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Abstract

We have two constructions of the level-(0, 1) irreducible representation
of the quantum toroidal algebra of type A. One is due to Nakajima and
Varagnolo-Vasserot. They constructed the representation on the direct
sum of the equivariant K-groups of the quiver varieties of type Â. The
other is due to Saito-Takemura-Uglov and Varagnolo-Vasserot. They con-
structed the representation on the q-deformed Fock space introduced by
Kashiwara-Miwa-Stern.

In this paper we give an explicit isomorphism between these two con-
structions. For this purpose we construct simultaneous eigenvectors on
the q-Fock space using nonsymmetric Macdonald polynomials. Then the
isomorphism is given by corresponding these vectors to the torus fixed
points on the quiver varieties.
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1 Introduction

Geometry of quiver varieties, introduced by Nakajima, involves rich math-
ematical structures.

One of the most notable result is Nakajima’s construction of representations
of quantum loop algebras ([13]) : the direct sum of torus equivariant K-groups
of the quiver varieties is endowed with a structure of a representation of the
quantum affinization UR(Lg) of the corresponding Kac-Moody algebra g. The
resulting representation is what we call an l-highest weight representation, that
is to say, a ”highest weight representation” with respect to the triangular de-
composition of the quantum loop algebra.

Let us concentrate our attention on quiver varieties of affine type. They
appear in gauge theory as framed moduli spaces of instantons on ALE spaces,
which originally motivated Nakajima to introduce quiver varieties. They also
have interesting connections with some areas in mathematics such as the theory
of McKay correspondence and the representation theory of symplectic reflection
algebras (see [7] and [6] for example). In this point of view, more careful study
about the actions of the quantum toroidal algebras, quantum affinizations of the
affine Kac-Moody algebras, on the equivariant K-groups seems to be important.

Schur-Weyl duality is an equivalence between certain categories of represen-
tations of gll and of Sn. Varagnolo-Vasserot show that there exists an anal-
ogous duality between the quantum toroidal algebra of type A and a certain
double affinization of the Hecke algebra of type A, called the toroidal Hecke
algebra ([19]). The toroidal Hecke algebra has a remarkable representation
called Dunkl-Cherednik representation. Applying Schur-Weyl duality for Dunkl-
Cherednik representation, Saito-Takemura-Uglov and Varagnolo-Vasserot con-
struct the representation of the quantum toroidal algebra ([15], [20]). The un-
derlying space is so called the q-Fock space ([8]).

There are much fewer things known about representations of quantum toroidal
algebras than of quantum affine algebras. Now, at least, we have two construc-
tions of the representation of the quantum toroidal algebra of type A. In this
paper we give an explicit isomorphism between these two constructions. We
hope it will be helpful for further analyses of the representation, such as study
of canonical bases of the representations.

We can describe the representation on the equivariant K-groups in a combi-
natorial manner using the localization theorem ([22]). In particular, the torus
fixed points correspond to simultaneous eigenvectors for the action of a certain
subalgebra of the quantum toroidal algebra. Our strategy is to construct simul-
taneous eigenvectors on the q-Fock space. The isomorphism will be given by
corresponding these vectors to the torus fixed points. For the construction of
simultaneous eigenvectors, nonsymmetric Macdonald polynomials plays
a crucial role, where nonsymmetric Macdonald polynomials are simultaneous
eigenvectors for Dunkl-Cherednik operators ([5], [11], [14]),
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Takemura-Uglov described the irreducible decomposition of the q-Fock space
as the representation of a certain subalgebra of the quantum toroidal algebra,
which is isomorphic to the quantum affine algebra ([17]). They also showed that
each irreducible components are isomorphic to tensor products of fundamental
representations. For this purpose they introduced specific vectors of the q-Fock
space using nonsymmetric Macdonald polynomials (see Remark 6.2.2).

In this paper we introduce new vectors. We also use nonsymmetric Macdon-
ald polynomials, but an additional operation is required (see 6.2.1). They are
simultaneous eigenvectors and the main subject of this paper. These simulta-
neous eigenvectors allow us a combinatorial description of the representation on
the q-Fock space and we can see this coincides with the combinatorial descrip-
tion of the representation on the equivariant K-groups.

In [21] and [16], the action of the Hall algebra of the cyclic quiver on the
q-Fock space is studied. The Hall algebra of the cyclic quiver is realized us-
ing perverse sheaves on the space of representations of the quiver by Lusztig
([9]). Nakajima’s construction of quiver varieties and representations on their
K-groups are, philosophically, parallel to Lusztig’s construction. We could ex-
pect this observation gives conceptual interpretation of the isomorphism con-
structed in this paper. In particular, this isomorphism would help us to study of
canonical bases of the K-groups of quiver varieties (see [10] and [23], for quiver
varieties of finite type).

In §3 – §5 we are mainly occupied with review of, and arrangement for our
use of, the results of [22], [19]. [15] and [20]. In §6 we construct the simultaneous
eigenvectors and in §7 we exhibit the isomorphism.
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Hiraku Nakajima. The author would like to thank him for his valuable com-
ments, warm encouragement and careful proofreading. The author also would
like to thank Yoshihisa Saito for his polite answers for some questions about the
q-Fock space.

2 Preliminaries

2.1 Quantum toroidal algebra

2.1.1

In this paper we usually take R = C(s1/2, t1/2) as the coefficient field. We set

p = tl, q = s1/2t1/2, r = s−1/2t1/2.

2.1.2

Let us define the quantum toroidal algebra U ′
R(sl l,tor) (l > 2). This is an

R-algebra generated by ei,n, fi,n, K
±
i and h±

i,m (i ∈ I, n ∈ Z, m ∈ Z>0). The
relations are expressed using the formal series

ei(z) =
∑

n∈Z

ei,nz
−n, fi(z) =

∑

n∈Z

fi,nz
−n,
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K±
i (z) = K±

i exp

(
±(q − q−1)

∑

m>0

h±
i,mz∓m

)

as follows :

K+
i.0K

−
i.0 = K−

i.0K
+
i.0 = 1,

[K±
i (z),K±

i (w)] = [K+
i (z),K−

i (w)] = 0,

[K±
i (z), ej(w)] = [K±

i (z), fj(w)] = 0 (j 6= i, i± 1),

(r εz − q−1w)K±
i (z)ei+ε(w) = (r εq−1z − w)ei+ε(w)K

±
i (z) (ε = ±1),

(z − q2w)K±
i (z)ei(w) = (q2z − w)ei(w)K

±
i (z),

(r εz − qw)K±
i (z)fi+ε(w) = (r εqz − w)fi+ε(w)K

±
i (z) (ε = ±1),

(q−2z − w)K±
i (z)fi(w) = (z − q−2w)fi(w)K

±
i (z),

[ei(z), fj(w)] =
δijδ(z/w)

q − q−1
(K+

i (w)−K−
i (z)),

(r εz − q−1w)ei(z)ei+ε(w) = (r εq−1z − w)ei+ε(w)ei(z) (ε = ±1),

(z − q2w)ei(z)ei(w) = (q2z − w)ei(w)ei(z),

(r εz − qw)fi(z)fi+ε(w) = (r εqz − w)fi+ε(w)fi(z) (ε = ±1),

(z − q−2w)fi(z)fi(w) = (q−2z − w)fi(w)fi(z),

{ei(z1)ei(z2)ei±1(w) − (q + q−1)ei(z1)ei±1(w)ei(z2)

+ ei±1(w)ei(z1)ei(z2)}+ {z1 ↔ z2} = 0,

{fi(z1)fi(z2)fi±1(w) − (q + q−1)fi(z1)fi±1(w)fi(z2)

+ fi±1(w)fi(z1)fi(z2)}+ {z1 ↔ z2} = 0,

where δ(Z) =
∑

n∈Z
Zn.

