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Abstract

This paper describes a technique to determine the linear well-
posedness of a general class of vector elliptic problems that include
a steady interface, to be determined as part of the problem, that sep-
arates two subdomains. The interface satisfies mixed Dirichlet and
Neumann conditions. We consider “2+2” models, meaning two in-
dependent variables respectively on each subdomain. The governing
equations are taken to be vector Laplacian, to be able to make ana-
lytic progress. The interface conditions can be classified into four large
categories, and we concentrate on the one with most physical interest.
The well-posedness criteria in this case are particularly clear. In many
physical cases, the movement of the interface in time-dependent situa-
tions can be reduced to a normal motion proportional to the residual in
one of the steady state interface conditions (the elliptic interior prob-
lems and the other interface conditions are satisfied at each time). If
only the steady state is of interest, one can consider using other resid-
uals for the normal velocity. Our analysis can be extended to give
insight into choosing residual velocities that have superior numerical
properties. Hence, in the second part, we discuss an iterative method
to solve free boundary problems. The advantages of the correctly cho-
sen, non-physical residual velocities are demonstrated in a numerical
example, based on a simplified model of two-phase flow with phase
change in porous media.
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1 Introduction

Free boundary problems (FBPs) have motivated several studies in
the past due to their vast applications in fluid flow, phase change
models and other fields. Some classical free boundary problems are:
the dam seepage problem [6], incompressible two-phase flow [5] [14]
(i.e. falling droplets or rising bubbles [12], the Alt-Caffarelli problem
[2], the classical Stefan problem [6], etc. From a mathematical point of
view, FBPs are boundary value problems with an unknown boundary.
The motion (unsteady case) or position (steady case) of the boundary
has to be determined together with the solution of the given partial
differential equations on one (free surface) or both sides (interface) of
the free boundary. The coupling of the free boundary to the interior
is always nonlinear [I3], and thus FBPs are often not easy to solve.

The common structure of all the examples above is that at steady
state, they all have second order elliptic governing equations for m
unknowns on one side and n unknowns on the other side of the free
boundary. We denote this situation as an “m+n” problem. There
must then be m+n+ 1 Dirichlet-Neumann conditions at the interface.
For fourth order problems such as biharmonic equation, we would
need 2m + 2n + 1 conditions at the interface to determine an “m+n”
problem. By this generalization, many more complicated problems
can be formulated. However, fourth order problems and second order
elliptic systems other than vector Laplacian are not considered further
in this present study.

To solve free boundary problems numerically there are three main
kinds of methods: capturing methods, front tracking methods and
level set methods. Capturing methods are based on Eulerian for-
mulation and the problems are reformulated and solved in the whole
domain. The interface location is recovered from the discrete solution.
In these methods, the interface conditions are not specified explicitly.
A classical example is the Enthalpy method [6]. The alternative is to
discretize the interface explicitly [16] [18] or via a level set approach
[11]. In both these cases, the interface conditions (and interface ve-
locity for time-dependent problems) are implemented explicitly. This
can be done by considering the domains as disjoint and discretizing



the equations and interface conditions directly [8] or by discretizing
the entire domain and modifying the discretization near the interface
[10]. The latter approach combined with modern level set techniques
can also be considered a capturing method.

In a few cases, steady state solutions can be obtained directly using
shape optimization [I3] 9]. Another approach to reach steady state
solutions is to solve the transient time-dependent problem to long
time. In the class of problems we consider, the normal motion of the
interface is driven by the difference of solutions on either side of the
interface. For example, solidification boundaries are driven by a Stefan
condition [6]. It should be made clear that we are not considering here
the problem of dendritic growth [1l [4] which in our framework would
be ill-posed, but is regularized by higher order (curvature) terms. We
consider only well-posed problems which do not need regularization.
In the physical example of section [3] the interface is moved by the
net mass flux at the interface. Those are typical conditions that give
normal velocity of each point on the interface. In these examples and
others of physical interest, the normal interface velocity is given by
the residual in one of the steady state interface conditions. In this
paper, we apply the residual velocity method (a tracking technique)
of [7:

1. Given an initial interface I' and tracking points {x : x € I'},
solve numerically a fixed boundary value problem satisfying all
of the steady interface conditions but one.

