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Asymptotics for the Wiener sausage among Poissonian obstacles
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Abstract

We consider the Wiener sausage among Poissonian obstacles. The obstacle is called hard
if Brownian motion entering the obstacle is immediately killed, and is called soft if it is
killed at certain rate. It is known that Brownian motion conditioned to survive among ob-
stacles is confined in a ball near its starting point. We show the weak law of large numbers,
large deviation principle in special cases and the moment asymptotics for the volume of the
corresponding Wiener sausage. One of the consequence of our results is that the trajectory
of Brownian motion almost fills the confinement ball.
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1 Introduction

We consider Brownian motion conditioned to avoid Poissonian obstacles. It is known that con-
ditional Brownian motion typically localizes in a ball near its starting point under the annealed
measure. In this article, we show that the trajectory of the particle almost fills the ball in which
it is confined.

We shall start by introducing the notation and the model. Let Ω be the set of locally finite
simple pure point measures on R

d and Pν be the Poisson point process of constant intensity ν
on Ω. For a fixed nonpolar compact subset K of Rd and Ω ∋ ω =

∑
i δxi , we define the hard

obstacles S(ω) =
⋃

i(xi +K). Similarly, for a nonnegative, compactly supported and bounded
measurable function W which is not identically zero and Ω ∋ ω =

∑
i δxi , we define the soft

obstacles V (x, ω) =
∑

iW (x− xi). Next we introduce Brownian motion Z· on R
d independent

of the Poisson point process. The law of Z· conditioned to start from x ∈ R
d is denoted by

Px and Ex stands for the corresponding expectation. For an open set U ⊂ R
d and a closed set

F ⊂ R
d, TU = inf {s ≥ 0 ; Zs /∈ U} and HF = inf {s ≥ 0 ; Zs ∈ F} are the exit time of U and

the entrance time of F , respectively.
We define the annealed path measure

Qµ,ν
t =

1

Sµ,ν
t

exp

{
−
∫ t

0
V (Zs, ω1)ds

}
1{HS(ω2)

>t}P
1
µ ⊗ P

2
ν ⊗ P0

on Ω2 ×C([0, t],Rd) with Sµ,ν
t the normalizing constant:

Sµ,ν
t = E

1
µ ⊗ E

2
ν ⊗ E0

[
exp

{
−
∫ t

0
V (Zs, ω1)ds

}
; HS(ω2) > t

]
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with obvious notations. This path measure describes the behavior of Brownian motion among the
killing traps conditioned not to be killed up to time t. The first mathematical result concerned
with this measure is Donsker-Varadhan’s work [3] about asymptotics for Sν,0

t with W as before
and S0,ν

t in the case K is a closed ball of arbitrary fixed radius. They showed, using large
deviation technique, that

S0,ν
t

(
or Sν,0

t

)
= exp

{
−c(d, ν)t

d
d+2 (1 + o(1))

}
(t → ∞)

where
c(d, ν) = inf

U⊂Rd:open
{ν |U |+ λ(U)} (1)

with |U | the Lebesgue measure of U and λ(U) the principal Dirichlet eigenvalue of −1/2∆ in
U . It follows from Faber-Krahn’s inequality (see e.g. [1]) that balls with radius

R0(d, ν) =

(
2λd

dνωd

) 1
d+2

(2)

achieve the infimum in (1). Here ωd is the volume of the d-dimensional unit ball B(0, 1) and λd

the principal Dirichlet eigenvalue of −1/2∆ in B(0, 1). Therefore we can obtain the exact value
of c(d, ν):

c(d, ν) =
d+ 2

2
(νωd)

2
d+2

(2λd

d

) d
d+2

.

Sznitman generalized this result to S0,ν
t with arbitrary nonpolar compact K and also improved

the asymptotic estimates as follows:

exp
{
−c(d, ν)t

d
d+2 − γ(a, d, ν)t

d−1
d+2

}
≤ S0,ν

t

(
or Sν,0

t

)

≤ exp

{
−c(d, ν)t

d
d+2 + t

dµ(d)
d+2

} (3)

for large t, using his ‘method of enlargement of obstacles’(see Theorem 4.5.6 in [7]). Here
γ(a, d, ν) > 0 and µ(d) ∈ (0, 1) are constants and a is defined via

a = inf{u > 0 ; K (resp. supp(W )) ⊂ B(0, u)}. (4)

Sznitman(d = 2, in [5]) and Povel(d ≥ 3, in [4]), motivated by the proof of the lower bound in
(3), showed that surviving Brownian particle is typically confined in a ball with radius t1/(d+2)R0

for large t.

Theorem 1 (Confinement property)
Let d ≥ 2. There exist constants κ1 > 1 and 0 < κ2 < 1 and for each (ω1, ω2) ∈ Ω2 a
ball B(ω1, ω2) with center in B(0, R0(d, µ + ν) + κ1t

−κ2/(d+2)) and with radius in [R0(d, µ +
ν), R0(d, µ + ν) + κ1t

−κ2/(d+2)] such that

lim
t→∞

Qµ,ν
t

(
Tt1/(d+2)B(ω1,ω2)

> t
)
= 1.

Although Sznitman and Povel showed this theorem only in the case Q0,ν
t , their argument is

easily applicable to above version. As a consequence of this property, the volume of the Wiener
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sausage WC
t =

⋃
s≤t(Zs + C) associate with a compact set C ⊂ R

d is typically not larger than

td/(d+2) |B(0, R0)| under Qµ,ν
t .

The first result of this paper is that |WC
t | underQµ,ν

t asymptotically equals to td/(d+2) |B(0, R0)|
in the sense of the weak law of large numbers:

Theorem 2 Let d ≥ 2, µ ≥ 0, ν ≥ 0 and µ + ν > 0. Then we have for any nonpolar compact
set C and ǫ > 0,

lim
t→∞

Qµ,ν
t

(∣∣∣t−
d

d+2 |WC
t | − ωdR0(d, µ + ν)d

∣∣∣ > ǫ
)
= 0. (5)

Moreover, if µ = 0, ν > 0 and C ⊂ −K, the law of t−d/(d+2)|WC
t | under Q0,ν

t satisfies following
large deviation principle:

− inf
x∈Γ◦

I(x) ≤ lim inf
t→∞

t−
d

d+2 logQ0,ν
t

(
t−

d
d+2 |WC

t | ∈ Γ
)

≤ lim sup
t→∞

t−
d

d+2 logQ0,ν
t

(
t−

d
d+2 |WC

t | ∈ Γ
)
≤ − inf

x∈Γ
I(x),

(6)

where Γ is arbitrary Borel subset of (0,∞) and rate function I is given by

I(x) = νx+ λd

(ωd

x

) 2
d − c(d, ν).

