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Abstract The classical Haar construction of Brownian motion uses a bi-
nary tree of triangular wedge-shaped functions. This basis has compactness
properties which make it especially suited for certain classes of numerical
algorithms. We present a similar basis for the Ornstein-Uhlenbeck process,
in which the basis elements approach asymptotically the Haar functions as
the index increases, and preserve the following properties of the Haar basis:
all basis elements have compact support on an open interval with dyadic
rational endpoints; these intervals are nested and become smaller for larger
indices of the basis element, and for any dyadic rational, only a finite number
of basis elements is nonzero at that number. Thus the expansion in our basis,
when evaluated at a dyadic rational, terminates in a finite number of steps.
We prove the covariance formulae for our expansion and discuss its statistical
interpretation and connections to asymptotic scale invariance.

Keywords Ornstein-Uhlenbeck process · Brownian motion · Haar basis

1 Introduction

Random walks and continuous stochastic processes are of fundamental im-
portance in a number of applied areas, including optics [1], chemical physics
[2], biophysics [3,4], biology [5] and finance [6]. The mathematical idealization
of the one-dimensionnal continuous random walk, the Wiener process, can be
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expressed in —infinitely— many bases as a sum of random coefficients times
basis elements. Unique among these bases, the Haar —or Schauder— basis
has three properties that make it particularly suitable for certain numerical
computations. First, the basis elements all have compact support: the basis
elements are nonzero only in open intervals. Second, the support is increas-
ingly compact, i.e., the open intervals become smaller for higher indices of the
basis elements; in fact, the intervals are nested in binary tree fashion, and
have dyadic rational endpoints. Finally, given any dyadic rational, there is a
finite number of basis elements which are nonzero at that number, so that
evaluation of the Haar expansion at a dyadic rational terminates in a finite
number of steps known beforehand. These properties can be used to great
advantage in algorithms that construct the random walk in a “top-down”
fashion, such as dychotomic search algorithms for first passage times.
However, the “plain” Wiener process has limited applicability in the ar-
eas mentioned above, so an extension of this construction to more complex
stochastic processes is desirable. The naive generalization of the Haar basis
construction to other stochastic processes fails to display our three properties.
We present a method for constructing a Haar-like basis for the Ornstein-
Uhlenbeck process which preserves these properties. The basis is therefore
useful for advanced numerical computations: a fast dichotomic search al-
gorithm for first passage time computations shall be presented elsewhere.
The method we present is also amenable to further generalizations to other
stochastic processes.
This paper is organized as follows. We first review some background in
stochastic processes and basis expansions. Then we review the well-known
decomposition of a Wiener process in a basis of functions derived from the
Haar system. In the third section, we give a statistical interpretation of such
a construction, which leads us to propose a basis for the Ornstein-Uhlenbeck
process. In the fourth section, we prove that the Ornstein-Uhlenbeck process
is correctly represented as a discrete process in the proposed basis. In the last
section, we further the statistical interpretation and its connection to scale
invariance and Markovian properties.

2 Background on Stochastic Processes

TheWiener process and the Ornstein-Uhlenbeck process are continuous stochas-
tic processes; we specify this class of process through the Langevin equation

{

ẋ = f(x, t) + η(t)
x(t0) = x0, t ∈ [t0, T ] ,

(1)

where f is a deterministic function and η(t) describes the stochastic forcing.
Equation (1) is a first order stochastic differential equation and its connec-
tion to the Fokker-Planck equation has been extensively studied [1,2]. We
only consider here the case where the noise is white and Gaussian: η(t) are
realizations of independent identically distributed Gaussian variables ηt, with
time correlations satisfying

〈 ηt · ηs 〉 = Γ · δ(s− t) ,
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where δ is the Dirac distribution.
We denote by ω a given realization of the stochastic forcing: the collection
of all the values {η(t)}t∈[t0,T ] in an interval. The set of ω values defines the

sample space Ω and the probability of occurence of a sequence ω in Ω is
determined by the joint probability of {ηt}t∈[t0,T ]. With this notation, we

can introduce the general solution of the stochastic system as the stochastic
processXt. For a given realization of the noise ω, there is a unique solution to
(1) called a sample path: neglecting to notate the dependence on the initial
condition, we write Xt(ω) the value of this sample path at time t. Since each
sample path {Xt(ω)}t∈[t0,T ] occurs with the same probability as its match-

ing sequence ω in the sample space Ω, the value Xt(ω) can be seen as the
outcome of a random function Xt defined on Ω. Xt is the stochastic process
solution of (1) and has several important properties: it is a continuous pro-
cess as it is defined for a continuous index set [t0, T ]; it is a Gaussian process,
as it integrates contributions of Gaussian variables; and, being a Markovian
process, the value of Xt only depends on {η(u)}u∈[0,t], the sequence of real-

izations preceding t. Two special forms of f shall concern us. When f is zero,
the process is called the Wiener process Wt; when f is linear in x, the process
is the Ornstein-Uhlenbeck process Ut. Due to the relative simplicity of both
situations, the probability laws of the processes (i.e., the Green functions of
the associated Fokker-Planck equations) are known analytically. If a Wiener
process is at x0 at time t = t0, the probability of finding the process in x at
time t is

