle point of G[v;_1,v;]. By Poincaré’s Polyhedron Theorem, P, is a fundamental polygon for
the group generated by R(g;) and, thus, we arrive at some gy € RH,.

Let us define a continuous H,-equivariant map ¢ : BW — BW. Put pv; = p; and define ¢ linearly on
the geodesic Glv;j_1,v;]; so, ¢ G[vj—1,v;] = G[pj—1,p;]. Next, extend ¢ continuously to ¢ : P, - BW.
Finally, put (p(go (h)p) = o(h)p(p) for all h € H,, and p € P,. The map ¢ induces a continuous map
P Yo = X, where X := BW/poG,, and ¥ := BW/pG,, are Riemann surfaces
of genus 5 — 1. By construction, m¢ : m¥¢ — m¥ is an isomorphism, hence,
Hyt : Hy(X0,Z) — Hy(X,Z) is an isomorphism and [w' = F AreaX = £27x(X) =

P
F2(n — 4)7, where w’ stands for the Kéahler form of ¥. On the other hand, P, U
00(r;) P, is a fundamental polygon for p9Gy, therefore, [w' =2 [ w=2 [ P= Pi-1
Y ®lp, ®lop,
—2 Area(p1, p2,...,pn) = —2 Areap, where P stands for a Kahler potential of BW.
Consequently, Areap = £(n —4)r m

From Remark 3.3 and Lemma 3.2, we obtain the

3.16. Corollary. Let o : H5 — L be a representation such that o(r;) # 1 for all i.
Then o € RHs m

Note that Theorem 3.15 provides an effective criterion of discreteness: In order
to verify that some qi,...,q, € BW subject to the relation R(g,)...R(q1) = £1
provide a representation p € RH,,, we can explicitly find the b}’s and e!’s and check if the i-cycle of o
is positive or negative.
Also, Theorem 3.15 yields some explicit description of the two components H;™ and H,, (related to
the sign of Area o) of H,. Let S} := {z € C||2| =1,Imz > 0} and let

+ . 1 . ..
Ky = {(zl, 29, ... Zon—7, Zon—s6) | 2 € S, the cycle 21,22, ..., 20n—7, 22n—¢ is p051t1ve}

(similarly, we define S! and K;,).

Z1
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3.17. Corollary. HI ~ ICF.

Proof. Identify BW with the unitary disc {z € C | |2| < 1}. Let [g] € H,}. Conjugating ¢ with an

element in £, we can assume that b! = —1, ef = 1, and ¢; = 0. This provides
(21,225 - -+ Z2n—7, Z2n—6) ‘= (bf“,ef“, cel b2:+"_3, e§+"_3).
In other words, we obtain a map H,;} — ICF.

Conversely, for given (z1, 22, ..., 22,-7, 22n—¢) € K, define ¢; := 0, git1 := G[-1,21] N G[1, z2],
itk = G[ng_g, Z2k—1] N G[ng_g, ng] for k=2,3,...,n—3, and Qitn—2 = G[Zgn_7, —1] N G[ZQn_G, 1]
It is easy to see that the isometry h := R(qitn-2)-.. R(qi+2)R(gi+1) € SUW fixes the points —1
and 1. If h = +1, we obtain a representation gg : H,_o — L. Taking p; = 1, we arrive at Area gy =
Area(l, 29,24, ..., 29n—6) = (n — 4)m, which contradicts Remark 3.4. Therefore, h is hyperbolic with
the axis G[—1, 1] and there exists a unique gi+n—1 € G(—1,1) such that h = R(¢i4n—1)R(g;). In other
words, R(gitn—1) ... R(gi+1)R(¢;) = +1, providing a representation ¢ whose i-cycle is positive g

Note that the indicated identification is effectively calculable with a simple algorithm. It is easy to
show that the points ¢; can be algebraically expressed in terms of the zx’s (not involving radicals, when
using the Klein model). This is why we can treat H;™ as a ‘rational variety.’

We are going to study the space H in detail in subsequent articles. In particular, we would like to
describe the standard hermitian and complex structures of H;: in terms of the z;’s. We can introduce
a complex structure on H,\ by taking the ¢;’s, i = 2,...,n — 2, as complex coordinates that vary in
the open upper half-disc. Taking ¢; = 0, we can reconstruct ¢, € (—1,0) and g,—1 from given g¢;’s,
i =2,...,n— 2. However, it is easy to see that the DT Fj3 is not holomorphic with respect to this
structure. So, it is not the genuine one. (The DT E3 belongs to the hyperelliptic mapping class group
(see Section 4) which is known to be the group of holomorphic automorphisms of H;'.)

4. Earthquake Group and Hyperlliptic Mapping Class Group

Let 7: X — X/1 ~ CP' be a hyperelliptic Riemann surface of genus g, where ¢ : X — 3 stands for
the hyperelliptic involution of ¥. Put n := 2g + 2 and denote by fi, fo,..., fn € X the fixed points of ..
Let F < L stand for the fundamental group of ¥ = BW/F and 7 : BW — X, for the universal covering
of 3.

4.1. Proposition [Mac]. ¥ ~ BW/pG,, for some o € RH,,. If 9 € RH,, then ¥ ~ BW/oG,, is
hyperelliptic.

BW — . BW Proof explores many well-known argumepts. d R(¢))R(q;)p
For every q € Q := m {f1,..., fn}, there exists L
Trl Trl a unique R € £ inducing in ¥ the isometry ¢ such R(¢;)p

. that Rqg = q. Clearly, F' = F. It is easy to see
X —— X {hat R = R(q). Indeed, the isometry R is elliptic
and R? induces in ¥ the isometry (> = 1. Therefore, R?> € F, which R(¢:)R(¢))q, P
implies R? = 1 because the isometries in F' have no fixed points in B W. ’ e
For q1,q2 € @, the product R(q1)R(g2) induces in ¥ the isometry (2 = 1. This implies R(q1)R(q2) € F.
Choose and fix a point p € BW that belongs to no geodesic joining points in Q. Let ¢; denote a point
in 771(f;) closest to p, i.e., dist(p, ¢;) < dist(p, fg;) for all f € F. Note that ¢; is also a point in 7= 1(f;)

qi
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closest to R(q;)p, i.e., dist(R(q:)p,q;) < dist(R(qi)p, f¢;) for all f € F. This follows from f£@) ¢ F.
Define d := p, d} := R(q:;)p, I'; := G[d?,d}], and

I' := YT;. Note that dist(p,q;) < dist(d;, fg;) for

R(g1)p=di all f € F. Indeed, this is clear for ¢ = 0. Taking

pZd? I, e = 1, we have

dist(p, ¢;) < dist (p, R(q:)R(q;) fR9)q;) =

T, = dist (R(qi)p, fq;) = dist(d}, fq;)

— g1
Rlgs)p = dj Rla)p = d; for all f € F.

