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Abstract. We introduce the notion of relative singularity category with respect to any

self-orthogonal subcategory ω of an abelian category. We introduce the Frobenius category

of ω-Cohen-Macaulay objects, and under some reasonable conditions, we show that the

stable category of ω-Cohen-Macaulay objects is triangle-equivalent to the relative singularity

category. As applications, we relate the stable category of (unnecessarily finitely-generated)

Gorenstein-projective modules with singularity categories of rings. We prove that for a

Gorenstein ring, the stable category of Gorenstein-projective modules is compactly generated

and its compact objects coincide with finitely-generated Gorenstein-projective modules up

to direct summands.

1. Introduction

1.1. Throughout, A is an abelian category, ω ⊆ A its full additive subcategory. Denote

by Cb(A), Kb(A) and Db(A) the category of bounded complexes, the bounded homotopy

category and the bounded derived category of A, respectively, both of whose shift functors

will be denoted by [1]. Recall that for any X,Y ∈ A, the n-th extension group ExtnA(X,Y )

is defined to be HomDb(A)(X,Y [n]), n ≥ 0 (see [14], p.62). The subcategory ω is said to be

self-orthogonal if for any X,Y ∈ ω, n ≥ 1, ExtnA(X,Y ) = 0. Consider the following composite

of functors

Kb(ω) −→ Kb(A) −→ Db(A),

where the first is the inclusion functor, and the second the quotient functor. By [12], Chapter

II, Lemma 3.4 (or Chapter III, Lemma 2.1), the composite functor is fully-faithful if and only

if ω is self-orthogonal.

Let ω ⊆ A be a self-orthogonal additive subcategory. By the argument above, we may

view Kb(ω) as a triangulated subcategory of Db(A). Define the relative singularity category
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2 X. W. CHEN

Dω(A) of A with respect to ω to be the Verdier quotient category

Dω(A) := Db(A)/Kb(ω).

The motivation of introducing relative singularity category is twofold: (1) A special case of

relative singularity category is of particular interest: let P denote the subcategory consisting

of projective objects, which is clearly self-orthogonal, then the relative singularity category

with respect to P is called the singularity category of A. Denote it by Dsg(A) (compare

[23]). This terminology is justified by the fact that: the singularity category Dsg(A) vanishes

if and only if the category A has enough projectives and every object is of finite projective

dimension. (2) Singularity categories may be described as relative singularity categories

via tilting subcategories, and this viewpoint allows us to describe singularity category by

various tilting subcategories. Precisely, let A have enough projectives, a tilting subcategory

T is a self-orthogonal subcategory such that Kb(T ) = Kb(P) inside Db(A). Then we have

Dsg(A) = DT (A) for any tilting subcategory T .

1.2. The paper is organized as follows: In section 2, we study the relative singularity category

Dω(A) and various related subcategories of the abelian category A, in particular, the category

of ω-Cohen-Macaulay objects. As the main theorem, we prove that there is a full exact

embedding of the stable category of ω-Cohen-Macaulay objects into the relative singularity

category, and further under some reasonable conditions, the embedding is an equivalence.

In section 3, we apply the result to the module category of rings, and we rediscover the

result of Buchweitz-Happel which says that for a Gorenstein ring, the singularity category is

triangle-equivalent to the stable category of finitely-generated Gorenstein-projective modules,

and we also find a similar result holds in the unnecessarily finitely-generated case. We relate

the stable category of T -Cohen-Macaulay objects to the stable category of finitely-generated

Gorenstein-projective modules over the endomorphism ring EndA(T ), where T is any self-

orthogonal object in A. In section 4, we show that for a Gorenstein ring, the stable category

of Gorenstein-projective modules is compactly generated and its subcategory of compact

objects is the stable category of finitely-generated Gorenstein-projective modules up to direct

summands.

For triangulated categories, we refer to [12, 14, 25]. We abuse the notions of triangle-

functors and exact functors between triangulated categories. For Gorenstein rings and

Gorenstein-projective modules, we refer to [11, 9, 13, 8].

2. Relative singularity category and ω-Cohen-Macaulay objects

2.1. In this subsection, we will introduce some subcategories of the abelian category A

(compare [3, 10]). At this moment, ω ⊆ A is an arbitrary additive subcategory. Consider the
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following full subcategories:

ω̂ := {X ∈ A | there exists an exact sequence

0 → T−n → T 1−n → · · · → T 0 → X → 0, each T−i ∈ ω, n ≥ 0};

ω⊥ := {X ∈ A | ExtiA(T,X) = 0, for all T ∈ ω, i ≥ 1};

ωX := {X ∈ A | there exists an exact sequence

· · · → T−n d−n

→ T 1−n → · · · → T 0 d0
→ X → 0, each T−i ∈ ω, Kerdi ∈ ω⊥}.

If ω is self-orthogonal, using the dimension-shift technique in homological algebra, we infer

that ω̂ ⊆ ω⊥ and ωX ⊆ ω⊥, and thus we get ω̂ ⊆ ωX . Consequently, if ω is self-orthogonal,

we obtain that

ω ⊆ ω̂ ⊆ ωX ⊆ ω⊥.

Dually, we have the following three full subcategories:

∨
ω:= {X ∈ A | there exists an exact sequence

0 → X → T 0 → · · · → T n−1 → T n → 0, each T i ∈ ω, n ≥ 0};

⊥ω := {X ∈ A | ExtiA(X,T ) = 0, for all T ∈ ω, i ≥ 1};

Xω := {X ∈ A | there exists an exact sequence

0 →X
d−1

→ T 0 d0
→ T 1 → · · · → T n−1 dn−1

→ T n → · · · , each T i ∈ ω, Cokerdi ∈ ⊥ω}.

