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SYMMETRIZED CUT-JOIN EQUATION OF MARINO-VAFA FORMULA

LIN CHEN

Abstract. In this note, we symmetrized the cut-join equation from the proof of Marino-Vafa formula.
One can derive more recursion formulas of Hodge integrals out of this polynomial equations. We also
give some applications.

1. Introduction

The Marino-Vafa formula(Liu-Liu-Zhou’s theorem, cf [14]) gives a close formula for certain Hodge
integrals with three λ classes. One of its specialization is the famous ESLV formula[3]. By apply-
ing a transcendental changing of variable, Goulden,Jackson and Vainshtein get a symmetrized cut-join
equation[5], which is a polynomial identities with Hodge integral numbers with one λ class as coefficients.
Comparing the lowest degree terms, Goulen, Jackson and Vakil[6] were able to give a short proof of λg
conjecture,which was first proved by Okounkov and Pandharipande[4]. On the other hand, by using the
result of [6], Chen, Li and Liu [1] gave a short proof of Witten conjecture Kontsevich theorem.

In this paper, we study another transcendental changing of variable formula, apply it to the Marino-
Vafa formula itself, and get a symmetrized cut-join equation, which is again a polynomial identity, but
with Hodge integrals with three λ classes as coefficients. We expect more Hodge integrals can be computed
from our symmetrized cut-join equation. As an example, we illustrate how to get the Witten conjecture
Kontsevich theorem from our newly derived symmetrized cut-join equation.

We study the new transcendental change of variable formula in section 2, which is essentially some
calculus based on Formal Lagrange Inversion Theorem. In section 3, we symmetrize the cut-join equation
satisfied by the generating series of Hodge integral studied in [14]. Applied the change of variable formula
developed in section 2 to the symmetrized cut-join equation in section 3, we derived a polynomial cut-join
equation, which is the theorem 3 in section 4, and this is the main result of this paper. We illustrate
some application of our result in section 5.

2. Preliminary

We first quote a result from the standard text book on combinatorics. For a proof and more about
this theorem, we refer the book Enumerative Combinatorics by Richard Stanley[18].

Theorem 1. Formal Lagrange Inversion Theorem: Let F [x] =
∑+∞

i=1 aix
i ∈ xK[[x]] where a1 6= 0 and

K is a field of characteristic 0. Let k, n ∈ Z,then

(2.1) n[xn]F−1(x)k = k[xn−k](
x

F (x)
)n = k[x−k]F (x)−n

Where F−1(x) denote the formal inverse function of F (x) and [xn]F (x) is the coefficient of xn in the

formal power series F (x).

In particular, take k = 1, we have

(2.2) n[xn]F−1(x) = [x−1]F (x)−n

The inverse function of x(1 − x)τ will play a crucial role in this paper. Take F (x) = x(1 − x)τ in the
above theorem for some fixed complex number τ , then
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(2.3)
1

F (x)n
=

1

xn
(1− x)−nτ =

1

xn

+∞∑
r=0

∏r−1
a=0(nτ + a)

r!
xr

and

(2.4) [x−1]
1

F (x)n
=

∏n−2
a=0 (nτ + a)

(n− 1)!

Let ω(x) denote F−1(x). We will study some basic properties of this function in this section. The formal
Lagrange inversion theorem gives the unique formal power series solution of the equation

(2.5) ω(x)(1 − ω(x))τ = x

(2.6) ω(x) = F−1(x) =

+∞∑
n=1

∏n−2
a=0 (nτ + a)

n!
xn

One can compute the derivative

(2.7) xω(x)′ =
ω(1− ω)

1− (1 + τ)ω

Let y = 1
1−(1+τ)ω , we have

(2.8) (1 + τ)xω′ = (1− ω)(
1

1 − (1 + τ)ω
− 1)

and

(2.9) (1 + τ)2xω′ =
τ

1− (1 + τ)ω
+ 1− (1 + τ)(1 − ω) = τy − τ + (1 + τ)ω

so

(2.10) y = 1 + (
1 + τ

τ
)
+∞∑
n=1

∏n−1
a=0 (nτ + a)

n!
xn

For a formal power series f(x), if we change the variable to ω, and then to y, we have the following
relations:

(2.11) x
df

dx
=

1− ω

1− (1 + τ)ω
ω
df

dω
= y(y − 1)(

yτ + 1

τ + 1
)
df

dy

3. Symmetrization

In [14], they studied the generating function C =
∑

g>0,n>1 Cg
nλ

2g−2+n, where

Cg
n =

∑
d>1

∑
µ⊢d,l(µ)=n

−
√
−1

d+n

|Autµ| (τ(1 + τ))n−1
n∏

i=1

∏µi−1
a=1 (µiτ + a)

(µi − 1)!