2. Substitute the solutions into the unsatisfied condition and find
the residual R(x).

3. If the residual is larger than a tolerance, explicitly evolve the
interface using the residual as a normal velocity of the tracking
points:

V,, = R(x)

4. Repeat the process until the residual is less than a given toler-
ance.

At termination, all interface conditions are approximately satisfied.
This is an example of a value method [I5] (since it uses only val-
ues of the solution not shape derivatives to update the interface). In
this algorithm, the choice of residual velocity is not specified, so we
can choose different interface conditions and their combinations as the
residual velocity, not only the real, physical velocity. As a result, we



can show both analytically and numerically that the residual velocity
chosen by our criteria has better numerical properties than the phys-
ical one. Specifically, our method can use time steps independent of
mesh size in the explicit step 3 above. Because of the use of an artifi-
cial interface velocity, our method provides accurate solutions only at
steady state.

There are few publications addressing the analytic theory of the
general class of the steady free boundary problems considered here.
In [7] the authors present a linear theory of the well-posedness of the
general class of “1+1” Laplacian problems. Our work is an extension
of [7]. Specifically, the ideas considered there for the scalar case are
extended to the “242” case. An analytic simplification to the well-
posedness is identified in a physically important class of problems.
The class is represented by a simplified model of two-phase flow with
phase change in porous media. In addition, a different numerical im-
plementation of the corresponding residual velocity method is given.
While the numerical method is not as general as that of [7] it does
show that accurate results can be obtained without grid refinement at
the interface. Attaining this in more general codes is a goal for future
work.

The framework of this paper is following: In section 2, we discuss
the four classes of second order “2+2” problems with different com-
binations of Dirichlet-Neumann conditions. A physically interesting
example, a simplified model of two-phase flow with phase change in
porous media, is presented in section Bl In section [, well-posedness
criteria of “24+2” Laplacian equations from [7] are reviewed and ap-
plied to the example and generalized. The extension to 3-D problem
has been shown as well. Then in section Bl the example of vector
Laplacian type free boundary problem are computed numerically, us-
ing a finite difference method in mapped coordinates (a so-called ficti-
tious domain method [9]). The performances of both physical velocity
and our residual velocity are compared, and the results agree with the
analytical predictions.

2 Class Division of “2-+2” Problems

Consider a two-dimensional model, when m = n = 2. We have a
“94+2” vector elliptic problems for variables u®,p*, assuming that
Li(ut,p™) = 0 in the upper subdomain D and La(u~,p~) = 0 in



D+
Li(u®,p™) =0
— n
GU=bDb
LZ(U_vp ) = O
D-

Figure 1: The model of second order “2+42" problems. L 5 are linear, second

order elliptic operators and there are five interface conditions represented by
G.

the lower subdomain D™, as shown in Fig.[Il There are five conditions
at the interface. Here, we consider L1 and Lo to be general, vector,
linear, second order elliptic operator but in our analysis below we
consider only the case of Ly 2 both being the vector Laplacian.
The five Dirichlet-Neumann boundary conditions at I' in matrix
form, will be:
GU = b. (1)

where G is a 5x8 matrix, and UT = (uff, uy, pf, py, u®, w=, pt, po)
is a vector composed of all unknown variables and their normal (n
pointing from D~ to D7) derivatives at the interface. The matrix G

can be split naturally into two parts:

G =(Gn | Gp)

where G and Gp are 5 x 4 sub-matrices, representing respectively
Neumann conditions and Dirichlet conditions.

We use the rank r of Gy (or equivalently the number 5 — r of pure
Dirichlet conditions) as the criteria to classify possible forms of G. As
a result, there are four classes of boundary conditions corresponding to
r=4, 3, 2, 1 below. Normal forms can be obtained using the following
allowable operations:

1. Row operations on G.

2. Simultaneous swap of columns 1 and 2, 3 and 4, 5 and 6, 7 and
8. This swap is accompanied by a sign change of columns 1-4.
(corresponds to a relabelling of D~ and D).

3. Column operations between columns 1 and 3 with identical op-
erations on columns 5 and 7 (linear combination of unknowns in
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D).

4. Column operations between columns 2 and 4 with identical op-
erations on columns 6 and 8 (linear combination of unknowns in
D).

The following generic forms result:

Class A: One pure Dirichlet condition, and thus the rank of G is
4:

Class B: Two pure Dirichlet conditions, and the rank of Gy is 3.

100 G1,4 ‘ 0 0 G177 Gl,g
010 Gou |0 0 Go7 Gag
G=|001 Gss |O 0 Gs7 Gsg
000 O | Gas Gae Ga7 Gag
000 O | Gs5 Gse Gs7 Gsg

where the last two rows are linearly independent but no further
reduction is possible.