Remark. The quantum toroidal algebra in [22] is ”twisted” in their words,
which may or may not be isomorphic to ours. See Remark 3.2.2 for the relation
between these two algebras.

2.1.3

The horizontal subalgebra U
(2)
R

′
(ŝll) is the subalgebra of U ′

R(sl l,tor) gener-

ated by ei,0, fi,0 and K±
i (i ∈ I). This is isomorphic to U ′

q(ŝll)⊗R.

The vertical subalgebra U
(1)
R

′
(ŝll) is the subalgebra of U ′

R(sl l,tor) gener-

ated by ei,n, fi,n, K
±
i , and h±

i,m (i 6= 0, n ∈ Z, m ∈ Z>0). Define ẽi,n, f̃i,n, K̃
±
i

and h̃±
i,m by

ẽi(z) =
∑

n∈Z

ẽi,nz
−n = ei(r

−l+iz),

f̃i(z) =
∑

n∈Z

f̃i,nz
−n = fi(r

−l+iz),

K̃±
i (z) = K̃±

i exp

(
±(q − q−1)

∑

m>0

h̃±
i,mz∓m

)
= K±

i (r−l+iz).
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They satisfy the relations in Drinfeld new realization of U ′
q(ŝll), and so U

(1)
R

′
(ŝll)

is also isomorphic to U ′
q(ŝll)⊗R.

2.2 Notations for Young diagrams

2.2.1

Let Π denote the set of all Young diagrams. We identify a Young diagram with
a subset of (Z≥0)

2. A node is an element of (Z≥0)
2.

The content of a node (x, y) is the number x−y. A node is called an i-node
if its content equals to i modulo l. For λ ∈ Π let di(λ) denote the number of
i-nodes in λ and set d(λ) = (di(λ))i=0,...,l−1 ∈ Zl. We define the order > on the
set of nodes according to their contents.

For λ ∈ Π a node (x, y) is called addable if (x, y) /∈ λ and (x− 1, y), (x, y−
1) ∈ λ. A node (x, y) is called removable if (x, y) ∈ λ and (x+1, y), (x, y+1) /∈
λ. Let Aλ,i (resp. Rλ,i) denote the set of all addable (removable) i-nodes of λ.

A hook is a pair ((xh, yh), (xt, yt)) such that (xh, yh − 1), (xt, yt) ∈ λ and
(xh, yh), (xt + 1, yt) /∈ λ. The hook length of a hook ((xh, yh), (xt, yt)) is the
number −xh+yh+xt−yt. A hook is called an l-hook if its length is a multiple
of l.

2.2.2

A Maya diagram with charge c is an infinite decreasing sequence of integers
k = (k1, k2, . . .) such that ka = −a+ c for sufficiently large a. A Maya diagram
with charge c can be identified with a Young diagram

λ =
∐

a∈Z>0

1≤b≤ka+a−c

(a− 1, b− 1).

Let Πc denote the set of all Maya diagrams with charge c. Then Π and Πc are
bijective.

2.2.3

We sometimes identify a Maya diagram k = (k1, k2, . . .) with the subset {k1, k2, . . .}
of Z.

If ka − 1 /∈ k (a ∈ Z>0), then a node (a− 1, ka + a− c− 1) is a removable
node. Its content equals to c − ka. If ka + 1 /∈ k (a ∈ Z>0), then a node
(a− 1, ka + a− c) is an addable node. Its content equals to c− ka − 1.

Note that {(a, b) | a ∈ k, b /∈ k, a > b} is a finite set. Such a pair (a, b)
corresponds to a hook in term of Young diagram. Its hook length is a− b.

3 K-theory of quiver varieties

In this section we review the representation of U ′
R(sl l,tor) on the equivariant

K-groups of the quiver varieties of type Â.

A quiver variety, introduced by Nakajima, is a certain moduli space of rep-
resentations of a quiver. He also introduced a certain subvariety of the prod-
uct of two quiver varieties called the Hecke correspondence. Using the Hecke
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correspondence we can construct an action of the quantum affinization of the
Kac-Moody algebras on the torus equivariant K-groups of the quiver varieties
([13]).

By the localization theorem, localized equivariant K-groups have bases in-
dexed by fixed points. The fixed points of the quiver varieties of type Â are
indexed by Young diagrams. The action of the quantum toroidal algebra can
be written in terms of Young diagrams ([22], see Theorem 3.2.3).

Nakajima’s definition of quiver varieties involves parameters v and w, where
w corresponds to the l-highest weight of the representation. In this paper we
work on the case w = (1, 0, . . . , 0) only, in other words, we deal with the level 1
representation only.

We do not take the original definition of quiver varieties but another equiv-
alent one, which works only for the case w = (1, 0, . . . , 0).

We use d instead of v.

3.1 Quiver varieties

3.1.1

Let
(
C2
)[n]

denote the Hilbert scheme of n points on C2 :

(
C2
)[n]

= {J ⊂
ideal

C[x, y] | dimC[x, y]/J = n},

and SymnC2 denote the n-th symmetric product of C2 :

SymnC2 =
{∑

aipi
∣∣ ai ∈ Z>0,

∑
ai = n, pi ∈ C2

}

Let π denote the Hilbert-Chow morphism :

π :
(
C2
)[n]

−→ SymnC2

J 7−→ suppC[x, y]/J.

We regard Z/lZ as the subgroup of SU(2). The action of Z/lZ on C2 induces

the action of Z/lZ on SymnC2 and
(
C2
)[n]

so that π is Z/lZ-equivariant. Let
(
SymnC2

)Z/lZ
and

(
(C2)[n]

)Z/lZ
denote the sets of the fixed points.

Note that for J ∈
(
(C2)[n]

)Z/lZ
, C[x, y]/J has a canonical Z/lZ-module

structure. For d = (d0, . . . , dl−1) ∈ Zl such that
∑

di = n we define the quiver
variety M(d) by

M(d) =

{
J ∈

(
(C2)[n]

)Z/lZ ∣∣∣ dimC[x, y]/J ≃
⊕

i

C ⊕di

(i)

}
,

where C(i) is the 1-dimensional Z/lZ-module with weight i.
We set

κ1 =
1

2
dC td+ d0, κ2 = n− κ1l,

where C is the Cartan matrix of type Âl−1. Then we have dimM(d) = 2κ1

([12]). Let ζ ∈ Z/lZ be a generator of Z/lZ. We define the closed subvariety

M0(d) =



κ2 [0] +

κ1∑

j=1

(
[pj] + · · ·+ [ζl−1pj ]

)
∈
(
SymnC2

)Z/lZ ∣∣∣ pj ∈ C2



 .
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of
(
SymnC2

)Z/lZ
. Then we have π(M(d)) ⊂ M0(d) (in fact we can check

π(M(d)) = M0(d)).
For d, d′ ∈ Zl such that di ≤ d′i for all i, we have the inclusion given by

M0(d) →֒ M0(d
′)

X 7−→ X + κ3 [0],

where κ3 =
∑

(d′i − di). We set

M =
∐

d∈Zl

M(d), M0 =
⋃

d∈Zl

M0(d),

and
Z = M ×

M0

M.

