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ADDENDUM TO THE PAPER ”TWO-DIMENSIONAL

INFINITE PRANDTL NUMBER CONVECTION:

STRUCTURE OF BIFURCATED SOLUTIONS, J.

NONLINEAR SCI., 17(3), 199-220, 2007”

TIAN MA, JUNGHO PARK, AND SHOUHONG WANG

The main objective of this addendum to the mentioned article [49] by
Park is to provide some remarks on bifurcation theories for nonlinear par-
tial differential equations (PDE) and their applications to fluid dynamics
problems. We only wish to comment and list some related literatures, with-
out any intention to provide a complete survey.

For steady state PDE bifurcation problems, the often used classical bifur-
cation methods include 1) the Lyapunov-Schmidt procedure, which reduces
the PDE problem to a finite dimensional algebraic system, 2) the Kras-
noselskii theorem for bifurcations crossing an eigenvalue of odd algebraic
multiciplicity [28] , 3) the Krasnoselskii theorem for potential operators,
4) the Rabinowitz global bifurcation theorem [51], 5) Crandall and Rabi-
nowitz theorem for bifurcations crossing a simple eigenvalue [11], and 6)
bifurcation from higher-order terms, regardless of the multiplicity of the
eigenvalues [31, 32]. We also refer the interested readers to, among many
others, [47, 8, 20, 21, 35, 42] for more comprehensive discussions. Nirenberg
have a beautiful survey paper [46] on topological and variational methods
for nonlinear problems, which has influenced a whole generation of nonlinear
analysts.

The Hopf bifurcation, also called Poincaré-Andronov-Hopf bifurcation,
was independently studied and discovered by Andronov in 1929 and Hopf
in 1942 and Poincaré in 1892 for ordinary differential equations. In partic-
ular, in his paper [24], Hopf also indicated the possible application of the
Hopf bifurcation theorem to bifurcation of time periodic solutions for the
Navier-Stokes equations. The Hopf bifurcation was generalized to infinite
dimensional setting for PDEs by Crandall and Rabinowitz [12], Marsden
and McCracken [44], and Henry [23]. We mention in particular the last
two references using the center manifold reduction procedure to reduce the
problem to a finite dimensional problem.
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Over the last 30 years or so, there have been extensive studies using the
bifurcation theory with symmetry methods and applications; see, among
many others, D. Sattinger [53, 54, 55, 56], M. Golubitsky, I. Stewart, and
D. Schaeffer [20, 21], and M. Field [14].

Recently, Ma and Wang have developed a bifurcation theory for nonlinear
PDEs [36, 33]. This bifurcation theory is centered at a new notion of bifur-
cation, called attractor bifurcation for nonlinear evolution equations, and is
synthesized in two recent books by Ma and Wang [35, 42]. Furthermore,
this new bifurcation theory has been further developed by Ma and Wang
into a complete new dynamic transition theory for nonlinear problems; see
two recent books by Ma and Wang [42, 40] and the references therein for
a more detailed account of the theory. These new theories has been used
in many problems in sciences and engineering, including the Bénard con-
vection problem and the Taylor problem in the classical fluid dynamics,
doubly-diffusive convections and rotating Boussinesq equations in geophys-
ical fluid dynamics, many phase transition problems in statistical physics,
biology and chemistry; see [30, 34, 38, 35, 42, 40] and the references therein.
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Figure 1. A bifurcated attractor containing 4 nodes (the
points a, b, c, and d), 4 saddles (the points e, f, g, h), and
orbits connecting these 8 points.

The main purpose of this new bifurcation theory is to study transitions
of one state to another in nonlinear problems. We illustrate the concept
by a simple example. For x = (x1, x2) ∈ R

2, the system ẋ = λx − (x31, x
3
2)

bifurcates from (x, λ) = (0, 0) to an attractor Σλ = S1. This bifurcated
attractor is as shown in Figure 1, and contains exactly 4 nodes (the points
a, b, c, and d), 4 saddles (the points e, f, g, h), and orbits connecting
these 8 points. From the physical transition point of view, as λ crosses 0,
the new state after the system undergoes a transition is represented by the
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whole bifurcated attractor Σλ, rather than any of the steady states or

any of the connecting orbits. Note that the global attractor is the 2D region
enclosed by Σλ. We point out here that the bifurcated attractor is different
from the study on global attractors of a dissipative dynamical system-both
finite and infinite dimensional. Global attractor studies the global long time
dynamics ( see among others [15, 1, 9, 10]), while the bifurcated attractor
provides a natural object for studying dynamical transitions [35, 42, 40].