Similarly, if ω is self-orthogonal, we have ω ⊆
∨
ω ⊆ Xω ⊆ ⊥ω.

Let ω be a self-orthogonal subcategory. We define the category of ω-Cohen-Macaulay

objects to be the full subcategory α(ω) := Xω ∩ ωX . By [3], Proposition 5.1, the full subcate-

gories ωX and Xω are closed under extensions, and therefore so is α(ω). Hence, α(ω) becomes

an exact category whose conflations are just short exact sequences with terms in α(ω) (for

terminology, see [17]). Observe that objects in ω are (relative) projective and injective, and

then it is not hard to see that α(ω) is a Frobenius category, whose projective-injective objects

are precisely contained in the additive closure add ω of ω. Consider the stable category α(ω)

of α(ω) modulo ω (or equivalently modulo add ω). Then by [12], α(ω) is a triangulated

category.

For each X ∈ α(ω), from the definition (and the dimension-shift technique if needed), we

have an exact sequence in K(ω)

T • = → · · · → T−n → T−n+1 → · · · → T−1 → T 0 → T 1 → · · · → T n → T n+1 → · · ·

such that each of its cocycles Zi(T •) lies in ⊥ω ∩ ω⊥, and X = Z0(T •). Such a complex T •

will be called an ω-complete resolution for X. It is worthy observing that an exact complex
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T • ∈ K(ω) is an ω-complete resolution if and only if for each T ∈ ω, the Hom complexes

Hom(T, T •) and Hom(T •, T ) are exact. One may compare [5], Definition 5.5.

2.2. Consider the following composite of natural functors

F : α(ω) −→ A
iA−→ Db(A)

Qω
−→ Dω(A),

where the first functor is the inclusion, the second is the full embedding which sends objects

in A to the stalk complexes concentrated at degree 0, and the last is the quotient functor

Qω : Db(A) −→ Dω(A). Note that F (ω) = 0, and thus F induces a unique functor F from

α(ω) to Dω(A).

Our main result is

Theorem 2.1. Let ω ⊆ A be a self-orthogonal additive subcategory. Then the natural functor

F : α(ω) −→ Dω(A) is a fully-faithful triangle-functor.

Assume further that X̂ω = A =
∨

ωX . Then F is an equivalence, thus a triangle-equivalence.

Note that the subcategories X̂ω and
∨

ωX are defined as in 2.1, by replacing ω by Xω and

ωX , respectively.

2.3. We will divide the proof of Theorem 2.1 into proving several propositions. Note that we

will always view A as the full subcategory ofDb(A) consisting of stalk complexes concentrated

at degree zero.

We need some notation. A complex X• ∈ Cb(ω) is said to negative if Xn = 0 for all n ≥ 0.

Denote by D<0(ω) to be full subcategory of Kb(ω) whose objects are isomorphic t o some

negative complexes in Cb(ω). Similarly, we have the subcategory D>0(ω).

Lemma 2.2. (1). For M ∈ ⊥ω and X• ∈ D<0(ω), we have HomDb(A)(M,X•) = 0.

(2). For N ∈ ω⊥ and Y • ∈ D>0(ω), we have HomDb(A)(Y
•, N) = 0.

Proof. We only show (1). Consider L := {Z• ∈ Db(A) | HomDb(A)(M,Z•) = 0}. By the

self-orthogonal property of ω, we have ω[i] ∈ L for all i > 0. Observe that L is closed under

extensions, and complexes in D<0(ω) are obtained by iterated extensions from objects in⋃
i>0 ω[i], thus we infer that D<0(ω) ⊆ L. �

In what follows, morphisms in Db(A) will be denoted by arrows, and those whose cones lie

in Kb(ω) will be denoted by doubled arrows; morphisms in Dω(A) will be denoted by right

fractions (for the definition, see [25]).

Let M,N ∈ A. We consider the natural map

θM,N : HomA(M,N) −→ HomDω(A)(Qω(M), Qω(N)), f 7−→ f/IdM .



RELATIVE SINGULARITY CATEGORIES AND GORENSTEIN-PROJECTIVE MODULES 5

Set ω(M,N) = {f ∈ HomA(M,N) | f factors through objects in ω}. Then θM,N vanishes

on ω(M,N) because Qω(ω) = 0.

The following observation is crucial in our proof, compare [10], Lemma 2.1 and [23], Propo-

sition 1.21.

Lemma 2.3. In the following two cases: (1) M ∈ Xω and N ∈ ω⊥; (2) M ∈ ⊥ω and

N ∈ ωX , the morphism θM,N induces an isomorphism

HomA(M,N)/ω(M,N) ≃ HomDω(A)(M,N).

Proof. We only show case (1). First, we show that θM,N is surjective. For this, consider

any morphism a/s : M
s

⇐= Z• a
−→ N in Dω(A), where Z• is a complex, both a and s

are morphisms in Db(A), and the cone of s, C• = Con(s), lies in Kb(ω). Hence we have a

distinguished triangle in Db(A)

Z• s
=⇒ M −→ C• −→ Z•[1].(2.1)

Since M ∈ Xω, we have a long exact sequence

0 −→ M
ε

−→ T 0 d0
−→ T 1 −→ · · · −→ T n dn

−→ T n+1 −→ · · ·

where each T i ∈ ω and Kerdi ∈ ⊥ω. Hence in Db(A), M is isomorphic to the following

complex

T • := 0 −→ T 0 d0
−→ T 1 −→ · · · −→ T n dn

−→ T n+1 −→ · · · ,

and furthermore, M is isomorphic to the good truncation τ≤lT • for any l ≥ 0. Note the

following natural triangle in Kb(A)

(σ<lT •)[−1] −→ Kerdl[−l]
s′′
=⇒ τ≤lT • −→ σ<lT •,(2.2)

where σ<lT • is the brutal truncation. Take s′ to be the following composite in Db(A)

Kerdl[−l]
s′′
=⇒ τ≤lT • −→ T • ε

⇐= M.