Clearly, 7 identifies the d}’s. Let us show that 7 identifies in I only the points d.
The point 7p is not a fixed point of ¢, hence, 7 cannot identify dj and d = p. Suppose
that mc; = mc; for ¢; € I'; and ¢; € I';. This means that fc; = ¢; for some f € F.
We assume that ¢; # fg; since i = j and f = 1, otherwise. Let df- denote an end of
T'; closest to ¢; and d5, an end of I'; closest to ¢;. Since p ¢ G <g;, fg;> by the choice
of p, we have fq; ¢ G=<d5,q;>= > p. Without loss of generality, we can assume that
dist(ds, ¢;) < dist(dg, ¢j) = dist(fd?, fe;) and that ¢; # dg. The lenght? of the path v :=
G[ds, ;] UG[fc;, fq;] is less or equal than that of G[fd?, fe;]UG|fej, fq;] = GIfdS, fa).
Consequently, dist(ds, fg;) < dist(fdj, fq;). Since

dist(fdg, fq;) = dist(d?,qj) = dist(p, q;) < dist(d5, fq;),

we conclude that dist(ds, fg;) = dist(fdﬁ, fq;). Thus, v = Gld;, fg;] and, in view of fg; ¢ G <d;, g,
the point ¢; has to coincide with df. From dist(fdS, fq;) = dist(df, fg;), we conclude that fc; = ¢;
= fd“;-. A contradiction.

The involution ¢ identifies one half of 7T'; with the other since R(g;) induces in 3 the isometry ¢. Those
are the only identifications in 7I" by ¢. The curve p; := 77['; begins with 77p and ends with 7 f;. The only
pairwise intersection between the p;’s is 7rp. We can assume that pq, po, . .., p, are listed in the clock-
wise sense with respect to the standard orientation of CP'. For every 4, choose a small open disc D; C
CP! centred at T fi such that D; intersects u; in some final segment s; C p; and such that the D;’s are
pairwise disjoint. Also, choose a simple closed curve w; C D; that begins with p; € s;, p; # 7f;, and winds
once around 7f; in the clockwise sense. Let o; C p; denote the segment that begins with 77p and ends

w1 ®

VTP
Tf1
CP! D,
D1 TﬁlDi
i
At
Tfn 7—f2
[n M2 )\
D Yi »
D, TP ? ﬂ-po

4When a path x ends with the start point of a path y, we denote by = Uy their path-product.
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with p;. The lift 5 of J(oy Uw; U o, 1) based at 7p is contractible in ¥ and runs over almost all 7T
Deforming inside the open discs 771 D; the parts of 5 that are lifts of the w;’s, we arrive at a curve v C 7"
contractible in . Clearly, « runs over all 7T, once over each #nI';. For the same reason, every element in
F = m (X, 7p) is represented by a curve included in 7T since the group 71 ((C]P’l \N{7f1,7f2,. . Tfn}, 7'7rp)
is generated by the elements [o; Uw; Uo; 1. We assume that ~; := 7I'; begins with 7p, passes through f;,
and ends with ¢wp. The group F = 7 (3, 7p) is generated by the elements [y;_1 U~y; '] (the indices are
modulo n). Therefore, the elements Ay; := 71 U72_1U- . 'U’Ygi_lU’}/;il and Mgy = 72U73_1U- . -UwgiUWQ_iil,
i=1,2,..., 5, also generate F'. Note that A, =~ is contractible in 3 by construction.

The lift Ag; of Ag; based at p is formed by I'1,T'%, ..., T, conjugates of I';’s. Let ¢; € @ denote the
middle point of T"}. Then R(q5;) - .. R(¢5)R(q1)p is the end of Ay;. Hence, [A2;] = R(g5;) - - R(¢5)R(q1)-
The lift Ag;11 of Agi11 based at pis formed by I', I'5, ... ,I'y; | |, conjugates of I';’s. Let ¢i' € @ denote the
middle point of T'{. Then R(qy; ) ...R(q35)R(g2)p is the I
end of A2i+1. Hence, [A2i+1] = R(qgiJrl) ‘e R(qé/)R(QQ) 3
We put ¢4 := ¢2 and q} := q1.

Let us show that ¢ = R(q1)q}. Note that if some f € F
maps a point in I'; to a point in T/, then T/ = fT. Since
R(q1) maps the beginning of I, to p, we conclude that
R(q1)R(¢4) maps the end of T to p, the beginning of T's.
Hence, I'Y = R(q1)R(g5)Th = R(q1)T'5. By induction on j,
we assume that I'/ = R(q1)R(q;)I"; = R(q1)T"}. Since R(q1) Iy
maps the end of I"; (which is the beginning of I';,,) to the end of T/ (which is the beginning of
I',,), we conclude that R(q1)R(q;,,) maps the end of T, | to the beginning of I'J, ;. Hence, I'/,, =
R(Q1)R(q;'+1)1—‘;'+1 = R(QI)F;'H-

Consequently, R(q,)...R(¢5)R(q}) = 1, which generates a representation ¢ : H, — L such that
oGy, = F. Being G, and F the fundamental groups of Riemann surfaces of the same genus, o|, is an
isomorphism. So is p.

The converse can be readily shown with the help of the fundamental polygon for ¢H,, constructed in
the proof of Proposition 3.14 m

T T

The formal multiplicative group generated by n copies {E;(t) | t € R}, i =1,2,...,n, of (R,+) is
denoted by &, and called earthquake group. We distinguish the parts Rt H,, and R~ H,, of RH,, related
to the sign of the area of a representation. Due to Remark 3.8, &, acts from the right by means of SEs on

R* H, and, hence, on H;. Later (see Remark 5.24) we will extend
this action to RG,, and to 7,.

4.2. Lemma [Anal]. Let 0,0’ € RHs be such that //
o(re) = 0'(re), o(rs) = o' (r5), and Areap = Areay'. d“
\

A

Then we can obtain ¢’ from o by means of a finite number
‘ of SEs of the types E»(t) and E3(t) m
g 4.3. Remark. Let p,q € BW be distinct and let G be a full

- geodesic different from G <p,¢> and intersecting G <p, ¢~ in some
point in BW. Then, on any side from G <p, ¢>-, there exists some d €

G NBW such that R(d)R(q)R(p) is hyperbolic. Indeed, the points d €

B W making R(d)R(¢q)R(p) parabolic form two curves (hypercycles)

equidistant from G <p, ¢>. The isometry R(d)R(q)R(p) is hyperbolic
exactly when d is outside the band limited by these curves.