Now we return to the Rayleigh-Bénard convection problem. This is clas-
sical problem in fluid dynamics. The study for this problem on the one
hand plays an important role in understanding the turbulent behavior of
fluid flows, and on the other hand often leads to new insights and methods
toward solutions of other problems in sciences and engineering.

Linear theory of the Rayleigh-Bénard problem were essentially derived by
physicists; see, among others, Chandrasekhar [3] and Drazin and Reid [13].
Bifurcating solutions of the nonlinear problem were first constructed for-
mally by Malkus and Veronis [43]. The first rigorous proofs of the existence
of bifurcating solutions were given by Yudovich [59, 60] and Rabinowitz
[50]. Yudovich proved the existence of bifurcating solutions by a topological
degree argument. Earlier, however, Velte [58] had proved the existence of
branching solutions of the Taylor problem by a topological degree argument
as well. The application of group-theoretic bifurcation theory to the Bénard
convection are explored in last thirties years or so by many authors. To the
best knowledge of authors, Sattinger’s papers [52, 53, 55] are the first ones
to use the group-theoretic point of view to study this problem in combina-
tion with the Lyapunov-Schmidt reduction procedure. Then group-theoretic
methods are used, in conjunction with center manifold reduction and lead-
ing to the amplitude equations, to fluid problems by, among others, M.
Golubitsky, I. Stewart, and D. Schaeffer [21], Chossat and his collaborators
[6, 7], Iooss and his collaborators [25, 57], and the references therein. We
would like also to mention the Hopf bifurcation result obtained by Chen and
Price [4], where they use the continued fractions method first introduced by
Meshalkin and Sinai [45]. Recently, Ma and Wang have used their newly de-
veloped attractor bifurcation theory mentioned earlier to study the Bénard
convection problem. In [33], they proved that the Rayleigh-Bénard prob-
lem bifurcates from the basic state to an attractor AR when the Rayleigh
number R crosses the first critical Rayleigh number Rc for all physically
sound boundary conditions, regardless of the geometry of the domain and

the multiplicity of the eigenvalue Rc for the linear problem. Furthermore
detailed characterization of solutions in the bifurcated attractor AR in both
the physical and the phase spaces for special geometries of the domain is
given in [41]. Also, the bifurcated attractor AR attracts any bounded set
in H \ Γ, where H is the whole phase space and Γ is the stable manifold of
the basic solution. Finally, we would like to point out that the bifurcation
and stability analysis discussed in this and the above mentioned articles
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are for viscous flows, and we refer to Friedlander and Yudovich [17] and
Friedlander, Strauss, and Vishik [16] and the references therein for details.

The work presented in Park [48, 49] is an application of the aforemen-
tioned new attractor bifurcation theory to the infinite Prandtl number Bénard
convection. Here are some specific comments on the results in these articles
and some further developments.

First, the results obtained are motivated by the attractor bifurcation
theory [35] and the geometric theory for incompressible flows [37], both de-
veloped recently by Ma and Wang [35]. Without the new insights from these
theories, one does not come up with the theorems proved in [48, 49] and in
other related articles, as evidenced by the fact that no such theorems have
been stated in the vast existing literature on the Rayleigh-Bénard convec-
tion.

Second, the types of solutions in this S1 attractor depend on the bound-
ary conditions. With the periodic boundary condition in the x1 direction in
this article, the bifurcated attractor consists of only steady states.

In fact, when the boundary conditions for the velocity field are free slip
boundary conditions and the spatial domain is Ω = (0, L)2 × (0, 1) with
0 < L2 < (2− 3

√
2)/( 3

√
2−1), Ma and Wang [41, 40] prove that the bifurcated

attractor is still an S1, consisting of exactly eight singular steady states
(with four saddles and four minimal attractors) and eight heteroclinic orbits
connecting these steady states. The bifurcated attractor and its detailed
classification provide a global dynamic transition in both the physical and
phase spaces.