Remark. The assumption C ⊂ −K may look rather technical. But the large deviation prin-
ciple with above rate function fails when C is much larger than K. We shall give an example
after the proof of Theorem 2.

Theorem 2, combined with Theorem 1, implies that the Wiener sausage underQµ,ν
t covers almost

all area of the ball in which it is confined.
The next result is the improvement of the convergence to Lp sense. We derive it as a corollary

of following exponential tightness estimate:

Theorem 3 Let d ≥ 2, µ ≥ 0, ν ≥ 0, µ+ ν > 0. Then for any η > 0,

sup
t≥1

Qµ,ν
t

(
exp

{
ηt−

1
d+2 sup

0≤s≤t
|Zt|

})
< ∞.

Corollary 1 Under the same conditions as in Theorem 3, we have

sup
t≥1

Qµ,ν
t

(
exp

{
η
(
t−

d
d+2 |WC

t |
) 1

d

})
< ∞ (7)

for any η > 0. Consequently, we have for all p > 0

lim
t→∞

Qµ,ν
t

(∣∣∣t−
d

d+2 |WC
t | − ωdR0(d, µ + ν)d

∣∣∣
p)

= 0. (8)
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Proof. Since WC
t ⊂ B(0, sup0≤s≤t |Zs| + diamC), (7) follows directly from (3). From (7), we

have that {t−dp/(d+2)|WC
t |p}t≥0 is uniformly integrable for any p > 0, which implies (8). �

Now let us briefly explain the construction of this article. We start by considering exponential
moments of |WC

t |. Since negative exponential moments are easy to estimate, lower estimate of
(5) follows from rather simple calculations. In the special case µ = 0, ν > 0 and C ⊂ −K, the
upper bound for exponential moments can be extended to positive parameters. Then, we can
derive large deviation upper bound using a similar argument to the Gärtner-Ellis theorem. The
large deviation lower bound is obtained by considering a specific strategy for Wiener sausage to
achieve given volume. Next, we shall give the proof of Theorem 3. Our strategy is essentially
the same as the Povel’s proof of Theorem 1 but we need quantitatively refined estimate for
the probability of the process exiting the confinement ball. The proofs of Theorem 1 and the
upper estimate of (5) will also be given along the way in order to make this article reasonably
self-contained.

2 Lower estimate of Theorem 2 and large deviation

In this section, we are going to show the lower estimate of Theorem 2 and the large deviation
result. Firstly, note that we can prove

Sµ,ν
t = exp

{
−c(d, µ + ν)t

d
d+2 (1 + o(1))

}
(9)

when t goes to ∞. Indeed, the lower bound is obvious since Sµ,ν
t is bounded from below by

S0,µ+ν
t with hard obstacle (suppW )∪K. And the upper bound follows from the same argument

as in the proof of theorem 4.5.6 in [7], using the method of enlargement of obstacles which will
be explained in section 3.1. (In the upper bound of theorem 4.5.6 in [7], the ‘enlarged obstacles’
are mainly considered and therefore the shape of obstacles has little to do with the argument.)

Similarly, for all λ < 0 and large enough t we can prove

E
1
µ ⊗ E

2
ν ⊗ E0

[
exp

{
−
∫ t

0
V (Zs, ω1)ds+ λ|WC

t |
}

; HS(ω2) > t

]

=E
1
µ ⊗ E

2
ν ⊗ E

3
−λ ⊗ E0

[
exp

{
−
∫ t

0
V (Zs, ω1)ds

}
; HS(ω2)∪S̃(ω3)

> t

]

= exp
{
−c(d, µ + ν − λ)t

d
d+2 (1 + o(1))

}
,

(10)

where we set S̃(ω) =
⋃

i(xi − C) for ω =
∑

i δxi . As a consequence,

Qµ,ν
t

(
exp

{
λ|WC

t |
})

= exp
{
(c(d, µ + ν)− c(d, µ + ν − λ)) t

d
d+2 (1 + o(1))

} (11)

for λ < 0 when t → ∞. Here we have implicitly used the fact c(d, µ + ν) 6= c(d, µ + ν − λ) to
ensure that the o(1) in (9) and (10) is again o(1) in (11). Now we prove the lower estimate of
(5) in Theorem 2.

Proposition 1 For any ǫ > 0,

lim
t→∞

Qµ,ν
t

(
t−

d
d+2 |WC

t | < ωdR0(d, µ + ν)d − ǫ
)
= 0. (12)
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Proof. Let m = ωdR0(d, µ + ν)d − ǫ. Then Chebyshev’s inequality and (11) yield

Qµ,ν
t

(
t−

d
d+2 |WC

t | ≤ m
)

≤ exp
{
(−λm+ c(d, µ + ν)− c(d, µ + ν − λ)) t

d
d+2 (1 + o(1))

}

≤ exp

{
λ

(
c(d, µ + ν)− c(d, µ + ν − λ)

λ
−m

)
t

d
d+2 (1 + o(1))

} (13)

as t → ∞, provided (c(d, µ + ν)− c(d, µ + ν − λ))/λ −m 6= 0. If we note the fact that

ωdR0(d, ν)
d = ω

2
d+2

d ν−
d

d+2

(2λd

d

) d
d+2

=
∂

∂ν
c(d, ν), (14)

we can actually find a λ < 0 such that (c(d, µ+ ν)− c(d, µ+ ν − λ))/λ−m > 0. Since the right
hand side of (13) goes to 0 for this λ, we have done. �

Next, we shall prove large deviation result. We start with the upper bound.