P(Wt=x |Wt0=x0) =
1√

2π · Wσt

· exp
(

− (x− x0)
2

2 · Wσ2
t

)

(2)

with a variance Wσ2
t = Γ · (t− t0). For the Ornstein-Uhlenbeck process, a

similar result holds

P(Ut=x |Ut0=x0) =
1√

2π · Uσt

· exp
(

−
(

x−x0 e
−α(t−t0)

)2

2 · Uσ2
t

)

(3)

with a variance Uσ
2
t = Γ

2α ·
(

1− e−α(t−t0)
)

. The previous expressions describe
the statistics of Wt and Ut, which will be called Xt when collectively desig-
nated. Continuous processes require an infinite number of random variables,
and establishing results about them is quite difficult. Consider for example
the Ornstein-Uhlenbeck process, widely used from finance to neuroscience:
finding analytically the first-passage times distribution with a fixed threshold
proves a surprisingly intricate question in this situation [8,9,10], and numeri-
cally, sample paths are only approximated by stochastic Euler methods, with
integration schema of low efficiency [11,12,13]. Abating these difficulties for
the Ornstein-Uhlenbeck process is the motivation for this paper.
To circumvent the problem, it is advantageous to represent a continuous
process as a discrete process. Conspicuously enough, a discrete process has
a countable index set of random variables. At stake is to write a Gaussian
processXt as a convergent series of random functions fn ·ξn, where fn is a de-
terministic function and ξn a Gaussian variable of law N (0, 1) ( i.e.with null
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mean and unitary variance ). Assuming the coefficients of the decomposition
to be included in the definition of fn, the identity

Xt =
∞
∑

n=0

fn(t) · ξn = lim
N→∞

N
∑

n=0

fn(t) · ξn

shows Xt as the limit of a sequence of finite processes
∑N

n=0 fn(t) · ξn. De-
pending on the nature of the convergence, this may result in two advantages.
Analytically, it is generally more tractable to prove mathematical results on
finite combination of simple random functions and then to extend them to

a limit random process. Numerically, the quantity
∑N

n=0 fn(t) · ξn can be
accurately computed and gives a correct approximation of the process at any
level of precision.

3 The Haar construction of the Wiener process

The Haar system is the set of functions hn,k in L2([0, 1]) defined by

hn,k(t) =







2
n−1

2 if (2k) 2−n≤ t≤(2k+1) 2−n ,

−2n−1

2 if (2k+1)2−n≤ t≤2 (k+1) 2−n ,
0 otherwise .

for n ≥ 1 with the addition of the function h0,0(t) = 1 on [0, 1]. The Haar
system has a several interesting properties. First, the functions hn,k form
a complete orthonormal basis of L2([0, 1]) for the scalar product (f, g) =
∫ 1

0
f(t)g(t)dt. Second, each element hn,k has a compact support

Sn,k=
[

k·2−n+1, (k+1)2−n+1
]

and, for a given n, the collection of supports Sn,k represents a partition of
[0, 1]. Third, the functions hn,k build up a wavelet basis of L2([0, 1]), since
we have the scale-invariant construction rule

hn,k(t) = 2
n−1

2 · h1,0(2
n−1t− k) . (4)

Such properties prove useful to decompose simple Gaussian process as related
in the following. Consider the Wiener process Wt as the stochastic integral of
the independent random variables ηt which follow a normal law N (0,

√
Γ ).

We introduce the associated Gaussian white noise process formally defined
as dW

dt
on Ω. A sample path dWt

dt
(ω) is almost surely an element of L2([0, 1])

for a given noise realization ω = {η(t)}t∈[0,1]. We write its decomposition on

the Haar basis

(

dWt

dt

)

(ω) =

∞
∑

n=0

∑

0≤k<2n−1

cn,k(ω)hn,k(t) ,



5

introducing cn,k(ω) the component of dWt

dt
(ω) in the direction of hn,k. Each

sequence ω can yield different coefficients cn,k(ω) and their values appear as
the outcome of a random variable cn,k defined on the sample space Ω

cn,k =

∫ 1

0

hn,k(t)
dWt

dt
dt =

∫ 1

0

hn,k(t)dWt . (5)

In our specific case of Gaussian uncorrelated noise, stochastic integration
shows that the random variables cn,k are all independent and identically

distributed following the law N (0,
√
Γ ). The white noise process dWt

dt
is then

expressed as a discrete process on Ω by

dWt

dt
=

∞
∑

n=0

∑

0≤k<2n−1

√
Γ · hn,k(t) · ξn,k ,

where the ξn,k are independent and distributed with law N (0, 1).
The use of Haar functions to decompose white Gaussian noise directly sug-
gests a corresponding result for the Wiener process. The Wiener process Wt

is the stochastic integral of the Gaussian white noise process dWt

dt
, which leads

to introduce the integrals of hn,k as candidates to build a basis of functions
for the Wiener process [14,15]. We note this set of integral functions as

Ψn,k(t) =
√
Γ ·
∫ 1

0

χ[0,t](u)hn,k(u) du , (6)

with the help of the indicator functions given by

χ[0,t](u) =

{

1 if 0 ≤ u ≤ t
0 otherwise

.