Thus from the triangle (2.2), we get a triangle in Db(A)

(σ<lT •)[−1] −→ Kerdl[−l]
s′
=⇒ M

ε
−→ σ<lT •.(2.3)

Since C• ∈ Kb(ω), we may assume that

C• = · · · −→ 0 −→ W−t′ −→ · · · −→ W t−1 −→ W t −→ 0 −→ · · · ,

where W i ∈ ω, t, t′ ≥ 0. Set l0 = t+ 1, E = Kerdl0 . Note that E ∈ ⊥ω and C•[l0] ∈ D<0(ω),

by Lemma 2.2(1), we get

HomDb(A)(E[−l0], C
•) = HomDb(A)(E,C•[l0]) = 0.
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Hence, the morphism E[−l0]
s′

=⇒ M −→ C• is 0. By the triangle (2.1), we infer that there

exists h : E[−l0] −→ Z• such that s′ = s ◦ h, and thus a/s = (a ◦ h)/s′.

Note that N ∈ ω⊥ and (σ<l0T •)[−1] ∈ D>0(ω), by Lemma 2.2(2), we have

HomDb(A)((σ
<l0T •)[−1], N) = 0.

Applying the cohomological functor HomDb(A)(−, N) to the triangle (2.3), we obtain the

following exact sequence (here, take l = l0)

HomDb(A)(M,N)
Hom

Db(A)
(s′,N)

−→ HomDb(A)(E[−l0], N) −→ HomDb(A)((σ
<l0T •)[−1], N).

Thus, there exists f : M −→ N such that f ◦ s′ = a ◦ h. Hence, we have

a/s = (a ◦ h)/s′ = (f ◦ s′)/s′ = θM,N (f),

proving that θM,N is surjective.

Next, we will show KerθM,N = ω(M,N), then we are done. It is already known that

ω(M,N) ⊆ KerθM,N . Conversely, consider f : M −→ N such that θM,N (f) = 0. Hence

there exists s : Z• =⇒ M such that f ◦ s = 0, where s is a morphism in Db(A) whose cone

C• ∈ Kb(ω). Using the notation above, we obtain that s′ = s ◦ h. Thus f ◦ s′ = 0. By the

triangle (2.3), we infer that there exists f ′ : σ<l0T • −→ N such that f ′ ◦ ε = f .

Consider the following natural triangle

T 0[−1] −→ σ>0(σ<l0T •) =⇒ σ<l0T • π
−→ T 0.(2.4)

Since N ∈ ω⊥ and σ>0(σ<l0T •) ∈ D>0(ω), by Lemma 2.2(2), we have

HomDb(A)(σ
>0(σ<l0T •), N) = 0.

Thus the composite morphism σ>0(σ<l0T •) =⇒ σ<l0T • f ′

−→ N is 0, and furthermore, by

the triangle (2.4), we infer that there exists g : T 0 −→ N such that g ◦ π = f ′. So we

get f = g ◦ (π ◦ ε), which proves that f factors through ω inside Db(A). Note again that

iA : A −→ Db(A) is fully-faithful, and we can obtain that f factors through ω in A, i.e.,

f ∈ ω(M,N). This finishes the proof. �

Recall the notion of ∂-functor, compare [18], section 1. Let (a, E) be an exact category, C

a triangulated category. An additive functor F : a −→ C is said to be a ∂-functor, if for each

conflation (i, d) : X
i

−→ Y
d

−→ Z ∈ E , there exists a morphism w(i,d) : F (Z) −→ F (X)[1]

such that the triangle is distinguished

F (X)
F (i)
−→ F (Y )

F (d)
−→ F (Z)

w(i,d)
−→ F (X)[1],
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moreover, the morphisms w are natural in the sense that given a morphism between two

conflations

X
i

f

Y

g

d
Z

h

X ′
i′

Y ′
d′

Z ′,

then we have a morphism of triangles

F (X)
F (i)

F (f)

F (Y )

F (g)

F (d)
F (Z)

F (h)

w(i, d)

F (X)[1]

F (f)[1]

F (X ′)
F (i′)

F (Y ′)
F (d′)

F (Z ′)
w(i′, d′)

F (X ′)[1].

We will need the following fact, which is direct from definition.

Lemma 2.4. Let F : a −→ C be a ∂-functor. Assume j : b −→ a is an exact functor between

two exact categories, π : C −→ D a triangle-functor between two triangulated categories. Then

the composite functor πFj : b −→ D is a ∂-functor.

Next fact is very useful, and well-known, compare [12], p.23.

Lemma 2.5. Let (a, E) be a Frobenius category, a its stable category modulo projectives.

Assume F : a −→ C is a ∂-functor, which vanishes on projective objects. The induced functor

F : a −→ C is a triangle-functor.

Proof. Since F vanishes on projective objects, then the functor F is defined. Recall that

the translation functor S on a is defined such that for each X, we have a fixed conflation

X
iX−→ I(X)

dX−→ S(X), where I(X) is injective (for details, see [12]). By assumption, we

have the distinguished triangle in C

F (X)
F (iX)
−→ F (I(X))

F (dX)
−→ F (S(X))

w(iX,dX )
−→ F (X)[1].