Class C: Three pure Dirichlet conditions:

Gip Giz2 Gig Gia | 000
Go1 Gaa Ga3 Gaga | 000
G = 0 0 0 0 | 100 Gsg
0 0 0 0 | 010
0 0 0 0 | 001

where the first two row vectors restricted to the left block are
linearly independent but no further reduction is possible.

Class D: Four pure Dirichlet conditions:

10 Gz Gia 0000
00 0 0 [1000
G=[00 0 0 [0100
00 0 0 0010
00 0 0 0001



Class C is arguably of most physical interest. If the vector el-
liptic equations represent conservation of two quantities with fluxes
proportional to gradients, then the conservation of these quantities at
the interface are represented by exactly two pure (G g and Ga g both
zero) Neumann conditions. We define the subclass C' to be the one
with these additional conditions. In the following section, we present
a physical example in this class originally derived from [3]. Class D
always leads to a single pure Neumann condition. We define sub-
classes A and B to be the ones with four and three, respectively, pure
Neumann conditions.

3 Physical example

We consider now a physical problem involving two-phase flow with
phase change in porous media. Consider a closed system consisting of
a sand pack, water vapour and liquid water. If the system is heated
at the top, vapour is formed, and in some cases, two distinct zones
with free boundary will be observed. In the upper zone D™, there is
only vapour, while in the lower zone D™, two-phase vapour and liquid
water can be found. This model is studied in [3].

In the upper region DT, the variable P,(z,t) and temperature
T (x,t) describe the vapour region, and the governing equations are:

ATT = 0 (2)
V-(pouy) = 0 (3)

where p, and u, denote density and velocity of the vapour respectively,
which are the functions of temperature 7 and pressure P,. According
to Darcy’s law, we have:

K
u, = ——VDP,
Ho
with x the permeability and u, the dynamic viscosity. If we assume

the gas is ideal, then:
M P,

T RTT
where M is molar mass of water, R is the universal gas constant. So
the equation (B becomes:

Pv

v. (%vm — 0 (4)



Then (2)) and (@) give an elliptic problem for P, and T™.

Flow in the lower two-phase region is described by temperature
T~ and saturation s(z,y). The saturation is the fraction of pore space
occupied by liquid water. Energy conservation and mass conservation
give us:

V- (KVT7) = hygpV - (ppuy) = 0 (5)
V- (pw +pou,) = 0 (6)
where u;,u, and p, are functions of T~ and s. Darcy’s law includes

the relative permeabilities as well as the capillary pressure, which we
assume are functions of the s:

Uy = — (1 — §)3V Py (T7)
My
w = —%SW(PW(T—) — P.(s))

where p,, (7 are respectively dynamical viscosities of the vapour and
liquid, P, is the saturation vapour pressure, and P. = P, — P, is the
capillary pressure. Since evaporation and condensation rates scale to
be very large in a porous media, we assume P, = Py (T7). Therefore
in the two-phase region, we have an elliptic problem for 7'~ and s.

On the free boundary, There are five Dirichlet-Neumann conditions
required for the problem of four variables:

s=0 saturation is zero at the interface

[T]=0 temperature is continuous

[P,] =0 vapour pressure is continuous
(pouy)T -0 = (pyu, + puy)” - m mass conservation
[KTh] = hyap(prug) -1 heat conservation

where [-] denotes the difference between counterparts on each side of
the interface. For example: [T] =T+ —T~.

In order to make progress on this problem in our framework, con-
siderable simplification is needed. Specifically, we need to simplify
the problem to get a vector Laplacian operator on each subdomain
and linear interface conditions. The model derived below lacks sev-
eral aspects of physical interest and mathematical difficulty. However,
it does retain the underlying structure of two elliptic systems coupled
by five mixed Dirichlet-Neumann conditions at the interface. First,



we set P,/TT = 1 in (), which means the vapour density doesn’t
change. This leads to Laplacian equation of pressure: AP = 0, then
in the upper region DT, we have:

AP =0, AT =0

In the lower region D™, we simplify using the assumption that
evaporation or condensation only happens at the interface. Moreover,
we assume the relative permeability of vapour and liquid in D~ is
independent of saturation s, the capillary pressure P, is linear in s
and saturation vapour pressure Py, is linear in 7~. In the end, ()
and ([6) can be reduced to two Laplacian equations:

As=0, AT =0.