Note that we introduce M0 just only for terminological reason. We work on M

and Z, of which connected components are finite dimensional.

3.1.2

The natural T = (C∗)2-action on C2 induces a T -action on M. The T -fixed

points ofM are indexed by Π. For λ ∈ Π the corresponding ideal Jλ ∈
(
C2
)[degλ]

is the ideal generated by {xayb | (a, b) /∈ λ}. Then {[xayb] ∈ C[x, y]/J | (a, b) ∈
λ} forms a basis of C[x, y]/J .

For ζ ∈ Z/lZ we have ζ · [xayb] = ζa−b[xayb]. So Jλ ∈M(d(λ)).
For (s, t) ∈ T we have (s, t) · [xayb] = satb[xayb]. So C · [xayb] = satb ∈

R(T ) = Z[s±, t±], where R(T ) is the representation ring of T and we identify
the coordinate functions of T with the generators of R(T ). Thus for a node
X = (a, b), we set X = satb ∈ R(T ).

3.2 Representation on K-theory of quiver varieties

3.2.1

Let ei denote the i-th coordinate vector in Zl. For d ∈ Zl we define the subva-
riety of Z by

Bi(d) = {(J1, J2) ∈ Z | J1 ∈M(d), J2 ∈M(d+ ei), J1 ⊃ J2}

This is called the Hecke correspondence.
Let pε denote the projection from Z to the ε-th factor (ε = 1, 2) and qε

denote its restriction to Bi(d) ⊂ Z. We define the tautological bundle L on
Bi(d) by q∗2V/q∗1V.

3.2.2

For a T -equivariant vector bundle B on X , let detB denote its determinant,
∧iB denote its i-th wedge product, and set ∧zB =

∑
i≥0(−z)

i ∧i B. These

operators can be extended to operators on KT (X). For a Z/lZ-module M we
set Mi = HomZ/lZ(C(i),M).

We set
H = (−1 + s+ t− st)V+W ∈ KT (M).

7



We define an action of U ′
R(sl l,tor) on KT

R(M) = KT (M)⊗R by

ei,n(x) = c−i (d) p1∗

(
p ∗
2 x⊗ (L)n+hi(d)

)
x ∈ KT

R(M(d + ei)),

fi,n(x) = c+i (d) p2∗
(
p ∗
1 (x⊗ det(s−1t−1Hi)⊗ Ln

)
x ∈ KT

R(M(d)),

K±
i (z)(x) = c−i (d)c

+
i (d)

(
∧z
(
(s−1t−1 − 1)H∗

i

))±
x x ∈ KT

R(M(d)),

where the index + (resp. −) means the expansion as a formal power series in
z−1 (resp. z) and

c−i (d) = (−1)di s (2di−di+1+1)/2 t (−2di−1+2di−di+1+1)/2,

c+i (d) = (−1)−di−1+di−di+1 s−di−1/2 t di−1/2,

hi(d) = di−1 − 2di + di+1.

Remark. We slightly modify the actions in [22]. In fact we have

ei,n = (−1)di+1s(di+1+1)/2t(−di+1+1)/2Ω−
i,n,

fi,n = (−1)di+1s−di+1/2tdi−1/2Ω+
i,n,

K±
i (z) = s(−di−1+di+1+1)/2t(di−1−di+1+1)/2Θ±

i (z).

Here the operators on right hand side are defined in 3.3 of [22], where we should
replace their symbols q, t, k, s with our symbols t, s, i, n.

Substitute this to theorem 2 in [22] and the definition of quantum toroidal
algebra in [22], we can verify ei,n, fi,n and K±

i (z) satisfy the relation in 2.1.

3.2.3

Let iλ denote the inclusion {Jλ} →֒M and 1λ denote the generator of KT ({Jλ}).
We set bλ = iλ∗(1λ) ∈ KT (M).

By the localization theorem

KT
R(M) ≃

⊕

λ∈Π

Rbλ.

Theorem. ([22] lemma 8) For λ ∈ Π such that d(λ) = d we have

ei,n(bλ) = (−s1/2t−1/2)di−1

∑

X∈Rλ,i

[
X

n ∏

A∈Aλ,i

(
(st)1/2 A

∗
− (st)1/2 X

∗
)−1

×
∏

R∈Rλ\X,i

(
(st)−1/2 R

∗
− (st)1/2 X

∗
)
bλ\X

]
,

fi,n(bλ) = (−s1/2t−1/2)−di−1

∑

X∈Aλ,i

[
X

n ∏

A∈Aλ∪X,i

(
st A

∗
− X

∗
)

×
∏

R∈Rλ,i

(
R

∗
− X

∗
)−1

bλ∪X

]
,

K±
i (z)(bλ) =


 ∏

A∈Aλ,i

(st)1/2 A
∗
z − (st)−1/2

A
∗
z − 1

∏

R∈Rλ,i

(st)−1/2 R
∗
z − (st)1/2

R
∗
z − 1




±

bλ.

where
(
satb

)∗
= s−at−b for satb ∈ R(T ).
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4 Schur-Weyl duality

In this section we review Schur-Weyl duality.
One can construct representations of the quantum affine algebra U ′

q(ŝll) from

representations of the affine Hecke algebra ḢN ([2], see 4.1.3). In this construc-
tion the action is given originally in terms of Chevalley generators. One can
rewrite the action in terms of Drinfeld generators ([19], see Theorem 4.1.4).

Further, Schur-Weyl duality in [2] can be extended to get representations
of the quantum toroidal algebra U ′

R(sl l,tor) from representations of the toroidal

Hecke algebra ḦN . This is done by extending the action of U ′
q(ŝll) to U ′

R(sl l,tor)

using the rotation automorphism of the Dynkin diagram of type Â ([VV1], see
Theorem 4.2.2).

4.1 Schur-Weyl duality for affine algebras

4.1.1

The finite Hecke algebra HN is the R-algebra generated by Ta
±1 (a =

1, . . . , N − 1) with relations :

TaTa
−1 = Ta

−1Ta = 1,

(Ta + 1)(Ta − q2) = 0,

TaTa+1Ta = Ta+1TaTa+1,

TaTb = TbTa (|a− b| > 1).

The affine Hecke algebra ḢN is the R-algebra generated by Ta
±1 (a =

1, . . . , N − 1), Xa
±1 (a = 1, . . . , N) with relations :

TaTa
−1 = Ta

−1Ta = 1,

(Ta + 1)(Ta − q2) = 0,

TaTa+1Ta = Ta+1TaTa+1,

TaTb = TbTa (|a− b| > 1),

XaXb = XbXa,

TaXaTa = q2Xa+1,

XbTa = TaXb (b 6= a, a+ 1).

4.1.2

Let V = Rl with a basis {v0, . . . , vl−1}. We define
v

T ∈ End(V ⊗2) by

v

T (vi1 ⊗ vi2) =





q2vi1 ⊗ vi2 if i1 = i2,

qvi2 ⊗ vi1 if i1 < i2,

qvi2 ⊗ vi1 + (q2 − 1)vi1 ⊗ vi2 if i1 > i2.