The first elements of the so-defined basis are shown on figure 1. The question
is then to know whether the process WN

t defined as the finite sum of random
functions

WN
t (ω) =

N
∑

n=0

∑

0≤k<2n−1

Ψn,k(t) · ξn,k(ω)

converges toward a Wiener process. It can be shown that the series converges
normally to a limit process almost surely on Ω [14,15]. Even though we have
not proven its Wiener process nature yet, we refer to this limit as Wt. Due to
the normal convergence, Wt is continuous in t and being a sum of Gaussian
variables, it is a Gaussian process. Therefore, showing that Wt is a Wiener
process only amounts to demonstrate it has the same law of covariance as a
Wiener process [14,15], i.e. 〈Wt ·Ws〉 = Γ · min (t, s), where min (t, s) is the
minimum of t and s. In other words, we need to evaluate the quantity

〈Wt ·Ws〉 = lim
N→∞

〈WN
t ·WN

s 〉 = lim
N→∞

N
∑

n=0

∑

0≤k<2n−1

Ψn,k(t) · Ψn,k(s)
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Fig. 1 In the left column, the elements of the basis Ψn,k are represented for each
rank n with 0≤n<6. In the right column, the partial sums W n(ω) are shown for
a given set of realizations ω. Note that each element Ψn,k has a compact support
delimited by dyadic numbers in Dn = {k2−n | 0≤k≤2n} and that all Ψn′,k is zero
on Dn for n

′
> n.
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which entails the calculation of a rather tedious series. Indeed, for a given
t, at each step n, there is only one k for which Ψn,k(t) is nonzero, and ex-
pressing the series analytically results in a complicated operation. One way
to overcome the issue is to notice that the expected covariance result can be
expressed in terms of

min (t, s) =

∫ 1

0

χ[0,t](u)χ[0,s](u) du . (7)

The right term of (7) is actually the scalar product of the functions χ[0,t] and

χ[0,s] on L2([0, 1]). The key point is then to introduce the decomposition in
the Haar orthonormal basis to write the scalar product of two given functions
as

∫ 1

0

f(t)g(t) dt =
∑

n≥0
0≤k<2n−1

∫ 1

0

f(u)hn,k(u) du

∫ 1

0

g(u)hn,k(u) du . (8)

When applied to the indicator functions of interest χ[0,t] and χ[0,s], the rela-
tion (8) leads to

Γ ·min (t, s) = Γ ·
∫ 1

0

χ[0,t](u)χ[0,s](u) du

=

∞
∑

n=0

∑

0≤k<2n−1

Ψn,k(t)Ψn,k(s) ,

since the definition (6) describes Ψn,k(t) as the coefficient relative to hn,k

in the decomposition of χ[0,t] on the Haar system. We can finally recap the
result

〈Wt ·Ws〉 = lim
N→∞

〈WN
t ·WN

s 〉

= lim
N→∞

N
∑

n=0

∑

0≤k<2n−1

Ψn,k(t) · Ψn,k(s) = Γ ·min (t, s) ,

establishing the discrete description of the Wiener process as a normally
convergent series of terms Ψn,k · ξn,k, where Ψn,k is a Haar-derived function
and ξn,k a random variable of normal law N (0, 1).

4 Comparison of the Wiener and Ornstein-Uhlenbeck processes

We recall that the Langevin equation (1) can be solved by quadratures in
simple cases. If the process is at x0 when t = 0, the Ornstein-Uhlenbeck
process Ut is expressed

Ut = x0 e
−αt +

∫ t

0

eα(u−t)η(u) du , (9)
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as opposed to the Wiener process Wt in the same conditions

Wt = x0 +

∫ t

0

η(u) du . (10)

The comparison of definitions (9) and (10) explains why finding a basis of
decomposition for Ut stumbles on a several difficulties. First the process Ut

is not anymore a simple integral of white Gaussian noise, which is naturally
described as a discrete process. Second, there is no more scale invariance,
implying that a putative basis of decomposition is not to be thought of as
wavelets. Finally, the exponential factor in (9) indicates that the process Ut

does not sum the ηs evenly; their contribution depends on the position of s
compared to t. As a consequence, the presence of these correlations makes it
unlikely for the basis to conserve any orthogonality properties.
Yet, as noticeable in figure 2, the examination of a sample path {Ut(ω)}t∈[0,1]

reveals the scale-invariant behavior of a Wiener process for asymptotically
small time scale as well as for asymptotically small α. It means that the
basis of decomposition Ψn,k for the Wiener process is asymptotically valid to
describe Ut at fine scale. This observation suggests that, upon slight alter-
ation of its analytical expression, the Haar derived basis Ψn,k can give rise
to a basis Φn,k adapted to the Ornstein-Uhlenbeck process. The change in
the analytical expression of Ψn,k should be consistent with the previously
mentioned difficulties, preventing its formulation to be scale invariant or or-
thogonal. Under this restraint, the fundamental property that each element
Ψn,k exhibits a compact support of the form Sn,k should be preserved in the
expression of Φn,k.
To carry out this program, the key point is to consider P(Xty=y |Xtx=x,Xtz=

z) with tx<ty<tz, the probability law of Xt knowing its values x and z at
two framing times tx and tz. Because Xt is a markovian process, a sample
path {Xt(ω)}t∈[0,1] which originates from x and joins z through y is just

the junction of two independent paths: a path originating in x going to y
and a path originating from y going to z. Assuming conditional knowledge
of its origin x, the probability of such a compound path is the product of
the probability of the two elementary paths with conditional knowledge of
their respective origins x and y. Therefore, after normalization by the ab-
solute probability for a path to go from x to y, P(Xty= y |Xtx= x,Xtz= z) is
expressed in the following expression