Proposition 2 Suppose µ = 0, ν > 0, and C ⊂ −K. Then for arbitrary Borel subset Γ ⊂
(0,∞),

lim sup
t→∞

t−
d

d+2 logQ0,ν
t

(
t−

d
d+2 |WC

t | ∈ Γ
)
≤ − inf

x∈Γ
I(x).

Here I is the rate function defined in Theorem 2.

Proof. By the assumption C ⊂ −K, we can extend the upper bound of (11) to 0 < λ ≤ ν as
follows:

Q0,ν
t

(
exp

{
λ|WC

t |
})

≤
E0

[
exp

{
λ|W−K

t | − ν|W−K
t |

}]

E0

[
exp

{
−ν|W−K

t |
}]

= exp
{
(c(d, ν) − c(d, ν − λ)) t

d
d+2 (1 + o(1))

}
.

Here we have used c(d, ν) − c(d, ν − λ) 6= 0 as in the derivation of (11). Therefore, we have
following upper bound on the logarithmic generateing function:

lim sup
t→∞

t−
d

d+2 logQ0,ν
t

(
exp

{
λ|WC

t |
})

≤
{

c(d, ν)− c(d, ν − λ) (λ ≤ ν),

∞ (λ > ν).

(15)

Then, the large deviation upper bound follows from very similar argument to the proof of the
Gärtner-Ellis theorem (cf. [2]) and the rate function is given by the Fenchel-Legendre transform
of the right hand side of (15). �

Next, we go on to the lower bound, which do not require the assumption C ⊂ −K.

Proposition 3 Suppose µ = 0 and ν > 0. Then for arbitrary Borel subset Γ ⊂ (0,∞),

lim inf
t→∞

t−
d

d+2 logQ0,ν
t

(
t−

d
d+2 |WC

t | ∈ Γ
)
≥ − inf

x∈Γ◦

I(x).

Here I is the rate function defined in Theorem 2.
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Proof. It is enough to prove

lim inf
t→∞

t−
d

d+2 logQ0,ν
t

(
t−

d
d+2 |WC

t | ∈ (x− δ, x + δ)
)
≥ −I(x) (16)

for any x > 0 and δ > 0. To this end, set r(t) = t1/(d+2)(x/ωd)
1/d and consider the specific event

A1 ×A2 = {ω (B(0, r(t) + a)) = 0} ×
{
TB(0,r(t)) > t

}

where a was defined in (4). (Note that C ⊂ −K ⊂ B(0, a).) Since we know

Q0,ν
t (A1 ×A2) =

1

S0,ν
t

Pν(A1)P0(A2)

≥ const(d) exp

{
−
(
νωdr(t)

d +
λd

r(t)2
t− c(d, ν)t

d
d+2

)
(1 + o(1))

}

=const(d) exp
{
−I(x)t

d
d+2 (1 + o(1))

}

from (3) and a well known eigenfunction expansion, (16) follows once we have shown

lim
t→∞

P0

(
t−

d
d+2 |WC

t | ∈ (x− δ, x+ δ)
∣∣∣A2

)
= 1. (17)

Proof of (17). Using Brownian scaling by the scale ǫ = t−1/(d+2), (17) is equivalent to

lim
t→∞

P0

(
|W ǫC

tǫ2 | ∈ (x− δ, x+ δ)
∣∣∣ TB(0,r(1)) > tǫ2

)
= 1. (18)

To show this we shall use Theorem 3.2.3 in [7], which claims

λ(U \K) ≥ λ(U) +
µ(U)− λ(U)

µ(U)
inf
K

ϕ2
U · capU(K)

for any nonempty bounded domain U ⊂ R
d and compact set K ⊂ U . Here ϕU denotes the

positive L2-normalized principal eigenfunction and µ(U) the second smallest eigenvalue both
associated with −∆/2 in U with Dirichlet boundary condition. From this and the fact that
ϕB(0,r) has nondegenerate gradient near the boundary, we have for all x ∈ B(0, r(1) −√

ǫ),

log P0

(
Hx−ǫC > tǫ2

∣∣∣TB(0,r(1)) > tǫ2
)

=− (λ(B(0, r(1)) \ (x− ǫC))− λ(B(0, r(1)))) t
d

d+2 (1 + o(1))

≤− const(d, r(1))ǫ · capB(0,r(1))(ǫC)t
d

d+2 (1 + o(1))

(19)

as t → ∞. The right hand side of (19) goes to −∞ as t → ∞ since

capB(0,r(1))(ǫC) ∼





const(C, 2)
(
log 1

ǫ

)−1
(d = 2),

const(C, d)ǫd−2 (d ≥ 3).

As a consequence, we have

P0

(
Hx−ǫC > tǫ2

∣∣∣TB(0,r(1)) > tǫ2
)
→ 1 (t → ∞)

6



and therefore

E0

[
|W ǫC

tǫ2 |
∣∣∣TB(0,r(1)) > tǫ2

]

=

∫

Rd

P0

(
Hx−ǫC ≤ tǫ2

∣∣∣TB(0,r(1)) > tǫ2
)
dx

≥
∫

B(0,r(1)−√
ǫ)
P0

(
Hx−ǫC ≤ tǫ2

∣∣∣TB(0,r(1)) > tǫ2
)
dx

→|B(0, r(1))| = x (t → ∞).

This, together with the obvious fact that

P0

(
|W ǫC

tǫ2 | ≤ |B(0, r(1) + aǫ)|
∣∣∣TB(0,r(1)) > tǫ2

)
= 1,

implies (18). �

Now that we have shown (17), the proof of Proposition 3 is completed. �

Finally, we shall give an example noticed after Theorem 2. Basically, it comes from the case
where the ‘ballistic strategy’ dominates above ‘localizing strategy’.

Example. Let C = B(0, R) and K = B(0, 1) where R will be taken large. The key is to
consider the specific strategy:

A =
{
Zt ∈ B

(
t

d
d+2h, rt

d
d+2

)}

where h ∈ R
d and r > 0 satisfy |h| > r. On this event, we have

|WC
t | > td/(d+2)(|h| − r)ωd−1R

d−1 (20)

by considering cross sections orthogonal to h. For the ‘cost’ of this strategy, we use the large
deviation estimate

t−
d

d+2 logQ0,ν
t (A) ∼ − inf

x∈B(h,r)
β0(x) (t → ∞) (21)

which was shown by Sznitman in [6]. Here β0 is the annealed Lyapunov exponent introduced
in [6], which measures the decay rate of the probability for Brownian motion to perform a long
crossing among S(ω).