4.4. Lemma. & acts transitively on R+ Hs.
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Proof. Let 0,0’ € RT Hjs, that is, Areap = Areao = 7.
For suitable ¢;, ¢, € BW, we have o(r;) = R(¢;) and ¢'(r;) =

N L
R(q;). Ev(t')
By Lemma 3.11, the points q1, g2, g3 are on the side of the £ Es() \[e
normal vector to G <q4,q5>. Let G be a geodesic passing =

through ¢} and intersecting G <q4, g5 > in some point in B .
By Remark 4.3, R(q{)R(q5)R(q4) is hyperbolic for some ¢f € 3 4
GNBW on the mentioned side. Hence, R(¢y)R(g5)R(qs) = 9 e *q/

R(¢5)R(q¥) for some ¢4, q5 € BW, which pr0v1des some " € RH5 by Corollary 3.16. Since ¢f is on
the side of the normal vector to G <qq, g5, it follows that Area ¢” = 7 by Lemma 3.11. By Lemma 4.2,
after applying to ¢ a finite number of SEs, we can assume that ¢; = ¢/, ¢ = 1,2,3. Some SE involving
q4, @5 puts gs into G <q1, ¢; > = G. Now, some SE involving g5, q1 provides ¢; = ¢f.

Since q1 = q] # ¢4, after applying (if necessary) some SE 44 qf
that involves g2, g3, we obtain ¢4 §é G <q1,q2>. By Remark 4.3, 7N
there exist ¢4 € G <q2, ¢4 and ¢}, ¢¢ € BW such that the rela-
tion R(q5)R(q2)R(q1) = R(¢))R(q) provides some o"" € RHs
_ with Area o’ = . As above, by Lemma 4.2, we can assume
a=q ¢ 12 that ¢ = g/, i =3,4,5. By means of some SE involving ¢, g3,
we arrive at g2 = ¢5. It remains to apply Lemma 4.2 once more g

Y /
4.5. Theorem. &, acts transitively on REH,. n=q qQJ

Proof. Let o,0' € RTH,, i.e., Areap = Areag’ = (n — 4)7. For suitable ¢;,q; € BW, we have
o(r;) = R(q;) and ¢'(r;) = R(q})-
The isometry R(q3)R(q2)R(¢q1) is hyperbolic because ¢ € RH,.
Indeed, if it is parabolic, g3 belongs to the hypercycle H = {q €
BW | R(q)R(q2)R(q1) is parabolic}. Applying a ‘small’ SE involv-
ing qa, ¢s if necessary, we can assume G <qs, g4~ to be transversal
. to H at g3. Now a suitable SE involving g3, g4 provides an elliptic
R(q3)R(q2)R(q1) (see Remark 4.3). A contradiction.
Hence, there exist b,d € BW such that R(d)R(b)
, R(q3)R(q2)R(q1) = 1, which generates a representation
o : Hs — L. The relation R(gy)...R(q5)R(qs)R(b)
R(d) = 1 generates a representation g; : H,—1 — L.
Take for pg € SW a fixed point of R(b)R(d) = R(gs)
R(q2)R(¢q1). By Remark 2.3,

Area o = Area(po, p1, D2, P3, P4, - - - Pn—1) = Area(po, p1, 2, p3) + Area(ps, pa, ..., Pn—1,P0) =

= Area(po,p1,p2) + Area(ps, p4, . .., pn—1) = Area gy + Area o,

due to pg = p3. By Remark 3.4, Areagg = 7 and Areag; = (n — 5)7. By Theorem 3.15, g9 € R" Hj
and o1 € RTH,,_1.

We are going to express every SE of g; in terms of suitable SEs of ¢ and an SE involving d, b (the latter
is simply a rechoice of b and d). The SEs of p; involving ¢;—1,¢;, ¢ = 5,6,...,n, are in fact some SEs
of p. All we need is to execute the SEs of o1 involving the pairs b, g4 and g,,d. By symmetry, we deal
only with the first one.

By Remark 4.3, we can find ¢§ € G <b, g4 NBW on the side of the normal vector to G <b, d>~ such
that R(d)R(b)R(q ”) is hyperbolic and, hence, R(d)R(b)R(q5) = R(q{)R(qy) for some ¢{,q4 € BW.
As in the proof of Lemma 4.4 (that is, by Corollary 3.16, Lemma 3.11, and Lemma 4.2), we obtain
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g =4/, i =1,2,3, after a few SEs involving ¢1, g2 and g2, ¢3. Now, the point g3
is in G <b, g4>. Thus, in order to execute a given SE of 01 involving b, ¢4, we can
simply apply a suitable SE of o involving g3, ¢4.

In the same manner, we can ‘cut’ ¢’ into gf, and ¢} by means of appropriate
b',d" € BW. By induction on n, we can assume that g = ¢}. It remains to apply
Lemma 4.2 g

The relation R(qs)R(q4)R(q3)R(g2)R(q1) = 1 suits [Anal, Conjecture 1.1].
We strongly believe that this conjecture is valid for the Poincaré disc.

Let o € RT*H,, o(r;) = R(q;), ¢ € BW. Following the proof of Proposition 3.14, associate to
o a standard fundamental polygon P, for oH, with vertices p1,pa,...,pn—1 by taking po := ¢, and
pi = R(qi)pi—1,i=1,2,...,n — 1. The polygon P, is convex and the sum of its interior angles equals
+7. In order to describe p, it suffices to mark the vertex g, and the middle points ¢1,q2,...,¢q,—1 of
the edges of P,. Clearly, p,—1 = pp = po = ¢n. We alter our convention concerning the notation of
the vertices of P, : the indices of the vertices pi,p2,...,pn—1 are modulo n — 1. According to the new
convention, pg = p,—1 and p, = p1.

We are going to study the group Aut H,. Fix some discrete subgroup H, < L and consider the
representations o € R*H, such that pH, = H,. The group Aut H, acts from the right on these
representations. In particular, every DT can be regarded as an element in Aut H,, : the automorphism
corresponding to F; is given by Ejri—1 =14, Eyr; = ryri_1m;, and Eyr; =r; for j & {i — 1,4}

Denote by Autt H,, the subgroup in Aut H,, generated by all the E;’s. In addition, there is an
automorphism .J € Aut H,, given by Jr; :=r,_; (cf. Remark 3.3). Obviously, J? = 1.

Define S € Aut H,, as Sr; := r;yq for all . It is immediate that Els = F;;1. Looking at the
polygon P,,
q2

Es
— 000

qn—2 qn-1 qn—2

we can see that S = E1Fs ... E,_1 € Aut™ H,,. Also, the vertices p}, of the standard polygon P, for the
representation ¢’ := oSE,, = oE1Fs ... E, are given by p, = p; 11, where the p;’s stand for the vertices
of P,. Therefore, acting by Aut* H,, on the representations, we can shift the indices both of the vertices
and of the marks of the middle points of the edges of P,.