Then we have a left action of HN on V ⊗N defined by

Ta 7−→
v

T a = 1⊗a−1 ⊗
v

T ⊗ 1⊗N−a−1.

9



4.1.3

LetM be a right ḢN -module. We define the following operators onM⊗HN
V ⊗N

:

ei(m⊗ v) =
N∑

a=1

mXδi,0
a ⊗ (Ki

1)
−1 · · · (Ki

a−1)
−1Ei,i−1

a v,

fi(m⊗ v) =

N∑

a=1

mX−δi,0
a ⊗ Ei−1,i

a Ki
a+1 · · ·K

i
N v,

hi(m⊗ v) = m⊗Ki
1 · · ·K

i
N v.

Here Ei,j
a = 1⊗

a−1

⊗Ei,j ⊗ 1⊗
N−a

, where Ei,j ∈ End(V ) is the matrix unit with

respect to the basis v0, . . . , vl−1 and Ki
a = qE

i−1,i−1
a −Ei,i

a . These operators give

a left U ′
q(ŝll)-action on M ⊗HN

V ⊗N ([2]).

4.1.4

An isomorphism between the algebras defined by Chevalley generators and by
Drinfeld new realization is given in [1].

For j = (j1, . . . , jN ) ∈ {0, . . . , l − 1}N let vj denote vj1 ⊗ · · · ⊗ vjN ∈ V ⊗N .
For 1 ≤ a, b ≤ N we define

Ta,b =





TaTa+1 · · ·Tb−1 a < b,

1 a = b,

Ta−1Ta−2 · · ·Tb a > b.

Theorem. ([19] Theorem 3.3) Assume j is an non-decreasing sequence. We

put ni = ♯{a | ja = i} and n̄i =
∑i

i′=1 ni′ . Let us write j = [n0, n1, . . .].

For m⊗ vj ∈M ⊗HN
V ⊗N the actions of Drinfeld generators of U ′

q(ŝll) are
described as follows :

ẽi(z)(m⊗ vj) = q1−nim




n̄i∑

a=n̄i−1+1

Ta,n̄i−1+1


 δ

(
ql−iYn̄i−1+1z

)
⊗ vj− ,

f̃i(z)(m⊗ vj) = q1−ni−1m




n̄i−1∑

a=n̄i−2+1

Ta,n̄i−1


 δ

(
ql−iYn̄i−1

z
)
⊗ vj+ ,

K̃±
i (z)(m⊗ vj) = m

∏

ja=i−1

θ±1
(
ql−i+1Yaz

) ∏

jb=i

θ±−1

(
ql−i−1Ybz

)
⊗ vj,

where j− = [. . . , ni−1+1, ni−1, . . .], j+ = [. . . , ni−1−1, ni+1, . . .] and θm(z) =
qmz−1
z−qm .
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4.2 Schur-Weyl duality for toroidal algebras

4.2.1

The toroidal Hecke algebra ḦN is the R-algebra generated by Ta
±1 (a =

1, . . . , N − 1), Xa
±1 (a = 1, . . . , N), Ya

±1 (a = 1, . . . , N) with relations :

TaTa
−1 = Ta

−1Ta = 1,

(Ta + 1)(Ta − q2) = 0,

TaTa+1Ta = Ta+1TaTa+1,

TaTb = TbTa (|a− b| > 1),

XaXb = XbXa,

TaXaTa = q2Xa+1,

XbTa = TaXb (b 6= a, a+ 1),

YaYb = YbYa,

T−1
a YaT

−1
a = q−2Ya+1,

YbTa = TaYb (b 6= a, a+ 1),

X0Y1 = pY1X0,

X2Y
−1
1 X−1

2 Y1 = q−2T 2
1 ,

where X0 = X1 · · ·XN .
Let Ḣ

(1)
N (resp. Ḣ

(2)
N ) denote the subalgebra generated by {Ta

±1} and {Ya}

(resp. {Ta
±1} and {Xa}). They are isomorphic to ḢN .

4.2.2

Let M be a right ḦN -module. Regarding M as a right Ḣ
(1)
N -module we have

the action of U ′
q(ŝll) on M ⊗HN

V ⊗N by 4.1.3.

We define an operator ρ on M ⊗HN
V ⊗N by

ρ(m⊗ vi1 ⊗ · · · ⊗ viN ) = mX
δ0,l1
1 · · ·X

δ0,iN
N ⊗ vi1−1 ⊗ · · · ⊗ viN−1.

Lemma. ([19] Proposition 3.4) We set Xi(z) = ˜Xi(r l−iz) (X = e, f,K±).
Then we have

Xi−1(z) = ρ−1 ◦ Xi(q
−1r−1z) ◦ ρ

Theorem. ([19] Theorem 3.5) The action of U ′
q(ŝll)⊗R ≃ U

(1)
R

′
(ŝll) on M⊗HN

V ⊗N can be extended to an action of U ′
R(sl l,tor) so that the actions of X0

(X = e, f,K±) are are given by

X0(z) = ρ−1 ◦ X1(q
−1r−1z) ◦ ρ

5 Representation on the q-Fock space

In this section we review the action of U ′
R(sl l,tor) on the q-Fock space fol-

lowing [15] and [20].
As a q-analogue of the permutation representation ,R[z±1 , . . . , z

±
N ] has a right

HN -module structure. We define the q-wedge space byR[z±1 , . . . , z±N ]⊗HN
V ⊗N .

11



This is the q-analogue of the classical wedge space⊗NV (z)/⊕Ker(id+σi), where
σi is the generator of SN .

We define the q-Fock space taking ”limit” of the q-wedge space. In other
words the q-Fock space is the q-analogue of the classical semi-infinite wedge
space.

It is known the rightHN -module structure onR[z±1 , . . . , z
±
N ] can be extended

to a right ḦN -module structure called Dunkl-Cherednik representation. By
Schur-Weyl duality described in 4.2.2, we have an action of U ′

R(sl l,tor) on the
q-wedge space. This can be naturally lifted to an action on the q-Fock space.

5.1 The q-Fock space

Here we review the definition of the q-Fock space. The reader can refer to [8]
for detail.

5.1.1

For 1 ≤ a < b ≤ N let us define an operator gab on R[z±1
1 , . . . , z±1

N ] by

gab =
q−1za − qzb

za − zb
(σab − 1) + q,

where σab is the operator defined by the permutation of variables za and zb.
Then we have a right action of HN on R[z±1

1 , . . . , z±1
N ] defined by

Ta 7−→
p

T a = (q2 − 1)− qga,a+1.

5.1.2

Let V (z) = R[z±1]⊗ V . We define

∧NV (z) = R[z±1
1 , . . . , z±1

N ]⊗HN
V ⊗N

= ⊗NV (z)
/N−1∑

a=1

Im

(
p

T a ⊗ 1V ⊗N − 1R[z±1

1
,...,z±1

N ] ⊗
v

T a

)
.

This is called the q-wedge space.