Combining (20) and (21), we have

lim inf
t→∞

t−
d

d+2 logQ0,ν
t

(
t−d/(d+2)|WC

t | > (|h| − r)ωd−1R
d−1

)

≥ − inf
x∈B(h,r)

β0(x).

Since the right hand side is independent of R, the upper bound of (6) breaks down when R is
large.

3 Upper estimates

We shall prove the upper estimate of (5) and Theorem 3 in this section. As described at the
end of the section 1, the proofs of them are based on Theorem 1 and its proof. The starting
point is to adopt the scale

ǫ = t−
1

d+2

7



and consider ǫ−1Ztǫ2 , P
1
µǫ−d and P

2
νǫ−d . We introduce the notation Eǫ = E

1
µǫ−d ⊗ E

2
νǫ−d for

simplicity. Then, for instance, Theorem 1 follows once we have shown that for all (ω1, ω2) ∈ Ω2

there exists a ball B(ω1, ω2) with radius in [R0, R0 + κ1ǫ
κ2 ] and center in B(0, R0 + κ1ǫ

κ2) such
that

lim
t→∞

1

Sµ,ν
t

Eǫ ⊗E0

[
exp

{
−
∫ τ

0
Vǫ(Zs, ω1)ds

}
;

TB(ω1,ω2) ∧HSǫ(ω2) > τ

]
= 1.

Here τ = tǫ2 and

Vǫ(x, ω) = ǫ−2
∑

i

W

(
x− xi

ǫ

)
,

Sǫ(ω) =
⋃

i

(xi + ǫK)

for ω =
∑

i δxi . For (ω1, ω2) ∈ Ω2 and open set U we also define

λǫ
ω1,ω2

(U) = λVǫ(·,ω1)(U \ Sǫ(ω2))

where λV (U) denotes the principal Dirichlet eigenvalue of −1/2∆ + V in U .

3.1 Method of enlargement of obstacles

In this subsection, we shall recall elements and some estimates from the method of enlargement
of obstacles in [7]. The method is based on coarse graining of the space and construction of two
disjoint sets Dǫ(ω) and Bǫ(ω) for ω ∈ Ω and ǫ ∈ (0, 1). The set Dǫ(ω) is called ‘density set’,
where one enlarge (both the support and the height of) the obstacles and the set Bǫ(ω) is called
‘bad set’, where the obstacles exist but are left almost untouched.

To construct these sets, we need parameters 0 < α < γ < β < 1, δ > 0 and an integer
L ≥ 2. Using these parameters, we introduce spatial scales 1 ≫ ǫα ≫ ǫγ ≫ ǫβ ≫ ǫ and L-adic
decomposition of Rd. We also need following notation concerning L-adic decomposition of Rd.
Let Ik be the collection of indices of the form

iı = (i0, i1, . . . , ik) ∈ Z
d × ({0, 1, . . . , L− 1}d)k.

We associate to above index iı a box:

Ciı = qiı + L−k[0, 1]d where qiı = i0 + L−1i1 + · · ·+ L−kik.

For iı ∈ Ik and k′ ≤ k, we define the truncation

[iı]k′ = (i0, i1, . . . , ik′).

Finally, we pick integers nα(ǫ), nγ(ǫ) and nβ(ǫ) such that

L−n∗−1 ≤ ǫ∗ < L−n∗ (∗ is α, γ or β). (22)

L−n∗ plays the role of the scale ǫ∗ in the context of L-adic decomposition.

8



For ω =
∑

q δxq and iı ∈ Ik,

Kiı = Lk

( ⋃

xq∈Ciı

B(xq, aǫ)

)
(23)

is called the skeleton of traps. Here a is taken so large as B(0, a) includes both K and suppW .
(We take larger a so that B(0, a) includes −C for the proof of (10).) Using this skeleton, the
density set Dǫ(ω) is defined as follows:

Definition 1 ((4.2.13) in [7]) Ciı (iı ∈ Inγ) is called a density box if it satisfies the quantitative
Wiener criterion: ∑

nα<k≤nγ

cap(K[iı]k) ≥ δ(nγ − nα).

Here cap( · ) denotes the capacity relative to 1 −∆/2 when d = 2 and −∆/2 when d ≥ 3. The
union of all density boxes is denoted by Dǫ(ω).

Next, the bad set Bǫ(ω) is defined as follows:

Definition 2 ((4.3.47) in [7]) Ciı (iı ∈ Inβ
) is called a bad box if ω(Ciı) ≥ 1 and Ciı 6⊂ Dǫ(ω).

The union of all bad boxes is denoted by Bǫ(ω).

As a result of above construction, Dǫ(ω) and Bǫ(ω) satisfy

Dǫ(ω) ∩ Bǫ(ω) = ∅,
ω
(
R
d \ (Dǫ(ω) ∪ Bǫ(ω))

)
= 0,

for each box Cq = q + [0, 1)d, q ∈ Z
d, the sets Dǫ(ω) ∩Cq

(resp. Bǫ(ω) ∩ Cq) can take no more than 2ǫ
−dγ

(resp. 2ǫ
−dβ

)

different shapes as ω varies over Ω.

The notation and definitions are exactly the same as in [7] so far.
Next, we state four estimates which is the mixed obstacles version of the results in [7]. For

the proofs of these estimates, we shall put some comments at the end of this subsection. We
define the density set Dǫ(ω1, ω2) and the bad set Bǫ(ω1, ω2) as above by letting ω = ω1+ω2. The
first claims that solidifying Dǫ(ω1, ω2), i.e. imposing Dirichlet conditions on Dǫ(ω1, ω2), does not
cause essential increase of the principal eigenvalues.