Correspondingly, the interface conditions are given:

s=0 saturation is zero across interface
[T]=0 temperature is continuous
P=T" Vapour pressure is continuous
[KTyn] = —5n heat flux is continuous
Phn=T, + 5n mass conservation

Note that in the example, the interface is featured by s = 0, and
its movement is driven by the mass flux going through the interface,
so we say the physical residual velocity comes from the last Neumann
condition. The five conditions can be written in matrix form (1) where
G and U are respectively:

o 0 0 0 0 0 0 1
O 0 0 0 1 -1 0 0

G=| 0 o0 0 0 0 1 -10 (7)
Kt -K-— 0 +1 0 0 0 0
0 -1 1 -1 0 0 0 0

and }
Ut = (Tr—li_v Ty, Pn, sn, T, T™, P, s)

Clearly, the boundary conditions are composed of three pure Dirichlet
and two pure Neumann conditions, which belongs to Class C' identified
in the last section.



4 Linear Well-Posedness and Residual
Velocities

In the first subsection below we review briefly the theory developed in
[7] targeted to the “24-2” case. Later, we identify situations where the
analysis gives particularly clear insight. These include the physically
important case C identified in the previous section. Application of
the theory to the example above is done, and a residual velocity with
superior numerical properties is identified.

4.1 General Theory
4.1.1 Base Solutions

We find base solutions in 2D (coordinates = and y) with a flat interface
y = 0. Take ul = (u*,u~,p",p~) to be the base solution of the FBP
satisfying:

Aug =0 imy>0andy<0 (8)

with interface conditions:

GUg=hb on the interface y =0 9)

where Uy = < oo )

g
We consider base solutions independent of z with b constant, so
@) can be reduced to ugy, = 0 and ug is linearly dependent on y.
That yields:

uozyrl—l—ro

~ I-l
%o ()

is a constant vector solving (@). The base solution is composed of a
particular solution and homogeneous solution

where

Ug =Ty +7p,

with Gf = 0. Hence, Ty belongs to the nullspace of G, and N (G)
has rank 3.

10



In order to specify a unique solution, we need three more conditions
denoted by a vector q = (¢1, g2, qg)T, corresponding to the ordering of
a basis of vectors of N (G), so

fjo:(::;):/\/((;)'q

where we mean (with a slight abuse of notation) by NV (G) the 8 x 3
matrix with a basis for this space in columns.

Consider the base solution found above to describe the local be-
haviour of the interface near a point, where the coordinate system has
been rotated so that the local tangent plane is y = 0. This local base
solution depends on the local data b and also the vector q, which we
refer to as the global fluxes. This represents the dependence of the
local solution on far field conditions.

4.1.2 Linear well-posedness

We consider how small perturbation of boundary conditions about a
flat interface affect the solution:

GU = b + efe™® (10)

where f is a constant, « is the Fourier mode, and € is a small parameter.
As a result, we will obtain a new solution and new free boundary. If
we can show that the linearized solution depends continuously on the
data f for each a we say the problem is linearly well-posed.

After we perturb the interface condition using (I0), we expect the
new solution u and free boundary y = n(x) to be in the form:

u(z,y) = ue(y) + eus (z,y) + O(€?)
n(z) = e (z) + O(€%)

where ug, n9(z) are the base solution from section [L.I.J] above. Fol-
lowing [7] it is known that linear perturbations are of the form:

m(x) = e’ (11)
u(z,y) = ceflolveior (12)

where (I2)) arises from the separable solution of the Laplace opera-
tor in half planes and the sign is chosen appropriately depending on
whether the corresponding variable is in the upper or lower domain,

11



respectively. Again following [7], if the forms ([I]) and (I2]) are put in
to (I0O) the first order term results in the following algebraic condition:

GMc + ﬁlGﬁon =f (13)

where
—la] 0 0 0
0 o] 0 0
0 0 —lJaf O
_ 0 0 0 ||
M = 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

and

7. — ( Yoy

Yon = < Uoy >

evaluated at y = 0. This can be written as:
ﬁOn = SﬁO

where Ug is the vector from the base solution (I) and S is a shift
matrix that moves rows 1-4 to rows 5-8 and then zeros the first four
TOWS.

Considering ([I3]), the well-posedness criteria can be reduced to the
existence and uniqueness of (c,7;) for every f and a. Consider the
matrix GM. It is a 5 x4 matrix with rank 4. We denote a vector in its
left nullspace by w = N[(GM)?]. Thus to ensure the well-posedness
of the problem, we require:

wTGUp, # 0 (14)
This is the algebraic condition for linear well-posedness for the general
class of steady free boundary value problems we have considered.