5.1.3

We write uk = zm⊗vj for k = j− l(m+1). Let uk1
∧· · ·∧ukN

denote the image
of uk1

⊗ · · · ⊗ ukN
for the quotient map. We say uk1

∧ · · · ∧ ukN
is normally

ordered if ka > kb for a < b.
For N = 2 we can verify that if k ≡ k′ then

uk ∧ uk′ = −uk′ ∧ uk,

and if k < k′ and k − k′ ≡ i (1 ≤ i ≤ l− 1) then

uk ∧ uk′ = −quk′ ∧ uk+(q2 − 1)
(
uk′−i ∧ uk+i

− quk′−l ∧ uk+l + q2uk′−l−i ∧ uk+l+i − · · ·
)

where the summation continues as long as the wedge is normally ordered.
The set of all normally ordered wedges forms a basis of ∧NV (z).
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5.1.4

For c ∈ Z and 0 < N < N ′ we define

ιcN,N ′ : ZN −→ ZN ′

(k1, . . . , kN ) 7−→ (k1, . . . , kN ,−N + c− 1, . . . ,−N ′ + c).

For k = (k1, . . . , kN ) ∈ ZN let us write uk = uk1
∧ · · · ∧ ukN

. We can check the
well-definedness of the map

∧NV (z) −→ ∧N
′

V (z)
uk 7−→ uιc

N,N′(k)
.

We write ιcN,N ′ for this map as well.

5.1.5

We define
F (c) = lim

−→
ιc
N,N′

∧NV (z), F =
⊕

c∈Z

F (c),

and ιcN,∞ by the canonical map from ∧NV (z) to F (c). F (resp. F (c)) is called
the q-Fock space (with charge c). An element of F (resp. F (c)) is called a
semi-infinite wedge (with charge c).

Let k = (k1, k2, . . .) be a Maya diagram with charge c (we use k both for an
element of ZN and for an infinite sequence of integers by abuse of notations),
then uk = uk1

∧ uk2
∧ · · · is a semi-infinite wedge with charge c. Note that

{uk | k ∈ Πc} forms a basis of F (c).

5.2 Representation on the q-Fock space

5.2.1

Let us consider the following operators on R[z±1 , . . . , z±N ] :

Y (N)
a = g−1

a,a+1σa,a+1 · · · g
−1
a,Nσa,NpDaσ1,ag1,a · · ·σa−1,aga−1,a (a ∈ {1, . . . , N})

where pDa is the difference operator given by

pDaf(z1, . . . , za, . . . , zN) = f(z1, . . . , pza, . . . , zN ), f ∈ R[z±1
1 , . . . , z±1

N ].

The operator Y
(N)
a is called Dunkl-Cherednik operator. Then the action of

ḢN defined in 4.1.2 can be extended to the action of ḦN by

Ta 7−→
p

T a, Xi 7−→ za, Ya 7−→ q1−NY (N)
a .

This is called Dunkl-Cherednik representation ([3], [4], [5]).
By the Schur-Weyl duality explained in 4.2.2, we have an action of U ′

R(sl l,tor)
on ∧NV (z) = R[z±1

1 , . . . , z±1
N ]⊗HN

V ⊗N .
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5.2.2

For k ∈ ZN we define m ∈ ZN and j ∈ {0, . . . , l − 1} by ka = ja − l(ma + 1).
Note that zm ⊗ vj = uk. We identify k ∈ ZN with the pair (m, j). Let mc =
(m1, . . . ,mN ) ∈ ZN denote the sequence obtained from kc = (c− a)1≤a≤N .

LetM c,r
N,l denote the set of all m such that

• m is non-decreasing with no more than l elements of any given value, and

• ma ≥ mc
a for all a and

∑
(ma −mc

a) = γ.

For m ∈M c,γ
N,l we define

J (m) = {j ∈ {0, . . . , l − 1}N | ja < jb for a < b such that ma = mb}.

We define
V c,γ
N =

⊕

m∈M c,γ

N,l

⊕

j∈J (m)

Ruk ⊂ ∧
NV (z).

We can check this is invariant under the U
(1)
R

′
(ŝll)-action.

We can see that for α, β ∈ Z such that αl+ c > γl and β > α the restriction

ιc,γαl+c,βl+c = ιcαl+c,βl+c|V c,γ

αl+c
: V c,γ

αl+c −→ V c,γ
βl+c

is an isomorphism as vector spaces.

Theorem. ([17] Proposition 6) ιc,γαl+c,βl+c is an isomorphism as U
(1)
R

′
(ŝll)-modules.

5.2.3

For k ∈ Πc we set degk =
∑

(ma −mc
a). Note that this is well-defined. We set

F (c)γ =
⊕

γ∈Πc

degk=γ

Ruk ⊂ F (c).

For α ∈ Z such that αl + c > γl the restriction

ιc,γαl+c,∞ = ιcαl+c,∞|V c,γ

αl+c
: V c,γ

αl+c −→ F (c)γ

is an isomorphism as vector space. By Theorem 5.2.2 we can extend the

U
(1)
R

′
(ŝll)-action to F (c)r , and so to F (c).

5.2.4

We define
ρN : ZN −→ ZN

(k1, . . . , kN ) 7−→ (k1 − 1, . . . , kN − 1).

We write ρN as well for the map ∧NV (z) → ∧NV (z) given by uk 7→ uρN (k).
We can see this is compatible with the construction of ρ in 4.2.2.

We also define

ρ∞ : Πc −→ Πc−1

(k1, k2, . . .) 7−→ (k1 − 1, k2 − 1, . . .).
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and ρ∞ : F (c)→ F (c− 1).
For 0 < N < N ′ ≤ ∞ we have

ιc−1
N,N ′ ◦ ρN = ρN ′ ◦ ιcN,N ′ .

Thus the action of U ′
R(sl l,tor) on ∧NV (z) can be extended to F so that

X0(z) = ρ−1
∞ ◦X1(q

−1r−1z) ◦ ρ∞ (X = e, f,K±).

6 Simultaneous eigenvectors

In this section we construct simultaneous eigenvectors for the actions of
K±

i (z)’s on the q-Fock space, which are the main subjects of this paper.
In §6.1 we review nonsymmetric Macdonald polynomials ([5], [11], [14]). For

m ∈ ZN , nonsymmetric Macdonald polynomial Φm ∈ C[z±1 , . . . , z±N ] is a si-
multaneous eigenvector of Dunkl-Cherednik operators. The transition matrix
between monomials and nonsymmetric Macdonald polynomials is upper trian-
gular with respect to the Bruhat order on ZN . The actions of the finite Hecke
algebra generators Ta on nonsymmetric Macdonald polynomials can be simply
described (see Proposition 6.1.4).

For k = (k1 > · · · > kN ) we define a vector Ψk = Φm ⊗ vj in the q-

wedge space (Definition 6.2.2), where m and j are given by ”renumbering” of
(k1, . . . , kN ) so that j is non-decreasing (6.2.1). It follows immediately from

Theorem 4.1.4 that Ψk is a simultaneous eigenvector for the actions of K±
i (z)’s

(i 6= 0). We can check

• the eigenvalues are multiplicity free (Proposition 6.2.5), and

• the transition matrix between normally ordered wedges and {Ψk} is upper
triangular (Proposition 6.2.3), in particular {Ψk} forms a basis of the q-
wedge space.

So the vector Ψk is characterized in term of the actions of K±
i (z)’s (i 6= 0)

(Corollary 6.2.5). Further, using them we can verify

• Ψk is also a simultaneous eigenvector for K±
0 (z) (Corollary 6.2.6), and

• Ψk can be lifted to the q-Fock space (Definition 6.2.8).