Spectral control I (Theorem 4.2.3 in [7]) There exist c1(d,W,K) > 0 such that for all ρ ∈
(0, δc1

γ−α
(d+2) logL) and M > 0,

lim
ǫ→0

sup
(ω1,ω2)∈Ω2, U :open

ǫ−ρ
(
λǫ
ω1,ω2

(
U \ Dǫ(ω1, ω2)

)
∧M − λǫ

ω1,ω2
(U) ∧M

)
= 0.

The second corresponds to the volume of the bad set. Since we cannot control the solidifying
effect on Bǫ(ω1, ω2), we need to show that it is not too large.
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Volume control (Theorem 4.3.6 in [7]) There exist L ≥ 2, δ > 0 and κ > 0 such that

lim
ǫ→0

sup
ω∈Ω, q∈Zd

ǫ−κ|Bǫ(ω1, ω2) ∩ Cq| < 1.

The third estimate says that the region where Dǫ(ω1, ω2)
c is locally thin is hard to survive.

Therefore one can expect that, as in the first estimate, solidifying such a region does not cause
essential increase of the principal eigenvalues. This is precisely the role of the fourth estimate.

Spectral control II (Proposition 4.2.4 in [7]) There exist c2(d) > 0 such that for all ǫ ∈ (0, 1),
r ∈ (0, 1/4), (ω1, ω2) ∈ Ω2 and open set U satisfying:

4aǫ < L−nγ(ǫ) < L−nα(ǫ) < r,

δc1(nγ(ǫ)− nα(ǫ)) > log 2,

sup
q∈Zd

∣∣(U \ Dǫ(ω1, ω2)
)
∩ Cq

∣∣ < rd,

one has
λǫ
ω1,ω2

(U) >
c2
r2

.

Spectral control III (Theorem 4.2.6 in [7]) For all M > 0, there exist c3(d) > 0, c4(d,M) > 1
and r0(d,M) ∈ (0, 1/4) such that

lim sup
ǫ→0

s̃up exp

{
c3

[
R

4r

]}(
λǫ
ω1,ω2

(U1) ∧M − λǫ
ω1,ω2

(U2) ∧M
)
≤ 1, (24)

where [ · ] denotes the integer part and s̃up the supremum over all (ω1, ω2) ∈ Ω2, U1 ⊂ U2 : open,
R > 0 and r > 0 such that for some closed set A,

L−nα(ǫ) < r < r0,

R

4r
> c4,

sup
q∈Zd

∣∣(U2 \
(
A ∪ Dǫ(ω1, ω2)

))
∩ Cq

∣∣ < rd, (25)

dist‖·‖ (U2 \ U1, A ∩ U2) ≥ R. (26)

Here, ‖ · ‖ is the maximal norm on R
d.

For a typical case (24) applies, we introduce

Aǫ(ω1, ω2) =
⋃

Cq : |Cq\Dǫ(ω1,ω2)|≥rd

Cq,

Oǫ(ω) =
{
x ∈ R

d; dist‖·‖(x,Aǫ(ω1, ω2)) < R
}
.

Each Cq contained in Aǫ(ω1, ω2) is called clearing box and Aǫ(ω1, ω2) is called clearing set. Then
for any open set T and R > 0,

U1 = T ∩ Oǫ(ω), U2 = T

10



satisfy (25) and (26) with A = Aǫ(ω1, ω2).
Before closing this subsection, we briefly explain how to prove these estimates. The volume

estmate is equivalent to that in [7] since our bad set is the same as that for hard obstacles with
K = B(0, a). For the spectral controls, we mention that in the proofs in [7], the dependence on
the shapes of obstacles only appears in following key lemma:

Key Lemma (Lemma 4.2.1 in [7]) There exist c1(d,W ) > 0 (or c1(d,K) for hard obstacles)
such that if 4aǫ < L−nγ ,

Ex

[
exp

{
−
∫ Hnα(ǫ)

0
Vǫ(Zs, ω)ds

}]
≤ exp



−c1

∑

nα<k≤nγ

cap(K[ı]k)






resp. Px(Hnα < HS(ω)) ≤ exp



−c1

∑

nα<k≤nγ

cap(K[ı]k)








for any ω ∈ Ω, iı ∈ Inγ and x ∈ Ciı. Here Hnα = inf{s ≥ 0 ; ‖Zs − Z0‖ ≥ L−nα}.

However, it is routine to extend this key lemma to our mixed obstacles if we replace c1 by
c1(d,W ) ∧ c1(d,K). (This is the constant c1(d,W,K) appeared in spectral control I and II.)
Thus we can prove the spectral controls in our setting by exactly the same ways as in [7].

3.2 Construction of the confinement ball

In this subsection, we shall construct B(ω1, ω2) in Theorem 1. Since results are essentially the
same as in [4], we omit the proofs and refer counterparts instead. From now on, we fix an
admissible collection of parameters

α, β, γ, δ, L, ρ, κ

and pick R = 1 and

r = ǫα0 , with 0 < α0 < min
(
α, 1 − β,

κ

d

)
< 1

which allow us to apply the results in section 3.1. For an explanation about the admissible
collection of parameters, we refer reader to the remarks after (4.3.66) in [7].

Now let us start by introducing the open set

T = (−[t], [t])d

and notation

v(τ) = exp

{
−
∫ τ

0
Vǫ(Zs, ω1)ds

}
1{HSǫ(ω2)

>τ}.

Then, using standard estimates on Brownian motion and (9), we have

1

t
log

1

Sµ,ν
t

Eǫ ⊗E0 [v(τ) ; TT ≤ τ ] < 0 (27)

for large t. Since this is good enough for our purpose, we restrict our consideration on {TT > τ}
in the sequel. We also introduce the open set

U (ω1, ω2) = (T ∩ Oǫ(ω1, ω2)) \ Dǫ(ω1, ω2).

Then, we have following constraint on this set.

11



Proposition 4 (Proposition 1 in [4]) Pick χ ∈ (0, 1) such that

χ > max
(
β + α0, 1 −

(κ
d
− α0

)
, 1− ρ

d

)

and let

α1 < min(d(1 − χ), 1),

c5(a, d, µ + ν) > 2(1 + γ(a, d, µ + ν)),

where γ and a were introduced in (3) and (4), respectively. Then we have

1

Sµ,ν
t

Eǫ ⊗E0

[
v(τ) ; TT > τ,

(µ+ ν)|U |+ λ(U ) > c(d, µ + ν) + c5ǫ
α1
]

≤ exp
{
−(1 + γ)t

d−α1
d+2

}

as t → ∞.

