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A HYPERELLIPTIC VIEW ON TEICHMÜLLER SPACE. I

Sasha Anan′in and Eduardo C. Bento Gonçalves

Abstract. We explicitly describe the Teichmüller space T Hn of hyperelliptic surfaces in terms of natural
and effective coordinates as the space of certain (2n − 6)-tuples of distinct points on the ideal boundary of
the Poincaré disc. We essentially use the concept of a simple earthquake which is a particular case of a
Fenchel-Nielsen twist deformation. Such earthquakes generate a group that acts transitively on T Hn. This
fact can be interpreted as a continuous analog of the well-known Dehn theorem saying that the mapping
class group is generated by Dehn twists. We find a simple and effective criterion that verifies if a given
representation of the surface group π1Σ in the group of isometries of the hyperbolic plane is faithful and
discrete. The article also contains simple and elementary proofs of several known results, for instance,
of W. M. Goldman’s theorem [Gol1] characterizing the faithful discrete representations as having maximal
Toledo invariant (which is essentially the area of the representation in the two-dimensional case).

1. Introduction

This article is an attempt to an elementary study of Teichmüller spaces and we hope it does not
require from the reader any specific knowledge in the field. We try to avoid the analytic methods typical
in the classic theory and worry more about the way of the proofs than about the facts per se, having
no prejudice against proving well-known ones. Such elementary approach is motivated by its possible
extension to complex hyperbolic Teichmüller spaces and originates from [Ana1].

Let Σ = D/π1Σ be a hyperelliptic Riemann surface of genus g ≥ 2, where D stands for the Poincaré
disc. It is well known [Mac] (and proven in Proposition 4.1) that the extension Hn of the fundamental
group π1Σ with an isometry of D induced by the hyperelliptic involution of Σ is a group with generators
r1, . . . , rn and defining relations rn . . . r1 = 1, r2i = 1, where n = 2g+2. Moreover, every ri is a reflection
in some point qi ∈ D. In other words, a hyperelliptic surface can be described as a certain geometric
configuration of n points.

The following two concepts are crucial in this article. As is easy to see, while moving the points
qi−1 and qi along the geodesic they generate and preserving the distance between these two points,
new configurations provide new hyperelliptic surfaces, i.e., the relation rn . . . r1 = 1 remains valid.
We call such a deformation a simple earthquake (SE for short). This concept is nothing more than
a particular case of a Fenchel-Nielsen twist deformation [ImT]. It appears naturally in the context of
[Ana1]. The earthquake group En, i.e., the formal group generated by the SEs, acts on the Teichmüller
space T Hn of the group Hn.

The other concept is the area of a surface. It is better to call this area the Toledo invariant of a
representation. The remarkable results of W. M. Goldman [Gol1, Corollary C] and D. Toledo [Tol] say
that a representation is faithful and discrete if (and only if, in the case of the classic hyperbolic geometry)
the ‘area’ of the representation is ‘maximal.’ In literature (see, for instance, [BIW] and [KMa]), there
are several proofs of Toledo’s theorem and neither of them is simple.

First, we study hyperelliptic surfaces. We prove the analog of W. M. Goldman’s theorem for hy-
perelliptic surfaces (Theorem 3.15). The Teichmüller space T Hn turns out to be supplied with natural
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coordinates: The space T Hn can be described as the space of all (2n − 6)-tuples (z1, z2, . . . , z2n−6) of
distinct points on the ideal boundary ∂D that appear in the cyclic order z1, z2, . . . , z2n−6 when running
once over ∂D (Corollary 3.17). These coordinates are natural in the sense that they have a clear geo-
metric nature and are not related to any arbitrary choice. Also, they are effective and easily calculable.
Besides, following these ideas, we arrive at a simple and effective criterion allowing to verify that a
given representation is faithful and discrete. It is worthwhile mentioning a curious fact (we did not find
it in literature) : Every pentagon, i.e., every1 representation ̺ : H5 → PU(1, 1) such that ̺(ri) 6= 1,
is faithful and discrete (Corollary 3.16). (A complex hyperbolic version of this fact is discussed in [Ana1,
Conjecture 1.2].)

Next, we show that the earthquake group En acts transitively on T Hn (Theorem 4.5). This fact can
be considered as a continuous analog2 of the well-known Dehn theorem saying that the mapping class
group can be generated by the Dehn twists. (The Dehn twists we use are ‘integer’ SEs.) Then we prove
a discrete variant of Theorem 4.5 — a sort of the Dehn theorem: The subgroup of index 2 in AutHn is
generated by the ‘integer’ SEs (Theorem 4.6).

Finally, we prove W. M. Goldman’s theorem [Gol1, Corollary C] in general case (Theorem 5.1).
The idea of the proof is reflected by the title of this article. We pretend to view a general Riemann
surface Σ as if it were a hyperelliptic one and, with a certain precaution, apply to Σ the methods
developed in the previous sections. As in the hyperelliptic case, we establish an effective and simple
criterion of discreteness of a representation of Gn := π1Σ that involves the construction of a natural
fundamental domain (Remark 5.10). This fundamental domain allows to visualize the universal family
F → Tn of Riemann surfaces, where Tn denotes the classic Teichmüller space: Gn acting fibrewise on
the trivial bundle D×Tn → Tn provides F = D×Tn/Gn. The union of the natural fundamental domains
over all fibres is a fundamental domain for the action of Gn on D× Tn. Yet, we cannot describe Tn as
explicitely as T Hn. Nevertheless, it is easy to extend the action of En to Tn (see Remark 5.24).

Our way of proving the discreteness of a representation, where SEs are extensively used, resembles
a kind of hidden Maskit combination theorems [Mas]. We think that there is no satisfactory complex
hyperbolic analog of these theorems. The reason is that it is quite difficult to deduce the discreteness of
a ‘cocompact’ group from the discreteness of its ‘noncocompact’ subgroups appearing after cutting the
corresponding manifold. In our approach, we escape passing to ‘noncocompact’ groups.

As expected, the complex hyperbolic Toledo theorem [Tol] can be easily proven (see [Ana2]) by lit-
erally repeating the arguments presented in this article. Another (unexpected) consequence of our
methods is the fact that Tn is fibred twice over T Hn ⊂ Tn. Moreover, every point in Tn is uniquely
determined by its projections to T Hn [Ana2].

Acknowledgements. We are very grateful to Fedor Bogomolov, Pedro Walmsley Frejlich, Carlos
Henrique Grossi Ferreira, Nikolay Gusevskii, and Maxim Kontsevich for their interest to our work.

2. Preliminaries

In our notation, we follow [AGr], except that, for the sake of convenience, we change the hermitian
metric in order to have the curvature −1.

Let W be a two-dimensional C-vector space equipped with a hermitian form of signature +−. For a
nonisotropic p ∈ CPW , define a hermitian form in TpCPW ≃ 〈−, p〉p⊥ as 〈t1, t2〉 := −4〈p, p〉〈v1, v2〉,
where t1, t2 ∈ TpCPW , ti = 〈−, p〉vi, and vi ∈ p⊥. The set BW of negative points in CPW is simply

the open Poincaré disc. The set BW of nonpositive and the set SW of isotropic points in CPW form
the closed Poincaré disc and its boundary; all geometrical objects we deal with live in BW . For distinct
p1, p2 ∈ BW , denote by G[p1, p2], G(p1, p2), G(p1, p2], G≺p1, p2≻, etc. the geodesic segments oriented
from p1 to p2 : closed, open, semiopen, full geodesic, etc.

1We interpret as PU(1, 1) the group of all orientation-preserving isometries of D.
2Maxim Kontsevich convinced us that En is not finite-dimensional modulo the kernel of its action on T Hn.
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Let B2 denote a closed disc and let ϕ : B2 → BW be a piecewise smooth map such that ϕ(∂B2) is the
union of a finite number of geodesics and such that ϕ−1(SW ) ⊂ ∂B2 is finite. Clearly,

∫
ϕ

ω =
∫
∂ϕ

P , where

ω and P stand for the Kähler form and its potential. In particular, for p1, p2, p3 ∈ BW , the oriented
area of the triangle ∆(p1, p2, p3) is given by3

(2.1) Area∆(p1, p2, p3) = 2 arg
(
− 〈p1, p2〉〈p2, p3〉〈p3, p1〉

)

(see, for instance, [Gol2] or [AGr, Subsection 5.9]). This formula works for triangles having no coinciding
isotropic vertices. Obviously, the area of ∆(p, p, q) vanishes for isotropic p. Thus, Area∆(p1, p2, p3) is
continuous while p1, p2, p3 run over BW , assuming different isotropic vertices not to coincide during the
deformation.

Integrating a Kähler potential over a closed piecewise geodesic path C (not necessarily simple),
we obtain the ‘area’ of the ‘polygon limited by C.’ In order to express this area in explicit terms, take
an arbitrary ‘centre’ c ∈ BW . Let p1, p2, . . . , pn be successive vertices of C. Define

(2.2) Area(c;C) := Area(c; p1, p2, . . . , pn) :=

n∑

i=1

Area∆(c, pi, pi+1)

(the indices are modulo n). Intuitively, this area does not depend on the choice of c. We prefer to give
a formal proof of this fact since it can be useful when we will deal with other invariants different from
the Toledo one.

2.3. Remark. For arbitrary c, p, q, p1, p2, . . . , pk, q1, q2, . . . , ql ∈ BW , we have

Area(c; p, p1, p2, . . . , pk, q, q1, q2, . . . , ql) = Area(c; p, p1, p2, . . . , pk, q) + Area(c; q, q1, q2, . . . , ql, p)

because Area∆(c, q, p) + Area∆(c, p, q) = 0.

So, in order to prove that (2.2) is independent of c, we can assume n = 3 and the pi’s pairwise
distinct. Now, it follows from (2.1) that

Area∆(c; p1, p2, p3) ≡ 2 arg
(
〈p1, p2〉〈p2, p3〉〈p3, p1〉

)
mod 2π

for c different from the isotropic pi’s. For such c, the independence follows from the continuity of
the triangle area. It is immediate that Area(c; p1, p2, p3) = Area∆(p1, p2, p3) for c = pi. Therefore,
it remains to observe that Area(c; p1, p2, p3) = Area∆(p1, p2, p3) for c isotropic and the pi’s pairwise
distinct and isotropic, which is straightforward.

For n ≥ 5, let Hn denote the group generated by r1, r2, . . . , rn with the defining relations r2i = 1,
i = 1, . . . , n, and rn . . . r2r1 = 1. For even n, there is a unique fully characteristic torsion-free subgroup
Gn of index 2 in Hn. It is constituted by the words of even length in ri’s. As is well known (see also
Proposition 4.1), Gn is the fundamental group of a closed orientable Riemann surface of genus n

2 − 1.
For odd n, there is a torsion-free subgroup Tn of index 4 in Hn which is the fundamental group of a
closed orientable Riemann surface of genus n− 3 (see, for instance, [AGG, Subsection 2.1]).