4.1.3 Residual velocity choice

In our numerical algorithm, we solve a fixed boundary problem each
iteration with some of the boundary conditions in G satisfied, while
the residual in the remaining condition is used as the normal velocity
to evolve the interface. With the well-posedness criteria of the prob-
lems established above, we can discuss the stability of the numerical

12



methods for the free boundary problem. We consider residual velocity
methods as discussed in the introduction. The only time dependence
is in the interface position y = n(x,t) which in the linearized setting
above reduces to

y = ﬁeiam e)\t
The stiffness A is a function of the choice of residual to use as velocity
and also the wave number «. If for a given residual velocity choice,
Re(\) < 0 for all «, the resulting method will converge to the steady
interface solution. We show how in addition residual velocities can
be chosen in some cases so that A is bounded independently of «,
which suggests that time steps for the resulting method can be chosen
independently of the spatial discretization. This is verified in the
example computation in the next section.

Again, following [7] the linear analysis leads to

—
A=Y GUon (15)
wlv
where v denotes the linear combination of residuals used as the normal
velocity (the orthogonal combinations are used as interface conditions
at each time) and as before wT is the left nullspace of GM.

Note that in the numerator of (I3) is the well-posedness term ([I4]).
We assume we are only trying to compute solutions to well-posed prob-
lems, so can assume this term does not change sign. Thus, the stability
of the scheme depends only on the denominator which depends on a
straight-forward way on the velocity choice v.

4.1.4 Discussion

The well-posedness condition (I4]) and stability condition (I5]) are
powerful analytic tools. The influence of the boundary conditions
(through G), the elliptic problem (through w coming from M), and
boundary and far-field data (through fJ'()n) are encoded in these scalar
relationships. However, for problems of size “24-2” and larger, it be-
comes difficult to make general statements about a particular problem.
In general, for “2+2” problems, w has elements that are fourth order
polynomials in |«|. Thus, (I4]) will in general also be a fourth or-
der polynomials in |a|, with coefficients depending on boundary data
and global fluxes. We discuss below situations of physical interest
(including the main example from the last section) where significant
simplification occurs in these expressions.

13



4.2 Application to physical example

Let’s go back to the concrete example in section [3l where G is given
in (7). The nullspace of G, N'(G), is:

E-1 1 0
N(G)T = — 0 41 +1
0 0 0 0

=)
= o O
= o O

0
0 (16)
0

Each row of the matrix above corresponds to the effect of one global
flux. We describe the physical interpretations of these global fluxes
below:

q1: This corresponds physically to a heat flux downwards in the lower
region. This heat flux is balanced by a heat flux in the upper
region. In addition, the temperature gradient in the lower region
drives a vapour flux there that is matched by a pressure driven
gradient flow in the upper region.

g2t This corresponds physically to a flux of water downwards in the
lower region. This flux is generated by condensation at the two
phase boundary which is provided by vapour flow downwards
and heat flow upwards in the upper region.

g3: This term represents an additive shift in temperature and pres-
sure.

The data term b is zero in this example, so the well-posedness is
determined entirely by the global fluxes. Specifically, the term Uy, in

(I4)) and (I5) is given by

) 0000 X 1 1 0\
Unm cSN(G)=[ 0000 -2 0 +1 +1
0000 0 0 0 0

where by the last term above we mean the span of the column vectors,
which has rank 2. This is our first simplification: that only two of the
global fluxes (the first two described above) enter the stability condi-
tion. Upon reflection, it is clear that shifting the overall temperature
and pressure (the effect of g3) in this linear problem should not affect
the stability of the problem.

We now find the left nullspace w of (GM)”:

T:(K++K—+2 —2K* -2

—la|, —=——1

14



The first three elements are O(]a|), corresponding to rows in G rep-
resenting pure Dirichlet conditions. This is the second simplification
observed in this example, that the vector wT has relatively simple
dependence on |al.

By simple calculation, we get:

(KT =K )q + (KT 4+ K~ +2)¢

T [ —
w G Uy, =2 |af e #0
to be the well-posedness criteria, that is
(KT—K )i+ 2+ K"+ K )ga #0. (17)

The simplifications noted above are what lead to this particularly clear
form. We note that in the physical situation described in [3], g2 < 0
(liquid moves toward the two phase zone) and ¢; =~ 0 so we expect the
well-posedness term in (I7)) to be negative.