If we set

E =
{
(µ+ ν)|U |+ λ(U ) ≤ c(d, µ + ν) + c5ǫ

α1 ,

λǫ
ω1,ω2

(T ) ≤ 2c(d, µ, ν)
}
,

(28)

then we have
1

Sµ,ν
t

Eǫ ⊗ E0

[
v(τ) ; TT > τ,Ec

]
≤ exp

{
−(1 + γ)t

d−α1
d+2

}

from Proposition 4.
The next proposition says that U is, in a ‘measurable sense’, close to an optimal ball of the

variational problem in (1).

Proposition 5 (Proposition 2 in [4]) For any (ω1, ω2) ∈ E, there exists a ball B with radius

R =

( |U |
ωd

) 1
d

such that for large t,

|U \B| ≤ c6ǫ
α1
20 , R ≤ R0(d, µ + ν) + c6ǫ

α1
2 (29)

where R0 was defined in (2) and c6(d, µ + ν) > 0 is a constant.

Thanks to Proposition 5, we can introduce for (ω1, ω2) ∈ E,

Bl : the concentric ball to B with radius Rl = R0 + l (30)

where l may depends on t and is assumed to satisfy

l ≥ ǫα2 , α2 ∈
(
0, α0 ∧

α1

20d

)
.
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It should be pointed out that the ball B, and thus Bl, corresponding to a configuration (ω1, ω2) ∈
E need not be unique. Since only Bl ∋ 0 matters in the sequel, we define B(l)(ω1, ω2) as a Bl

which contains the origin when (ω1, ω2) belongs to

Ω1 = {There exists a ball Bl with 0 ∈ Bl} ∩ E,

and otherwise B(l)(ω1, ω2) = B(0, R0 + l). In particular, we take l = ǫα2 for Theorem 1. Then
it follows from (29) that the radius Rl of Bl satisfies

R0 ≤ Rl ≤ R0 + c6ǫ
α1
2 + ǫα2

≤ R0 + (c6 + 1)ǫα2

and therefore B(l)(ω1, ω2) has the properties stated in Theorem 1 with

κ1 = c6 + 1, κ2 = α2.

3.3 Control of the excursion probability

In this subsection, we shall derive upper bounds on the probability of the excursion of the
surviving process from B to Bc

l :

Proposition 6 There exists a constant c7(a, d, µ + ν) > 0 such that for E introduced in (28),
any Bl defined in (30) corresponding to (ω1, ω2) ∈ Ω2 with l ≤ τ and large t, we have

1

Sµ,ν
t

Eǫ ⊗ E0

[
v(τ) ; E,TT > τ, TBl

≤ τ
]
≤ exp

{
−c7lt

α3
d+2

}

where α3 = α0 ∧ (α1/20d).

This proposition is the (slightly refined) quantitative version of Proposition 3 in [4]. The proof
will involve estimates on the probability of two types of events. These events display two
possibilities for surviving Brownian motion after it exits Bl : either it returns to B immediately
or stays outside B certain amount of time. To deal with these events, we shall use two lemmas.
The first lemma implies that the complement of B almost looks like the ‘forest set’.

Lemma 1 Let (ω1, ω2) ∈ E and define c8 = (c6 + 1)1/d, r1(ǫ) = c8ǫ
α3 . Then there exist

constants c9(d) > 0, c10(d) > 0 such that for large t,

λǫ
ω1,ω2

(T \B) ≥ c9
r21

, (31)

sup
z∈Bc

l

Ez[v(HB) ; HB < TT ] ≤ exp

{
−c10

l

r1

}
. (32)

Proof. This lemma is essentially the same as Lemma 1 in [4] except for dealing with longer
“return” in (32). The proof also goes in the same way and we omit the detail. �

(31) and (32) are related to the estimates on the probability of above events. But they
are not enough, because we only have rough asymptotics for normalizing constant Sµ,ν

t (cf.
(9)). Therefore, we need some cancellation and the next lemma meets our need. (This is
also essentially the same as Lemma 2 in [4] but we give the proof since it seems shorter and
self-contained.)
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Lemma 2

sup
t≥1

1

|T |2Sµ,ν
t

Eǫ

[
exp

{
−λǫ

ω1,ω2
(T )τ

}]
< ∞.

Proof. We start by introducing the notation

RU,V
t f(x) = Ex

[
f(Zt) exp

{
−
∫ t

0
V (Zs)ds

}
; TU > t

]

for a nonempty open set U and a nonnegative function V . If |U | < ∞ and V is locally bounded,
then RU,V

t defines a self-adjoint trace class semigroup on L2(U, dx), see for instance (1.3.15) in [7].
Let 〈·, ·〉 denote the inner product on L2(U, dx). Using translation invariance with respect to P,
we find

Sµ,ν
t = Eǫ ⊗ E0

[
exp

{
−
∫ τ

0
Vǫ(Zs, ω1)ds

}
; HSǫ(ω2) > τ

]

=
1

|T |Eǫ

[∫

T
Ex

[
exp

{
−
∫ τ

0
Vǫ(Zs, ω1)ds

}
; HSǫ(ω2) > τ

]
dx

]

≥ 1

|T |Eǫ

[∫

T \Sǫ

Ex

[
v(τ) ; TT > τ

]
dx ; λǫ

ω1,ω2
(T ) ≤ 2c(d, µ + ν)

]

=
1

|T |Eǫ

[〈
RT \Sǫ(ω2),Vǫ(·,ω1)

τ 1, 1
〉
; λǫ

ω1,ω2
(T ) ≤ 2c(d, µ + ν)

]

≥ 1

|T |Eǫ

[
〈φ, 1〉2 exp

{
−λǫ

ω1,ω2
(T )τ

}
; λǫ

ω1,ω2
(T ) ≤ 2c(d, µ + ν)

]