We can see the eigenvalues coincide with the eigenvalues of the torus fixed points
in the representation on the equivariant K-groups of the quiver varieties.

6.1 Nonsymmetric Macdonald polynomials

6.1.1

Let us define the Bruhat order. This is the partial order on ZN given by the
transitive closure of the following two relations :

For x = (x1, . . . , xN ) ∈ ZN

• If 1 ≤ i < j ≤ N and xi > xj then x ≻ σijx, and

• 1 ≤ i < j ≤ N and xi − xj > 1 then σijx ≻ x + ei − ej where ei is the
i-th coordinate vector.
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6.1.2

For x ∈ ZN let σx denote the unique element of SN satisfying the following
conditions :

• if σx(a) < σx(a
′) then xσx(a) ≥ xσx(a′), and

• if a < a′ and xσx(a) = xσx(a′) then σx(a) < σx(a
′).

6.1.3

We can see that R[z±1
1 , . . . , z±1

N ] has the basis {Φm(z) |m ∈ ZN} such that

• Φm(z) = zm +
∑

n≺m c(m,n)zn (∃c(m,n) ∈ R),

• Φm(z)Y
(N)
a = ζa(m)Φm(z), where ζa(m) = pmaq2σm(a)−N−1.

Φm(z) is called nonsymmetric Macdonald polynomial ([5], [11], [14]).

6.1.4

Proposition. (see [18] §1.5)

Φm(z) ·
p

T a =





(−q2+1)
x−1 Φm(z)− (x−q2)(q2x−1)

(x−1)2 Φσam(z) (ma > ma+1),
(−q2+1)

x−1 Φm(z) (ma = ma+1),
(−q2+1)

x−1 Φm(z)− Φσam(z) (ma < ma+1),

where σam = (. . . ,ma+1,ma, . . .) and x = ζa+1(m)
ζa(m) .

6.2 Simultaneous eigenvectors and its properties

6.2.1

For σ ∈ SN we define σ̂ ∈ SN by σ̂(a) = N − σ(a) + 1.
For k ∈ ZN

+ = {k ∈ ZN | k1 > · · · > kN} we definem = (m 1, . . . ,mN ) ∈ ZN

and j = (j
1
, . . . , j

N
) ∈ {0, . . . , l − 1}N by

m a = m bσj(a), j
a
= j bσj(a).

Note that

• m is non-decreasing, and if a < b, ma = mb then ja > jb,

• j is non-decreasing, and if a < b, j
a
= j

b
then m a > m b,

• σ̂j
−1 = σ̂m.

Example. For k = (5, 3, 1,−6,−7,−8,−9,−10) we have

(
m

j

)
=

(
−2 −1 −1 1 1 1 1 1
0 3 1 4 3 2 1 0

)
,

(
m

j

)
=

(
1 −2 1 −1 1 1 −1 1
0 0 1 1 2 3 3 4

)
.

In the following figure,
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• enumerate the boxes from lower rows to upper rows and from right to left
in a row, then (ja,ma) is the coordinate of the a-th box, and

• enumerate the boxes from left columns to right columns and from the top
to the bottom in a column, then (j

a
,m a) is the coordinate of the a-th box.

...
...

...
...

...
...

1 −10 −9 −8 −7 −6

0 −5 −4 −3 −2 −1

−1 0 1 2 3 4

−2 5 6 7 8 9
...

...
...

...
...

...

↑ 0 1 2 3 4 ← j
m

We define a partial order ⊳ on ZN
+ by

k′ ⊳ k ⇐⇒ j′ = j and m′ ≺m.

6.2.2

Definition. For k ∈ ZN
+ we define Ψk = Φm ⊗ vj ∈ ∧NV (z).

Remark. Takemura-Uglov introduced vectors Φm⊗vj ∈ ∧NV (z) in [17], which
are different from ours.

Proposition. Ψk is a simultaneous eigenvector for the actions of K±
i (z)’s (i ∈

{1, . . . , l− 1}).

Proof. It follows from Theorem 4.1.4 and the definition of Φm in 6.1.3. �

6.2.3

For k ∈ ZN
+ we define

ε(k) = ♯{(a, b) | a < b, σ̂m(a) > σ̂m(b)}.

Proposition.

Ψk = (−q)ε(k)uk +
∑

k′⊳ k

c(k,k′)uk′ (∃c(k,k′) ∈ R).

Proof. By the definition of nonsymmetric Macdonald polynomials in 6.1.3,

Φm ⊗ vj = zm ⊗ vj +
∑

m′≺m

c(m,m′)zm
′

⊗ vj (∃c(m,m′) ∈ R).

On the other hand by the relation in 5.1.2 we can verify

zm
′

⊗ vj =(−q)c(m
′, j)z dσm′(m′) ⊗ vdσm′ (j)

+
∑

m′′≺m′

c′(m′,m′′)z
cσ′′
m(m′′) ⊗ v dσm′′ (j) (∃c′(m′,m′′) ∈ R)

and c(m, j) = ε(k). Then the statement follows. �
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We define
ZN
+,γ = {k ∈ ZN

+ |m ∈M
c,γ
N,l}.

Note that if k ∈ ZN
+,γ and k′ ⊳ k, then k′ ∈ ZN

+,γ .

Corollary. If N > γl, then {Ψk | k ∈ ZN
+,γ} is a basis of V c,γ

N .

6.2.4

For k ∈ Zαl+c
+,γ (αl + c > γl), let λ denote the Young diagram corresponding to

ιcαl+c,∞(k) ∈ Πc.

Proposition. For i = 1, . . . , l − 1 we have

K±
i (z)(Ψk) =

 ∏

A∈Aλ,i

(st)1/2 A
∗
t−c−1z − (st)−1/2

A
∗
t−c−1z − 1

∏

R∈Rλ,i

(st)−1/2 R
∗
t−c−1z − (st)1/2

R
∗
t−c−1z − 1




±

Ψk.

Proof. By Theorem 4.1.4 and the defining relations K±
i (z) = ˜K±

i (r l−iz), it is
sufficient to show

Φm
∏

ja=i−1

θ±1
(
ql−i+1r l−iYaz

) ∏

jb=i

θ±−1

(
ql−i−1r l−iYbz

)

=


 ∏

A∈Aλ,i

(st)1/2 A
∗
t−cz − (st)−1/2

A
∗
t−cz − 1

∏

R∈Rλ,i

(st)−1/2 R
∗
t−cz − (st)1/2

R
∗
t−cz − 1




±

Φm.

First we have

Φmql−i+1r l−iYa = ql−i+1r l−iq1−Npmaqσm(a)−N−1Φm

= sσm(a)−N+1/2tσm(a)−N−i+l(ma+1)+1/2Φm

= s− bσj
−1(a)+3/2t− bσj

−1(a)−ka+1/2Φm,

Φmql−i−1r l−iYb = sσm(b)−N−1/2tσm(b)−N−i+l(mb+1)−1/2Φm

= s− bσj
−1(b)+1/2t− bσj

−1(b)−kb+1/2Φm.