∫
Mg,n

Γg(τ)∏n
i=1(1 − µiψi)

· pµ

= −
√
−1

n
(τ(1 + τ))n−1

n!

+∞∑
µ1,µ2···µn>1

√
−1

|µ|
n∏

i=1

∏µi−1
a=1 (µiτ + a)

(µi − 1)!

3g−3∑
k=0

∑
b1+b2+···+bn=3g−3+n−k

∫
Mg,n

Γk
g(τ)

n∏
i=1

ψbi
i

n∏
i=1

µbi
i · pµ

= − (τ(1 + τ))n−1

n!

3g−3∑
k=0

∑
b1+b2+···+bn=3g−3+n−k

< τb1 · · · τbnΓk
g(τ) >

n∏
i=1

φbi(
−→p )
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Here we denote

φi(
−→p ) =

∑
m>1

√
−1

m+1
pm

∏m−1
a=1 (mτ + a)

(m− 1)!
mi =

1

τ

∑
m>1

√
−1

m+1
pm

∏m−1
a=0 (mτ + a)

m!
mi

for infinitely many formal variables −→p = {p1,p2, · · · } and

Γg(τ) = Λ∨
g (1)Λ

∨
g (τ)Λ

∨
g (−τ − 1)

.
This apparently complicated generating function naturally appeared when one computes the open

Gromov-Witten invariants of local Calabi-Yau, cf[7]. Motivated by the duality between topological string
theory and Chern-Simon theory, Marino-Vafa formula gives a closed expression of the above generating
function C in terms of some combinatorial data associated to representations of symmetric groups. In
their proof of the Marino-Vafa formula, Liu-Liu-Zhou show that the generating function C satisfies a
cut-join equation.

(3.1)
∂C
∂τ

=

√
−1λ

2

∑
i,j>1

(ijpi+j

∂2C
∂pi∂pj

+ ijpi+j

∂C
∂pi

∂C
∂pj

+ (i+ j)pipj

∂C
∂pi+j

)

In this section we will symmetrize this cut-join equation and make a transcendental change of the
variable, so that the resulting symmetrized cut-join equation become a polynomial one.

Define the symmetrization operator

Ξnpα = (
√
−1)−n−|α|

∑
σ∈Sn

xα1

σ(1) · · ·x
αn

σ(n)

for n > 1 if l(α) = n with α = (α1, · · · , αn), and 0 otherwise.
We have

(3.2) ΞnCg
n = − (τ(1 + τ))n−1

n!

3g−3∑
k=0

∑
b1+b2+···+bn=3g−3+n−k

< τb1 · · · τbnΓk
g(τ) >

∑
σ∈Sn

n∏
i=1

φbi(xσ(i))

where

(3.3) φi(x) =
1

τ

∑
m>1

∏m−1
a=0 (mτ + a)

m!
mixm =

1

τ + 1
(x

d

dx
)i(y − 1)

Let C denote the change of variable from x to y, one has the following relation

Cx
d

dx
= y(y − 1)(

yτ + 1

τ + 1
)
d

dy
C

Apply to φi(x) for i > 0, we get

(3.4) Cφi(x) = C
1

τ + 1
(x

d

dx
)i(y − 1) = [y(y − 1)(

yτ + 1

τ + 1
)
d

dy
]i(
y − 1

τ + 1
)

Clearly, this is a polynomial in the new variable y of degree 2i+ 1.
Set Ξ{a1,··· ,am}pα = Ξpα|xi→xai

,i=1,··· ,m

The following three lemmas are from the section 4 of [5]. However, one should be careful that in our
case there are some extra coefficients appear due to our definition of the symmetrized operator. We
ignore the proof, which one can find in [5].