(33)

where φ is a normalized nonnegative eigenfunction associated with λǫ
ω1,ω2

(T ). Here we have
implicitly used that T has finite volume and Vǫ is locally bounded for all (ω1, ω2) ∈ Ω2. Since

‖RT \Sǫ,Vǫ
s ‖1→∞ ≤ (2πs)−

d
2 for all s > 0, we have

0 ≤ exp
{
−λǫ

ω1,ω2
(T )

}
φ(z)

= R
T \Sǫ(ω2),Vǫ(·,ω1)
1 φ(z)

≤ (2π)−
d
2 〈φ, 1〉

and therefore for (ω1, ω2) ∈ {λǫ
ω1,ω2

(T ) ≤ 2c(d, µ + ν)},

〈φ, 1〉2 ≥ (2π)d exp {−4c(d, µ + ν)} sup
z∈Rd

φ(z)2

≥ (2π)d exp {−4c(d, µ + ν)} |T |−1

where we have used suppφ ⊂ T together with ‖φ‖2 = 1 in the second inequality. Coming back
to (33), we have shown that for t ≥ 1,

Sµ,ν
t ≥ c11(d, µ + ν)

|T |2 Eǫ

[
exp

{
−λǫ

ω1,ω2
(T )τ

}
;

λǫ
ω1,ω2

(T ) ≤ 2c(d, µ + ν)
]
.

We can drop {λǫ
ω1,ω2

(T ) ≤ 2c(d, µ + ν)} since

1

Sµ,ν
t

Eǫ

[
exp

{
−λǫ

ω1,ω2
(T )τ

}
; λǫ

ω1,ω2
(T ) > 2c(d, µ + ν)

]

≤ 1

Sµ,ν
t

exp {−2c(d, µ + ν)τ} → 0
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as t → ∞ from (9). Thus the claim of Lemma 2 follows. �

We are now ready to prove Proposition 6.

Proof of Proposition 6. Let θ· denote the canonical shift and define

{TBl
≤ τ < TT } ⊂

{
2TBl

≤ τ < TT ,HB ◦ θTBl
> lr1

}

∪
{
2TBl

≤ τ < TT ,HB ◦ θTBl
≤ lr1

}

∪
{τ

2
< TBl

≤ τ, TT > τ
}

=A1 ∪A2 ∪A3

for t ≥ 1 and (ω1, ω2) ∈ E. Here note that our choice l ≤ τ implies τ/2 + lr1 < τ for large t.
We start with A1. Pick (ω1, ω2) ∈ E and write

E0 [v(τ) ; A1] =

[τ/2]∑

k=0

E0

[
v(τ) ; k ≤ TBl

< k + 1, A1

]

=

[τ/2]∑

k=0

E0

[
v(τ) ; Ek, A1

]
.

(34)

Applying strong Markov property at TBl
+ lr1 and TBl

and using (3.1.9) of [7], we find for
1 ≤ k ≤ [τ/2] and large t that

E0 [v(τ) ; Ek, A1]

≤ c(d)
(
1 +

(
λǫ
ω1,ω2

(T )τ
) d

2

)
exp

{
−λǫ

ω1,ω2
(T )(τ − (k + 1 + lr1))

}

E0

[
v(TBl

+ lr1) ; Ek,HB ◦ θTBl
> lr1, TT > TBl

, TT ◦ θTBl
> lr1

]

≤ c(d)
(
1 + (2c(d, µ + ν)τ)

d
2

)
exp

{
−λǫ

ω1,ω2
(T )(τ − (k + 1 + lr1))

}

sup
z∈Bc

Ez

[
v(lr1) ; HB > lr1, TT > lr1

]
E0

[
v(TBl

) ; Ek, TT > TBl

]

≤ c(d)2
(
1 + (2c(d, µ + ν)τ)

d
2

)
exp

{
−λǫ

ω1,ω2
(T )(τ − (k + 1 + lr1))

}
(
1 +

(
λǫ
ω1,ω2

(T \B)lr1
) d

2

)
exp

{
−λǫ

ω1,ω2
(T \B)lr1

}
E0

[
v(k) ; TT > k

]

≤ c12 exp

{
−λǫ

ω1,ω2
(T )(τ − lr1)−

1

2
λǫ
ω1,ω2

(T \B)lr1

}

(35)

for some constant c12(d, µ+ ν) > 0. Here we have used λǫ
ω1,ω2

(T ) ≤ 2c(d, µ+ ν) for (ω1, ω2) ∈ E
and

λǫ
ω1,ω2

(T \B)lr1 ≥
c9l

r1
≥ c9

c8
t
α3−α2
d+2 (36)
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from (31) and our choice l ≥ t−α2/(d+2). Coming back to (34) and using (36) again, we have

1

Sµ,ν
t

Eǫ ⊗ E0

[
v(τ) ; E ∩A1

]

≤ c12τ
d+1|T |2 exp

{
− c9l

2r1
+ (c(d, µ + ν) + 1)lr1

}

sup
t≥1

1

|T |2Sµ,ν
t

Eǫ

[
exp

{
−λǫ

ω1,ω2
(T )τ

}
; E

]
.

Therefore for large t, Lemma 2 gives us

1

Sµ,ν
t

Eǫ ⊗ E0

[
v(τ) ; E ∩A1

]
≤ exp

{
−c9

l

r1

}

with slightly smaller c9.
Next, we shall deal with A2. As in (34) we write

E0

[
v(τ) ; A2

]
=

[τ/2]∑

k=0

E0

[
v(τ) ; Ek, A2

]
. (37)

for (ω1, ω2) ∈ E. Then we have for 0 ≤ k ≤ [τ/2] and large enough t,

E0 [v(τ) ; Ek, A2]

≤ c(d)
(
1 +

(
λǫ
ω1,ω2

(T )τ)
d
2

))
exp

{
−λǫ

ω1,ω2
(T )(τ − (k + 1 + lr1))

}

E0

[
v(TBl

+ lr1) ; Ek,HB ◦ θTBl
≤ lr1, TT > TBl

, TT ◦ θTBl
> lr1

]