Since F (I(X)) ≃ 0, we infer that w(iX ,dX) is an isomorphism. Set ηX := w(iX ,dX). In fact, by

the naturalness of w, we can obtain that ηX is natural in X, in other words, η : FS −→ [1]F is

a natural isomorphism. Recall that all the distinguished triangles in a arise from conflations

in a ([10], Lemma 2.1), then one may show that (F, η) is a triangle-functor easily. We omit

the details. �

Proof of Theorem 2.1: By Lemma 2.3, we know that F is fully-faithful. It is classical

that iA : A −→ Db(A) is a ∂-functor (by [14], p.63, Remark). Then by Lemma 2.4, we know

that the composite functor F is also a ∂-functor. Now by Lemma 2.5, we deduce that F is a

triangle-functor.
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Now assume that X̂ω = A =
∨

ωX . It suffices to show that F is dense, that is, the image

ImF = Dω(A). By above, we know that ImF is a triangulated subcategory, and it is direct

to see that Dω(A) is generated by the image Qω(A) of A in the sense of [12], p.71. Hence it

is enough to show that Qω(A) lies in ImF .

Assume X ∈ A. Since ω cogenerates Xω and X ∈ X̂ω = A, by Auslander-Buchweitz

decomposition theorem ([2], Theorem 1.1), we have an exact sequence

0 −→ Y −→ X ′ −→ X −→ 0,

where Y ∈ ω̂, and X ′ ∈ Xω. Since Y ∈ ω̂, then inside Db(A) we have Y ∈ Kb(ω). Conse-

quently, Qω(Y ) ≃ 0. Note that the above exact sequence induces a distinguished triangle in

Db(A) ([14], p.63), and thus we have the induced distinguished triangle in Dω(A)

Qω(Y ) −→ Qω(X
′) −→ Qω(X) −→ Qω(Y )[1].

Now since Qω(Y ) ≃ 0, we deduce that Qω(X
′) ≃ Qω(X). On the other hand, ω generates

ωX and X ′ ∈
∨

ωX= A, by the dual of Auslander-Buchweitz decomposition theorem, we have

an exact sequence

0 −→ X ′ −→ X ′′ −→ Y ′ −→ 0,

where Y ′ ∈
∨
ω, and X ′′ ∈ ωX . By the same argument as above, we deduce that Qω(X

′) ≃

Qω(X
′′), and consequently, Qω(X) ≃ Qω(X

′′). As we noted in 2.1 that
∨
ω⊆ Xω, and in the

exact sequence above, both Y and X ′ lie in Xω, and by Proposition 5.1 in [3], Xω is closed

under extensions, we infer that X ′′ ∈ Xω, and thus X ′′ ∈ α(ω). Hence Qω(X
′′) = F (X ′′),

and we see that Qω(X) lies in the image of F . This completes the proof. �

3. Gorenstein-projective modules and singularity categories

3.1. Let R be a ring with unit. Denote by R-Mod the category of left R-modules, and

R-Proj its full subcategory of projective modules. A complex P • = (Pn, dn) in C(R-Proj) is

said to be totally-acyclic ([21], section 7), if for each projective module Q, the Hom complexes

HomR(Q,P •) and HomR(P
•, Q) are exact. Hence a complex P • is totally-acyclic if and only

if it is acyclic (= exact) and for each n, the cocycle Kerdn lies in ⊥R-Proj. A module M

is said to be Gorenstein-projective, if there exists a totally-acyclic complex P • such that its

zeroth cocycle is M . In this case, P • is said to be a complete resolution of M . Denote by

R-GProj the full subcategory consisting of Gorenstein-projective modules.

Observe that a module M is Gorenstein-projective if and only if there exists an exact

sequence 0 −→ M
ε

−→ P 0 d0
−→ P 1 d1

−→ P 2 −→ · · · such that each cocycle Kerdi ∈ ⊥R-Proj.

Set A = R-Mod, ω = R-Proj. Thus ωX = A and α(ω) = Xω. By the above observation, we
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have α(ω) = R-GProj. In this case, the relative singularity category is the (big) singularity

category of R (compare [23])

D′
sg(R) = Db(R-Mod)/Kb(R-Proj).

Note that D′
sg(R) vanishes if and only if every module has finite projective dimension, and

then it is equivalent to that the ring R has finite left global dimension.

The following result can be read from the general theory developed in section 2.

Proposition 3.1. (1) The category R-GProj is a Frobenius category with projective-injective

objects exactly contained in R-Proj.

(2) The natural functor F : R-GProj −→ D′
sg(R) is fully-faithful and exact.

A sufficient condition making F an equivalence is that the ring R is Gorenstien. This was

first observed by Buchweitz [9]. Recall that a ring R is said to be Gorenstein, if R is two-sided

noetherian, and the regular module R has finite injective dimension both as a left and right

module.

We need the following fact, which is known to experts.

Lemma 3.2. Let R be a Gorenstein ring. Then we have R-GProj = ⊥R-Proj.

Proof. Note that R-GProj ⊆ ⊥R-Proj. For the converse, denote L the full subcategory

of R-Mod, consisting of modules of finite injective dimension. By [11], Lemma 10.2.13,

L is preenveloping (= covariantly-finite), i.e., for any module M , there exists a morphism

gM : M −→ CM such that CM ∈ L and any morphism from M to a module in L factors

through gM (such a morphism gM is called an L-preenvelop (= right L-approximation) ). We

note that the morphism gM is mono, by noting that the injective hull of M factors through

gM .

Now assume M ∈ ⊥R-Proj. Take an exact sequence

0 −→ K −→ P 0 θ
−→ CM −→ 0,(3.1)

where P 0 is projective. Since CM has finite injective dimension, by [11], Proposition 9.1.7,

it also has finite projective dimension. Thus we infer that K has finite projective dimension.

Note that M ∈ ⊥R-Proj, and by the dimension-shift argument, we have Ext1R(M,K) = 0.