Let L := PUW denote the Lie group of all orientation-preserving isometries of BW . Denote by
RHn and RGn the spaces of faithful discrete representations of Hn and of Gn into L, respectively.
The spaces Hn := T Hn := RHn/L and Tn := T Gn := RGn/L are the Teichmüller spaces of the groups
Hn and Gn, i.e., the spaces of conjugacy classes of the above representations. Each of the two connected

3The function arg takes values in [−π, π]. In the presented formula, the values of arg lie in fact in [−π

2
, π

2
].
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components T −
n and T +

n of Tn can be interpreted as the classic Teichmüller space. (The latter appears
if we take for L the Lie group of all isometries of BW .) Similarly, we introduce H±

n . The part of T ±
n

corresponding to hyperelliptic surfaces possesses infinitely many connected components [Mac] which are
copies of H±

n provided by the action of the mapping class group.

It is easy to see that the involutions in L are exactly the reflections in points in BW . Explicitly,

in terms of SUW , such a reflection R(q) is given by R(q) : x 7→ i
(
x − 2

〈x, q〉

〈q, q〉
q
)
, q ∈ BW , i2 = −1.

Note that R(q)R(q) = −1.

3. Hyperelliptic Teichmüller Space

Let ̺ : Hn → L be a representation. For an arbitrary p ∈ BW , define

(3.1) Area(p; ̺) := Area(p1, p2, . . . , pn),

where p0 := p and pi := ̺(ri)pi−1 (the indices are modulo n). Clearly, we can also define the pi’s
starting from p = pj ∈ BW for an arbitrary j instead of j = n.

3.2. Lemma. Area(p; ̺) is independent of the choice of p. If ̺(ri) 6= 1 for all i, then Area(p; ̺) ≡ nπ
mod 2π.

Proof. Without loss of generality, we can assume that ̺(ri) 6= 1 for all i and choose a representative
R(qi) ∈ SUW , qi ∈ BW , for every ̺(ri). Hence, pi 6= pi+1 if p is isotropic. It follows from the
defining relations of Hn that R(qn) . . . R(q1) = ε, where ε = ±1. Take representatives pi ∈ W so that
pi = R(qi)pi−1. In particular, pi+n = εpi. It follows from (2.1) that

Area(p; ̺) ≡ 2 arg
(
〈p1, p2〉〈p2, p3〉 . . . 〈pn, pn+1〉

)
mod 2π.

Since R(qi) ∈ SUW and R(qi)R(qi) = −1, we obtain

0 6= 〈pi, pi+1〉 =
〈
pi, R(qi+1)pi

〉
=

〈
R(qi+1)pi, R(qi+1)R(qi+1)pi

〉
= −〈pi+1, pi〉.

So, Area(p; ̺) ≡ 2 arg in ≡ nπ mod 2π, being Area(p; ̺) continuous in p �

3.3. Remark. For a given representation ̺ : Hn → L, define ̺J : Hn → L by ̺J(ri) := ̺(rn−i).

c

qi+1

qi+2

qi+n−3

qi+n−2

qi
qi+n−1

pi+1pi+2

pi+n−3

pi+n−4

pi−1

Obviously, Area ̺J = −Area̺. In other words, changing the cyclic
order of the generators alters the sign of the area.

In the sequel, we assume without loss of generality that Area ̺ ≥ 0.

3.4. Remark. Let pi−2 ∈ BW be a fixed point of ̺(riri−1). Then,
by taking c = pi−2 = pi, we can see that

Area∆(c, pi−3, pi−2) = Area∆(c, pi−2, pi−1) =

= Area∆(c, pi−1, pi) = Area∆(c, pi, pi+1) = 0

and, hence, Area ̺ ≤ (n− 4)π. When Area ̺ = (n− 4)π, we say that Area ̺ is maximal.

If ̺(ri) = 1, then Area ̺ ≤ (n−5)π : ‘excluding’ the generator ri we deal in fact with a representation
of Hn−1.

Analogously, if ̺(riri−1) = 1, then ‘excluding’ the generators ri−1 and ri, we arrive at the repre-
sentation ̺′ : Hn−2 → L. Note that Area ̺ = Area ̺′ since pi−2 = pi and Area∆(c, pi−2, pi−1) =
−Area∆(c, pi−1, pi). Therefore, Area ̺ ≤ (n− 6)π in this case.
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pi−2

pi−1

pi

qi−1

qi

htqi−1

htqi

Ei(t)

pi−2

pi−1

pi

qi−1

qi

Ei

3.5. Definition. Let q1, q2 ∈ BW be distinct. Clearly, h2 := R(q2)R(q1)
for some hyperbolic h ∈ L. It is easy to see that R(htqk) = htR(qk)h

−t,
k = 1, 2, and that R(q2)R(q1) = R(htq2)R(h

tq1) for every t ∈ R.
Let ̺ : Hn → L be a representation such that h2 := ̺(riri−1) is hyper-

bolic. For every t ∈ R, define a representation ̺Ei(t) : Hn → L as follows:
̺Ei(t)(rj) := ̺(rj) if j /∈ {i− 1, i} and ̺Ei(t)(rj) := ht̺(rj)h

−t, otherwise.
This defines a partial right action of the group (R,+) on representations.

We call Ei(t) a simple earthquake involving qi−1, qi (SE for short), where
̺(rj) = R(qj), j = 1, 2, . . . n. Denote by Ei := Ei(1) the Dehn twist involving

qi−1, qi (DT for short).

3.6 Definition. If a cycle of isotropic points p1, p2, . . . , pk ∈ SW , k ≥ 3,
is listed in the counterclockwise (clockwise) sense (in particular, the points
have to be pairwise distinct), the cycle is said to be positive (negative).

3.7. Remark. Given p1, p2, q1, q2 ∈ SW , the cycle p1, q1, p2, q2 is positive
or negative if and only if G(p1, p2) and G(q1, q2) intersect in a single point.

If the cycles p1, p2, . . . , pk ∈ SW , k ≥ 3, and pk, pk+1, p1 ∈ SW are positive,
then the cycle p1, p2, . . . , pk, pk+1 is positive.

3.8. Remark. Suppose that ̺(riri−1) is hyperbolic. Then Area ̺ = Area
̺Ei(t). Indeed, taking for pi−2 a fixed point of ̺(riri−1), we can see that
the pj ’s are independent of t and so is Area ̺Ei(t). (See the picture close to Remark 3.4.)

3.9. Lemma. Let ̺ : Hn → L be a representation with maximal Area ̺. Then, for every i, there
exists a suitable qi ∈ BW such that ̺(ri) = R(qi), qi−1 6= qi, and ̺(riri−1) is hyperbolic. If we take

in (3.1) a fixed point of ̺(riri−1) for pi−2 = pi, then the cycle pi, pi+1, . . . , pi+n−3 ∈ SW is positive.

Proof. The first three assertions follow from Remark 3.4 in view of the fact that the involutions
in L are reflections in points. As in Remark 3.4, take c = pi−2 = pi. The four triangles indicated in
Remark 3.4 are degenerated. Hence, each of the remaining n − 4 ideal triangles should have area +π.
In other words, the triangles ∆(c, pj−1, pj), j = i+1, . . . , i+n− 3, are oriented in the counterclockwise
sense. This implies the fourth assertion �

3.10. Lemma. In the situation of Lemma 3.9, there are no three collinear points among the qj ’s.
Moreover, q1, q2, . . . , qn are successive vertices of a convex polygon.

qj qk ql qj qk ql

qj−1 qj+1

Ej E−1
j+1

Proof. Suppose that qj , qk, ql are collinear. Acting by Ej or by E
−1
j+1

several times, we can reach a position where qk−1, qk, ql are collinear

qj−1 qj q

qk

ql

Ej(t)

(we diminish |j − k| > 1). Next, applying El or E
−1
l+1

several times, we arrive at collinear qk−1, qk, qk+1. Fi-
nally, by means of some Ek(t), we obtain qk = qk+1.
This contradicts Lemma 3.9.

If qk and ql are on different sides from G≺qj−1, qj≻, then G≺qj−1, qj≻ and G[qk, ql]
intersect in some q ∈ BW . With a suitable Ej(t), we obtain qj = q, hence, qj , qk, ql

become collinear �

3.11. Lemma. In the situation of Lemma 3.9, the points qj , j /∈ {i − 1, i}, are on the side of the

normal vector to G≺qi−1, qi≻.
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qi

qi−1

qi+1

qi−2

pi = pi−2

qi

qi−1

qi+1

qi−2

pi+1
pi+n−3

pi

qi

qi−1

qi+1

qi−2

pi+1

Proof. Due to Lemma 3.10, we can assume all the points qj , j /∈ {i − 1, i}, on the opposite side of
the normal vector to G≺qi−1, qi≻. By Lemma 3.10, this implies that qi−2 is in the region given by the
normal vectors to G≺qi, qi−1≻ and to G≺qi+1, qi≻, i.e., in the grey region on the first picture. On the
other hand, by Lemma 3.9, the cycle pi, pi+1, pi+n−3 ∈ SW is positive, where pi−2 = pi ∈ SW stands for
the attractor of ̺(riri−1). This implies that the geodesic G≺pi+n−3, pi−2≻ ∋ qi+n−2 = qi−2 is entirely
on the side of the normal vector to G≺pi, pi+1≻ as illustrated on the second picture. Therefore, the
point qi−2 is in the region given by the normal vectors to G≺qi+1, qi≻ and to G≺pi, pi+1≻ and, thus,
the geodesics G≺qi−2, qi+1≻ and G≺qi−1, qi≻ intersect in some point in BW (see the third picture) �

3.12. Definition. Let ̺ : Hn → L be a representation such that ̺(riri−1) is hyperbolic. Denote
by bi ∈ SW and by ei ∈ SW the repeller and the attractor of ̺(riri−1). Put bii := bi, e

i
i := ei,

bji := ̺(rj)b
j−1
i , and eji := ̺(rj)e

j−1
i . It follows from the defining relations of Hn that bi+n−2

i = bi and

ei+n−2
i = ei. We call bii, e

i
i, b

i+1
i , ei+1

i , . . . , bi+n−3
i , ei+n−3

i ∈ SW the i-cycle of ̺.

3.13. Proposition. Let ̺ : Hn → L be a representation with maximal Area ̺. Then the i-cycle of

̺ is positive.