P(Xty=y |Xtx=x,Xtz=z) =
P(Xty=y |Xtx=x) ·P(Xtz=z |Xty=y)

P(Xtz=z |Xtx=x)
.(11)

It is now a simple matter of calculation to compute the distribution of Xty

knowing Xtx=x and Xtz=z with the analytical expression of the probability
P(Xty=y |Xtx=x). In the case of a Gaussian process, it is expected to follow a
normal law, which we refer to as N (Pµ(ty), Pσ(ty)). For the Wiener process,
using expression (2) for P(Xty= y |Xtx= x), the mean value Wµ(ty) and the

variance Wσ(ty)
2 result in

Wµ(ty) =
tz − ty
tz − tx

· x+
ty − tx
tz − tx

· z , (12)
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Fig. 2 A sample path Ut(ω) is represented at different magnifications following
the scale invariance of a Wiener process: the vertical zooming factor is the square
root of the horizontal factor. Note that the sample path Ut(ω) behaves as a Wiener
process at small scales.

Wσ(ty)
2 = Γ · (ty − tx)(tz − ty)

(tz − tx)
. (13)

For the Ornstein-Uhlenbeck process, using expression (3) for P(Xty=y |Xtx=

x) similarly yields the mean Uµ(ty) and the variance Uσ(ty)
2:

Uµ(ty) =
sinh

(

α(tz−ty)
)

sinh
(

α(tz−tx)
) · x+

sinh
(

α(ty−tx)
)

sinh
(

α(tz−tx)
) · z , (14)
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Uσ(ty)
2 =

Γ

2α
· 2 · sinh

(

α(ty−tx)
)

· sinh
(

α(tz−ty)
)

sinh
(

α(tz−tx)
) . (15)

In the limit of very short time scale or vanishing α, we notice that Uµ(ty)
and Uσ(ty)

2 approximate Wµ(ty) and Wσ(ty)
2.

We note DN the set of reals {k2−N | 0≤k≤2N} and we have {0, 1} = D0 ⊂
D1 ⊂ · · · ⊂ DN a growing sequence of sets with limit ensemble D the set
of dyadic points in [0, 1]. Assuming we know the values of the process on a
subset of dyadic points DN , we can construct the conditional average 〈Pt〉DN

,
which is the most probable outcome of Xt knowing its values on DN . For a
Wiener process, (12) shows that 〈Wt〉DN

is a piece-wise linear function of t
interpolating each points of DN ; whereas for an Ornstein-Uhlenbeck process,
(14) depicts 〈Ut〉DN

as a succession of catenaries joining successive points of

DN . With 0≤k<2−N , if tx=k2−N and tz=(k+1)2−N are the two successive
points of DN framing t, the average 〈Xt〉DN

is only conditioned by Xtx= x
and Xtz=z. For the sake of simplicity, we write

〈Xt〉DN
= 〈Xt〉x,z = Xµtx,tz(t, x, z)

def
= Xµ

N,k(t) , (16)

where the conditional dependency upon x and z is implicit in Xµ
N,k. We

want to investigate the change in the estimation of Pt due to the conditional
knowledge of its value on the dyadic set DN+1. In that perspective, we ex-
emplified the conditional average 〈Xt〉DN+1

on [tx, tz] where the estimation

of Xt is now dependent upon the value Xty= y with ty the midpoint of tx
and tz :

〈Xt〉DN+1
= 〈Xt〉x,y,z =

{ 〈Xt〉x,y if tx≤ t≤ ty ,
〈Xt〉y,z if ty≤ t≤ tz ,

def
= Xν

N,k(t, y) . (17)

We remark that, being a function of y, the conditional average 〈Xt〉x,y,z de-

termines a random function Xν
N,k(t, YN,k), where the short notation YN,k

indicates the Gaussian variable Xty knowing Xtx=x and Xtz=z. The prob-
ability distribution of YN,k follows the law N (Xµ(ty), Xσ(ty)) and it gives,
through the function Xν

N,k, the random contribution of ignoring Xty = y
when one estimates the process knowing its values on tx and tz .
The results above allows to gain insight in the building of a Wiener process
Wt as the converging series of random functions Ψn,k · ξn,k. It is easy to see
from the definition (4) that Ψn,k is linear between any two points in Dn for
n ≤ N and that Ψn,k is zero on Dn for every n > N . In other words, the
partial sum

WN
t =

N
∑

n=0

∑

0≤k<2n−1

Ψn,k(t) · ξn,k for t ∈ DN

coincide with Wt onDN and more generally with 〈Xt〉DN
on [0, 1]. Identifying

partial sums with conditional averages, it is then straightforward to express
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the component ΨN+1,k(t) · ξN+1,k in the decomposition of Wt