We consider now the choice of residual velocity (I3]) for this case.
For instance, if v = e5 (the physical velocity choice), we have:
(KT =K )g1 + (KT + K~ +2)go

K+ + K- ’
This is a stable choice for velocity, considering the predicted sign of
the term (7)) above. However, when we consider « — oo (finer dis-
cretizations), we get a very stiff problem and the time step we take
should be correspondingly small. Therefore, better numerical proper-
ties are obtained when we choose v such that A is independent of wave
number. This goal can be achieved by choosing residuals of Dirichlet
conditions. In this case, we can choose vI = e; (corresponding to the
saturation condition), then
(KT =K )q1 + (KT + K~ 4+ 2)¢o
Kt+K-+2

and we have an optimal velocity to evolve the interface. Numerical
validation of the superior performance of this residual velocity over
the physical one is given in Section [l below.

A straight forward calculation shows that for all problems of class
C identified at the end of section 2l similar results are obtained. That
is, the vector w in (I4) and (I3 has terms of order « in entries cor-
responding to pure Dirichlet conditions and constant in entries cor-
responding to pure Neumann conditions. Also, only the two global
fluxes corresponding to derivative quantities enter these expressions.
Similar simplifications are found in other cases when the interface
conditions separate into pure Dirichlet and pure Neumann conditions.

A=2|qf

A=2

15



4.3 Extension to the 3-dimensional problem

The linear analysis is similar except that we assume an initial flat
interface to be z = 0, and a small perturbation of driving function is
given:

GU = b + efe’@®e (18)

then consequently we have updated solution and interface:

ne~o et

u~uy+eug+---
where o
m(z,y) = iere
Then the separable solutions of Laplacian equation Au = 0 are in

form of:
u = Py

where

~ 2 2
il =ceTVE+8 2

and ¢ = (AT, A=, B*, B™)T is any arbitrary constant vector deter-
mined by the fixed boundary conditions. So we have:

u = ce TV +B8% z jiax iy (19)
If we expand the solution along the new interface, we have:

u(a:, Y, 77(957 y)) = uO(xv Y, 0) + 6771110z(33= Y, 0) + 6111(33, Y, 0) + 0(62)
(20)
and since the leading order term of interface is 179 = 0, we can consider
roughly u, = u,.

ull(x7 Y, 77($)) = qu(:Ev Y, 0) + E[ulz(x7 Y, 0) + nlu(]zz(:Ev Y, 0)] + 0(62)

(21)
Substitute those expansions into (20]), equating coefficients of different
orders, we have:

[GU; + 1€V Ugy) = feleiPY (22)
where Upn = (ul_,ul )7 is dependent on ug, and U; = (uf,,ul)7”
with u; in (3.15).

16



The base solution ug in 3-D retains the same form in the 2-D case.
We need the solutions independent of coordinate variables x and y,
which lead to ug = zr! +r°, and consequently

(r', r%)T e N(G)
we always have Ugn = (0,r1)7. Hence:
Uon € SIV(G)] = (0354, N(G)ua )" (23)

where NV(G)4 represents the left four columns of N'(G).
After we figure out Ugpn, the next step is to find U;. We reserve
the notation of matrix M to provide us a more clear structure of Uj.

ﬁl(x,y,O) = (ug,uy) = el P M

and

= (VT
14

where I is a 4 x 4 identity matrix. Thus the equation (3.18) becomes
GMc + 71 GUg, = f (24)

Denoting its left nullspace by w = N[(GM)7], we still have the same
criteria for well-posedness:

wTGUg, #£0 (25)

Applying this to our physical example in 3-D, we have:

~ Kt — K~ K+ K™ +2
WTG Uy = 2 /a? 1 2 | R

This provides the same information as the 2-D problem. A study of
the properties of interface velocities also gives results analogous to the
2-D case.

5 A 2-D computational example

In this section, we show how the residual velocities work on the vec-
tor Laplacian problem by computing the linear example of section Bl
In addition to the interface conditions, the following fixed boundary

17



conditions are given: On the bottom, we assume the medium is sat-
urated with liquid water, thus s = 1, and give a constant reference
temperature
T (x,0) = Tp.
On the top boundary, we make the boundary impenetrable to vapour
orP
P
and take the heat flux to be given:
+
K +8ain = fl (LE)
We take fi1(z) =2+ sin(z)/2 and Ty = 10 as our numerical example.
These conditions lead to a global flux ¢ < 0 (water flux upwards
towards the interface) at each interface location. In the computations

below, we take KT = K_ so the well-posedness condition (I7) is
satisfied with the sign that makes our velocity sign choices stable.