We classify the elements of {a | ja = i− 1} ∪ {b | jb = i} into three types :

(1) a and b such that ma = mb, ja = i− 1, jb = i,

(2) a such that ja = i− 1 and (ma, i) /∈ k, and

(3) b such that jb = i and (mb, i− 1) /∈ k.

In the case of type (1), we have σ̂j
−1(a)− 1 = σ̂j

−1(b), ka + 1 = kb. Thus

Φmql−ir l−i−1Ya = Φmql−i−2r l−i−1Yb,

and so
Φmθ1

(
ql−iYar

l−i−1z
)
θ−1

(
ql−i−2Ybr

l−i−1z
)
= Φm.
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In the case of type (2), the node A = (σ̂j
−1(a)−1, σ̂j

−1(a)+ka−c) is an addable
i-node. We have

Φmθ1
(
ql−iYar

l−i−1z
)
= θ1

(
s− bσj

−1(a)+3/2t− bσj
−1(a)−ka+1/2z

)
Φm

= θ1

(
s1/2t−c+1/2 A

∗
z
)
Φm

=
(st)1/2 A

∗
t−cz − (st)−1/2

A
∗
t−cz − 1

Φm.

In the case of type (3), the node R = (σ̂j
−1(b) − 1, σ̂j

−1(b) + kb − c − 1) is a
removable i-node. We have

Φmθ1
(
ql−i−2Ybr

l−i−1z
)
= θ1

(
s− bσj

−1(b)+1/2t− bσj
−1(b)−kb+1/2z

)
Φm

= θ1

(
s−1/2t−c−1/2 R

∗
z
)
Φm

=
(st)−1/2 R

∗
t−cz − (st)1/2

R
∗
t−cz − 1

Φm.

Thus the claim follows. �

6.2.5

Proposition. If k,k′ ∈ Zαl+c
+,γ (αl + c > γl) and the eigenvalues of K±

i (z) for

Ψk and Ψk′

coincide for all i ∈ {1, . . . , l− 1}, then k = k′.

Proof. The coincidence of the eigenvalues of K±
i (z) implies

∏

A∈Aλ,i

(st)1/2 A
∗
t−cz − (st)−1/2

∏

R∈Rλ,i

(st)−1/2 R
∗
t−cz − (st)1/2

×
∏

A∈Aλ′,i

A
∗
t−cz − 1

∏

R∈Rλ′,i

R
∗
t−cz − 1

=
∏

A∈Aλ,i

A
∗
t−cz − 1

∏

R∈Rλ,i

R
∗
t−cz − 1

×
∏

A∈Aλ′,i

(st)1/2 A
∗
t−cz − (st)−1/2

∏

R∈Rλ′,i

(st)−1/2 R
∗
t−cz − (st)1/2.

Since |{(s, t) | s− t = n} ∩ (Aλ ∪Rλ)| < 1 for any n ∈ Z, we have

∏

A∈Aλ,i

(
(st)1/2 A

∗
t−cz − (st)−1/2

)

×
∏

R∈Rλ,i

(
(st)−1/2 R

∗
t−cz − (st)1/2

) ∣∣∣∣
z= X tc

6= 0

for any X ∈ Aλ,i ∪ Rλ,i. So we have X ∈ Aλ′,i ∪ Rλ′,i, and it follows that
Aλ,i ∪Rλ,i = Aλ′,i ∪Rλ′,i.

It is easy to see the set
⋃

i6=0 (Aλ,i ∪Rλ,i) determines λ. So the claim follows.
�
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Corollary. If X ∈ ∧NV (z) is a simultaneous eigenvector for the actions of
K±

i (z)’s (i ∈ {1, . . . , l − 1}) and

X = (−q)ε(k)uk +
∑

k′⊳k

c(k′)uk′ (∃c(k′) ∈ R),

for k ∈ Zαl+c
+,γ (αl + c > γl), then X = Ψk.

Proof. It follows from Corollary 6.2.3 and the previous proposition. �

6.2.6

Proposition. For k ∈ Zαl+c
+,γ (αl + c > γl), Ψk is a simultaneous eigenvector

for the actions of K±
i (z)’s (i ∈ {0, . . . , l− 1}).

Proof. By definition K±
i (z)’s commute with each other. Notice that a matrix

which commutes with a diagonal matrix with diagonal elements different from
each other is diagonal. It follows from Proposition 6.2.2, Corollary 6.2.3 and
Proposition 6.2.5 that Ψk is also a simultaneous eigenvector for the action of
K±

0 (z). �

6.2.7

Proposition. For k ∈ Zal+c
+,γ (al + c > γl), we have

ρ(q−ε(k)Ψk) = q−ε(ρ(k))Ψρ(k).

Proof. By Lemma 4.2.2 and Theorem 4.2.2, ρ(Ψk) is also a simultaneous eigen-
vector of K±

i (z)’s (i ∈ {0, . . . , l− 1}). Note that

ρ(q−ε(k)Ψk) = ρ(uk) +
∑

k′⊳ k

c(k,k′)ρ(uk′)

= uρ(k) +
∑

k′⊳ k

c(k,k′)uρ(k′)

and ρ preserves the order ⊳. Then the statement follows from Corollary 6.2.5.
�

Corollary. For k ∈ Zαl+c
+,γ (αl + c > γl), the eigenvalue of Ψk for K±

0 (z) is
given by the same formula as in Proposition 6.2.4.

6.2.8

For β > α we write simply ι cα,β for ι cαl+c,βl+c.

Lemma. For k ∈ Zαl+c
+,γ (αl + c > γl), we have

ι cα,β(q
−ε(k)Ψk) = q−ε(ι c

α,β(k))Ψι c
α,β(k).
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Proof. By Theorem 5.2.2, ι cα,β(Ψ
k) ∈ ∧βl+cV (z) is also a simultaneous eigen-

vector. Note that

ι cα,β(q
−ε(k)Ψk) = ι cα,β(uk) +

∑

k′⊳k

c(k,k′)ι cα,β(uk′) (∃c(k,k′) ∈ R)

= uι c
α,β

(k) +
∑

k′⊳k

c(k,k′)uι c
α,β

(k′),

and ι cα,β preserves the order ⊳. The claim follows from Corollary 6.2.5. �

This lemma assures us of the well-definedness for the following definition :

Definition. For a Young diagram λ, take k ∈ Zαl+c
+,γ (αl + c > γl) such that

ι cαl+c,∞(k) ∈ Πc corresponds to λ. We define

Ψλ
c = ι cαl+c,∞(q−ε(k)Ψk) ∈ F (c).

7 Isomorphism

In this section we construct an isomorphism between the equivariant K-
groups of the quiver varieties and the q-Fock space.

First we express the actions of ei.n’s on Ψk, which can be done completely in
terms of Young diagrams (Theorem 7.1.2). This is basically due to Proposition
6.1.4 although we need the residue theorem and a little complicated induction.

After suitable renormalizations, we arrive at the isomorphism.

7.1 Formula for the representation on the q-Fock space

7.1.1

We will give a formula for the action of ei,n on Ψk. For this the following
proposition is essential ;

Proposition. (1) For m1 < · · · < mN and j1 < j2 = · · · = jN we have

Φm

(
N∑

a=1

Ta,1

)
⊗ vj =

N∑

a=1

(
N∏

b=a+1

−ζb(m) + q2ζa(m)

ζb(m)− ζa(m)

)
Φm(a) ⊗ vj

where m(a) = (ma,m1, . . . ,
∧
ma, . . .).