Proof. By Lemma 3.9, the cycles bii, b
i+1
i , . . . , bi+n−3

i and eii, e
i+1
i , . . . , ei+n−3

i are positive. For suit-
able points qj ∈ BW , we have ̺(rj) = R(qj). By Lemma 3.11, qi+n−2 and qi+1 are in the region D given

bi+1
i

ei+1
i

ei+2
i

bji
eji

bj+1
i

ej+1
i

ei+n−4
i

ei+n−3
i

bii

eii

qi+1

qi+n−2

qj+1

by the normal vector to G≺qi−1, qi≻ = G[bii, e
i
i]. So,

ei+n−3
i = R(qi+n−2)ei ∈ D. In other words, the cycle

ei+n−3
i , bii, e

i
i is positive. Since the geodesics G[eii, e

i+1
i ]

and G[bii, b
i+1
i ] intersect in qi+1 ∈ D ∩ BW , we have

bi+1
i , ei+1

i ∈ D and the cycle bii, e
i
i, b

i+1
i , ei+1

i is positive

by Remark 3.7. The fact that the cycles eii, b
i+1
i , ei+1

i

and ei+1
i , ei+n−3

i , eii are positive implies that the cycle

ei+n−3
i , eii, b

i+1
i , ei+1

i is positive by Remark 3.7. Taking

into account that the cycle ei+n−3
i , bii, e

i
i is positive,

by Remark 3.7, we get the positive cycle ei+n−3
i , bii, e

i
i,

bi+1
i , ei+1

i .
By induction on j > i, we can assume that the cycle

ei+n−3
i , bii, e

i
i, . . . , b

j
i , e

j
i is positive. The cycle ei+n−3

i ,

eji , e
j+1
i is positive. Hence, the cycle ei+n−3

i , bii, e
i
i, . . . ,

bji , e
j
i , e

j+1
i is positive by Remark 3.7. In particular,

bji , e
j
i , e

j+1
i is positive. The geodesics G[eji , e

j+1
i ] and
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G[bji , b
j+1
i ] intersect (in qj+1 ∈ BW ). By Remark 3.7, the cycle bji , e

j
i , b

j+1
i , ej+1

i is positive or negative.

Knowing that the cycle bji , e
j
i , e

j+1
i is positive, we infer that bji , e

j
i , b

j+1
i , ej+1

i is positive and imply that

eji , b
j+1
i , ej+1

i is positive. Since ei+n−3
i , bii, e

i
i, . . . , b

j
i , e

j
i , e

j+1
i is positive, ei+n−3

i , bii, e
i
i, . . . , b

j
i , e

j
i , b

j+1
i , ej+1

i

is positive by Remark 3.7 �

3.14. Proposition. Let ̺ : Hn → L be a representation with hyperbolic ̺(riri−1). If the i-cycle of

̺ is positive, then ̺ ∈ RHn.

Proof. Taking bii for pi−2 in (3.1), we obtain the points pi−2, pi−1, . . . , pi+n−3 which are in fact the

points bii, e
i
i, b

i
i, b

i+1
i , bi+2

i , . . . , bi+n−3
i . Since the i-cycle of ̺ is positive, the cycle bii, b

i+1
i , bi+2

i , . . . , bi+n−3
i

is positive and we conclude that Area ̺ = (n− 4)π.

Following the natural orientation of SW , we draw an arc aj ⊂ SW from bji to eji for every j =
i, i + 1, . . . , i + n − 3. The arcs aj are pairwise disjoint because the i-cycle is positive. We take an
arbitrary pi−1 ∈ G(qi−1, qi) and generate the points pj := ̺(rj)pj−1 so that pi+n−2, pi−1, pi ∈ Gi,

where Gj := G[bji , e
j
i ]. We claim that pi−1, pi, . . . pi+n−2 are the successive vertices of a convex geodesic

bii

ai

eii

bi+1
i

ai+1

ei+1
i

bi+2
i

ai+2

ei+2
i

bi+n−3
i

ei+n−3
i

ai+n−3

qi−2

pi−2

qi−1
pi−1 qi

pi

qi+1

pi+1

qi+2

pi+2

pi−3

n-gon Pn. Indeed, pj ∈ Gj for j = i, i + 1, . . . , i + n − 3 because Gj+1 = R(qj+1)Gj . For such j’s,
the vertices of the geodesic Γj+1 := G≺pj, pj+1≻ belong to aj and aj+1 (by convention, ai+n−2 := ai).
Hence, Γj and Γj+1 intersect in pj and these are the only intersections between the Γj ’s. Since Area ̺ =
Area(pi, pi+1, . . . , pi+n−1) = AreaPn, the sum of the interior angles of Pn equals (n−2)π−AreaPn = 2π.
By Poincaré’s Polyhedron Theorem, Pn is a fundamental polygon for the group generated by ̺(rj) (it has
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one cycle of vertices) and ̺ is faithful and discrete �

3.15. Theorem. Let ̺ : Hn → L be a representation. Then the following statements are equivalent:
• ̺ ∈ RHn, • Area ̺ = ±(n− 4)π, • the i-cycle of ̺ is positive or negative.

Proof explores standard arguments. We will deal with even n (similar arguments work for odd n).
Let ̺ ∈ RHn. Clearly, ̺|

Gn
∈ RGn. By definition, Area ̺ = Area(p1, p2, . . . , pn), where pj = ̺(rj)pj−1

for suitable pj ∈ BW .
Let Pn be a simple geodesic polygon such that the sum of its interior angles equals 2π and let

v1, v2, . . . , vn stand for the successive vertices of Pn listed in the counterclockwise sense. Let qj denote
the middle point of G[vj−1, vj ]. By Poincaré’s Polyhedron Theorem, Pn is a fundamental polygon for
the group generated by R(qj) and, thus, we arrive at some ̺0 ∈ RHn.

Let us define a continuousHn-equivariant map ϕ : BW → BW . Put ϕvj = pj and define ϕ linearly on
the geodesic G[vj−1, vj ]; so, ϕG[vj−1, vj ] = G[pj−1, pj]. Next, extend ϕ continuously to ϕ : Pn → BW .
Finally, put ϕ

(
̺0(h)p

)
= ̺(h)ϕ(p) for all h ∈ Hn and p ∈ Pn. The map ϕ induces a continuous map

Pn

pipi−1 qi

̺(ri)Pn

ψ : Σ0 → Σ, where Σ0 := BW/̺0Gn and Σ := BW/̺Gn are Riemann surfaces
of genus n

2 − 1. By construction, π1ψ : π1Σ0 → π1Σ is an isomorphism, hence,
H2ψ : H2(Σ0,Z) → H2(Σ,Z) is an isomorphism and

∫
ψ

ω′ = ∓AreaΣ = ±2πχ(Σ) =

∓2(n − 4)π, where ω′ stands for the Kähler form of Σ. On the other hand, Pn ∪
̺0(ri)Pn is a fundamental polygon for ̺0Gn, therefore,

∫
ψ

ω′ = 2
∫

ϕ|
Pn

ω = 2
∫

ϕ|
∂Pn

P =

−2Area(p1, p2, . . . , pn) = −2Area̺, where P stands for a Kähler potential of BW .
Consequently, Area ̺ = ±(n− 4)π �

From Remark 3.3 and Lemma 3.2, we obtain the

3.16. Corollary. Let ̺ : H5 → L be a representation such that ̺(ri) 6= 1 for all i.
Then ̺ ∈ RH5 �

Note that Theorem 3.15 provides an effective criterion of discreteness: In order
to verify that some q1, . . . , qn ∈ BW subject to the relation R(qn) . . . R(q1) = ±1

provide a representation ̺ ∈ RHn, we can explicitly find the bji ’s and e
j
i ’s and check if the i-cycle of ̺

is positive or negative.
Also, Theorem 3.15 yields some explicit description of the two components H+

n and H−
n (related to

the sign of Area ̺) of Hn. Let S
1
+ :=

{
z ∈ C | |z| = 1, Im z > 0

}
and let

K+
n :=

{
(z1, z2, . . . , z2n−7, z2n−6) | zj ∈ S

1
+, the cycle z1, z2, . . . , z2n−7, z2n−6 is positive

}

(similarly, we define S1− and K−
n ).

1

z1
z2

z3

z4

z5

z6

−1 qi = 0

qi+1

qi+2

qi+3

qi+4

qi+5
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3.17. Corollary. H±
n ≃ K±

n .

Proof. Identify BW with the unitary disc
{
z ∈ C | |z| ≤ 1

}
. Let [̺] ∈ H+

n . Conjugating ̺ with an

element in L, we can assume that bii = −1, eii = 1, and qi = 0. This provides

(z1, z2, . . . , z2n−7, z2n−6) := (bi+1
i , ei+1

i , . . . , bi+n−3
i , ei+n−3

i ).

In other words, we obtain a map H+
n → K+

n .
Conversely, for given (z1, z2, . . . , z2n−7, z2n−6) ∈ K+

n , define qi := 0, qi+1 := G[−1, z1] ∩ G[1, z2],
qi+k := G[z2k−3, z2k−1] ∩G[z2k−2, z2k] for k = 2, 3, . . . , n− 3, and qi+n−2 := G[z2n−7,−1] ∩G[z2n−6, 1].
It is easy to see that the isometry h := R(qi+n−2) . . . R(qi+2)R(qi+1) ∈ SUW fixes the points −1
and 1. If h = ±1, we obtain a representation ̺0 : Hn−2 → L. Taking pi = 1, we arrive at Area ̺0 =
Area(1, z2, z4, . . . , z2n−6) = (n − 4)π, which contradicts Remark 3.4. Therefore, h is hyperbolic with
the axis G[−1, 1] and there exists a unique qi+n−1 ∈ G(−1, 1) such that h = R(qi+n−1)R(qi). In other
words, R(qi+n−1) . . . R(qi+1)R(qi) = ±1, providing a representation ̺ whose i-cycle is positive �

Note that the indicated identification is effectively calculable with a simple algorithm. It is easy to
show that the points qj can be algebraically expressed in terms of the zk’s (not involving radicals, when
using the Klein model). This is why we can treat H±

n as a ‘rational variety.’
We are going to study the space H±

n in detail in subsequent articles. In particular, we would like to
describe the standard hermitian and complex structures of H±

n in terms of the zk’s. We can introduce
a complex structure on H+

n by taking the qi’s, i = 2, . . . , n − 2, as complex coordinates that vary in
the open upper half-disc. Taking q1 = 0, we can reconstruct qn ∈ (−1, 0) and qn−1 from given qi’s,
i = 2, . . . , n − 2. However, it is easy to see that the DT E3 is not holomorphic with respect to this
structure. So, it is not the genuine one. (The DT E3 belongs to the hyperelliptic mapping class group
(see Section 4) which is known to be the group of holomorphic automorphisms of H+

n .)

4. Earthquake Group and Hyperlliptic Mapping Class Group

Let τ : Σ → Σ/ι ≃ CP
1 be a hyperelliptic Riemann surface of genus g, where ι : Σ → Σ stands for

the hyperelliptic involution of Σ. Put n := 2g+2 and denote by f1, f2, . . . , fn ∈ Σ the fixed points of ι.
Let F ≤ L stand for the fundamental group of Σ = BW/F and π : BW → Σ, for the universal covering
of Σ.

4.1. Proposition [Mac]. Σ ≃ BW/̺Gn for some ̺ ∈ RHn. If ̺ ∈ RHn, then Σ ≃ BW/̺Gn is

hyperelliptic.