0

5.1 Exact solution

In order to get an exact solution that can be compared with the nu-
merical approximation, we start by building two piecewise functions

U - K+T+ in DV v P in DT
| KT —s in D | T +s in D
The two Laplacian equations AU = 0 and AV = 0 hold in the whole

domain discarding the interface. The continuity gives the Neumann
conditions across the interface:

K'Tf —K T, = —sn and P, =T, + sn

and because s = 0 at the interface, the Dirichlet conditions across the
interface are:

KTt =K T~ and P=T"

Note that only when K+ = K, the problem is equivalent to our
original one, so we set K™ = K~ and try to find the location of the
interface s = 0. Solving the problem, we have:

sin(z) sinh(y)

TH=9+2 P=11
It 2+ 2 cosh(L)
_ sin(z) sinh(y) sin(z) sinh(y)
T =1 —7 =1—qy—
0ty -+ 4 cosh(L) y Y 4 cosh(L)
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and the location of s = 0 is given implicitly by
4(1 — y) cosh(L) — sin(z) sinh(y) = 0

By setting x equally distributed in the interval [0, 27], we can solve
this transcendental equation for y, and thus find the coordinates of
points on the interface to arbitrarily high precision.

5.2 Finite difference method in mapped rect-
angular domain

To handle the two irregular subdomains separated by curved interface,
we map them into two rectangular domains, so that finite difference
method can be naturally employed. A finite element method would
be a good alternative for more irregular domains. A preliminary finite
element implementation was done in [7] which required considerable
grid refinement near the interface. The finite difference implementa-
tion given here demonstrates that this is not necessary for accurate
solutions.

Suppose y = h(z) is the known interface, we will do the following

mapping:

DT : (x,y) — (x1 ==, y1 =14 (y—h(z))/(L - h(z)))
D™ : (z,y) = (ra =12z, y2 =y/h(x))

The new domain is [0, 27 x [0, 2], and the interface y = h(z) has been
mapped into y; = yo = 1. Then by simple calculation, we have:

8T . 6T 83:2 8T 8y2 . 6T h,(:Eg)yQ 6T
Or ~ Om 0 Oy 0 O h(m) Oy
or _ OTon OO _ 1 0T
Oy — Oxo Oy  Oyo Oy  h(x2) Oys

Note that %—22 =0, % # 0. Rewrite the Laplacian equations in the
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mapped lower subdomain:

AT~

Oy? T T h(z2)? Oy2 - Oz dxy \ Ox
1 0?T Oxp O [OT  H(x2)y2 OT
“HEF&E+EEEE<EE‘ mm>5£>
W (xo)ys Oy2 0 (0T  h'(x2)ys OT
h(zy) Oz dya (3—332  h(wa) 5—y2>

_ 1+ R (w2)%y3 0*°T—  0°T~ yoh!(x9) 02T~

h(xs)? oy3 Ox3 B h(xs) Ox20ys
Qh,(l’2)2 — h”(:Eg)h(:Eg) oT—
h(xz2)? b2 0y

(26)
Similar calculation gives the Laplacian equation in the mapped upper
subdomain:

1+ W (21)%(2 —y1)? 02T N Pt (2—y)W(x1) T

A =—T e op T a?  C T h@) 0nom
- 2h’(x1)2 + b (x1)(L — h(z1)) (2 )@
(L — h(z1))? S

(27)
For the pressure P and saturation s, we get similar formulas.
The Neumann interface and fixed boundary conditions should be
reformulated as well in the new coordinates. For the Neumann
(physical) velocity computation, we choose the residual of mass
conservation condition P,—7,, —s, = 0 to move the interface. Al-
ternatively, the Dirichlet condition s = 0 is picked as the Dirichlet
residual velocity.

In order to make our numerical approximation second order
accurate, we use central difference scheme all through the dis-
cretization. With NV x N to be the resolution on either side, the
resultant coefficient matrix is of order 4N? x 4N?2.