ΨN+1,k(t) · ξN+1,k = WN+1
t −WN

t

= 〈Wt〉DN+1
− 〈Wt〉DN

(18)

= WνN,k(t, YN,k)− WµN,k(t) ,

bearing in mind the previous definitions for which [tx, tz]=
[

k2−N , (k+1)2−N
]

is the support SN+1,k of ΨN+1,k. The tight connection between ξN+1,k and YN,k

is made obvious: if one knows the values of the process on DN , the random
contribution of

∑

k ΨN+1,k(t) · ξN+1,k conveys the uncertainty about Wt that
is discarded by the knowledge of its values on DN+1 \DN .
We are now in a position to complete our program: continuing the identifi-
cation of partial sums and conditional average for the Ornstein-Uhlenbeck
process Ut, it is direct to propose a basis of decomposition

ΦN+1,k(t) · ξN+1,k = Uν
N,k(t, YN,k)− Uµ

N,k(t) (19)

with the adapted definitions of Uµ
N,k and Uν

N,k on SN+1,k, the support of the
investigated functions ΦN+1,k. We underline that the notation YN,k refers here

to the random process Ut at the midpoint of the support t = (2k+1)2−(N+1)

knowing its values on the extremities.

5 A discrete basis of functions to generate the

Ornstein-Uhlenbeck process

In view of representing an Ornstein-Uhlenbeck process as a discrete pro-
cess, the comparison with a Wiener process suggests a candidate basis of
decomposition of the form Φn,k · ξn,k, the variable ξn,k following the law
N (0, 1). The deterministic function Φn,k is defined with support Sn,k =
[

k·2−n+1, (k+1)2−n+1
]

for n > 0 with 0≤ 2k < 2n. We use expressions (14)
and (15) to make explicit the formulation of Φn,k in relation (19) and we
obtain

Φn,k(t) =































































√

Γ

α
· sinh (α (t−2k·2−n))
√

sinh (α2−n+1)

if (2k) 2−n≤ t≤(2k+1)2−n ,

√

Γ

α
· sinh (α (2 (k+1) 2−n−t))

√

sinh (α2−n+1)

if (2k+1) 2−n≤ t≤2 (k+1) 2−n ,

0 otherwise .

(20)

Without any further comment, the element Φ0,0 is defined as

Φ0,0(t) =

√

Γ

α
· e

−α
2 sinh (αt)√
sinhα

, (21)
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a choice we will explain in the following section. The first elements Φn,k are
shown in figure 3. As expected, they are only asymptotically scale-invariant
but they exhibit the desirable property of being compactly supported on
Sn,k, the interval between two dyadic points k·2−n+1 and (k+1)2−n+1.
To validate the decomposition of an Ornstein-Uhlenbeck process Ut on the
set of functions Φn,k, we need to study the convergence of the partial sums

UN
t (ω) =

N
∑

n=0

∑

0≤k<2n−1

Φn,k(t) · ξn,k(ω) .

As each function Φn,k is dominated by the Haar-derived element Ψn,k, the
normal convergence of the seriesWN

t (ω) in (7) entails the normal convergence
of UN

t (ω) almost surely on the sample space Ω. With anticipation of its
Ornstein-Uhlenbeck nature, we denote Ut the corresponding limit process.
The normal convergence causes Ut to be continuous and, being a sum of
Gaussian variables, a Gaussian process. Therefore, proving that Ut is an
Ornstein-Uhlenbeck process just requires us to show that the covariance of
Ut satisfies

〈Ut · Us〉 =
Γ

2α
· e−α(t+s)

(

e2α(t∧s) − 1
)

. (22)

To establish this relation, we need to evaluate the covariance of Ut as the
limit covariance of the partial sums

〈UN
t · UN

s 〉 =
N
∑

n=0

∑

0≤k<2n−1

Φn,k(t) · Φn,k(s) .

It is possible to simplify the above expression, even though the functions
Φn,k are not orthogonal. For each given n, the disjoint supports of Φn,k

forms a partition of [0, 1] as a collection of segments Sn,k of equal length
2−n+1. Considering a real t, there is only one sequence of indexes kn such
that t belongs to each support of Sn,kn

. The succession of kn represents t
as the intersection of decreasing dyadic segments ∩∞

n=0Sn,kn
, which can be

explained in terms of the binary representation t =
∑∞

1 ai2
−i, ai ∈ {0, 1}, if

we exclude inappropriate infinite developments. Bearing in mind the system
of indexing for Sn,k, a simple recurrence argument leads to the expression of
kn corresponding to a given t in its binary representation

kn =
1

2
·
n−1
∑

i=1

ai2
n−i . (23)

We are now in a position to write the reduced expression of the partial sums

UN
t (ω) =

N
∑

n=0

Φn,kn
(t) · ξn,kn

(ω)
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Fig. 3 In the left column, the elements of the basis Φn,k are represented for each
rank n with 0 ≤ n < 6. In the right column, the conditional Ornstein-Uhlenbeck
process 〈Ut〉Dn

is shown for a given set of realizations on Dn. Once more, note
that each element Ψn,k has a compact support delimited by dyadic numbers in
Dn = {k2−n | 0≤k≤2n} and that all Φn′,k is zero on Dn for n

′
> n.
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where the terms Φkn,n(t) is made explicit using the previous formulation of
kn in the definition (20)

Φn,kn
(t) =



























√

Γ

α
· sinh

(

α
∑∞

n+1ai2
−i
)

√

sinh (α2−n+1)
if an=0 ,

√

Γ

α
· sinh

(

α
∑∞

n+1(1−ai) 2
−i
)

√

sinh (α2−n+1)
if an=1 .