BW
R

−−−−→ BW

π

y π

y

Σ
ι

−−−−→ Σ

R(qi)R(q
′
i)q

′
i
p

qi

R(qi)p

q′i
R(q′i)R(qi)pProof explores many well-known arguments.

For every q ∈ Q := π−1{f1, . . . , fn}, there exists
a unique R ∈ L inducing in Σ the isometry ι such
that Rq = q. Clearly, FR = F . It is easy to see
that R = R(q). Indeed, the isometry R is elliptic

and R2 induces in Σ the isometry ι2 = 1. Therefore, R2 ∈ F , which
implies R2 = 1 because the isometries in F have no fixed points in BW .
For q1, q2 ∈ Q, the product R(q1)R(q2) induces in Σ the isometry ι2 = 1. This implies R(q1)R(q2) ∈ F .

Choose and fix a point p ∈ BW that belongs to no geodesic joining points in Q. Let qi denote a point
in π−1(fi) closest to p, i.e., dist(p, qi) ≤ dist(p, fqi) for all f ∈ F . Note that qi is also a point in π−1(fi)
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closest to R(qi)p, i.e., dist(R(qi)p, qi) ≤ dist(R(qi)p, fqi) for all f ∈ F . This follows from fR(qi) ∈ F .

p = d0i

q1

Γ1

R(q1)p = d11

q2

Γ2

R(q2)p = d12

q3

Γ3

R(q3)p = d13

Define d0i := p, d1i := R(qi)p, Γi := G[d0i , d
1
i ], and

Γ :=
⋃
Γi. Note that dist(p, qj) ≤ dist(dεi , fqj) for

all f ∈ F . Indeed, this is clear for ε = 0. Taking
ε = 1, we have

dist(p, qj) ≤ dist
(
p,R(qi)R(qj)f

R(qj)qj
)
=

= dist
(
R(qi)p, fqj

)
= dist(d1i , fqj)

for all f ∈ F .

ci = fcj

qi
fqj

dεi

fdδj

γ

Clearly, π identifies the d1i ’s. Let us show that π identifies in Γ only the points d1i .
The point πp is not a fixed point of ι, hence, π cannot identify d1i and d0j = p. Suppose
that πci = πcj for ci ∈ Γi and cj ∈ Γj . This means that fcj = ci for some f ∈ F .
We assume that qi 6= fqj since i = j and f = 1, otherwise. Let dδj denote an end of

Γj closest to cj and dεi , an end of Γi closest to ci. Since p /∈ G≺qi, fqj≻ by the choice
of p, we have fqj /∈ G≺dεi , qi≻ ∋ p. Without loss of generality, we can assume that
dist(dεi , ci) ≤ dist(dδj , cj) = dist(fdδj , fcj) and that cj 6= dδj . The lenght4 of the path γ :=

G[dεi , ci]∪G[fcj , fqj] is less or equal than that of G[fdδj , fcj ]∪G[fcj , fqj ] = G[fdδj , fqj].

Consequently, dist(dεi , fqj) ≤ dist(fdδj , fqj). Since

dist(fdδj , fqj) = dist(dδj , qj) = dist(p, qj) ≤ dist(dεi , fqj),

we conclude that dist(dεi , fqj) = dist(fdδj , fqj). Thus, γ = G[dεi , fqj] and, in view of fqj /∈ G≺dεi , qi≻,

the point ci has to coincide with dεi . From dist(fdδj , fqj) = dist(dεi , fqj), we conclude that fcj = ci
= fdδj . A contradiction.

The involution ι identifies one half of πΓi with the other since R(qi) induces in Σ the isometry ι. Those
are the only identifications in πΓ by ι. The curve µi := τπΓi begins with τπp and ends with τfi. The only
pairwise intersection between the µi’s is τπp. We can assume that µ1, µ2, . . . , µn are listed in the clock-
wise sense with respect to the standard orientation of CP1. For every i, choose a small open disc Di ⊂
CP

1 centred at τfi such that Di intersects µi in some final segment si ⊂ µi and such that the Di’s are
pairwise disjoint. Also, choose a simple closed curve ωi ⊂ Di that begins with pi ∈ si, pi 6= τfi, and winds
once around τfi in the clockwise sense. Let σi ⊂ µi denote the segment that begins with τπp and ends

τπp

τfn

τf1

τf2
µn

p1

µ2

σ1 σ−1
1

ω1

D1

Dn
D2

CP
1

πp

ιπp

fi

γi

τ−1Di

Σ

4When a path x ends with the start point of a path y, we denote by x ∪ y their path-product.
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with pi. The lift η of
⋃
(σi ∪ ωi ∪ σ

−1
i ) based at πp is contractible in Σ and runs over almost all πΓ.

Deforming inside the open discs τ−1Di the parts of η that are lifts of the ωi’s, we arrive at a curve γ ⊂ πΓ
contractible in Σ. Clearly, γ runs over all πΓ, once over each πΓi. For the same reason, every element in
F = π1(Σ, πp) is represented by a curve included in πΓ since the group π1

(
CP

1\{τf1, τf2, . . . , τfn}, τπp
)

is generated by the elements [σi∪ωi∪σ
−1
i ]. We assume that γi := πΓi begins with πp, passes through fi,

and ends with ιπp. The group F = π1(Σ, πp) is generated by the elements [γi−1 ∪ γ
−1
i ] (the indices are

modulo n). Therefore, the elements λ2i := γ1∪γ
−1
2 ∪· · ·∪γ2i−1∪γ

−1
2i and λ2i+1 := γ2∪γ

−1
3 ∪· · ·∪γ2i∪γ

−1
2i+1,

i = 1, 2, . . . , n2 , also generate F . Note that λn = γ is contractible in Σ by construction.
The lift Λ2i of λ2i based at p is formed by Γ1,Γ

′
2, . . . ,Γ

′
2i, conjugates of Γi’s. Let q

′
i ∈ Q denote the

middle point of Γ′
i. Then R(q

′
2i) . . . R(q

′
2)R(q1)p is the end of Λ2i. Hence, [λ2i] = R(q′2i) . . . R(q

′
2)R(q1).

The lift Λ2i+1 of λ2i+1 based at p is formed by Γ2,Γ
′′
3 , . . . ,Γ

′′
2i+1, conjugates of Γi’s. Let q

′′
i ∈ Q denote the

pΓ′
n = Γn

q′n = qn

q′1 = q1 Γ1

q′1

Γ′
2

q′3

Γ′
3

Γ′′
n

q′′n

Γ2

q2 = q′′2

Γ′′
3

q′′3

middle point of Γ′′
i . Then R(q′′2i+1) . . . R(q

′′
3 )R(q2)p is the

end of Λ2i+1. Hence, [λ2i+1] = R(q′′2i+1) . . . R(q
′′
3 )R(q2).

We put q′′2 := q2 and q′1 := q1.
Let us show that q′′j = R(q1)q

′
j . Note that if some f ∈ F

maps a point in Γ′
i to a point in Γ′′

i , then Γ′′
i = fΓ′

i. Since
R(q1) maps the beginning of Γ′

2 to p, we conclude that
R(q1)R(q

′
2) maps the end of Γ′

2 to p, the beginning of Γ2.
Hence, Γ′′

2 = R(q1)R(q
′
2)Γ

′
2 = R(q1)Γ

′
2. By induction on j,

we assume that Γ′′
j = R(q1)R(q

′
j)Γ

′
j = R(q1)Γ

′
j . Since R(q1)

maps the end of Γ′
j (which is the beginning of Γ′

j+1) to the end of Γ′′
j (which is the beginning of

Γ′′
j+1), we conclude that R(q1)R(q

′
j+1) maps the end of Γ′

j+1 to the beginning of Γ′′
j+1. Hence, Γ′′

j+1 =

R(q1)R(q
′
j+1)Γ

′
j+1 = R(q1)Γ

′
j+1.

Consequently, R(q′n) . . . R(q
′
2)R(q

′
1) = 1, which generates a representation ̺ : Hn → L such that

̺Gn = F . Being Gn and F the fundamental groups of Riemann surfaces of the same genus, ̺|
Gn

is an
isomorphism. So is ̺.

The converse can be readily shown with the help of the fundamental polygon for ̺Hn constructed in
the proof of Proposition 3.14 �

The formal multiplicative group generated by n copies
{
Ei(t) | t ∈ R

}
, i = 1, 2, . . . , n, of (R,+) is

denoted by En and called earthquake group. We distinguish the parts R+Hn and R−Hn of RHn related
to the sign of the area of a representation. Due to Remark 3.8, En acts from the right by means of SEs on

q
G≺p, q≻

p

d

G

d

R±Hn and, hence, on H±
n . Later (see Remark 5.24) we will extend

this action to RGn and to Tn.

4.2. Lemma [Ana1]. Let ̺, ̺′ ∈ RH5 be such that

̺(r4) = ̺′(r4), ̺(r5) = ̺′(r5), and Area ̺ = Area ̺′.
Then we can obtain ̺′ from ̺ by means of a finite number

of SEs of the types E2(t) and E3(t) �

4.3. Remark. Let p, q ∈ BW be distinct and let G be a full
geodesic different from G≺p, q≻ and intersecting G≺p, q≻ in some
point in BW . Then, on any side from G≺p, q≻, there exists some d ∈
G∩BW such that R(d)R(q)R(p) is hyperbolic. Indeed, the points d ∈
BW making R(d)R(q)R(p) parabolic form two curves (hypercycles)
equidistant from G≺p, q≻. The isometry R(d)R(q)R(p) is hyperbolic

exactly when d is outside the band limited by these curves.

4.4. Lemma. E5 acts transitively on R±H5.
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q4 q5

q′′1

q′′2

q′′3
q1

q2

q3

G

q′1

q4 q5

q1

G

q′1

E5(t)

E1(t
′)

Proof. Let ̺, ̺′ ∈ R+H5, that is, Area ̺ = Area ̺′ = π.
For suitable qi, q

′
i ∈ BW , we have ̺(ri) = R(qi) and ̺

′(ri) =
R(q′i).