Applying the functor HomR(M,−) to (3.1), we obtain a long exact sequence, and from which,

we read a surjective map HomR(M,θ) : HomR(M,P ) −→ HomR(M,CM ). In particular, the

morphism gM factor through θ, and thus we get a morphism h : M −→ P 0 such that

gM = θ ◦ h. Since gM is an L-preenvelop, and gM factors through h (note P 0 ∈ L), and we

deduce that h is also an L-preenvelop. In particular, h is mono. Consider the exact sequence

0 −→ M
h

−→ P 0 −→ M ′ −→ 0.(3.2)
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For any projective module Q, applying the functor HomR(−, Q), and we obtain a long exact

sequence, from which we read that ExtiR(M,Q) = 0 for i ≥ 1 (for i = 1, we need the fact that

h is an L-preenvelop). Thus M ′ ∈ ⊥R-Proj. Applying the same argument to M ′, we may get

an exact sequence 0 −→ M ′ −→ P 1 −→ M ′′ −→ 0 with P projective and M ′′ ∈ ⊥R-Proj.

Continue this process, and we obtain a long exact sequence 0 −→ M −→ P 0 −→ P 1 −→

P 2 −→ · · · with cocycles in ⊥R-Proj, that is, M ∈ R-GProj. Thus we are done. �

Now we have the following variant of Buchweitz-Happel’s theorem (compare [9], Theorem

4.4.1 and [13], Theorem 4.6, also see [5], Theorem 6.9).

Theorem 3.3. Let R be a Gorenstein ring. Then the natural functor

F : R-GProj −→ D′
sg(R)

is a triangle-equivalence.

Proof. We have noted the following fact: set A = R-Mod, ω = R-Proj, then ωX = A and

α(ω) = R-GProj. Hence by Theorem 2.1, we know that to obtain the result, it suffices to

show that ̂R-GProj = R-Mod. Assume inj.dim RR = d. Then every projective module has

injective dimension at most d. Let X be any R-module. Take an exact sequence

0 −→ M −→ P d−1 −→ P d−2 −→ · · · −→ P 1 −→ P 0 −→ X −→ 0,

where each P i is projective. By dimension-shift technique, we have, for each projective

module Q, ExtiR(M,Q) ≃ Exti+d
R (X,Q) = 0, i ≥ 1. Hence M ∈ ⊥R-Proj, and by Lemma

3.2, M ∈ R-GProj. Hence, X ∈ ̂R-GProj. Thus we are done. �

3.2. In this subsection, we consider another self-orthogonal subcategory ω′ = R-proj, the

full subcategory of finite-generated projective modules, of the category A = R-Mod. From

the definition in 2.1, it is not hard to see that

ω′X = {M ∈ R-Mod | there exists an exact sequence

· · · −→ Pn −→Pn−1 −→ · · · −→ P 1 −→ P 0 −→ M −→ 0, each Pn ∈ R-proj},

and

Xω′ = {M ∈ R-Mod | there exists an exact sequence

0 −→ M −→ P 0 d0
−→ P 1 −→· · · −→ Pn dn

−→ Pn+1 −→ · · · , each Pn ∈ R-proj, Cokerdn ∈ ⊥R-proj}.

Set α(ω′) = R-Gproj. Hence R-Gproj is a Frobenius category, whose projective-injective

objects are exactly contained in R-proj. Observe that R-Gproj ⊆ R-GProj, and we have an

induced inclusion of triangulated categories R-Gproj →֒ R-GProj.
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Denote by R-mod the full subcategory consisting of finitely-presented modules. Let R be

a left-coherent ring. Observe that in this case, R-mod is an abelian subcategory of R-Mod,

and R-mod = ω′X (compare [1], p.41). Therefore, if R is left-coherent, we have

R-Gproj = {M ∈ R-mod | there exists an exact sequence

0 −→ M −→ P 0 d0
−→ P 1 −→· · · −→ Pn dn

−→ Pn+1 −→ · · · , each Pn ∈ R-proj, Cokerdn ∈ ⊥R-proj}.

The following observation is interesting.

Lemma 3.4. Let R be a left-coherent ring. Then we have R-GProj ∩R-mod = R-Gproj.

Proof. Let M ∈ R-Gproj. Then we have an exact sequence 0 −→ M −→ P 0 d0
−→ P 1 −→

· · · −→ Pn dn
−→ Pn+1 −→ · · · , where P i ∈ R-proj and each Cokerdi ∈ ⊥R-proj. Since each

module Cokerdi is finitely-generated, and thus Cokerdi ∈ ⊥R-proj implies that Cokerdi ∈
⊥R-Proj immediately. Thus we have M ∈ R-GProj. Hence R-Gproj ⊆ R-GProj ∩R-mod.

Conversely, assume that M ∈ R-GProj ∩ R-mod. Then there exists an exact sequence

0 −→ M
ε

−→ P −→ X −→ 0, where P ∈ R-Proj and X ∈ R-GProj. By adding proper

projective modules to P and X, we may assume that P is free. Since M is finitely-generated,

we may decompose P = P 0 ⊕P ′0 such that P 0 is finitely-generated and Imε ⊆ P 0. Consider

the exact sequence 0 −→ M
ε

−→ P 0 −→ M ′ −→ 0. We have M ′ ⊕ P ′0 ≃ X, and note

that R-GProj ⊆ R-Mod is closed under taking direct summands (by Proposition 5.1 in

[3], or [11]), we deduce that M ′ ∈ R-GProj. Observe that M ′ ∈ R-mod, and we have

M ′ ∈ R-GProj∩R-mod. Applying the same argument to M ′, we can find an exact sequence

0 −→ M ′ −→ P 1 −→ M ′′ −→ 0 such that P 1 is finitely-generated projective, and M ′′ ∈

R-GProj ∩R-mod. Continue this process, we can derive a long exact sequence 0 −→ M −→

P 0 −→ P 1 −→ · · · . This is the required sequence proving M ∈ R-Gproj. �

Let R be left-coherent. Set A′ = R-mod. The relative singularity of A′ with respect to ω′

is the usual singularity category of the ring R ([23])

Dsg(R) = Db(R-mod)/Kb(R-proj).