Informed by these preliminaries, we shall carry out the calculation of the
covariance. The reduced formulation of partial sums allows us to write

〈UN
t · UN

s 〉 =
N
∑

n=1

Φn,kn
(t)Φn,ln(s) + Φ0,0(t)Φ0,0(s) . (24)

where the indexes kn and ln designate the sequence of functions Φkn,n and
Φln,n whose supports contain t and s respectively. When t and s are distinct,
we notice that for n>1−log2 |t−s|, the supports Skn,n and Sln,n containing
t and s respectively are disjoint, so that the cross-products Φkn,n(t)Φln,n(s)
cancel out if n is large enough. It is then possible to write expression (24) as
a finite sum where the terms Φkn,n(t) and Φln,n(s) are specified due to the
binary representations t =

∑∞

1 ai2
−i and s =

∑∞

1 bi2
−i. We specify that we

only consider proper binary representations, that is, the binary representation
of dyadic points is chosen in its finite form. For the sake of simplicity, we
assume that t < s. Formulated in the binary representation, the order t < s
is equivalent to the existence of a natural N0 > 0 such that an = bn as long
as n <N0 and aN0

< bN0
, that is aN0

= 0 and bN0
= 1. With the preceding

remarks, it is clear that Skn,n and Sln,n are disjoint for n > N0 and we can
write the covariance of UN

t for N > N0 in the explicit form

〈UN
t · UN

s 〉N>N0
=

Γ

2α

(

N0
∑

n=1

2 · un

sinh (α2−n+1)
+ e−α 2 sinh (αt) sinh (αs)

sinhα

)

.(25)

The variable un apparent in (25) represents for n<N0 the numerator of the
cross-products Φkn,n(t)Φln,n(s) when the extension an and bn coincide

un =



































sinh
(

α
∑∞

n+1 ai2
−i
)

sinh
(

α
∑∞

n+1 bi2
−i
)

if an= bn= 0 ,

sinh
(

α
∑∞

n+1 (1−ai) 2
−i
)

sinh
(

α
∑∞

n+1 (1−bi) 2
−i
)

if an= bn= 1 ,

As for the limit case n =N0, uN0
expresses the numerator of the cross-product

ΦkN0
,N0

(t)ΦlN0
,N0

(s) with aN0
=0 and bN0

=1

uN0
= sinh

(

α

∞
∑

N0+1

ai2
−i

)

sinh

(

α

∞
∑

N0+1

(1−bi) 2
−i

)

.
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At that point, the explicit form of the covariance (25) results in a rather
complicated combination of hyperbolic functions. Fortunately enough, we can
resort to using remarkable identities to simplify its expression. The solution
actually lies in the consideration of the quantity

vn = sinh

(

α

∞
∑

n

ai2
−i

)

· sinh
(

α

∞
∑

n

(1−bi) 2
−i

)

. (26)

We show in the supplementary materials that, as long as n<N0, vn verifies
the recurrence relation

vn = 2 cosh (α2n) · vn+1 + un . (27)

We can express un in terms of vn and vn +1 to compute the following series
by cancellation term by term

N0−1
∑

n=1

un

sinh (α2−n+1)
=

v1
sinh (α/2)

− vN0

sinh (α2−N0+1)
. (28)

Remembering that aN0
=0 and bN0

=1, we remark that vN0
= vN0+1 = uN0

so that the insertion of (28) in expression (25) caused the remaining terms
in uN0

to cancel out. It is then straightforward to write the covariance

〈UN
t · UN

s 〉N>N0
=

Γ

2α

(

2 · v1
sinh (α/2)

+ e−α 2 sinh (αt) sinh (αs)

sinhα

)

,

(29)

We observed that the definition of v1 invokes the full binary representations
of t and s so that we have v1 =sinh (αt) sinh (α (1−s)). After a several ma-
nipulations, expression (29) finally yields

〈UN
t · UN

s 〉N>N0
=

Γ

2α
· e−α(t+s)

(

e2αt − 1
)

,

which is the expected result for the covariance of an Ornstein-Uhlenbeck pro-
cess (22) given that t= min (t, s) as t<s.
Regarding the calculation of the variance when t = s, the series of cross-
products Φkn,n(t)Φln,n(s) = Φ2

kn,n(t) becomes infinite, but fortunately the

recurrence relation (27) is then valid for every n > 0. As the quantity vn
vanishes when n grows to infinity, the cancellation term by term is still effec-
tive to compute the series in (25). It leads to the expected variance expression
for an Ornstein-Uhlenbeck process Uσ

2
t = Γ

2α ·(1− e−αt).
We finally recap the result for any t and s without assuming any order

〈Ut · Us〉 = lim
N→∞

〈UN
t · UN

s 〉 = Γ

2α
· e−α(t+s)

(

e2α(t∧s) − 1
)

.