Lemma 3.1. Let α and β be partitions with l(α) = k and l(β) = m. Then

Ξ{1,··· ,m+k}pαpβ =
∑
(A,B)

(ΞApα)(Ξ
Bpβ)

where the sum is over all ordered partitions (A,B) of {1, · · · ,m+ k} with |A| = k and |B| = m
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Lemma 3.2. Let α be a partition l(α) = m, and let 1 6 l 6 m, then

xl
∂

∂xl
Ξ{1,··· ,m}pα =

√
−1

−m−|α| ∑
σ∈Sm

ασ(l)

m∏
i=1

x
ασ(i)

i

=
∑

σ∈Sm

ασ(l)

m∏
i=1

[
√
−1

−1
(−

√
−1xi)

ασ(i)]

=
∑
i>1

√
−1

−(i+1)
(xl)

iΞ{1,··· ,m}−{l}i
∂pα

∂pi

Lemma 3.3. Let α be a partition with l(α) = m+ 1 and 1 6 l 6 m, then

xl
∂

∂xl
xm+1

∂

∂xm+1
Ξ{1,··· ,m+1}pα|xm+1=xl

=
∑
i,j>1

√
−1

−(i+j+2)
xi+j
l Ξ{1,··· ,m+1}−{l,m+1}ij

∂2

∂pi∂pj

pα

Now we apply the operator Ξ{1,··· ,m} to the cut-joint equation to get a symmetrized one. Notice that
Ξ{1,··· ,m} commutes with taking derivative with respect to τ , the left hand side gives

Ξ{1,··· ,m} ∂C
∂τ

=
∂

∂τ
(Ξ{1,··· ,m}C) =

∑
g>0

λ2g−2+m ∂

∂τ
(Ξ{1,··· ,m}Cg

m)

Next we study the effect of Ξ{1,··· ,m} on the right hand side. By lemma 3.3,

Ξ{1,··· ,m}
∑
i,j>1

pi+j ij
∂2pα

∂pi∂pj

=

m∑
l=1

∑
i,j>1

√
−1

−(i+j+1)
xi+j
l Ξ{1,··· ,m}−{l}ij

∂2pα

∂pi∂pj

=
√
−1

m∑
l=1

xl
∂

∂xl
xm+1

∂

∂xm+1
Ξ{1,··· ,m+1}pα|xm+1=xl

Ξ{1,··· ,m}
∑
i,j>1

pi+jij
∂2C

∂pi∂pj

=
∑
g>0

λ2g−2+m+1
∑
i,j>1

Ξ{1,··· ,m}pi+j ij
∂2Cg

m+1

∂pi∂pj

=
√
−1

∑
g>0

λ2g−2+m+1
m∑
l=1

xl
∂

∂xl
xm+1

∂

∂xm+1
Ξ{1,··· ,m+1}Cg

m+1|xm+1=xl

Let l(α) = k and l(β) = m− k + 1, and so we have

Ξ{1,··· ,m}
∑
i,j>1

pi+jij
∂pα

∂pi

∂pβ

∂pj

=

m∑
l=1

∑
i,j>1

(
√
−1)−(1+i+j)xi+j

l Ξ{1,··· ,m}−{l}(i
∂pα

∂pi

)(j
∂pβ

∂pj

)

=
√
−1

m∑
l=1

∑
(A,B)

(
∑
i>1

√
−1

−(i+1)
xilΞ

Ai
∂pα

∂pi

)(
∑
j>1

√
−1

−(j+1)
xjlΞ

Bj
∂pβ

∂pj

)

=
√
−1

m∑
l=1

∑
(A,B)

(xl
∂

∂xl
ΞA∪{l}pα)(xl

∂

∂xl
ΞB∪{l}pβ)

=
√
−1Θk−1(x1

∂

∂x1
Ξ{1,··· ,k}pα)(x1

∂

∂x1
Ξ{1,k+1,··· ,m}pβ)
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Ξ{1,··· ,m}
∑
i,j>1

pi+j ij
∂C
∂pi

∂C
∂pj

=
∑

g1,g2>0

∑
16k6m

λ2g1−2+k · λ2g2−2+(m−k+1) · Ξ{1,··· ,m}
∑
i,j>1

pi+jij
∂Cg1

k

∂pi

∂Cg2
m−k+1

∂pj

=
∑

g1,g2>0

∑
16k6m

λ2g1+2g2−3+m
√
−1Θk−1(x1

∂

∂x1
Ξ{1,··· ,k}Cg1

k )(x1
∂

∂x1
Ξ{1,k+1··· ,m}Cg2

m−k+1)