By Lemma 3.11, the points q1, q2, q3 are on the side of the
normal vector to G≺q4, q5≻. Let G be a geodesic passing
through q′1 and intersecting G≺q4, q5≻ in some point in BW .
By Remark 4.3, R(q′′1 )R(q5)R(q4) is hyperbolic for some q′′1 ∈
G∩BW on the mentioned side. Hence, R(q′′1 )R(q5)R(q4) =
R(q′′2 )R(q

′′
3 ) for some q′′2 , q

′′
3 ∈ BW , which provides some ̺′′ ∈ RH5 by Corollary 3.16. Since q′′1 is on

the side of the normal vector to G≺q4, q5≻, it follows that Area ̺′′ = π by Lemma 3.11. By Lemma 4.2,
after applying to ̺ a finite number of SEs, we can assume that qi = q′′i , i = 1, 2, 3. Some SE involving
q4, q5 puts q5 into G≺q1, q

′
1≻ = G. Now, some SE involving q5, q1 provides q1 = q′1.

q1 = q′1 q′2
q2

q3E3(t)

q1 = q′1

q2

q′′3

q′′4

q′′5
q3

q4

q5

q′2

Since q1 = q′1 6= q′2, after applying (if necessary) some SE
that involves q2, q3, we obtain q

′
2 /∈ G≺q1, q2≻. By Remark 4.3,

there exist q′′3 ∈ G≺q2, q
′
2≻ and q′′4 , q

′′
5 ∈ BW such that the rela-

tion R(q′′3 )R(q2)R(q1) = R(q′′4 )R(q
′′
5 ) provides some ̺′′ ∈ RH5

with Area ̺′′ = π. As above, by Lemma 4.2, we can assume
that qi = q′′i , i = 3, 4, 5. By means of some SE involving q2, q3,

we arrive at q2 = q′2. It remains to apply Lemma 4.2 once more �

4.5. Theorem. En acts transitively on R±Hn.

Proof. Let ̺, ̺′ ∈ R+Hn, i.e., Area ̺ = Area ̺′ = (n − 4)π. For suitable qi, q
′
i ∈ BW , we have

̺(ri) = R(qi) and ̺
′(ri) = R(q′i).

q4

q1

q3

q2

q5

q4

The isometry R(q3)R(q2)R(q1) is hyperbolic because ̺ ∈ RHn.
Indeed, if it is parabolic, q3 belongs to the hypercycle H =

{
q ∈

BW | R(q)R(q2)R(q1) is parabolic
}
. Applying a ‘small’ SE involv-

ing q4, q5 if necessary, we can assume G≺q3, q4≻ to be transversal
to H at q3. Now a suitable SE involving q3, q4 provides an elliptic
R(q3)R(q2)R(q1) (see Remark 4.3). A contradiction.

q1
q2

q3

q4
q5

qn

b
d

Hence, there exist b, d ∈ BW such that R(d)R(b)
R(q3)R(q2)R(q1) = 1, which generates a representation
̺0 : H5 → L. The relation R(qn) . . . R(q5)R(q4)R(b)
R(d) = 1 generates a representation ̺1 : Hn−1 → L.
Take for p0 ∈ SW a fixed point of R(b)R(d) = R(q3)
R(q2)R(q1). By Remark 2.3,

Area ̺ = Area(p0, p1, p2, p3, p4, . . . , pn−1) = Area(p0, p1, p2, p3) + Area(p3, p4, . . . , pn−1, p0) =

= Area(p0, p1, p2) + Area(p3, p4, . . . , pn−1) = Area ̺0 + Area ̺1

due to p0 = p3. By Remark 3.4, Area ̺0 = π and Area ̺1 = (n − 5)π. By Theorem 3.15, ̺0 ∈ R+H5

and ̺1 ∈ R+Hn−1.
We are going to express every SE of ̺1 in terms of suitable SEs of ̺ and an SE involving d, b (the latter

is simply a rechoice of b and d). The SEs of ̺1 involving qi−1, qi, i = 5, 6, . . . , n, are in fact some SEs
of ̺. All we need is to execute the SEs of ̺1 involving the pairs b, q4 and qn, d. By symmetry, we deal
only with the first one.

By Remark 4.3, we can find q′′3 ∈ G≺b, q4≻∩BW on the side of the normal vector to G≺b, d≻ such
that R(d)R(b)R(q′′3 ) is hyperbolic and, hence, R(d)R(b)R(q′′3 ) = R(q′′1 )R(q

′′
2 ) for some q′′1 , q

′′
2 ∈ BW .

As in the proof of Lemma 4.4 (that is, by Corollary 3.16, Lemma 3.11, and Lemma 4.2), we obtain
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q1

q2

q3

q4

q′′1

q′′2

b
d

q′′3

qi = q′′i , i = 1, 2, 3, after a few SEs involving q1, q2 and q2, q3. Now, the point q3
is in G≺b, q4≻. Thus, in order to execute a given SE of ̺1 involving b, q4, we can
simply apply a suitable SE of ̺ involving q3, q4.

In the same manner, we can ‘cut’ ̺′ into ̺′0 and ̺′1 by means of appropriate
b′, d′ ∈ BW . By induction on n, we can assume that ̺1 = ̺′1. It remains to apply
Lemma 4.2 �

The relation R(q5)R(q4)R(q3)R(q2)R(q1) = 1 suits [Ana1, Conjecture 1.1].
We strongly believe that this conjecture is valid for the Poincaré disc.

Let ̺ ∈ R±Hn, ̺(ri) = R(qi), qi ∈ BW . Following the proof of Proposition 3.14, associate to
̺ a standard fundamental polygon P̺ for ̺Hn with vertices p1, p2, . . . , pn−1 by taking p0 := qn and
pi := R(qi)pi−1, i = 1, 2, . . . , n− 1. The polygon P̺ is convex and the sum of its interior angles equals
±π. In order to describe ̺, it suffices to mark the vertex qn and the middle points q1, q2, . . . , qn−1 of
the edges of P̺. Clearly, pn−1 = pn = p0 = qn. We alter our convention concerning the notation of
the vertices of P̺ : the indices of the vertices p1, p2, . . . , pn−1 are modulo n− 1. According to the new
convention, p0 = pn−1 and pn = p1.

We are going to study the group AutHn. Fix some discrete subgroup Hn ≤ L and consider the
representations ̺ ∈ R±Hn such that ̺Hn = Hn. The group AutHn acts from the right on these
representations. In particular, every DT can be regarded as an element in AutHn : the automorphism
corresponding to Ei is given by Eiri−1 = ri, Eiri = riri−1ri, and Eirj = rj for j /∈ {i− 1, i}.

Denote by Aut+Hn the subgroup in AutHn generated by all the Ei’s. In addition, there is an
automorphism J ∈ AutHn given by Jri := rn−i (cf. Remark 3.3). Obviously, J2 = 1.

Define S ∈ AutHn as Sri := ri+1 for all i. It is immediate that ESi = Ei+1. Looking at the
polygon P̺,

qn−1 qn

q1

q2
E1

qn−1

qn

q1

q2
E2

qn−1

qn

q1

q2

E3

qn−2 qn−1

qn

q1
En−1

qn−2

qn−1

qn

q1
En

•••

we can see that S = E1E2 . . . En−1 ∈ Aut+Hn. Also, the vertices p
′
i of the standard polygon P̺′ for the

representation ̺′ := ̺SEn = ̺E1E2 . . . En are given by p′i = pi+1, where the pi’s stand for the vertices
of P̺. Therefore, acting by Aut+Hn on the representations, we can shift the indices both of the vertices
and of the marks of the middle points of the edges of P̺.

Denote by Ih ∈ AutHn the conjugation by h ∈ Hn. Clearly, IAh = IAh for all A ∈ AutHn. Looking
at the polygon P̺ ∪R(q1)P̺,

q1

q2

q3qn−2

qn−1

qn E−1
2 q2

q3qn−2

qn−1

qn
q1

E−1
3 q3

qn−2

qn−1

qn
q1

q2

E−1
4

•••
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qn−3

qn−2

qn−1

qn
q1

q2

E−1
n−3

qn−2
qn−1

qn
q1

q2 qn−3

E−1
n−2

qn−1
qn
q1

q2 qn−3

qn−2

E−1
n−1

q1 qn
q2

q3 qn−2

qn−1

(SEn)
−1

•••

we can see that Ir1 = E−1
2 E−1

3 . . . E−1
n−1(SEn)

−1. Hence,

Ir1 = E1E2 . . . En−1EnEn−1 . . . E3E2.

It follows from ISri = Iri+1
that IHn

⊂ Aut+Hn.

4.6. Theorem. The group AutHn is generated by J and by the normal subgroup Aut+Hn of

index 2.

Proof. Given ̺, ̺′ ∈ RHn such that ̺Hn = ̺′Hn = Hn ≤ L, we can assume that ̺, ̺′ ∈ R+Hn

acting by J if necessary. Hence, the vertices p1, p2, . . . , pn−1 and p′1, p
′
2, . . . , p

′
n−1 of the convex polygons

P := P̺ and P ′ := P̺′ are listed in ∂P and in ∂P ′ in the counterclockwise sense. It suffices to show

that, acting by Aut+Hn on both ̺ and ̺′, we can make them coincide.

Note that the ‘DT E involving qn−1, q1’ is expressible in terms of Ei’s : E = E1EnE
−1
1 .

qn−1

qn

q1

q2
E1

qn−1 qn

q1

q2
En

qn−1

qn

q1

q2
E−1

1

qn−1

qn

q1

q2

Dealing with the representations ̺ and ̺′ modulo the action by Aut+Hn and taking into account that
the automorphism SEn ∈ Aut+Hn shifts the indices of the vertices and of the marks of the middle points
of the edges, we can actually think of the representations as their standard counterclockwise-oriented
polygons P and P ′, but with unmarked vertices and middle points. As shown above, we are able to
execute any DT that involves the middle points of adjacent edges of the unmarked polygons, acting by
Aut+Hn. Also, the inclusion IHn

⊂ Aut+Hn allows us to change P and P ′ by their conjugates.

Let ̺(ri) = R(qi) and ̺′(ri) = R(q′i), qi, q
′
i ∈ BW . Every involution r ∈ Hn is determined by

its fixed point q and induces in Σ the hyperelliptic involution ι. In particular, πq = fi for a suitable
i = 1, . . . , n (see the proof of Proposition 4.1). Two involutions r, r′ are conjugated in Hn (equiva-
lently, by an element in Gn) if and only if their fixed points q, q′ satisfy the relation πq = πq′. Hence,

pn−2 qn−1

en−1

pn−1

q1e1

p1

q2e2

p2

P

the R(qi)’s list all conjugate classes of the involutions in Hn. Obviously, the R(q′i)’s
represent different conjugate classes. Therefore, every qi is a conjugate of some q′j
and vice versa.

The edge ei of P has the ends pi−1, pi and the middle point qi, i = 1, 2, . . . , n−1.
Similarly, we introduce the edges e′i of P

′. If ei is a conjugate of some e′j, we say

that ei and e
′
j are good. Note that ei cannot be a conjugate of two e′j ’s at the same

time. Let k denote the number of good ei’s. We proceed by induction on k ≥ 0.
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pi−2

qi−1

good old ei−1

pi−1

qi

bad old ei

good new eipi

new ei−1

Suppose that ei−1 is a good edge and that ei is not (the indices are modulo
n−1). Apply to ̺ the DT that involves qi−1, qi. This does not alter the edges ej ,
j 6= i−1, i. The new ei is a conjugate of the old ei−1 and, hence, is good. We can
assume that the new ei−1 is bad since, otherwise, we are done by induction on k.
So, we are able to permute the types of any two adjacent edges, one good and the
other bad, finally reaching the situation where the good edges of P (and of P ′)
form a sequence in ∂P (and in ∂P ′). Moreover, we can assume that the first edge
e in the sequence in ∂P and the first edge e′ in the sequence in ∂P ′ are conjugated
(both sequences are read in the counterclockwise sense). By means of DT’s,
we can change P ′ by any of its conjugates. Also, by means of DT’s, we can shift

the marks of the vertices and of the middle points in P and in P ′. So, we assume that P and P ′ are on
the same side from e1 = e = e′ = e′1. (If k = 0, we assume only that pn−1 = p′n−1.)

e1 = e′1

e2

e′2

The fact that conjugated points in P are necessarily in ∂P and the same fact
concerning P ′ imply that e2 = e′2. In this way, we can show that ei = e′i, i =
1, 2, . . . , k. Denote by s ⊂ ∂P the segment formed by all the good edges of P .
Clearly, s ⊂ ∂P ′ is the segment formed by all the good edges of P ′. (If k = 0,
we have s = pn−1 = p′n−1.)