Furthermore, again in a more general three-dimensional (3D) domain
Ω = (0, L1) × (0, L2) × (0, 1), with doubly-periodic boundary conditions
in the horizontal directions and the free-boundary conditions on the top
and bottom, it is proved [40] that the bifurcated attractor is either ΣR = S5

if L2 =
√
k2 − 1L1 for k = 2, 3, · · · , or else ΣR = S3. It is clear that these bi-

furcated attractors contains many more solutions than the solutions derived

by any group-theoretic methods.

Hence, we iterate here that the method and ideas developed by Ma and
Wang are crucial to obtain these results, which can not be obtained using
only the classical bifurcation theories. For the case studied in this article,
the classical bifurcation theory with symmetry arguments implies that the
bifurcated attractor contains a circle of steady states. We need, however, the
new bifurcated theory to prove in particular that the bifurcated attractors
are exactly an S1.

Furthermore, it is also much obvious, as partially indicated, that the
3D results can not be derived by group-theoretic methods. In addition,
for general boundary conditions such as the free-slip boundary conditions
mentioned above, no symmetry can be used, and the classical amplitude
equation methods fails to derive the dynamics.
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In short, although group-theoretic bifurcation methods are useful in dif-
ferent problems, the need for other more general methods is obvious and
inevitable as suggested by, among others, D. Sattinger [53, 55], one of the
pioneers of the group-theoretic bifurcation methods, and B. Grünbaun [22].

Third, it is proved in [33, 41, 48, 49] that the bifurcated attractor in the
Bénard convection problem attracts any bounded set in H \Γ, where H is
the whole phase space and Γ is the stable manifold of the basic solution. To
the best of the knowledge of authors, this ”global” stability result can not be
derived from any existing methods. It is obtained by using a new stability
result proved by Ma and Wang [33], which is derived using a combination
of energy estimates and topological arguments.

As Kirchgässner indicated in [27], ”an ideal stability theorem would in-
clude all physically meaningful perturbations and establish the local stability
of a selected class of stationary solutions, and today we are still far from this
goal.” On the other hand, fluid flows are normally time dependent. There-
fore bifurcation analysis for steady state problems provides in general only
partial answers to the problem, and is not enough for solving the stability
problem. Hence it appears that the right notion of asymptotic stability af-
ter the first bifurcation should be best described by the attractor near, but
excluding, the trivial state. It is one of our main motivations for introducing
attractor bifurcation theory and the dynamic transition theory [35, 42, 40].

Fourth, the geometric theory for incompressible flows recently developed
by Ma and Wang [37] is crucial for the structure and its stability of the
solutions in the physical spaces obtained in the main theorems in [49]. Also,
we note that a special structure with rolls separated by a cross channel flow
derived in [41] has not been rigorously examined in the Bénard convection
setting although it has been observed in other physical contexts such as the
Branstator-Kushnir waves in the atmospheric dynamics [2, 29].

For completeness, we mention that this geometric theory for incompress-
ible flows consists of research in two steps: 1) the study of the structure and
its transitions/evolutions of divergence-free vector fields, and 2) the study
of the structure and its transitions of velocity fields for 2-D incompressible
fluid flows governed by the Navier-Stokes equations or the Euler equations.
The original motivation of this research program was to understand the
dynamics of the ocean currents in the physical space, and it turns out that
there is a much richer new mathematical theory with more applications than
the original motivation from the Oceanography. Among other results, for
example, the theory leads to a rigorous characterization of boundary layer
separation on when, where, and how the separation occurs and to make
connections between the time and location of the separation; see Ghil, Ma
and Wang [18, 19], Ma and Wang [37], and the references therein. This is a
long standing problem in fluid mechanics going back to the pioneering work
of Prandtl (1904); see also Chorin and Marsden [5], and Jäger, Lax and
Morawetz [26].
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With this characterization of the boundary layer-separation in our dis-
posal, Ma and Wang [39] are able to derive a rigorous characterization of
the boundary-layer and interior separations in the Taylor-Couette-Poiseuille
flow. The results obtained provide a rigorous characterization on how, when
and where the propagating Taylor vortices (PTV) are generated. In particu-
lar, contrary to what is commonly believed, it is shown that the PTV do not
appear after the first dynamical bifurcation, and they appear only when the
Taylor number is further increased to cross another critical value so that a
structural bifurcation occurs. This structural bifurcation corresponds to the
boundary-layer and interior separations of the flow structure in the physical
space.
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