Ξ{1,··· ,m}
∑
i,j>1

(i + j)pipj

∂pα

∂pi+j

= 2
∑

16l<k6m

∑
i,j>1

√
−1

−(i+j+2)
xilx

j
kΞ

{1,··· ,m}−{l,k}(i+ j)
∂pα

∂pi+j

= 2
∑

16l<k6m

∑
r>1

√
−1

−(r+2) · x
r
kxl − xrl xk
xk − xl

· Ξ{1,··· ,m}−{l,k}r
∂pα

∂pr

= −2
√
−1

∑
16l 6=k6m

xk
xl − xk

xl
∂

∂xl
Ξ{1,··· ,m}−{k}pα

= −2
√
−1Θ1

x2
x1 − x2

· x1
∂

∂x1
Ξ{1,3,4··· ,m}pα

Ξ{1,··· ,m}
∑
i,j>1

(i+ j)pipj

∂C
∂pi+j

=
∑
g>0

λ2g−3+mΞ{1,··· ,m}
∑
i,j>1

(i + j)pipj

∂Cg
m−1

∂pi+j

=
∑
g>0

−2
√
−1λ2g−3+m ·Θ1

x2
x1 − x2

· x1
∂

∂x1
Ξ{1,3,4··· ,m}Cg

m−1

Collecting all these terms, the following theorem is proved.

Theorem 2. The symmetrized cut-join equation of Marino-Vafa formula is

∑
g>0

λ2g−2+m ∂

∂τ
Ξ{1,··· ,m}Cg

m

=− 1

2

∑
g>0

λ2g+m(

m∑
l=1

xl
∂

∂xl
xm+1

∂

∂xm+1
Ξ{1,··· ,m+1}Cg

m+1)|xm+1=xl

− 1

2

∑
g1,g2>0

∑
16k6m

λ2g1+2g2+m−2Θk−1(x1
∂

∂x1
Ξ{1,··· ,k}Cg1

k )(x1
∂

∂x1
Ξ{1,k+1,··· ,m}Cg2

m−k+1)

+
∑
g

λ2g+m−2Θ1
x2

x1 − x2
· x1

∂

∂x1
Ξ{1,3,4··· ,m}Cg

m−1

Comparing the coefficients of λ2g−2+m, we get

∂

∂τ
Ξ{1,··· ,m}Cg

m =− 1

2

m∑
l=1

xl
∂

∂xl
xm+1

∂

∂xm+1
Ξ{1,··· ,m+1}Cg−1

m+1)|xm+1=xl

− 1

2

∑
06a6g

∑
16k6m

Θk−1(x1
∂

∂x1
Ξ{1,··· ,k}Ca

k )(x1
∂

∂x1
Ξ{1,k+1,··· ,m}Cg−a

m−k+1)

+ Θ1
x2

x1 − x2
· x1

∂

∂x1
Ξ{1,3,4··· ,m}Cg

m−1
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4. Changing of variable

Now we want to make a change of the variable for the equation we obtained in the last section. We
first deal with the right hand side. As in [5], to obtain a polynomial expression in the variable yi, one
has to combined all the unstable terms, which are logarithm transcendental.

In the second term, combined the unstable terms a = 0, k = 1 and a = g, k = m
m∑
l=1

(xl
∂

∂xl
Ξ{l}C0

l )(xl
∂

∂xl
Ξ{1,2,··· ,m}Cg

m)

and recall that (3.2)

(4.1) Ξ{l}C0
l = Ξ{l}

+∞∑
d=1

−
√
−1

d+1
∏d−1

a=1(dτ + a)

(d− 1)!
· d−2 · pd = −

+∞∑
d=1

∏d−1
a=1(dτ + a)

d!
· x

d
l

d

(4.2) (xl
∂

∂xl
)2Ξ{l}C0

l = − 1

τ

+∞∑
d=1

∏d−1
a=0(dτ + a)

d!
xdl = −yl − 1

τ + 1
= − ωl

1− (τ + 1)ωl

since x ∂
∂x

= 1−ω
1−(τ+1)ω · ω ∂

∂ω
(2.11), we find the unique expression of

(4.3) xl
∂

∂xl
Ξ{l}C0

l = ln(1− ωl)

The unstable terms a = 0, k = 2 and a = g, k = m− 1 gives

Θ1(x1
∂

∂x1
Ξ{1,2}C0

2)(x1
∂

∂x1
Ξ{1,3,··· ,m}Cg

m−1)

and

Ξ{1,2}C0
2 = −τ(τ + 1)

∑
µ1>1,µ2>1

xµ1

1 xµ2

2

µ1 + µ2

∏
i=1,2

∏µi−1
a=1 (µiτ + a)

(µi − 1)!