Denote by I, € Aut H,, the conjugation by h € H,,. Clearly, I}? = Iap, for all A € Aut H,,. Looking
at the polygon P, U R(q1)P,,

- =~
< ~

qn—2

dn—1
dn
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e 4 e 4 e
¢ 4 ¢ 4 ¢
G2} 1 * g ! A
¢ Eio1 guy—e (SE.) 7' —%4qn
L — —_—
.Q‘ q1 qn—2 q2 qn—1
qn—3 42 qn—3 43 qn—2

we can see that I,, = Ey "Eq* ... E, ' (SE,)~". Hence,
I, =F\Ey.. . En 1B Ey_q ... E3Es.

It follows from If; =1, that Iy, C Aut™ H,,.

i+1
4.6. Theorem. The group Aut H, is generated by J and by the normal subgroup Aut™ H, of
index 2.

Proof. Given g, € RH, such that oH, = ¢o'H, = H, < L, we can assume that go,0’ € RV H,
acting by J if necessary. Hence, the vertices p1,pa,...,pn—1 and pi,ph, ..., pl,_; of the convex polygons
P := P, and P’ := P, are listed in 0P and in 0P’ in the counterclockwise sense. It suffices to show
that, acting by Aut™ H,, on both ¢ and ¢/, we can make them coincide.

Note that the ‘DT F involving g,—1,¢1’ is expressible in terms of E;’s : E = E EnEfl.

Dealing with the representations ¢ and ¢’ modulo the action by Aut™ H,, and taking into account that
the automorphism SE,, € Aut™ H,, shifts the indices of the vertices and of the marks of the middle points
of the edges, we can actually think of the representations as their standard counterclockwise-oriented
polygons P and P’, but with unmarked vertices and middle points. As shown above, we are able to
execute any DT that involves the middle points of adjacent edges of the unmarked polygons, acting by
Aut™ H,,. Also, the inclusion Iy, C Aut™ H,, allows us to change P and P’ by their conjugates.

Let o(r;) = R(g;) and ¢'(r;) = R(q}), ¢i,q € BW. Every involution r € H,, is determined by
its fixed point ¢ and induces in ¥ the hyperelliptic involution ¢. In particular, mq¢ = f; for a suitable

i = 1,...,n (see the proof of Proposition 4.1). Two involutions r,7’ are conjugated in H, (equiva-

lently, by an element in G,,) if and only if their fixed points ¢, ¢’ satisfy the relation ¢ = 7w¢’. Hence,

the R(q;)’s list all conjugate classes of the involutions in H,,. Obviously, the R(q})’s TN po

represent different conjugate classes. Therefore, every g; is a conjugate of some q} ,

and vice versa. ! e P2
The edge e; of P has the ends p;_1, p; and the middle point ¢;, i = 1,2,...,n—1. | P y41

Similarly, we introduce the edges e; of P'. If ¢; is a conjugate of some ¢, we say \ e19q1
that e; and € are good. Note that e; cannot be a conjugate of two €/’s at the same Engd

time. Let k& denote the number of good e;’s. We proceed by induction on k > 0. Pn=2"¢n-1 Pn-1
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good new e; Suppose that e;—; is a good edge and that e; is not (the indices are modulo

Pi -—e-p n—1). Apply to g the DT that involves ¢;—1, ¢;. This does not alter the edges e;,
j #i—1,1. The new e; is a conjugate of the old e;_1 and, hence, is good. We can
l,'new €i—1 assume that the new e;_; is bad since, otherwise, we are done by induction on k.
So, we are able to permute the types of any two adjacent edges, one good and the
other bad, finally reaching the situation where the good edges of P (and of P’)
form a sequence in 9P (and in OP’). Moreover, we can assume that the first edge
Pi1 e in the sequence in P and the first edge ¢’ in the sequence in 0P’ are conjugated
(both sequences are read in the counterclockwise sense). By means of DT’s,
we can change P’ by any of its conjugates. Also, by means of DT’s, we can shift
the marks of the vertices and of the middle points in P and in P’. So, we assume that P and P’ are on
the same side from e; =e =€’ =¢e}. (If kK =0, we assume only that p,—1 =p},_;.)

The fact that conjugated points in P are necessarily in 0P and the same fact
concerning P’ imply that es = €. In this way, we can show that e; = e}, i = 11
1,2,...,k. Denote by s C 0P the segment formed by all the good edges of P. /
Clearly, s C 9P’ is the segment formed by all the good edges of P'. (If k = 0,
we have s =p,_1 =pl,_;.)

Suppose that k& # n. We will study how the conjugates of bad edges of P’ intersect the polygon P.
Let b’ # b” be such edges. Looking at the tessellation of BW related to P/, we see that

(4.6.1) The edges b’ and b” can intersect only in points that are conjugates of p}’s, i.e., conjugates of
Prn—1 = Ph_1 = qn. Therefore, b’ and b” do not intersect in the interior of P.

Pi—o.  good old e; 1

e =€)

(4.6.2) If ¥/ intersects the interior of P, it does not intersect the interior of s. Otherwise, b’ enters the
interior of P right after its intersection s N &’ since P is convex. Hence, it enters the interior of P’.
A contradiction.

(4.6.3) The edge b’ cannot pass through two middle points of edges of P because the conjugates of
middle points of edges of P coincide with those for P’.

(4.6.4) For every middle point ¢; of a bad edge of P, there exists a unique conjugate b’ of an edge of P’,
necessarily bad, that passes through ¢; and, therefore, through the interior of P.

We say that the intersection of P with some conjugate of a bad edge of P’ is proper if this intersection
is different from the vertices of P and from the middle points of the edges of P. It is immediate that
the number of proper intersections is the same in each half of a bad edge of P. Let [ denote the total
number of proper intersections in dP. We proceed by induction on .

Let g; be the middle point of a bad edge of P and let ¥’ be a conjugate of a LeTT T~
bad edge of P’ that passes through ¢; and through the interior of P according I,’ h
to (4.6.4). By (4.6.2), b’ cuts P into two closed parts and s is entirely included b \q]
in one of them. If the other part contains a single middle point of an edge of qt{ ................ v / \
P, namely ¢;, we arrive at the desired situation to be studied later. Other- \ P/
wise, by (4.6.4), we take a conjugate b” of a bad edge of P’ passing through the \/
extra middle point ¢; and through the interior of P. Note that g; ¢ b’ by (4.6.3). s

By (4.6.1), b’ and b” do not intersect in the interior of P. Now we take b” in place of &’ and so on ...
Finally, we arrive at the situation (or at the one symmetric to it) where ¥’ N 9P = {qg;,q} and ¢ €
G(pis git1)-

In this situation, we execute the DT FE;;;. By induction on k, we can assume that the new e; is bad.
We will show that the new [ is strictly less than the old one.