It proves the discrete description of an Ornstein-Uhlenbeck processes as the
normally convergent series of random functions Φn,k · ξn,k, where Φn,k is a
deterministic function defined in (6) and ξn,k a random variable of normal
law N (0, 1).
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6 Representation as a bi-infinite sum of random functions

Whether standing for a Wiener process or an Ornstein-Uhlenbeck process,
Xt can be decomposed in a discrete basis of functions fn,k, where fn,k is a
generic notation for the deterministic functions Ψn,k and Φn,k. It suggests to
consider the process Xt as a recurrence construction, a view that explains
how to chose the first element of the basis f0,0.
Imagine we want to build a sample path of the continuous processXt starting
with the prior knowledge of its values on the dyadic set DN . To proceed at
the next stage N+1, we need to establish the values of Xt on DN+1\DN ,
which implies the drawing of as many Gaussian random variables as there
are points in this set. If we consider a given time t, there exists a unique k
such that k2−N ≤ t<(k+1)2−N and we know that the collection of segments
SN+1,k = [k2−N , (k+1)2−N ] for 0≤ k < 2N defines a partition of [0, 1]. We

also remark that tN+1,k = (2k+1)2−(N+1) is the only point of DN+1 \DN

in SN+1,k and consequently, we note ζN+1,k the Gaussian drawing occurring
there. According to the results exposed in the second section, we posit

ζN+1,k = Xσ(tN+1,k) · ξN+1,k + Xµ(tN+1,k) .

where ξN+1,k is of normal law N (0, 1). Repeating such a construction for
n >N+1 leads us to evaluate the sample path on the whole set of dyadic
points D. As D is dense in [0, 1], the complete path is naturally obtained by
continued extension.
To construct a process rather than a sample path, we need to formulate the
above recurrence argument in terms of random functions. We consider the
conditional average 〈Xt〉DN

, which is also the most probable outcome of Xt

knowing its values on DN . As Xt is a Markov process, the change in the
estimation 〈Xt〉DN+1

− 〈Xt〉DN
only depends on the outcome of ξN+1,k when

restricted on the support Sn+1,k. Due to the simplicity of the situation, it is
possible to find an analytical expression of the form fN+1,k · ξn,k to describe
〈Xt〉DN+1

−〈Xt〉DN
on SN+1,k. With the help of the so-defined functions fn,k,

we can introduce the partial sum

XN
t =

n=N
∑

n=0

∑

0≤k<2n−1

fn,k(t) · ξn,k

and relate it to the conditional average 〈Pt〉DN
considered as a random

variable. By definition of fN+1, if P
N
t coincides with 〈Xt〉DN

, PN+1
t equals

〈Xt〉DN+1
at next step. Continuing this identification for n > N +1 shows

that the limit process limN→∞ PN
t agrees with the corresponding Ornstein-

Uhlembeck process on the index set D. Dealing with continuous processes,
the density of D in [0, 1] allows us to extent the results on [0, 1]. Incidentally,
we have an interpretation for the statistical contribution of a component
fn,k(t) · ξn,k. At each step N ,the function

∑

k fN+1,k(t) · ξN+,k represents the
uncertainty about Pt that is discarded by the knowledge of its values on
DN+1\DN .
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To validate the recurrence argument, it now remains to verify the initial
statement

P 0
t = f0,0(t) · ξ0,0 = 〈Pt〉D0

.

Actually, the need to satisfy this prerequisite enforces how to set the ex-
pression of f0,0. The conditional average 〈Xt〉D0

is a function of the value

of Xt on D0={0, 1}. By construction the value of Xt in 0 is assumed to be
zero. We note Z0,0 the random function X1 knowing X0 = 0, and we recall
that its statistics is given by relations (2) for a Wiener process and (3) for
an Ornstein-Uhlenbeck process respectively. With the notation of the second
section, we write 〈Xt〉D0

as a function of Z0,0

〈Xt〉D0
= Xµ0,1(t, 0, Z0,0) .

It defines a Gaussian random function 〈Xt〉D0
of the form f0,0 · ξ0,0. The

dependency of its variance upon t yields the expression of the deterministic
part f0,0

f0,0(t) =
√

〈〈Xt〉2D0
〉 . (30)

When applied to the Wiener process, the above relation gives the right ex-
pression for Ψ0,0; when applied to the Ornstein-Ulenbeck process, it gives the
already mentioned expression of Φ0,0.
Now, we further this recurrence description to show why Xt is naturally
represented as a bi-infinite series of random functions. In that perspective,
we extend the definition of the dyadic sets to DN = {k2−N | k ∈ Z} and
we have D−N = 2NZ ⊂ · · · ⊂ D0 = Z ⊂ · · · ⊂ DN = 2−N

Z. If we re-
strain the description of Pt to the index set [0, 1], the argument to set the
initial step of the recurrence allows us to define a function f⋆