= −τ + 1

τ

∑
µ1>1,µ2>1

xµ1

1 xµ2

2

µ1 + µ2

∏
i=1,2

∏µi−1
a=0 (µiτ + a)

µi!

(4.4) (x1
∂

∂x1
+ x2

∂

∂x2
)Ξ{1,2}C0

2 = −τ(τ + 1) · ω1ω2

[1− (τ + 1)ω1][1 − (τ + 1)ω2]

One can verify that

Ξ{1,2} = − ln(
ω1 − ω2

x1 − x2
)− τ(ln(1− ω1) + ln(1− ω2))

is the unique solution, and so

x1
∂

∂x1
Ξ{1,2} = − ω1(1− ω1)

(ω1 − ω2)(1− (τ + 1)ω1)
+

x1
x1 − x2

+
τω1

1− (τ + 1)ω1

= − ω1

ω1 − ω2
(1 +

τω2

1− (τ + 1)ω1
) +

x1
x1 − x2

Remember we have ω(1− ω)τ = x, ω depends on the parameter τ . Taking partial derivative to τ , we
find

∂ω

∂τ
· 1− (τ + 1)ω

ω(1− ω)
+ ln(1− ω) = 0

Move the terms involve ln(1−ωl) to the left the symmetrized cut-join equation, since fix ω,∂y(ω, τ)/∂τ =
y2ω, we have
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C{ d
dτ

Ξ{1,··· ,m}Cg
m −

m∑
l=1

∂ωl

∂τ
· ∂

∂ωl

Ξ{1,··· ,m}Cg
m} =

d

dτ
CΞ{1,··· ,m}Cg

m(y1(ω1, τ), · · · , ym(ωm, τ), τ)

= (
∂

∂τ
+

m∑
l=1

ωly
2
l

∂

∂yl
))CΞ{1,··· ,m}Cg

m(y1, · · · , ym, τ)

Theorem 3. After the transcendental changing of variables to y, the symmetrized generating series

CΞ{1,··· ,m}Cg
m(y1, · · · , ym, τ) is a polynomial of the variables yi’s of total degree 6g− 6 + 3m, and satisfy

the following cut-joint equation:

(
∂

∂τ
+

m∑
l=1

yl(yl − 1)

τ + 1
· ∂

∂yl
)CΞ{1,··· ,m}Cg

m(y1, · · · , ym, τ)

=− 1

2

m∑
l=1

yl(yl − 1)(
ylτ + 1

τ + 1
)
∂

∂yl
· ym+1(ym+1 − 1)(

ym+1τ + 1

τ + 1
)

∂

∂ym+1
CΞ{1,··· ,m+1}Cg−1

m+1|ym+1=yl

− 1

2

∑
16a6g−1

∑
16k6m

Θk−1(y1(y1 − 1)(
y1τ + 1

τ + 1
)
∂

∂y1
CΞ{1,··· ,k}Ca

k )

· (y1(y1 − 1)(
y1τ + 1

τ + 1
)
∂

∂y1
CΞ{1,k+1,··· ,m}Cg−a

m−k+1)

−
m∑

k=3

Θk−1(y1(y1 − 1)(
y1τ + 1

τ + 1
)
∂

∂y1
CΞ{1,··· ,k}C0

k)(y1(y1 − 1)(
y1τ + 1

τ + 1
)
∂

∂y1
CΞ{1,k+1,··· ,m}Cg

m−k+1)

+ Θ1
y21(y1 − 1)(y2 − 1)

y1 − y2
(
y1τ + 1

τ + 1
)
∂

∂y1
CΞ{1,3,··· ,m}Cg

m−1

5. Applications

This cut-join equation is a generalization of the symmetrized cut-join equation of [6]. In their equation,
only Hodge integrals with at most one λ class show up, while in ours equation, Hodge integrals have up to
three λ classes. This is not surprising, since their starting point ESLV formula, as Liu-Liu-Zhou showed
[14] and [15], is the large τ limit of Marino-Vafa formula. Thus we expect taking large τ limit of our
symmetrized cut-join equation, one should be able to recover the equation of [5].

To illustrate the application of our symmetrized cut-join equation, we make a similar derivation of the
Witten conjecture (Kontevich Theorem) as in [1]. We don’t regard this as a new proof.

Both of the two sides are polynomials of m variables y1, · · · , ym, of total degree 6g − 5 + 3m. We
compare this leading term. Recall Γg(τ) = Λ∨

g (1)Λ
∨
g (τ)Λ

∨
g (−τ − 1), and only its constant (−)g[τ(τ +1)]g

has contribution in the leading degree term. Denote Fd the operator sending a formal power series to its
degree d part.