Suppose that k 6= n. We will study how the conjugates of bad edges of P ′ intersect the polygon P .
Let b′ 6= b′′ be such edges. Looking at the tessellation of BW related to P ′, we see that

(4.6.1) The edges b′ and b′′ can intersect only in points that are conjugates of p′i’s, i.e., conjugates of
pn−1 = p′n−1 = qn. Therefore, b

′ and b′′ do not intersect in the interior of P .

(4.6.2) If b′ intersects the interior of P , it does not intersect the interior of s. Otherwise, b′ enters the
interior of P right after its intersection s ∩ b′ since P is convex. Hence, it enters the interior of P ′.
A contradiction.

(4.6.3) The edge b′ cannot pass through two middle points of edges of P because the conjugates of
middle points of edges of P coincide with those for P ′.

(4.6.4) For every middle point qi of a bad edge of P , there exists a unique conjugate b′ of an edge of P ′,
necessarily bad, that passes through qi and, therefore, through the interior of P .

We say that the intersection of ∂P with some conjugate of a bad edge of P ′ is proper if this intersection
is different from the vertices of P and from the middle points of the edges of P . It is immediate that
the number of proper intersections is the same in each half of a bad edge of P . Let l denote the total
number of proper intersections in ∂P . We proceed by induction on l.

qj
qi

P

b′
b′′

s

Let qi be the middle point of a bad edge of P and let b′ be a conjugate of a
bad edge of P ′ that passes through qi and through the interior of P according
to (4.6.4). By (4.6.2), b′ cuts P into two closed parts and s is entirely included
in one of them. If the other part contains a single middle point of an edge of
P , namely qi, we arrive at the desired situation to be studied later. Other-
wise, by (4.6.4), we take a conjugate b′′ of a bad edge of P ′ passing through the
extra middle point qj and through the interior of P . Note that qj /∈ b′ by (4.6.3).
By (4.6.1), b′ and b′′ do not intersect in the interior of P . Now we take b′′ in place of b′ and so on . . .
Finally, we arrive at the situation (or at the one symmetric to it) where b′ ∩ ∂P = {qi, q} and q ∈
G(pi, qi+1).

In this situation, we execute the DT Ei+1. By induction on k, we can assume that the new ei is bad.
We will show that the new l is strictly less than the old one.

Note that Ei+1 removes from P the triangle ∆(pi, qi+1, pi−1) and glue to P the triangle ∆
(
pi+1, qi+1,

R(qi+1)pi−1

)
. Since these triangles are conjugated, it suffices to show that the number of proper in-

tersections included in G(qi+1, pi−1) is strictly less than that in G(pi, qi+1). So, we consider only those
parts of conjugates of bad edges of P ′ that pass via the interior of ∆(pi−1, pi, qi+1).
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The following types and quantities of such parts are possible:

pi−1qipi

q

qi+1

R(qi+1)pi−1 R(qi+1)qi pi+1 = R(qi+1)pi

∆(pi−1, pi, qi+1)

∆
(
R(qi+1)pi−1, pi+1, qi+1

)

b′

P

• l1 parts whose ends are a point in G(pi, qi)
and a point in G(pi, q),
• 1 part with ends qi and q,
• l2 parts whose ends are a point in G(qi, pi−1)
and a point in G(q, qi+1),
• l3 = 0, 1 parts whose ends are a point in
G(qi, pi−1) and qi+1,
• l4 parts whose ends are a point in G(qi, pi−1)
and a point in G(qi+1, pi−1),
• l5 parts whose ends are pi−1 and a point in
G(q, qi+1),
• l6 parts whose ends are a point in G(q, qi+1)
and a point in G(qi+1, pi−1).

Since the number of proper intersections is the same in each half of ei = G(pi, pi−1), we obtain
l1 = l2 + l3 + l4. The number of proper intersections included in G(pi, qi+1) equals l1 + 1 + l2 + l5 + l6.
The number of such intersections related to G(qi+1, pi−1) is equal to l6 + l4 �

A straightforward verification shows that EJi = E−1
n+1−i. Denote

S := E1E2 . . . En−1, Ŝ := En−1 . . . E2E1, I := Irn .

It follows from ISri = Iri+1
, ESi = Ei+1, and Ir1 = E1E2 . . . En−1EnEn−1 . . . E3E2 that Ir1 = SŜS and

I = Irn = IS
−1

r1
= SŜ. Hence, SŜSŜ = 1. The relations rn . . . r2r1 = 1, ISri = Iri+1

, and Sn = 1 imply

the relation IS
n

. . . IS
2

IS = 1 which can be rewritten as (S−1I)n = 1, i.e., as Ŝn = 1. It is immediate
that EiEj = EjEi if |i− j| ≥ 2. As is easy to see, the relation

qi+1

qi−1

qi

Ei

qi+1

qi−1

qi

Ei+1

qi+1

qi

qi−1

Ei

qi

qi+1

qi−1

qi+1

qi−1

qi

Ei+1

qi+1

qi

qi−1

Ei

qi

qi+1

qi−1

Ei+1

qi

qi+1

qi−1
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EiEi+1Ei = Ei+1EiEi+1 is valid for all i. It is possible to conclude from [Stu] that the defining relations
of Aut+Hn are (the indices are modulo n) :

S = E1E2 . . . En−1, Ŝ = En−1 . . . E2E1, Sn = 1, Ŝn = 1, SŜSŜ = 1,

ESi = Ei+1, EiEi+1Ei = Ei+1EiEi+1, EiEj = EjEi if |i− j| ≥ 2

(cf. [Bir]). The additional defining relations of AutHn are EJi = E−1
n+1−i and J

2 = 1.

5. W. M. Goldman’s Theorem

Let n ≥ 6 be even. Recall that Gn denotes the fully characteristic torsion-free subgroup of index 2
in Hn constituted by the words of even length in the ri’s. By Proposition 4.1, Gn is the fundamental
group of a closed orientable Riemann surface of genus n

2 − 1. In this section, we will prove the

5.1. Theorem [Gol1, Corollary C]. Let ̺ : Gn → L be a representation. Then ̺ ∈ RGn if and only

if Area ̺ = ±2(n− 4)π.

We are going to explore the ideas developed in the hyperelliptic case. A given representation ̺ :
Gn → L defines an action of Gn on BW . We write gp instead of ̺(g)p for all g ∈ Gn and p ∈ BW .
Working in terms of the ri’s, we are allowed to apply ̺ to any expression of even length in ri’s. Hence,
the expression rirjp makes sense, whereas rip does not.

wn−2p

wn−1q = q

wnp

wn+1q w2n−4p

w2n−3q

w0p = p

w1q

w2pw3qWe will deal with a ‘fundamental polygon’ Q for ̺Gn that mimics the
duplicated fundamental polygon Pn for the hyperelliptic case, namely,
Q := Pn ∪ ̺(rn)Pn (see the last picture in the proof of Theorem 3.15).
In the hyperelliptic case, the polygon Pn is generated by the choice of
p = pn ∈ BW because it has a single cycle of vertices. The point
pn−1 ∈ BW is given by pn−1 = ̺(rn)pn. Since, in the nonhyperelliptic
case, we have no reflection ̺(rn) available and the polygon Q should have
two cycles of vertices, we choose two points p, q ∈ BW that are intended
to respectively play the roles of pn, pn−1. In this way, for suitable wi ∈ Gn,
the even vertices of the polygon Q have the form w2jp and the odd ones, the form w2j+1q.

The proof of Theorem 5.1 is ‘almost’ the same as that of Theorem 3.15. We simply adapt the
arguments of the latter to the nonhyperelliptic case by avoiding the use of the elements from Hn \Gn.
For instance, Corollary 5.8, Remark 5.9, Remark 5.10, Lemma 5.12, and Lemma 5.13 that we prove below
are analogs of the following hyperelliptic assertions: Lemma 3.2, Remark 3.3, Remark 3.4, Lemma 3.9,
and Proposition 3.13.

5.2. Notation. Denote by S, I, and J the automorphisms of Hn given by the rules Sri = ri+1,
I : h 7→ hrn , and Jri := rn−i. The same symbols denote the induced automorphisms of Gn. For 0 ≤
i ≤ n − 1, denote vi := ri . . . r2r1 and regard the indices of the vi’s modulo n. So, v0 = vn = 1.
For 0 ≤ i ≤ n− 2, introduce

wi := vi if i is even, wi := virn if i is odd, wi+n−1 := I(wi)

and regard the indices of the wi’s modulo 2n − 2. Clearly, w0 = wn−1 = w2n−2 = 1. Note that
wi+n−1 = I(wi) for all i. As is easy to see, the formula wi = virn works for all odd i such that
1 ≤ i ≤ n− 1.

The elementary properties of the wi’s that we use in what follows are gathered in the
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5.3. Lemma.
(1) w−1

i+n−1wi+n = w−1
i+1wi for all i.

(2) J(wi) = wn−1−i for all i.
(3) S(wi)w1 = wi+1 for all even i such that 0 ≤ i ≤ n− 2.
(4) S(wi) = wi+1 for all odd i such that 1 ≤ i ≤ n− 3.
(5) S(wi) = w1wi+1 for all odd i such that n− 1 ≤ i ≤ 2n− 3.
(6) S(wi)w1 = w1wi+1 for all even i such that n ≤ i ≤ 2n− 4.
(7) rnriwi−1 = wi+n−1 and rnriwi = wi+n−2 for all 1 ≤ i ≤ n− 1.
(8) rnri+1wi = wi+n, rnri+1wi+1 = wi+n−1, ri+1rnwi+n−1 = wi+1, and ri+1rnwi+n = wi for all

2 ≤ i ≤ n.

Proof. (1) Let 0 ≤ i ≤ n− 2. If i is even, we have

w−1
i+n−1wi+n = (rnwirn)

−1rnwi+1rn = rnv
−1
i vi+1 = rnv

−1
i ri+1vi = w−1

i+1wi.

If i is odd, we have

w−1
i+n−1wi+n = (rnwirn)

−1rnwi+1rn = v−1
i vi+1rn = v−1

i ri+1virn = w−1
i+1wi.