Note that E;;1 removes from P the triangle A(p;, gi+1,pi—1) and glue to P the triangle A(pl-H, Git1,
R(qiﬂ)pi,l). Since these triangles are conjugated, it suffices to show that the number of proper in-
tersections included in G(g;t1,p;—1) is strictly less than that in G(p;, gi+1). So, we consider only those
parts of conjugates of bad edges of P’ that pass via the interior of A(p;—1, P, Git1)-
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The following types and quantities of such parts are possible:

e [; parts whose ends are a point in G(p;, ¢;)

Di & Pi-1 and a point in G(p;,q),
....... PN .
. N e 1 part with ends ¢; and g,
- '\ ey parts whose ends are a point in G(q;, p;_1)

v and a point in G(q, gi+1),

1 e I3 = 0,1 parts whose ends are a point in
P 1 G(gi,pi—1) and gi11,

/ey parts whose ends are a point in G(g;, p;—1)
/ and a point in G(¢;+1,pi—1),

L y e [5 parts whose ends are p;—; and a point in
o A(R(gi41)Pi-1,Dist1, Git1) 7 G(q, gitn),
e e R L LT E e /g parts whose ends are a point in G(q, gi+1
R(qiv1)pi-1 R(qiv1)q pit1 = R(gi+1)pi (@ g11)

and a point in G(g;+1,pi—1)-

Since the number of proper intersections is the same in each half of e; = G(p;,p;—1), we obtain
Iy =l 4+ 13+ l4. The number of proper intersections included in G(p;, g;+1) equals Iy + 1+ ls + 15 + Ig.
The number of such intersections related to G(gi4+1,pi—1) is equal to lg + 14 m

A straightforward verification shows that E;] = E;il_i. Denote

S:=FE\Ey...En_1, S:=FE,1...EE, I:=1I,.

It follows from IS = I, ,, Ef = E;1, and I, = E1Ey... By 1EyEn 1 ... E3Es that I, = $S5 and
=1, =I5 =55 Hence, $5S5 = 1. The relations 7, ...7or1 = 1, IS = I,,,,, and §” = 1 imply
the relation IS" ... IS"IS = 1 which can be rewritten as (S7INH" =1, ie., as Sn = 1. It is immediate
that E;E; = E;E; if |i — j| > 2. As is easy to see, the relation

qi
qi
L; Ei E;
—_— —_—
qi+1 qi—1
qi—1 qi
qi+1 qi+1
qi qi
Ei+1 El Ei+1
— — —
Qi1 di qi—1 qi—1
qi—1 qi+1 qi—1 di+1 qi

qi+1
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E;E,(1E; = E;41E;F; 11 is valid for all i. It is possible to conclude from [Stu] that the defining relations
of Aut™ H,, are (the indices are modulo n) :

S=FEsy...En_1, S=FEn, 1...B2E, S'=1, S"'=1, S585=1,

EY =Eiyy1,  EiEinEi=EinEE,  EE;=EEif|i—j|>2

(cf. [Bir]). The additional defining relations of Aut H,, are Ej = E;—‘,l-l—i and J? = 1.

5. W. M. Goldman’s Theorem

Let n > 6 be even. Recall that G,, denotes the fully characteristic torsion-free subgroup of index 2
in H, constituted by the words of even length in the r;’s. By Proposition 4.1, G,, is the fundamental
group of a closed orientable Riemann surface of genus § — 1. In this section, we will prove the

5.1. Theorem [Goll, Corollary C]. Let ¢ : G,, — L be a representation. Then ¢ € RG,, if and only
if Areap = £2(n—4)m.

We are going to explore the ideas developed in the hyperelliptic case. A given representation o :
G, — L defines an action of G, on BW. We write gp instead of o(g)p for all g € G,, and p € BW.
Working in terms of the r;’s, we are allowed to apply g to any expression of even length in r;’s. Hence,
the expression r;7;p makes sense, whereas r;p does not.

We will deal with a ‘fundamental polygon’ @ for oG, that mimics the wsq
duplicated fundamental polygon P, for the hyperelliptic case, namely, /
Q := P, U o(ry)P, (see the last picture in the proof of Theorem 3.15).

In the hyperelliptic case, the polygon P, is generated by the choice of
p = pn, € BW because it has a single cycle of vertices. The point wWn-19 =¢ Wop = P
Pn—1 € BW is given by p,—1 = o(r,)pn. Since, in the nonhyperelliptic
case, we have no reflection o(r;,) available and the polygon @ should have
two cycles of vertices, we choose two points p, ¢ € BW that are intended
to respectively play the roles of p,,, pp,—1. In this way, for suitable w; € Gy,
the even vertices of the polygon @) have the form wy;p and the odd ones, the form ws;114.

wap

1
Wn—2P w1q

Wnp Wa2n -39

Wn+1q =~ W2n—4P

The proof of Theorem 5.1 is ‘almost’ the same as that of Theorem 3.15. We simply adapt the
arguments of the latter to the nonhyperelliptic case by avoiding the use of the elements from H,, \ G,.
For instance, Corollary 5.8, Remark 5.9, Remark 5.10, Lemma 5.12, and Lemma 5.13 that we prove below
are analogs of the following hyperelliptic assertions: Lemma 3.2, Remark 3.3, Remark 3.4, Lemma 3.9,
and Proposition 3.13.

5.2. Notation. Denote by S, I, and J the automorphisms of H, given by the rules Sr; = 7,11,
I:h— h™, and Jr; := r,_;. The same symbols denote the induced automorphisms of G,,. For 0 <
i < n—1, denote v; := r;...ror; and regard the indices of the v;’s modulo n. So, vog = v, = 1.
For 0 <i <n — 2, introduce

w; = v; if i is even, w; = vy, if 7 18 odd, Wign—1 := I(w;)
and regard the indices of the w;’s modulo 2n — 2. Clearly, wy = wp,—1 = ws,—2 = 1. Note that
Witn—1 = I(w;) for all . As is easy to see, the formula w; = v;r,, works for all odd 7 such that

1<i<n-1.