F6g−6+3mCΞ{1,··· ,m}Cg
m(y1, · · · , ym, τ)

=(−1)g−1(
τ2

1 + τ
)2g−2+m

∑
b1+···+bm=3g−3+m

< τb1 , · · · , τbm >
m∏
i=1

(2bi − 1)!!y2bi+1
i

Where in the above equation, we adopt the following abbreviation and the genus g is determined by
the restriction j1 + · · ·+ jn + d = 3g − 3 + n if the degree of ω is d.

(5.1) < τj1 · · · τjnω >:=
∫
Mg,n

ψj1
1 · · ·ψjn

n ω.

For the left hand side, only the derivatives of yi have contributions:
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F6g−5+3m(
∂

∂τ
+

m∑
l=1

yl(yl − 1)

τ + 1
· ∂

∂yl
)CΞ{1,··· ,m}Cg

m(y1, · · · , ym, τ)

=
1

τ + 1

m∑
l=1

y2l
∂

∂yl
F6g−6+3mCΞ{1,··· ,m}Cg

m(y1, · · · , ym, τ)

=
(−1)g−1

1 + τ
(
τ2

1 + τ
)2g−2+m

m∑
l=1

∑
b1+···+bm=3g−3+m

< τb1 , · · · , τbm > ·(2bl + 1)!!y2bl+2
l

m∏
i=1,i6=l

(2bi − 1)!!y2bi+1
i

Now go to the right hand side, after applying the operator the F6g−5+3m, the first term becomes

1

2
· (−1)g−1

1 + τ
(
τ2

1 + τ
)2g−2+m

m∑
l=1

∑
b1+···+bm+1=3g−5+m

< τb1 , · · · , τbm+1 >

· (2bl + 1)!!(2bm+1 + 1)!!y
2bl+2bm+1+6
l

m∏
i=1,i6=l

(2bi − 1)!!y2bi+1
i

and the second term becomes.

(−1)g−1

2(1 + τ)
(
τ2

1 + τ
)2g−2+m

·
∑

16a6g−1

∑
16k6m

Θk−1[
∑

b1+···+bk=3a−3+k

< τb1 , · · · , τbk > (2b1 + 1)!!y2b1+3
1

k∏
i=2

(2bi − 1)!!y2bi+1]

· [
∑

b′1+bk+1+···+bm=3(g−a−1)+(m+1−k)

< τb′1 , τbk+1
, · · · , τbm > (2b′1 + 1)!!y

2b′1+3
1

m∏
i=k+1

(2bi − 1)!!y2bi+1]

The third term basically is the same as the second, except that the summation range is fixing a = 0
and k varies from 3 to m.

(−1)g−1

1 + τ
(
τ2

1 + τ
)2g−2+m

·
∑

36k6m

Θk−1[
∑

b1+···+bk=k−3

< τb1 , · · · , τbk > (2b1 + 1)!!y2b1+3
1

k∏
i=2

(2bi − 1)!!y2bi+1]

· [
∑

b′1+bk+1+···+bm=3(g−1)+(m+1−k)

< τb′1 , τbk+1
, · · · , τbm > (2b′1 + 1)!!y

2b′1+3
1

m∏
i=k+1

(2bi − 1)!!y2bi+1]

Together with the second term, these gave all the stable cut contributions, and we combine them in
the sequel.

The fourth term is

1

2

(−1)g−1

1 + τ
(
τ2

1 + τ
)2g−2+mΘ1

∑
b1+b3+···+bm=3g−4+m

< τb1 , τb3 , · · · , τbm >

(2b1 + 1)!!y1y2(
y2b1+4
1 − y2b1+4

2

y1 − y2
)

m∏
i=3

(2bi − 1)!!y2bi+1
i

Collect all these, and comparing the coefficients of y2bl+2
l

∏m
i=1,i6=l y

2bi+1
i , we get the Dijkgraaf-Verlinde-

Verlinde formula, which is equivalent to Witten conjecture. See also [1] and [9] for more detail.

For other more interesting applications, one may take other special values of τ , or consider other degree
in terms in theorem 3. For example, the lowest and the next lowest degree terms of theorem 3 may give
some relations for Hodge integrals

∫
Mg,n

ψj1
1 · · ·ψjn

n λgλg−1λg−3, which may be interesting.
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