For n− 1 ≤ i ≤ 2n− 3, the fact follows by taking inverses in the equalities that are already established
for 0 ≤ i ≤ n− 2.

(2) Let 0 ≤ i ≤ n− 2. It follows from the relation rn . . . r2r1 = 1 that

J(wi) = J(vi) = rn−i . . . rn−2rn−1 = vn−1−irn = wn−1−i

if i is even and that

J(wi) = J(virn) = rn−i . . . rn−2rn−1rn = vn−1−i = wn−1−i

if i is odd. Now, for n− 1 ≤ i ≤ 2n− 3, we obtain

J(wi) = J(rnwi−n+1rn) = rnwn−1−i+n−1rn = rnw2n−2−irn = w3n−3−i = wn−1−i.

(3) The case of i = 0 is immediate. For 2 ≤ i ≤ n−2, we have S(wi)w1 = S(vi)r1rn = vi+1rn = wi+1.
(4) S(wi) = S(virn) = vi+1 = wi+1.
(5) S(wi) = S(rnwi−n+1rn) = S(rnvi−n+1rn) = r1vi−n+2 = r1wi−n+2rn = r1rnwi+1 = w1wi+1.
(6) S(wi)w1 = S(rnwi−n+1rn)w1 = S(rnvi−n+1)r1rn = r1vi−n+2rn = r1wi−n+2rn = w1wi+1.
(7) As is easy to see, riwi−1 = wirn and riwi = wi−1rn for all 1 ≤ i ≤ n − 2. Therefore,

rnriwi−1 = rnwirn = I(wi) = wi+n−1 and rnriwi = rnwi−1rn = I(wi−1) = wi+n−2. For i = n − 1,
we have rnrn−1wn−2 = 1 = w2n−2 and rnrn−1wn−1 = rnrn−1 = rnvn−2rn = I(wn−2) = w2n−3 since
rnrn−1 . . . r2r1 = 1, rn−1 = rn−2 . . . r2r1rn, and wn−1 = 1.

(8) The first two equalities are in fact shown in (7). The last two equalities follow immediately from
the first two �

Given p, q ∈ BW , define

Arean(p, q; ̺) := Area(w0p, w1q, . . . , wn−2p, wn−1q, . . . , w2n−4p, w2n−3q),

Areai+1(p, q; ̺) := Areai(p, q; ̺S).

5.4. Remark. The relation wi+n−1 = rnwirn valid for all i implies Arean(p, q; ̺) = Arean(q, p; ̺I).
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5.5. Lemma. Arean(p, q; ̺) = Area1(w1q, p; ̺).

Proof. By definition,

Area1(w1q, p; ̺) = Area
(
S(w0)w1q, S(w1)p, . . . , S(wn−2)w1q, S(wn−1)p, . . . , S(w2n−4)w1q, S(w2n−3)p

)
.

By Lemma 5.3 (3–6),

Area1(w1q, p; ̺) = Area(w1q, w2p, . . . , wn−1q, w1wnp, . . . , w1w2n−3q, w1w2n−2p).

Taking into account that w1wn = w1rnw1rn = 1 and that w0 = wn−1 = w2n−2 = 1, by Remark 2.3, we
obtain

Area1(w1q, p; ̺) = Area(w1q, w2p, . . . , wn−1q, w1wnp) + Area(w1wnp, . . . , w1w2n−3q, w1w2n−2p, w1q) =

= Area(w0p, w1q, w2p, . . . , wn−1q) + Area(wnp, . . . , w2n−2p, q) =

= Area(w0p, w1q, . . . , wn−2p, wn−1q) + Area(wn−1q, wnp, wn+1q, . . . , w2n−3q, w0p) =

= Area(w0p, w1q, . . . , wn−2p, wn−1q, . . . , w2n−3q) = Arean(p, q; ̺) �

5.6. Lemma. Arean(p, q; ̺) is independent of the choice of p and q.

Proof. We will show the independence of q. (The independence of p can be shown in a similar way.)
Taking c = p in (2.2), we obtain

Arean(p, q; ̺) =
∑

even i

Area∆(p, wip, wi+1q) +
∑

odd i

Area∆(p, wiq, wi+1p) =

(5.7) =
∑

even i

Area∆(q, w−1
i+1p, w

−1
i+1wip) +

∑

odd i

Area∆(q, w−1
i wi+1p, w

−1
i p).

Let us show that (5.7) is the area (calculated with respect to the centre q) related to some closed

piecewise geodesic path C independent of the choice of q. Denote by
i

−→ the side opposite to the vertex
q of the ith triangle involved in (5.7). This side is oriented with respect to the orientation of the ith
triangle. The consecutive vertices of C are described by the following list:

w−1
1 p

0
−→ w−1

1 w0p = w−1
n−1wnp

n−1
−→ w−1

n−1p
n−2
−→ w−1

n−1wn−2p = w−1
2n−3w0p

2n−3
−→ w−1

2n−3p
2n−4
−→ . . .

. . .
2j
−→ w−1

2j+1w2jp = w−1
2j+n−1w2j+np

2j+n−1
−→ w−1

2j+n−1p
2j+n−2
−→ w−1

2j+n−1w2j+n−2p = w−1
2j−1w2jp

2j−1
−→ . . .

. . .
3

−→ w−1
3 p

2
−→ w−1

3 w2p = w−1
n+1wn+2p

n+1
−→ w−1

n+1p
n

−→ w−1
n+1wnp = w−1

1 w2p
1

−→ w−1
1 p,

where the equalities are provided by Lemma 5.3 (1). In this list, the mentioned sides of even triangles
appear in the order

0
−→

n−2
−→ . . .

2j
−→

2j+(n−2)
−→ . . .

n
−→

and the mentioned sides of odd ones, in the order

n−1
−→

n−1+(n−2)
−→ . . .

2j+1
−→

2j+1+(n−2)
−→ . . .

1
−→ .



20 SASHA ANAN′IN AND EDUARDO C. BENTO GONÇALVES

Since n− 2 and n− 1 are coprime, every side appears exactly once in the list �

5.8. Corollary. Areai(p, q; ̺) does not depend on the choice of p, q, and i �

5.9. Remark. By Lemma 5.3 (2), Area ̺J = −Area ̺.

In the sequel, we assume without loss of generality that Area ̺ ≥ 0.

p

w2p

w3p

wn−3p

wn−2p

wn+1p

wn+2p

w2n−4p

w2n−3p

5.10. Remark. Take a fixed point c = p = q ∈ BW of
̺(w1). It follows from wn−1 = w0 = 1 and wn = w−1

1 that
w1q = wn−1q = wnp = w0p = c. Therefore,

Area∆(c, w0p, w1q) = Area∆(c, w1q, w2p) =

= Area∆(c, wn−2p, wn−1q) = Area∆(c, wn−1q, wnp) =

= Area∆(c, wnp, wn+1q) = Area∆(c, w2n−3q, w0p) = 0.

Hence, Area ̺ ≤ 2(n−4)π. When Area ̺ = 2(n−4)π, we say that
Area ̺ is maximal. In this case, p ∈ SW and the cycles

p, w2p, w3p, . . . , wn−2p, p, wn+1p, wn+2p, . . . , w2n−3p

are positive.

h

s

t

p1
p2

q2

q1

h

h

5.11. Remark. Let p1, p2, q2, q1 ∈ SW be a positive cycle and suppose that
some isometry h ∈ L maps pi to qi, i = 1, 2. Then h is hyperbolic and the cycle
p1, s, p2, q2, t, q1 is positive, where s ∈ SW and t ∈ SW stand for the repeller and
for the attractor of h.

5.12. Lemma. Let ̺ : Gn → L be a representation with maximal Area ̺ and

let d ∈ SW be a fixed point of ̺(w1). Then the cycles

d, w2d, r3r1d, w3d, r4r1d, w4d, . . . , rn−3r1d, wn−3d, rn−2r1d, wn−2d

and

d, wn+1d, rnr3d, wn+2d, rnr4d, wn+3d, . . . , rnrn−3d, w2n−4d, rnrn−2d, w2n−3d

are positive.

Proof. The cycles d, wid, wi+1d and d, wi+n−1d, wi+nd are positive for all 2 ≤ i ≤ n − 3 by Re-
mark 5.10. Hence, by Lemma 5.3 (8), the cycles rnri+1d, wi+nd, wi+n−1d and ri+1rnd, wi+1d, wid are
positive. In other words, the cycles wn+i−1d, rnri+1d, wn+id and wid, ri+1rnd, wi+1d are positive. Since
d is a fixed point of w1 = r1rn, we have ri+1r1d = ri+1r1r1rnd = ri+1rnd. Therefore, the cycles
wid, ri+1r1d, wi+1d and wn+i−1d, rnri+1d, wn+id are positive for all 2 ≤ i ≤ n − 3. By Remarks 5.10
and 3.7, the cycles in Lemma 5.12 are positive �

5.13. Lemma. In the situation of Lemma 5.12, the isometry hi := ̺(riri−1) is hyperbolic for all i
(the indices are modulo n). Denote by si−1 and ti the repeller and the attractor of hi. Then, for every
d ∈ {sn, t1}, the cycle

t1, s2, w2d, s3, t3, w3d, s4, t4, w4d, . . . , sn−2, tn−2, wn−2d, tn−1, sn

is positive.
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sn−2

tn−2

wn−2d
tn−1 sn

t1

s2

w2d

s3

t3

w3d
s4t4

w4d

h1

h3
hn−1

h4
h5

hn−2

Proof. The cycle wi−2d, ri−1r1d, rir1d, wid is positive for all
3 ≤ i ≤ n − 1. Indeed, for 4 ≤ i ≤ n − 2, this follows straight-
forwardly from Lemma 5.12. For i = 3, the cycle has the form
d, w2d, r3r1d, w3d because w1d = d and r2r1 = w2. It is pos-
itive by Lemma 5.12. The relation rnrn−1 . . . r2r1 = 1 implies
wn−2 = vn−2 = rn−1rn. From d = w1d and w1 = r1rn, we
obtain rn−1r1d = rn−1r1r1rnd = rn−1rnd = wn−2d. Taking
wn−1 = 1 into account, we can see that, for i = n− 1, the cycle
has the form wn−3d, rn−2r1d, wn−2d, d. By Lemma 5.12, it is
positive.

The isometry hi maps ri−1r1d to rir1d and wi−2d to wid for
all 3 ≤ i ≤ n− 1. By Remark 5.11, hi is hyperbolic and the cycle

(5.14) wi−2d, si−1, ri−1r1d, rir1d, ti, wid, 3 ≤ i ≤ n− 1,

is positive.
The cycle ri−1r1d, wi−1d, rir1d is positive for all 4 ≤ i ≤ n− 2 by Lemma 5.12. We can combine this

cycle and the cycle (5.14) by Remark 3.7 and obtain the positive cycle wi−2d, si−1, ri−1r1d, wi−1d, rir1d,
ti, wid for all 4 ≤ i ≤ n− 2. The first and the second parts of this cycle provide the positive cycles

(5.15) wi−1d, si, rir1d, wid, 3 ≤ i ≤ n− 3,

(5.16) wi−1d, rir1d, ti, wid, 4 ≤ i ≤ n− 2.