The elementary properties of the w;’s that we use in what follows are gathered in the



18 SASHA ANAN’IN AND EDUARDO C. BENTO GONCALVES

5.3. Lemma
(1) wi+n71wi+n = w;rllwi for all 1.
(2) J(w;) = wp—1—; for all i.
(3) S(w;)wy = w;4q for all even 4 such that 0 < i <n — 2.
(4) S(w;) = w;y1 for all odd i such that 1 <i<mn—3.
(5) S(w;) = wyw;y1 for all odd i such that n —1 < i < 2n — 3.
(6) S(w;)wr = wiw;y1 for all even i such that n < i < 2n — 4.
(7) rpriwi—1 = Wign—1 and rpTW; = Wiyn_o forall 1 <i<mn—1.
(8) TwTig1Wi = Witn, TaTif1Wit1 = Witn—1, Tit1TnWitn—1 = Wiy1, and i 1TpWir, = w; for all

Proof. (1) Let 0 <i <n— 2. If i is even, we have
-1 _ 1 _ -1 _ -1 o1
Wiy 1 Witn = (TpWiTyn) ™ TrWit 1Ty = Ty Vig1l = Ty Tip1Vi = W; W

If 7 is odd, we have

-1 —1 —1 -1 —1
wi+n71wi+n = (rnwirn) TnWit1Tn = U; Vig1Tn = U; Ti41UiTh = ’wiJrl’wi.

For n — 1 <4 < 2n — 3, the fact follows by taking inverses in the equalities that are already established
for0<i<n-—2.
(2) Let 0 <i <n—2. It follows from the relation 7, ...7r2r; = 1 that
J(wi) = J(Vi) = Tp—i o . Th—2Tn—1 = Vp—1—iTn = Wn—1—;
if 7 is even and that
J(wi) = J(0iTp) = Tp—i - . Tn—2Tp_1Tn = Up_1—j = Wp—_1—;

if 4 is odd. Now, for n — 1 < i < 2n — 3, we obtain

J(w;) = J(rpWi—nt1Tn) = MWn—1—itn—1Tn = TnWan—2—iTn = W3n—3—; = Wp—1—i-

(3) The case of i = 0 is immediate. For 2 < i < n—2, we have S(w;)wy = S(v;)T17n = Vip17n = Wit1-
(4) S(wi) = S(virn) = vi41 = Wis1.

(5) S(w;) = S(rnwWi—nt17n) = S(TpUicnt17n) = TVi—nt2 = FWi—p42Tn = FTpWit1 = Wi Wit1.

(6) S(wi)wr = S(rpWi—ni17n)W1 = S(TpVieng1)717Tn = F1Vi—nt2Tn = T1Wi—nt2Tn = WIWit].

(7) As is easy to see, mjw;—1 = w;r, and r;w; = w;_1ry, for all 1 < ¢ < n — 2. Therefore,

TuriWi—1 = rpwiTy = I(w;) = Wiyn—1 and rprw; = rpwi—1r, = I(wi—1) = Witn—2. Fori =n—1,
we have rp,r,_1wWn_2 = 1 = wap—2 and ryrp_1Wp—1 = TFprp—1 = FUp—oty = I(Wp_2) = wa,—_3 since
TpTn_1...T9"1 =1, 1y 1 =7Tp_o...7211 Ty, and w,_1 = 1.

(8) The first two equalities are in fact shown in (7). The last two equalities follow immediately from
the first two g

Given p,q € BW, define
Area'n(p7 q; Q) = Area’(w(qu wiq, ..., Wn-2pP, Wn—-19q, - .., Wan—-4p, w2n—3q)7
Area;i1(p, ; 0) == Area;(p, g; 05).

5.4. Remark. The relation w;i,—1 = rpw;r, valid for all ¢ implies Area, (p, q; 0) = Area,(q, p; o).
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5.5. Lemma. Area,(p,q; 0) = Area;(w1q, p; 0).
Proof. By definition,

Areay (w1q,p; 0) = Area (S(wo)wig, S(w1)p, ..., S(wn—2)wig, S(wn_1)p, ..., S(Wan—a)w1q, S(wan—3)p).
By Lemma 5.3 (3-6),
Areas (w1q, p; 0) = Area(wiq, wap, . .., Wn—1¢, WIWyP, . . ., W1 W2n—3(, W1W2p—2P)-

Taking into account that wiw, = wir,wir, =1 and that wg = wy,—1 = wa,—2 = 1, by Remark 2.3, we
obtain

Area1 (wl q,D; :Q) = Area’(wl q,w2p,...,Wn-14, wlwnp) + Area‘(wlwnpu <oy W1Won -3¢, W1W2n—2P, le) =

- Area(wopa wi1q, wa2p, ... 7wn—1q) + Area(wnp7 cooy Won—2p, Q) =
= Area(wop, w1q, . . ., Wn_2P, Wn_1q) + Area(w,_1¢, Wnp, Wni1q, - - - , W2 -3¢, WoP) =

= Area(wop, w1q, . .., Wp—2P, Wn_1q, . - . , Wap—3q) = Area,(p,q; 0) m

5.6. Lemma. Area,(p, q; 0) is independent of the choice of p and q.
Proof. We will show the independence of ¢q. (The independence of p can be shown in a similar way.)

Taking ¢ = p in (2.2), we obtain

Arean(p,q;0) = Y AreaA(p,w;p,wiz1q) + Y Area A(p, wiq, wii1p) =

even 1 odd 1

(5.7) = Z Area A(g, wi ' p, wii' wip) + Z Area A(q, w;  wiy1p,w; ' p).

even ¢ odd i

Let us show that (5.7) is the area (calculated with respect to the centre ¢) related to some closed

piecewise geodesic path C' independent of the choice of g. Denote by — the side opposite to the vertex
q of the ith triangle involved in (5.7). This side is oriented with respect to the orientation of the ith
triangle. The consecutive vertices of C' are described by the following list:

—1 0 —1 | n—1 _1 n—-2 _1 | 2n—3 1 2n—4
Wy P — Wy WP =W, {Wpp — W, 1P — W, {Wnp—2D = Wy, WP — Wqy,, 3P — ...

2 —1 =1 ) 2j4+n-1 g 2j4+n-2 1 ) -1 251
cee TP Wo i WP = Woiy y qW2i4nP T Wouiy, 1D T Woiy, W2i4n—2P = Wo; 1 W2p — ...

3 -1, 2 -1 -1 ntl 1 n -1 1 1 -1
Ces T W TP — Wy WD = Wy Wet 2D — Wy (P > Wy WP = Wy WP —> Wy P,

where the equalities are provided by Lemma 5.3 (1). In this list, the mentioned sides of even triangles
appear in the order

0 n—2 25 2j+(n—2) n

and the mentioned sides of odd ones, in the order

n—1 n—1+(n—2) 2j+1 2j+14+(n—2) 1



20 SASHA ANAN’IN AND EDUARDO C. BENTO GONCALVES

Since n — 2 and n — 1 are coprime, every side appears exactly once in the list g
5.8. Corollary. Area;(p,q; 0) does not depend on the choice of p, q, and i g
5.9. Remark. By Lemma 5.3 (2), Area oJ = — Areap.