5.3 The numerical results

We start from N = 10, and increase it to get higher accuracy.
L = 2 is fixed all through the computation. To get the results
in Table [I we set the timestep At = 0.02 for the Neumann
(physical) velocity, and compute till 7" = 24, which is long enough

20

_82T 82T_ 1 0°T 83:21 oT _h’(wg)yg%i
a h(z2) Oz dy;
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‘ Grids H errInf ‘ ratio ‘ err'T ‘ ratio ‘ errS ‘ ratio ‘
10x10 0.0031 oAk 0.0075 k| 2.8773e-5 | FHE
20x20 || 8.0341e-4 | 3.859 | 0.0019 | 3.947 | 6.4194e-6 | 4.48
40x40 || 2.0019e-4 | 4.013 | 4.8504e-4 | 3.917 | 1.6205e-6 | 3.961

Table 1: Convergence test of Neumann residual velocity

‘ Grids H errInf ‘ ratio ‘ err'T ‘ ratio ‘ errS ‘ ratio ‘
10x 10 0.0032 ook 0.0075 *AHK 1 2.9558e-5 | KK
20%x20 || 8.0341e-4 | 3.983 | 0.0019 | 3.947 | 6.4127e-6 | 4.601
40x40 || 2.0019¢-4 | 4.013 | 4.8504¢e-4 | 3.917 | 1.6201e-6 | 3.960

Table 2: Convergence test of Dirichlet residual velocity

to reach the steady state. The errors errInf, errT, errS are
respectively the errors of interface, temperature and saturation
in maximum norm. For the Dirichlet (artificial) residual velocity,
we take At = 0.2, and iterate till 7" = 24, the errors are shown
in Table 2 Note that at (almost) steady state, the errors of the
two methods are (almost) identical since the discretization of the
steady-state solution is identical.

Obviously, both methods have second order accuracy implied
by the convergent rate. Now we try to demonstrate the advan-
tage of the Dirichlet (artificial) residual velocity by setting the

timestep At a free parameter.

As we know, since we have to

use explicit scheme for x, = R(x) to evolve the interface, the
timestep has to be reduced when refining the grid to make it

within the stability region.

kept reasonably large.

In Table [3 we observe this prop-
erty in Neumann residual velocity, but not in Dirichlet one. This
means, even when we have very fine grids, the timestep can be

Since we know in each time iteration,

the computational complexity is almost the same, allowing larger
timesteps can greatly reduce the computational cost.

In Table 3] VN and VD represent respectively the Neumann
and Dirichlet residual velocities. It’s not hard to see for Neumann
residual velocity, At = 0.12 is appropriate for 10 x 10 grids to
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‘ Grids H timestep ‘ RV ‘ errInf ‘ err'T ‘ errS ‘

10x10 0.20 VN | 0.9213 0.8734 0.1029
0.15 VN | 0.0453 0.0863 0.0122
0.12 VN | 0.0031 0.0075 | 2.8773e-5
10x10 0.20 VD | 0.0032 0.0075 | 2.9558e-5
20x%20 0.12 VN | 12.0340 6.2583 0.8346
0.08 VN | 73.4589 4.9261 1.3080
0.06 VN | 8.0341e-4 | 0.0019 | 6.4194e-6
20x%20 0.20 VD | 8.0341e-4 | 0.0019 | 6.4127e-6
40x40 0.06 VN | 9.6403 24.4088 0.9594
0.04 VN | 3.8939 3.5538 0.8762
0.03 VN | 2.0019e-4 | 4.8504e-4 | 1.6205e-6
40x40 0.20 VD | 2.0019e-4 | 4.8504e-4 | 1.6201e-6

Table 3: Performance of different residual velocities

get convergence, and when we refine to 20 x 20, At = 0.06 is
correspondingly decreased, and for 40 x 40, it becomes At = 0.03.
However, we can use At = 0.2 for all three resolutions if the
Dirichlet residual velocity is chosen. Considering the appropriate
timesteps At = 0.03 and At = 0.2 when the resolution is 40 x 40,
Dirichlet residual velocity is obviously better than the physical
Neumann one.

6 Conclusions and discussion

Local, linear well-posedness criteria were developed for a general
class of “242” vector Laplacian problems. Much simplification
can be obtained in certain cases of physical interest. This is
demonstrated in a simplified model of two-phase flow with phase
change in porous media. The theory also allows the investigation
of the stability and numerical properties of residual velocities to
compute the steady state. It was possible to identify a superior
velocity choice for the physical example and other problems in
its general class. The theory was verified computationally using
a finite difference method with mapped coordinates. In general,
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this approach offers a way to improve the performance of certain
steady-state interface computations with very little effort. Ongo-
ing work suggests that these ideas can be extended to interface
problems involving more general second order elliptic systems,
such as problems from viscous, incompressible fluid flow. Ex-
tension to higher order problems with biharmonic operators are
also possible. Efficient implementation of the method in a finite
element framework is still an open problem.
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