Combining the cycles (5.15) and (5.16) by Remark 3.7, we get the positive cycle

(5.17) wi−1d, si, ti, wid, 4 ≤ i ≤ n− 3.

Taking into account that w1d = d and r2r1 = w2, we can see that d, s2, w2d, r3r1d, t3, w3d and
w2d, s3, r3r1d, w3d are the cycles (5.14) and (5.15) with i = 3. Combining these cycles by Remark 3.7
and excluding the term r3r1d, we arrive at the positive cycle

(5.18) d, s2, w2d, s3, t3, w3d.

As was shown above, rn−1r1d = wn−2d. Taking the cycle (5.16) with i = n− 2 and the cycle (5.14)
with i = n − 1, we obtain the positive cycles wn−3d, rn−2r1d, tn−2, wn−2d and wn−3d, sn−2, rn−2r1d,
wn−2d, tn−1, d since wn−1 = 1. Combining these cycles by Remark 3.7 and excluding the term rn−2r1d,
we arrive at the positive cycle

(5.19) wn−3d, sn−2, tn−2, wn−2d, tn−1, d.

The cycle d, w2d, w3d, . . . , wn−2d is positive by Lemma 5.12. Combining this cycle with the cycles
(5.18), (5.17) for all i, and (5.19), we get the positive cycle

(5.20) d, s2, w2d, s3, t3, w3d, s4, t4, w4d, . . . , wn−3d, sn−2, tn−2, wn−2d, tn−1.

Shifting the indices, i.e., applying the results already obtained to the representations ̺Sj , we conclude
that hi is hyperbolic for all i. So, the points sn, t1, s1, t2, sn−1, tn make sense.
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Since the cycle (5.20) is positive for d = t1, the cycle t1, s2, t3, s4 is positive. Shifting the indices, we
conclude that the cycle tn−1, sn, t1, s2 is positive. Combining the positive cycles t1, s2, t3, s4, (5.20), and
tn−1, sn, t1, s2, we arrive at the positive cycle in Lemma 5.13 �

5.21. Proposition. Let ̺ : Gn → L be a representation with maximal Area ̺. Then the isometries

hi := ̺(riri−1) and h′i := ̺(rnriri−1rn) are hyperbolic for all i (the indices are modulo n). Denote by

si−1, s
′
i−1 and ti, t

′
i the repellers and the attractors of hi, h

′
i, respectively. Then sn = t′1, t1 = s′n, and,

for every d ∈ {sn, t1}, the cycle

t1, s2, w2d, s3, t3, w3d, s4, t4, w4d, . . . , sn−2, tn−2, wn−2d, tn−1, sn,

s′2, wn+1d, s
′
3, t

′
3, wn+2d, s

′
4, t

′
4, wn+3d, . . . , s

′
n−2, t

′
n−2, w2n−3d, t

′
n−1

is positive.

Proof. By Lemma 5.13, the isometries hi’s are hyperbolic and the cycle

t1, s2, w2d, s3, t3, w3d, s4, t4, w4d, . . . , sn−2, tn−2, wn−2d, tn−1, sn

is positive for every d ∈ {sn, t1}. By Remark 5.4 and Corollary 5.8, Area ̺I = 2(n−4)π. By Lemma 5.13
applied to the representation ̺I, the isometries h′i’s are hyperbolic and the cycle

t′1, s
′
2, wn+1d, s

′
3, t

′
3, wn+2d, s

′
4, t

′
4, wn+3d, . . . , s

′
n−2, t

′
n−2, w2n−3d, t

′
n−1, s

′
n

is positive for every d ∈ {s′n, t
′
1} since wi+n−1 = I(wi) for all i. It remains to observe that h′1

−1
= h1

and to combine the above positive cycles �

Proof of Theorem 5.1. Let us show that Area ̺ = 2(n− 4)π implies ̺ ∈ RGn.
Denote G := G[sn, t1], Gi := wiG, and G′

i := wi+n−1 G for all 2 ≤ i ≤ n− 2. By Proposition 5.21,

G is the axis of h1 = h′1
−1. Hence, the vertices of Gi and of G′

i are respectively of the form wid and
wi+n−1d, where d ∈ {sn, t1}.

Take p, q ∈ G∩BW such that p = h1q and denote by Q the polygon with the successive vertices

w1q, w2p, w3q, . . . , wn−3q, wn−2p, wnp, wn+1q, wn+2p, . . . , w2n−4p, w2n−3q

and the successive edges e2, e3, . . . , en−1, e
′
2, e

′
3, . . . , e

′
n−1 such that

(5.22) ei := G[wi−1q, wip], e′i := G[wi+n−2p, wi+n−1q] for even i, 2 ≤ i ≤ n− 2,

(5.23) ei := G[wi−1p, wiq], e′i := G[wi+n−2q, wi+n−1p] for odd i, 3 ≤ i ≤ n− 1.

(Note that wn−1q = wnp and w2n−2p = w1q since wn−1 = w2n−2 = 1 and wn = w−1
1 .)

We claim that Q is a fundamental polygon for the group ̺Gn. Obviously, wip, wiq ∈ Gi and
wi+n−1p, wi+n−1q ∈ G′

i for all 2 ≤ i ≤ n − 2. Also, wnp, w1q ∈ G since wn = w−1
1 , h1 = ̺(w1),

p = h1q, and p, q ∈ G. Let d ∈ {sn, t1}. Then the cycle in Proposition 5.21 is positive. This implies
that G, the Gi’s, and the G′

j ’s are all disjoint. Therefore, the edges ei’s and e′i’s are not degenerated
and, thus, generate complete geodesics Γi and Γ′

i.

Define the arcs

A := {b ∈ SW | the cycle t1, b, sn is positive}, A′ := {b ∈ SW | the cycle sn, b, t1 is positive}.
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Let Ai ⊂ A and A′
i ⊂ A′ be the arcs with the same ends as Gi and G′

i, respectively. The arcs

G
w1q

w2p

w3qwn−3q

wn−2p

wnp

wn+1q

wn+2p w2n−4p

w2n−3q

d = t1

w2d

A2

w2d

w3d

A3

w3dwn−3d

An−3

wn−3d

wn−2d

An−2

wn−2d

d = sn

wn+1d

A′
2

wn+1d

wn+2d

A′
3

wn+2d w2n−4d

A′
n−3

w2n−4d

w2n−3d

A′
n−2

w2n−3d

e2en−1

e′2 e′n−1

e3en−2

e′3 e′n−2

e4en−3

e′4 e′n−3

G3

Gn−3

G′
3 G′

n−3

G2Gn−2

G′
2 G′

n−2

A′, A2, A3, . . . , An−2 are disjoint because the cycle in Proposition 5.21 is positive. It is easy to see that
the vertices of Γi belong to Ai−1 and Ai for all 3 ≤ i ≤ n− 2, that the vertices of Γ2 belong to A′ and
A2, and that the vertices of Γn−1 belong to An−2 and A′. The only intersections between Γi’s are the
known intersections between Γi−1 and Γi, 3 ≤ i ≤ n − 1, and a possible intersection between Γ2 and
Γn−1. Nevertheless, the edges e2 and en−1 do not intersect. Indeed, it follows from Proposition 5.21
that the cycle t1, w2d, s3, wn−2d, sn is positive for every d ∈ {sn, t1}. Since sn and t1 are the repeller and
the attractor of h1 = ̺(w1), p = h1q, wnp = q, and w1q = p, the edges e2 and en−1 cannot intersect.
Consequently, the edges e2, e3, . . . , en−1 intersect in the ‘prescribed’ way and are on the side of the
normal vector to G. For similar reasons, the edges e′2, e

′
3, . . . , e

′
n−1 intersect in the ‘prescribed’ way and

are on the opposite side of the normal vector to G. In other words, Q is simple.
The polygon Q has 2(n − 2) vertices and Area ̺ = AreaQ = 2(n − 4)π. Therefore, the sum of the

interior angles of Q equals 2(n− 3)π −AreaP = 2π. The isometry γi := ̺(rnri) maps the edge ei onto
the edge e′i for all 2 ≤ i ≤ n− 1. This follows from (5.22–23) and from Lemma 5.3 (7).
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As is easy to see, the identifications by the γi’s produce the only cycle of vertices. By Poincaré’s
Polyhedron Theorem, Q is a fundamental polygon for the group generated by the γi’s and

γn−1 . . . γ
−1
4 γ3γ

−1
2 γ−1

n−1 . . . γ4γ
−1
3 γ2 = 1

is a unique defining relation of this group. In other words, ̺ is an isomorphism and, thus, ̺ ∈ RGn.
For the converse, we simply repeat the arguments presented at the end of the proof of Theorem 3.15 �

5.24. Remark. It is easy to verify that the group Gn admits the generators gi(i−1) (the indices are
modulo n) subject to the defining relations

gn(n−1)g(n−1)(n−2)g(n−2)(n−3) . . . g32g21g1n = 1,

gn(n−1)g(n−2)(n−3) . . . g43g21 = 1, g(n−1)(n−2)g(n−3)(n−4) . . . g32g1n = 1.

(In terms of Hn, gi(i−1) := riri−1.)
Let ̺ : Gn → L be a representation. Fix some i and suppose that g := ̺(gi(i−1)) is hyperbolic.

For every t ∈ R, define a representation ̺Ei(t) as

̺Ei(t)(g(i+1)i) := ̺(g(i+1)i)g
−2t, ̺Ei(t)(g(i−1)(i−2)) := g2t̺(g(i−1)(i−2)),

̺Ei(t)(gj(j−1)) := ̺(gj(j−1)) for all j /∈ {i− 1, i+ 1}.

If ̺ is induced by some ˆ̺ : Hn → L, then ˆ̺(ri) = R(qi) and ˆ̺(ri−1) = R(qi−1) for some qi, qi−1 ∈ BW
belonging to the axis of g. As is easy to see, gtR(qi)g

−t = R(qi)g
−2t and gtR(qi−1)g

−t = g2tR(qi−1).
In other words, we obtain an extension of the action of En on RHn (and on Hn) to that on RGn (and
on Tn).
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[Mac] C. Maclachlan, Smooth coverings of hyperelliptic surfaces, Quart. J. Math. Oxford Ser. (2) 22
(1971), 117-123.

[Mas] B. Maskit, Kleinian Groups, Grundlehren der mathematischen Wissenschaften 287, Springer-
Verlag, 1987, xiv+326 pp.

[Stu] M. Stukow, Small torsion generating sets for hyperelliptic mapping class groups, Topology and
its Applications 145 (2004), 83–90.

[Tol] D. Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom.
29 (1989), No. 1, 125–133.
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