In the sequel, we assume without loss of generality that Area o > 0.

5.10. Remark. Take a fixed point ¢ = p = ¢ € BW of wsp
o(wy). Tt follows from w,—1 = wy = 1 and w, = wfl that Wy, —3P Wap
W1q = Wp—1q = W,p = wop = c¢. Therefore,

Wnp—2P
Area A(c, wop, w1q) = Area A(c, w1q, wep) = D
Wn+1P
= Area A(¢, wp—9p, Wn—1q) = Area A(c, Wp—1q, Wy p) = "
Won
= Area A(c, w,p, wn+1q) = Area A(c, wan—3q, wop) = 0. Wn 2P =3P
Hence, Areap < 2(n—4)m. When Area o = 2(n—4)7, we say that W2n—ap
Area g is maximal. In this case, p € SW and the cycles
b, w2p, w3p, . .., Wn—-2p, Dy Wn+1D, Wp+2P; - - -, W2n—3P
are positive.

5.11. Remark. Let p1,p2,q2,q1 € SW be a positive cycle and suppose that o ¢
some isometry h € £ maps p; to ¢;, ¢ = 1,2. Then h is hyperbolic and the cycle
D1, S, D2, q2,t,q1 is positive, where s € SW and t € SW stand for the repeller and 42
for the attractor of h.

5.12. Lemma. Let o : G,, — L be a representation with maximal Area g and P Do
let d € SW be a fixed point of o(wy). Then the cycles s

d,wad, r3rid, wad, rar1d, wad, . .., rp—3r1d, Wy —3d, r_271d, Wn—2d
and
d7 Wn+1 d7 an3du wn+2d7 anéldu wn+3d7 ey ann—?;da w2n—4du ’f'nTn_Qd, w2n—3d

are positive.

Proof. The cycles d,w;d, w;+1d and d, w;1,—1d, w;y,d are positive for all 2 < ¢ < n — 3 by Re-
mark 5.10. Hence, by Lemma 5.3 (8), the cycles r,1i+1d, Witnd, Witn—1d and r;117,d, wip1d, w;d are
positive. In other words, the cycles wy1;—1d, rn7i41d, Wy y:d and w;d, 7; 417, d, w;11d are positive. Since
d is a fixed point of wy = ryr,, we have r;y1md = rip1m1r1irnd = rip17,d. Therefore, the cycles
wid, ri+171d, Wip1d and Wy4i—1d, rpriv1d, wyd are positive for all 2 <4 < n — 3. By Remarks 5.10
and 3.7, the cycles in Lemma 5.12 are positive g

5.13. Lemma. In the situation of Lemma 5.12, the isometry h; := o(r;r;—1) is hyperbolic for all i
(the indices are modulo n). Denote by s;—1 and t; the repeller and the attractor of h;. Then, for every
d € {sn,t1}, the cycle

tlv 52, 'LUQd, 53, t37 w3d7 S4, t47 w4d7 sy Sn—2, tn72a wn72d7 tnflv Sn

is positive.
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Proof. The cycle w;_od, r;_171d, r;71d, w;d is positive for all
3< i< n-—1. Indeed, for 4 <i < n — 2, this follows straight-
forwardly from Lemma 5.12. For ¢ = 3, the cycle has the form
d,wad, r3r1d, w3d because wid = d and rory = wy. It is pos-
itive by Lemma 5.12. The relation r,r,—1...7271 = 1 implies
Wp_9 = Up_2 = Tn_1Tn. From d = wid and wy, = rir,, we
obtain rp_1rd = rp_1r1r1rpd = rp_17nd = wp_od. Taking
wp—1 = 1 into account, we can see that, for i = n — 1, the cycle
has the form w,,_3d,r,_orid, w,_od,d. By Lemma 5.12, it is
positive.

The isometry h; maps r;_171d to r;r1d and w;_od to w;d for
all 3 <7 <n—1. By Remark 5.11, h; is hyperbolic and the cycle

(5.14) Wi—od, $;—1,Ti—171d, 7571d, 15, wid, 3<i<n-—1,
is positive.
The cycle r;_1rm1d, w;—1d, r;r1d is positive for all 4 < i < n — 2 by Lemma 5.12. We can combine this

cycle and the cycle (5.14) by Remark 3.7 and obtain the positive cycle w;_od, 8;_1,ri—17m1d, w;—1d, ;71 d,
t;, w;d for all 4 < i <mn — 2. The first and the second parts of this cycle provide the positive cycles

(515) U]ifld, Si,Ti’I”ld, wid, 3 S 7 S 7’L—3,

(516) wi,ld,rirld,ti,wid, 4§’L STL—Q

Combining the cycles (5.15) and (5.16) by Remark 3.7, we get the positive cycle
(517) wi_ld, si,ti,wid, 4 SZ STL—?).

Taking into account that wid = d and r9r; = we, we can see that d, so, wad, r3rid, t3, wsd and
wad, $3,7311d, wad are the cycles (5.14) and (5.15) with ¢ = 3. Combining these cycles by Remark 3.7
and excluding the term r3rid, we arrive at the positive cycle
(5.18) d, 82, wad, s3,t3, wsd.

As was shown above, r,_171d = wy,_2d. Taking the cycle (5.16) with ¢ = n — 2 and the cycle (5.14)
with ¢ = n — 1, we obtain the positive cycles wy,_sd, r,_or1d, t,_2, wy_od and wy_3d, Sp—2,7—271d,
Wp—od, ty—1,d since w,—1 = 1. Combining these cycles by Remark 3.7 and excluding the term r,,_ord,
we arrive at the positive cycle

(519) ’U}n_3d, Sn—2utn—27wn—2du tn—lud-

The cycle d, wad, wsd, ..., w,_2d is positive by Lemma 5.12. Combining this cycle with the cycles
(5.18), (5.17) for all 4, and (5.19), we get the positive cycle

(520) d7 52, U]Qd, 53, t37 w3d7 S4, t47 w4d7 s 7wn73d7 Sn—2, tn72a wn72d7 tnfl-

Shifting the indices, i.e., applying the results already obtained to the representations pS7, we conclude
that h; is hyperbolic for all i. So, the points s,, t1, s1, t2, Sn—1, t, make sense.
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Since the cycle (5.20) is positive for d = t1, the cycle ¢y, sa,t3, 84 is positive. Shifting the indices, we
conclude that the cycle ¢,,—1, $n, t1, s2 is positive. Combining the positive cycles t1, s2, t3, 4, (5.20), and
tn—1,Sn,t1, S2, we arrive at the positive cycle in Lemma 5.13 g

5.21. Proposition. Let ¢ : G,, — L be a representation with maximal Area p. Then the isometries
h; := o(riri—1) and h} := o(rpriri—17y) are hyperbolic for all i (the indices are modulo n). Denote by
Si—1,s;_q and t;,t} the repellers and the attractors of h;, h}, respectively. Then s, = t}, t; = s, and,
for every d € {sy,t1}, the cycle

1,82, wad, 83,13, w3d, 84, t4,wad, ..., 5p_2,tn_2,Wpn_2d,tr_1, Sn,

!/ !/ !/ !/ !/ !/ / !/
52, wn+1d7 53, t3a wn+2d7 545 t4a wn+3d7 s Sp_9s tn—2; w2n73da tn—l
is positive.