−N,0 so that

f⋆
−N,0 · ξ−N,0 = 〈Xt〉D−N

on [0, 1]. The only requirement to adjust (30) is

that ]0, 1[ has no points in D−N . The usual recurrence construction is then
easily adapted to build the process Pt on that segment: for n>−N , the an-
alytical expressions of f⋆

n,k are simple extensions of the usual formulas fn,k.
In the case of a Wiener process, we make explicit the functions Ψ⋆

n,k

Ψ⋆
n,k(t) =



























































√

Γ

2−n+1
·
(

t− 2k · 2−n
)

if (2k) 2−n≤ t≤(2k+1) 2−n ,

√

Γ

2−n+1
·
(

2 (k+1) 2−n − t
)

if (2k+1) 2−n≤ t≤2 (k+1) 2−n ,

0 otherwise .

for n>−N , and the first element Ψ⋆
−N,0

Ψ⋆
−N,0(t) =

√

Γ

2N
·t . (31)
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In the case of an Ornstein-Uhlenbeck process, we similarly write the functions
Φ⋆
n,k

Φ⋆
n,k(t) =































































√

Γ

α
· sinh (α (t−2k·2−n))
√

sinh (α2−n+1)

if (2k) 2−n≤ t≤(2k+1)2−n ,

√

Γ

α
· sinh (α (2 (k+1) 2−n−t))

√

sinh (α2−n+1)

if (2k+1) 2−n≤ t≤2 (k+1) 2−n ,

0 otherwise .

for n>−N , and the first element Φ⋆
−N,0

Φ⋆
−N,0(t) =

√

Γ

α
· e

−α2N−1

sinh (αt)√
sinhα2N

. (32)

As apparent in (31) and (32), the upper bound of f−N,0 on [0, 1] is expo-
nentially decreasing toward zero when N goes to infinity. The exponential
uniform convergence of f−N,0 toward zero prescribes to represent the process
Xt as a bi-infinite series of random functions f⋆

n,k · ξ⋆n,k

X⋆N
t =

N
∑

n=1

f⋆
n,kn

(t)ξ⋆n,kn
+

0
∑

n=−N

f⋆
n,0(t)ξ

⋆
n,0 .

In the partial sum X⋆N
t , the index kn refers to the unique functions f⋆

n,k

whose support contains t for a fixed n. In the case of n ≤ 0, this index is
constantly set to zero. The two series in X⋆N

t are normally convergent on
[0, 1]. To verify the cogency of the bi-infinite decomposition, it is enough to
demonstrate that the covariance of the partial sum

〈X⋆N
t ·X⋆N

s 〉 =
N
∑

n=1

f⋆
n,kn

(t)f⋆
n,ln

(s) +
0
∑

n=−N

f⋆
n,0(t)f

⋆
n,0(s) .

converges toward the expected covariance of the process Xt. This amounts to
show that the right series in the above expressions equals to f0,0(t) · f0,0(s).
In the case of a Wiener process, a direct calculation leads to

0
∑

n=−N

Ψ⋆
n,0(t)Ψ

⋆
n,0(s) =

N
∑

n=0

Γ

2n+1
· ts = Γ · ts ,
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which is the exact expression of Ψn,0(t)Ψn,0(s). In the case of an Ornstein-
Uhlenbeck process, a similar calculation yields

0
∑

n=−N

Φ⋆
n,0(t)Φ

⋆
n,0(s) =

N
∑

n=0

Γ

α
· sinh (αt) sinh (αs)

sinh (α2n+1)

=
Γ

α
· e−α sinh (αt) sinh (αs)

sinhα
,

which consistently equals to Φ0,0(t)Φ0,0(s). The previous derivation requires
the use of the identity

∞
∑

n=1

1

sinh (α2n)
=

e−α

sinhα

proven in the supplementary materials.
The representation of a Wiener process as a bi-infinite series of random func-
tions stems from its scale-invariance. During the construction process, the
values of Wt on DN+1\DN only depends upon the previous drawings on DN .
Initial drawings on the asymptotic bounds of {−∞, 0,∞} = limN→−∞ DN

only produce vanishing correlations for later stage. At any finite step N+1
in Z, evaluating Wt on DN+1\DN is a completely scale-invariant operation,
which justifies a common analytical expression for the elements Ψn,k. For
nonzero coefficient α, the linear component in the Langevin equation pre-
cludes any scale-invariance for an Ornstein-Uhlenbeck process Ut. In that
respect, it is quite remarkable that we can decompose Ut in a basis of func-
tions Φn,k defined with a unique analytical expression. If n > log2 α the
functions Φn,k are well approximated by the functions Ψn,k showing the typ-
ical scale-invariance of a Wiener process; if n< log2 α the functions Φn,k are
exponential attenuation of the functions Ψn,k, with constant extremal value
√

Γ/2α. As is obvious, the parameter α can be interpreted in terms of a
characteristic time. For time-scales smaller than 2/α, the components Φn,k

with intersecting supports add to each others so that the resulting process
displays the same correlations as a Wiener process. For time-scales larger
than 2/α, the components Φn,k add independently because the exponential
attenuation causes all the components but one to be negligible on intersect-
ing supports.

We thank Mariela Sued and Daniel Andor. This work has been supported in
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