≤ c(d)
(
1 +

(
2c(d, µ + ν)τ)

d
2

))
exp

{
−λǫ

ω1,ω2
(T )(τ − (k + 1 + lr1))

}

sup
z∈Bc

Ez

[
v(HB) ; HB ≤ lr1 < TT

]
E0

[
v(TBl

) ; Ek, TT > TBl

]

≤ c13τ
d sup
z∈Bc

Ez

[
v(HB) ; HB < TT

]
exp

{
−λǫ

ω1,ω2
(T )(τ − lr1)

}

(38)

for some constant c13(d, µ + ν) > 0. Coming back to (37) and using (32), we find

1

Sµ,ν
t

Eǫ ⊗ E0[v(τ) ; E ∩A2]

≤ c13τ
d+1|T |2 exp

{
−c10l

r1
+ (c(d, µ + ν) + 1)lr1

}

sup
t≥1

1

|T |2Sµ,ν
t

Eǫ

[
exp

{
−λǫ

ω1,ω2
(T )τ

}
; E

]
.

Therefore it follows as before that

1

Sµ,ν
t

Eǫ ⊗ E0[v(τ) ; E ∩A2] ≤ exp

{
−c10

l

r1

}

with slightly smaller c10.
As for A3, observe that on {τ/2 < TBl

≤ τ} the reversed path starting at Zτ exits Bl before
time τ/2. Since the estimates (35) and (38) do not depend on the starting point 0, we see that
E0[v(τ) ; A3] is bounded above by [τ/2] times the sum of the right hand side in (35) and (38),
respectively. So, we have the same upper bound on Eǫ ⊗ E0[v(τ) ; E ∩A3] as on A1 ∪ A2. The
proof of Proposition 6 is now complete. �
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3.4 Proof of the upper estimates

Now we are ready to prove Theorem 1 and the upper estimates of Theorem 2 and 3. To this
end, we are going to give an upper bound on the probability that (scaled) surviving process
leaves B(l)(ω1, ω2) before time τ . We first note that for (ω1, ω2) ∈ Ωc

1 ∩ E the starting point of
the process is not contained in any Bl and thus TBl

= 0. Therefore, no matter which Bl we pick
for B(l) on Ωc

1 ∩ E, we have

{TB(l) ≤ τ} ⊂ {TB(l) ≤ τ, TT > τ} ∪ {TT ≤ τ}
⊂ {TB(l) ≤ τ, TT > τ,E} ∪ {TT > τ,Ec} ∪ {TT ≤ τ} .

Consequently, we find for large t that

Qµ,ν
t

(
Tt1/(d+2)B(l)(ω1,ω2)

≤ t
)

≤ 1

Sµ,ν
t

Eǫ ⊗ E0

[
v(τ) ; TB(l) ≤ τ, TT > τ,E

]

+
1

Sµ,ν
t

Eǫ ⊗ E0

[
v(τ) ; Ec

]

+
1

Sµ,ν
t

Eǫ ⊗ E0

[
v(τ) ; TT ≤ τ

]

≤ exp
{
−c14

(
lt

α3
d+2 ∧ t

d−α1
d+2

)}

(39)

with c14 = c7 ∧ (1 + γ) using (27), Proposition 4 and Proposition 6.

Proof of Theorem 1. We set l = ǫα2 as previously stated at the end of section 3.3. Then we have

lt
α3
d+2 ∧ t

d−α1
d+2 = t

α3−α2
d+2 ∧ t

d−α1
d+2

and therefore the right hand side of (39) converges to 0 as t → ∞, which proves Theorem 1. �

Proof of the upper estimate of (5). Since on {Tt1/(d+2)B(l)(ω1,ω2)
> t} we have

WC
t ⊂ a-neighborhood of t

1
d+2B(l)(ω1, ω2) (40)

and the volume of the right hand side of (40) is smaller than

t
d

d+2ωd

(
R0 + κ1t

− κ2
d+2 + at−

1
d+2

)d
∼ t

d
d+2ωdR

d
0 (t → ∞),

the upper estimate of Theorem 2 follows. �

Proof of Theorem 3. It is enough to show that for arbitrary η > 0 and l > 2R0,

Qµ,ν
t

(
Tt1/(d+2)B(0,l) ≤ t

)
≤ exp {−ηl} (41)

when t is large enough. First of all, we can find a constant M > 0 such that for all l > Mtd/(d+2),

P0

(
Tt1/(d+2)B(0,l) ≤ t

)
≤ exp

{
−ηl − 2c(d, µ + ν)t

d
d+2

}
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using a standard Brownian estimate. From this and (9), we have (41) in this case. Next, for
2R0 < l ≤ M2t(d−1)/(d+2) we can use (39) to derive

Qµ,ν
t

(
Tt1/(d+2)B(0,l) ≤ t

)
≤ Qµ,ν

t

(
Tt1/(d+2)B(l/2−R0)(ω1,ω2)

≤ t
)

≤ exp

{
−c14

((
l

2
−R0

)
t

α3
d+2 ∧ l

M2
t
1−α1
d+2

)}
.

This implies (41) when t is large. In the remaining case M2t(d−1)/(d+2) < l ≤ Mtd/(d+2), we
shall use large deviation estimate in [6] again to show

lim sup
t→∞

t−
d

d+2 logQµ,ν
t

(
sup

0≤s≤t
|Zs| > xt

d
d+2

)
≤ − inf

y 6∈B(0,x)
β0(y). (42)

Strictly speaking, [6] deals with large deviation estimates for t−d/(d+2)Zt but the proof is obvi-
ously applicable to above version. The only property of β0 we need here is that it is a norm.
We can deduce from (42) that for large t,

Qµ,ν
t

(
Tt1/(d+2)B(0,l) ≤ t

)
≤ Qµ,ν

t

(
sup

0≤s≤t
|Zs| > M2t

d
d+2

)

≤ exp

{
−1

2
M2t

d
d+2 inf

y 6∈B(0,1)
β0(y)

}

≤ exp

{
−1

2
Ml inf

y 6∈B(0,1)
β0(y)

}
.

(43)

This implies (41) making M larger if necessary.
Now we have (41) for all l > 2R0 and the proof of Theorem 3 is completed. �
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