Proof. By Lemma 5.13, the isometries h;’s are hyperbolic and the cycle
t1, 2, wad, 3,3, wsd, s4, 14, wad, ..., Sp—2,tn—2,Wn—2d,tn_1,5n

is positive for every d € {s,,t1}. By Remark 5.4 and Corollary 5.8, Area oI = 2(n—4)w. By Lemma 5.13
applied to the representation o, the isometries h;’s are hyperbolic and the cycle

! / / / / / / / / /
tlv 59, wn+1d7 S3, t35 wn+2d7 S4; t4a wn+3d7 sy Sp_92 tn727 U}angd, tnflv Sn

is positive for every d € {s,,t;} since w1 = I(w;) for all i. It remains to observe that h} ™" = hy
and to combine the above positive cycles g

Proof of Theorem 5.1. Let us show that Area ¢ = 2(n — 4)7 implies o € RG,,.

Denote G := G[sp, t1], G; := w; G, and G} := w;,,—1 G for all 2 < i < n — 2. By Proposition 5.21,
G is the axis of h1 = h’l_l. Hence, the vertices of G; and of G; are respectively of the form w;d and
Witn_1d, where d € {s,,t1}.

Take p,g € GNBW such that p = h1q and denote by @ the polygon with the successive vertices

w14, W2pP, W3Q, . . ., Wn—349, Wn—2pP, WnpP, Wn+1q, Wn+2D, - - - , W2n—4P, W2n—3¢
and the successive edges e, es,...,e,_1,€5, €5, ..., el _1 such that
(5.22) e; := Glwi_1q, w;p], e = Glwiyn—2p, Witn_14] for even 1, 2<i<n—2,
(5.23) e; .= Glw;_1p, wiql, e = Gwitn—2¢, Witn—1D] for odd 1, 3<i<n-1.

(Note that wy,—1¢ = w,p and wa,_9p = w1q since w,—1 = wa,—2 = 1 and w,, = wl_l.)

We claim that @ is a fundamental polygon for the group pG,. Obviously, w;p,w;q € G; and
Wign_1P, Witn_1q € G} for all 2 < i < n — 2. Also, w,p,w1q € G since w, = wi', hy = o(w),
p = hig, and p,q € G. Let d € {s,,t1}. Then the cycle in Proposition 5.21 is positive. This implies
that G, the G;’s, and the G;-’s are all disjoint. Therefore, the edges e;’s and e}’s are not degenerated
and, thus, generate complete geodesics I'; and T';.

Define the arcs

A :={be SW | the cycle t1,b, s, is positive}, A" :={b e SW | the cycle s,,b,1; is positive}.
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Let A; C A and A, C A’ be the arcs with the same ends as G; and G}, respectively. The arcs

wn—Sd wjd

wn+2d w2n74d

A’ Ay, As, ..., A, _o are disjoint because the cycle in Proposition 5.21 is positive. It is easy to see that
the vertices of I'; belong to A;_; and A; for all 3 < i < n — 2, that the vertices of I'y belong to A’ and
As, and that the vertices of I';,_; belong to A, _o and A’. The only intersections between I';’s are the
known intersections between I';_; and I';, 3 < i < n — 1, and a possible intersection between I's and
I',—1. Nevertheless, the edges es and e,—1 do not intersect. Indeed, it follows from Proposition 5.21
that the cycle t1, wad, $3, wy—2d, s, is positive for every d € {s,,t1}. Since s,, and ¢; are the repeller and
the attractor of hy = o(w1), p = h1q, wup = q, and w1q = p, the edges e and e, _; cannot intersect.
Consequently, the edges es,es,...,e,—1 intersect in the ‘prescribed’ way and are on the side of the
normal vector to G. For similar reasons, the edges €}, e, ..., e/, _; intersect in the ‘prescribed’ way and
are on the opposite side of the normal vector to G. In other words, @ is simple.

The polygon @ has 2(n — 2) vertices and Areap = Area@ = 2(n — 4)w. Therefore, the sum of the
interior angles of @ equals 2(n — 3)m — Area P = 2m. The isometry ~; := o(r, ;) maps the edge e; onto
the edge e} for all 2 < <n — 1. This follows from (5.22-23) and from Lemma 5.3 (7).
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As is easy to see, the identifications by the ;’s produce the only cycle of vertices. By Poincaré’s
Polyhedron Theorem, @) is a fundamental polygon for the group generated by the v;’s and

Yoot -1 V3Ye Tty vavs e =1

is a unique defining relation of this group. In other words, ¢ is an isomorphism and, thus, g € RG,,.
For the converse, we simply repeat the arguments presented at the end of the proof of Theorem 3.15 g

5.24. Remark. It is easy to verify that the group G, admits the generators g;;_1) (the indices are
modulo n) subject to the defining relations

In(n—1)9(n—1)(n—2)9(n—2)(n—3) - - - Y3292191n = 1,

In(n—1)9(n—2)(n—3) - - - 943921 = 1, 9(n—-1)(n—2)9(n—3)(n—4) - - - 93291n = 1.

(In terms of Hy, gii—1) = riTi—1.)
Let 0 : G, — L be a representation. Fix some i and suppose that g := 0(g;;—1)) is hyperbolic.
For every t € R, define a representation oF;(t) as

QEi(t)(g(iJrl)i) = Q(g(i+1)i)g t7 QEi(t)(g(ifl)(ifQ)) = gth(g(ifl)(iﬂ))a

0E;(t)(9j(j-1)) == 0(gj(j-1)) forall j ¢ {i—1,i+1}.
If ¢ is induced by some ¢ : H, — L, then 4(r;) = R(g;) and §(r;—1) = R(g;—1) for some ¢;,¢;—1 € BW
belonging to the axis of g. As is easy to see, ¢'R(¢;)g~t = R(q;)g~2" and ¢g'R(qi—1)9~ " = g** R(q;—1).
In other words, we obtain an extension of the action of &, on RH,, (and on #,) to that on RG,, (and

on T,).
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