The following is read directly from Theorem 2.1.

Proposition 3.5. Let R be a left-coherent ring. The natural functor F : R-Gproj −→ Dsg(R)

is a fully-faithful triangle-functor.

Remark 3.6. Consider the natural embedding Db(R-mod) →֒ Db(R-Mod), and observe that

Kb(R-Proj) ∩ Db(R-mod) = Kb(R-proj), and for any P • ∈ Kb(R-Proj), X• ∈ Db(R-mod),

then any morphism (insideDb(R-Mod)) from P • toX• factors through an object ofKb(R-proj)

(just take a projective resolution Q• ∈ K−,b(R-proj) of X•, then the brutally truncated com-

plex σ≥−nQ•, for large n, is the required object). Now, It follows that the natural induced
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functor Dsg(R) −→ D′
sg(R) is a full embedding (by [25], 4-2 Theorem). Finally, we have a

commutative diagram of fully-faithful triangle-functors

RGproj
F

Dsg(R)

R-GProj
F

D′
sg(R).

A sufficient condition that the functor F in Proposition 3.5 is an equivalence is also that

the ring R is Gorenstein. We need the following result.

Lemma 3.7. Let R be a Gorenstein ring. Then we have

R-Gproj = {M ∈ R-mod | ExtiR(M,P ) = 0, P ∈ R-proj, i ≥ 1}.

Proof. Just note that the left hand side is equal to R-mod ∩ ⊥R-Proj. Then the result

follows from Lemma 3.2 and Lemma 3.4 directly. Let us remark that the lemma can be also

proved by the cotilting theory. �

Using Proposition 3.5 and Lemma 3.7 and applying a similar argument as Theorem 3.3,

we have the following result. Note that the result was first shown by Buchweitz [9] and its

dual version was shown independently by Happel in the finite-dimensional case [13] (compare

[5], Corollary 4.13 or [10], Theorem 2.5). A special case of the result was given by Rickard

([24], Theorem 2.1) which says that the singularity category of a self-injective algebra is

triangle-equivalent to its stable module category (compare Keller-Vossieck [20]).

Theorem 3.8. (Buchweitz-Happel) Let R be a Gorenstein ring. Then the natural functor

F : R-Gproj −→ Dsg(R)

is a triangle-equivalence.

3.3. Let T be a self-orthogonal object in any abelian category A. Set α(T ) = α(add T ).

We will relate α(T ) to the category of Gorenstein-projective modules over the endomorphism

ring.

Theorem 3.9. Let T be a self-orthogonal object, and let R = EndA(T )
op. Then the functor

HomA(T,−) : α(T ) −→ R-Gproj is fully-faithful, and it induce a full embedding of triangu-

lated categories α(T ) −→ R-Gproj.

Part of the theorem follows from an observation of Xi ([26], Proposition 5.1), which we

will recall. Let T ∈ A be any object, R = EndR(T )
op. Then we have the functor

HomA(T,−) : A −→ R-Mod.



RELATIVE SINGULARITY CATEGORIES AND GORENSTEIN-PROJECTIVE MODULES 13

In general, it is not fully-faithful. However, it is well-known that it induces an equivalence

add T ≃ R-proj,

in particular, the restriction of HomA(T,−) to add T is fully-faithful. Actually, we can define

a larger subcategory, on which HomA(T,−) is fully-faithful. For this, recall that a morphism

g : T0 −→ M with T0 ∈ add T is a T -precover (= right T -approximation) of M , if any

morphism from T to M factors through g. Consider the following full subcategory

App(T ) := {M ∈ A | there exists an exact sequence T1
f1
−→ T0

f0
−→ M −→ 0,

Ti ∈ add T, f0 is a T -precovers, f1 : T1 −→ Kerf0 is a T -precover}.

For M ∈ App(T ), such a sequence T1
f1
−→ T0

f0
−→ M −→ 0 will be called a T -presentation of

M .

The following result is contained in [26] in slightly different form.

Lemma 3.10. The functor HomA(T,−) induces a full embedding of App(T ) into R-mod.

Proof. The proof resembles the argument in [4], p.102. LetM ∈ App(T ) with T -presentation

T1
f1
−→ T0

f0
−→ M −→ 0. Since f0 and f1 : T1 −→ Kerf0 are T -precovers, we have the follow-

ing exact sequence of R-modules

HomA(T, T1)
HomA(T,f1)

−→ HomA(T, T0)
HomA(T,f0)

−→ HomA(T,M) −→ 0.

Recall the equivalence HomA(T,−) : add T ≃ R-proj. Thus the left-hand side two terms

in the sequence above are finite-generated R-modules, and we infer that HomA(T,M) is a

finite-presented R-module. Let M ′ ∈ App(T ) with T -presentation T ′
1

f ′
1−→ T ′

0

f ′
0−→ M ′ −→ 0.

Given any homomorphism of R-modules θ : HomA(T,M) −→ HomA(T,M
′). Thus by a

similar argument as the comparison theorem in homological algebra, we have the following

diagram in R-mod

HomA(T, T1)
HomA(T,f1)

θ1

HomA(T, T0)
HomA(T,f0)

θ0

HomA(T,M)

θ

0

HomA(T, T
′
1)

HomA(T,f ′
1)

HomA(T, T
′
0)

HomA(T,f0)
HomA(T,M

′) 0.

Using the equivalence add T ≃ R-proj again, we have morphisms gi : Ti −→ T ′
i such

that HomA(T, gi) = θi, i = 0, 1. Thus g0 ◦ f1 = f ′
1 ◦ g1. Thus we have a unique morphism

g : M −→ M ′ making the diagram commute
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T1

f1

g1

T0

f0

g0

M

g

0

T ′
1

f ′
1

T ′
0

f ′
0

M ′ 0.

Now it is not hard to see that HomA(T, g) = θ, i.e., HomA(T,−) : App(T ) −→ R-mod is

full. We will omit the proof of faithfulness, which is somehow the inverse of the above proof.

�

Proof of Theorem 3.9: Set ω = add T . First note that any epimorphism f : T0 −→ M

with T0 ∈ add T and Kerf ∈ T⊥, is a T -precover. This can be seen from the long exact

sequence obtained by applying HomA(T,−) to the sequence 0 −→ Kerf −→ T0
f

−→ M −→

0. Thus we infer that ωX ⊆ App(T ), and then α(T ) ⊆ App(T ). Thus HomA(T,−) is

fully-faithful on α(T ). What is left to show is that for each M ∈ α(T ), HomA(T,M) ∈

R-Gproj. Take a complete T -resolution T • = (T n, dn) for M . Then the complex P • =

HomA(T, T
•) is exact with its 0-cocycle HomA(T,M). Note that P • is a complex of finitely-

generated projective R-modules. Note that we have an isomorphism of Hom complexes

HomA(T
•, T ) ≃ HomR(P

•, R), using the equivalence HomA(T,−) : add T ≃ R-proj and

noting that HomA(T, T ) = R. However HomA(T
•, T ) is exact, hence we infer that P • is a

complete resolution for HomA(T,M). Thus HomA(T,M) ∈ R-Gproj.

Note that HomA(T,−) preserves short exact sequences in α(T ), and thus the composite

α(T ) −→ R-Gproj −→ R-Gproj is a ∂-functor, which sends add T to zero. By Lemma 2.5,

the induced functor α(T ) −→ R-Gproj is a triangle-functor, the fully-faithfulness of which

follows directly from the one of HomA(T,−) : α(T ) −→ R-Gproj. �

4. Compact generators for Gorenstein-projective modules

4.1. Let us begin with some notions. Let C be a triangulated category with arbitrary (small)

coproducts. An object C ∈ C is said to be compact, if the functor HomC(C,−) commutes

with coproducts. Denote by Cc the full subcategory of C consisting of compact objects, which

is easily seen to be a thick triangulated subcategory. The triangulated category C is said to

be compactly generated, if there is a set S of compact objects such that there is no proper

triangulated category containing S and closed under coproducts [22].

Let R be a ring. It is easy to see that the triangulated category R-GProj has arbi-

trary coproducts, and the natural embedding R-Gproj −→ R-GProj gives that R-Gproj ⊆

(R-Gproj)c.

We have our main result. Note that similar results were obtained by Beligiannis ([6],

Theorem 6.7 and [7], Theorem 6.6), and Iyengar-Krause ([15], Theorem 5.4 (2)) using different
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methods in different setups. We would like to thank Beligiannis to remark that one might

find another proof of the following result using Gorenstein-injective modules, and a suitable

combination of results and arguments in [7] and [8].

Theorem 4.1. Let R be a Gorenstein ring. Then the triangulated category R-GProj is

compactly generated, and its subcategory of compact objects (R-GProj)c is the additive closure

of R-Gproj.

Before proving Theorem 4.1, we need to recall some well-known facts on the homotopy

category of projective modules. Denote by Kproj(R) the smallest triangulated category of

K(R-Proj) containing R and closed under coproducts. Denote by Kex(R-Proj) the full sub-

category of K(R-Proj) consisting of exact complexes. For each complex P • ∈ K(R-Proj),

there is a unique triangle

p(P •) −→ P • −→ a(P •) −→ p(P •)[1]

with p(P •) ∈ Kproj(R) and a(P •) ∈ Kex(R-Proj). Thus we have an exact functor a :

K(R-Proj) −→ Kex(R-Proj). Moreover, we have an exact sequence of triangulated categories

0 −→ Kproj(R)
inc
−→ K(R-Proj)

a

−→ Kex(R-Proj) −→ 0,

where “inc” denotes the inclusion functor (for details, see [19] and compare [21], Corollary

3.9).

The following result is essentially due to Jørgensen [16].

Lemma 4.2. Let R be a Gorenstein ring. Then the homotopy category K(R-Proj) is com-

pactly generated, and its subcategory of compact object is K+,b(R-proj).

Proof. To see the lemma, we need the results of Jørgensen: let R be a ring, recall the

duality ∗ = HomR(−, R) : R-proj −→ Rop-proj, which can be extended to another duality

∗ : K−(R-proj) −→ K+(Rop-proj). By [16], Theorem 2.4, if the ring R is coherent and ev-

ery flat R-module has finite projective dimension, then the homotopy category K(R-Proj) is

compactly-generated, and then by [16], Theorem 3.2 (and its proof), the subcategory of com-

pact objects is K(R-Proj)c = {P • ∈ K+(R-proj) | the complex (P •)∗ ∈ K−,b(Rop-proj)}.

Note the following two facts: (1) for a Gorenstein ring R, every flat module has finite projec-

tive dimension by [11], Chapter 9, section 1; (2) for a Gorenstein ring R, we have an induced

duality ∗ : K−,b(R-proj) −→ K+,b(Rop-proj), which is because that the regular module has

finite injective dimension. Combining the above two facts and Jørgensen’s results, we have

the lemma. �

Next result is also known, compare [9], Theorem 4.4.1.
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Lemma 4.3. Let R be a Gorenstein ring. The following composite functor

Kex(R-Proj)
Z0

−→ R-GProj

is a triangle-equivalence, where Z0 is the functor of taking the zeroth cocycyles.

Proof. Note that since RR has finite injective dimension, we infer that, by the dimension-

shift technique, every complex P • ∈ Kex(R-Proj), its cocycles Zi lie in ⊥R-Proj, and furthur

Zi are Gorenstein-projective. Hence the above functor is well-defined. Note that the functor

is induced by the corresponding functor of taking the zeroth cocycles Z0 : Cex(R-Proj) −→

R-GProj, and note that Z0 is an exact functor between two exact categories, preserving

projective-injective objects. Hence the induced functor Z0 is a triangle-functor by [12], p.23.

The proof of fully-faithfulness and denseness of Z0 is same as the argument in [10], Appendix

(compare [5], Theorem 3.11). Or, we observe that each exact complex P • ∈ K(R-Proj) is

a complete resolution (= totally-acyclic complex in [21], section 7), and the result follows

directly from the dual of [21], Proposition 7.2. �

Proof of Theorem 4.1: We will see that the result follows from the following result of

Thomason-Trobaugh-Yao-Neeman [22]: let C be a compactly generated and S a subset of

compact objects, R the smallest triangulated subcategory which contains S and closed under

coproducts, then the quotient category C/R is compactly generated, and every compact

objects in C/R is a direct summand of π(C) for some compact object C in C, where π :

C −→ C/R is the quotient functor. To apply the theorem in our situation, by Lemma 4.2

we may put C = K(R-Proj), and S = {R}, and then R = Kproj(R). Via the functor a and

the functor Z0 in Lemma 4.3, we identify the quotient category C/R with R-GProj. Hence

the triangulated category R-GProj is compactly generated, every object G in (R-GProj)c is

a direct summand of the image of the compact object in K(R-Proj), and thus by Lemma 4.2

again, there exists P • ∈ K+,b(R-proj) such that G is a direct summand of Z0(a(P •)).

Assume that P • = (Pn, dn), and take a positive number n0 such that Hn(P •) = 0, n ≥ n0.

Consider the natural distinguished triangle

σ≥n0P • −→ P • −→ σ<n0P • −→ (σ≥n0P •)[1],

where σ is the brutal truncation. Since σ<n0P • ∈ Kb(R-proj) ⊆ Kproj(R), we get a(σ<n0P •) =

0. Thus by applying the exact functor a to the above triangle, we have a(P •) ≃ a(σ≥n0P •).

Applying the dimension-shift technique to the following exact sequence and noting that the

injective dimension of RR is finite

0 −→ Zn0(P •) −→ Pn0 dn0
−→ Pn0+1 −→ · · · −→ Pn dn

−→ Pn+1 −→ · · · ,

we infer that Zn0(P •) lies in ⊥R-proj, and by Lemma 3.7, we have Zn0(P •) ∈ R-Gproj,

and thus it is not hard to see that a(σ≥n0P •) is a shifted complete resolution of Zn0(P •)
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(and in this case, p(σ≥n0P •) is the truncated projective resolution of Zn0(P •)). Therefore

Z0(a(σ≥n0P •)) is the n0-th syzygy of Zn0(P •), and thus it lies in R-Gproj. Hence G is a

direct summand of a module in R-Gproj. This completes the proof. �

Acknowledgement Some results in this paper appeared in the second chapter of my Ph.D

thesis, and I would like to thank Prof. Pu Zhang for his supervision. I also would like to

thank Prof. Apostolos Beligiannis and Prof. Henning Krause very much for their helpful

remarks.

References

[1] M. Auslander, Representation Dimension of Artin Algebras, Lecture Notes, Queen Mary College,

London, 1971.

[2] M. Auslander and R. O. Buchweitz, The homological theory of maximal Cohen-Macaulay approx-

imations, Memoire de la S.M.F. 2e serie, tome 38 (1989), 5-37.

[3] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86

(1)(1991), 111-152.

[4] M. Auslander, I. Reiten, and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge

Uni. Press, 1995.

[5] A. Beligiannis, The homological theory of contravariantly finite subcategories: Auslander-Buchweitz

contexts, Gorenstein categories and (co)stabilization, Comm. Algera 28 (2000), 4547-4596.

[6] A. Beligiannis, Homotopy theory of modules and Gorenstein rings, Mathematica Scand. 89 (2001),

5-45.

[7] A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, J. Al-

gebra 288 (2005), 137-211.

[8] A. Beligiannis and I. Reiten, Homological and Homotopical Aspects of Torsion Theories, Mem.

Amer. Math. Soc., 207pp, 2007.

[9] R. O. Buchweitz, Maximal Cohen-Macaulay Modules and Tate-Cohomology over Gorenstein Rings,

Unpublished manuscript, 155pp, 1987.

[10] X. W. Chen and P. Zhang, Quotient triangulated categories, Manuscripta Math. 123 (2007), 167-183.

[11] E. E. Enochs, O. M. G. Jenda, Relative Homological Algebra, de Gruyter Expositions in Math. 30,

Walter de Gruyter, Berlin, New York, 2000.

[12] D. Happel, Triangulated categories in the representation theory of finite dimensional algebras, London

Math. Soc. Lecture Notes Ser. 119, Cambridege Uni. Press, 1988.

[13] D. Happel, On Gorenstein algebras, Progress in Math., vol. 95, 389-404, Birkhäuser Verlag, Basel
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[25] J. L. Verdier, Catégories dérivées, etat 0, Springer Lecture Notes 569 (1977), 262-311.

[26] C. C. Xi, The relative Auslander-Reiten theory for modules, preprint, 26pp.


	1. Introduction
	1.1. 
	1.2. 

	2. Relative singularity category and -Cohen-Macaulay objects
	2.1. 
	2.2. 
	2.3. 

	3. Gorenstein-projective modules and singularity categories
	3.1. 
	3.2. 
	3.3. 

	4. Compact generators for Gorenstein-projective modules
	4.1. 

	References