(2) For m1 < · · · < mN−1, mN = ma (1 ≤ a < N) and j1 = j2 = · · · = jN
we have

Φm ⊗ vj = 0

(3) For k such that m1 < · · · < mN−1, ma < mN < ma+1 and j1 = j2 =
· · · = jN we have

Φm ⊗ vj =

(
N−1∏

b=a+1

−ζb(n) + q2ζa(n)

ζb(n)− ζa(n)

)
Φm ⊗ vj

where m = (. . . ,ma,mN ,ma+1, . . .).
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Proof. If ja = ja+1 and ma > ma+1 we have

q2Φm ⊗ vj = Φm ⊗
v

T avj by (4.1.2)

= Φm
p

T a ⊗ vj

=
(−q2 + 1)

x− 1
Φm ⊗ vj −

(x− q2)(q2x− 1)

(x− 1)2
Φσam ⊗ vj by (6.1.4).

where σam = (. . . ,ma+1,ma, . . .) and x = ζa+1(m)
ζa(m) . Thus

Φm ⊗ vj =
−ζa+1(m) + q2ζa(m)

ζa+1(m)− ζa(m)
Φσam ⊗ vj.

The statement of (3) follows this.

If ja = ja+1 and ma = ma+1 then x = ζa+1(m)
ζa(m) = q2. Thus we have

q2Φm ⊗ vj = Φm ⊗
v

T avj by (4.1.2)

= Φm
p

T a ⊗ vj

=
(−q2 + 1)

x− 1
Φm ⊗ vj by (6.1.4)

= −Φm ⊗ vj,

and so Φm ⊗ vj = 0. This shows (2).
We will prove (1) by induction for N . Assume the statement is true for

N ′ < N . Then

Φm

(
N∑

a=1

Ta,1

)
⊗ vj = Φm

((
N∑

a=2

Ta,2

)
v

T 1 + 1

)
⊗ vj

=

[
N∑

a=2

(
N∏

b=a+1

−ζb(k) + q2ζa(k)

ζb(k)− ζa(k)

)
Φm̃(a)

v

T 1 +Φm

]
⊗ vj,

where m̃(a) = m(a) = (m1,ma,m2, . . . ,
∧
ma, . . .). Here we use the assumption

of induction. Although the situations are not exactly same, commutativity of
v

T 1 with
v

T a (a ≥ 3) allows us a parallel argument.
Further we have

Φm̃(a)
v

T 1 ⊗ vj =
(−q2 + 1)

x− 1
Φm̃(a) ⊗ vj − Φσ1m̃(a) ⊗ vj

=
(−q2 + 1)ζ1(m)

ζa(m)− ζ1(m)

a−1∏

b=2

−ζb(m) + q2ζa(m)

ζb(m)− ζa(m)
Φm ⊗ vj − Φm(a) ⊗ vj.

We can see the coefficients of m(a) (a ≥ 2) coincide with required ones. For the
coefficient of m we need to check

(
N∏

b=2

ζb(k)− q2ζ1(k)

ζb(k) − ζ1(k)

)
=

N∑

a=2


 (−q2 + 1)ζ1(m)

ζa(m)− ζ1(m)

∏

b6=a

ζb(k) − q2ζa(k)

ζb(k)− ζa(k)


 + 1.

This follows the next lemma. �
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Lemma.

N∑

a=1


−q

2 + 1

x1 − 1

∏

b6=a

xb − q2xa

xb − xa


 =

(
N∏

a=1

xa − q2

xa − 1

)
− 1

Proof. Apply the residue theorem for a rational function

f(Z) =
1

Z(Z − 1)

N∏

a=1

xa − q2Z

xa − Z
.

�

7.1.2

Theorem.

ei,n(Ψ
λ
c ) =

∑

X∈Rλ,i

(
tc X

)n



∏

A∈Aλ,i
A>X

−(st)−1/2 X
∗
+ (st)1/2 A

∗

X
∗
− A

∗




×




∏

R∈Rλ\X,i

R>X

−(st)−1/2 R
∗
+ (st)1/2 X

∗

R
∗
− X

∗


 Ψλ\X

c ,

fi,n(Ψ
λ
c ) =

∑

X∈Aλ,i

(
tc X

)n



∏

A∈Aλ∪X ,i
A<X

−(st)−1/2 X
∗
+ (st)1/2 A

∗

X
∗
− A

∗




×




∏

R∈Rλ,i

R<X

−(st)−1/2 R
∗
+ (st)1/2 X

∗

R
∗
− X

∗


 Ψλ∪X

c ,

K±
i (z)(Ψλ

c ) =


 ∏

A∈Aλ,i

(st)1/2 A
∗
t−cz − (st)−1/2

A
∗
t−cz − 1

∏

R∈Rλ,i

(st)−1/2 R
∗
t−cz − (st)1/2

R
∗
t−cz − 1




±

Ψλ
c .

Proof. The formulas for K±
i (z)’s are nothing but Proposition 6.2.4 and Corol-

lary 6.2.7. We will check for ei,n’s.
For a, b ∈ {1, . . . , N} we put

f(a, b) =
q−1ζb(m)− qζa(m)

ζb(m)− ζa(m)
.

Then we have
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ei,n

(
Φm ⊗ vj

)

=
4.1.4

q1−niΦm




n̄i∑

a=n̄i−1+1

Ta,n̄i−1+1


(ql−iYn̄i−1+1r

l−i
)−n
⊗ vj−

=
7.1.1(1)

q1−ni

n̄i∑

a=n̄i−1+1

(
n̄i∏

b=a+1

−qf(a, b)

)
Φm(a)

(
ql−iYn̄i−1+1r

l−i
)−n
⊗ vj−

=
see 6.2.4

q1−ni

n̄i∑

a=n̄i−1+1

(
tc Xa

)n
(

n̄i∏

b=a+1

−qf(a, b)

)
Φm(a) ⊗ vj−

=
7.1.1(2)

q1−ni

∑

n̄i−1<a≤n̄i

(ma,i−1)/∈k

(
tc Xa

)n
(

n̄i∏

b=a+1

−qf(a, b)

)(
n̄i−1∏

b=a′+1

−qf(b, a)

)
Φm(a) ⊗ vj−

=
∑

n̄i−1<a≤n̄i

(m a,i−1)/∈k

qn
+

i−1
(a)−n−

i (a)
(
tc Xa

)n
(

n̄i∏

b=a+1

−f(a, b)

)(
n̄i−1∏

b=a′+1

−f(b, a)

)
Φm(a) ⊗ vj− ,

where

• m(a) = (. . . ,m n̄i
,m a,m n̄i+1, . . . ,

∧
m a, . . .),

m(a) = (. . . ,m a′ ,m a,m a′+1, . . . ,
∧
m a, . . .),

• Xa =
(
σ̂j

−1(a)− 1, σ̂j
−1(a) + ka − c

)
denote the top node on the a-th

line of λ, and

• n+
i−1(a) = n̄i − a′, n−

i (a) = a− n̄i − 1.

Since ε(m, j)− ε(m(a), j−) = n+
i−1(a)− n−

i (a) we have

ei,n

(
q−ε(m, j)Φm ⊗ vj

)
=

∑

n̄i−1<a≤n̄i

(m a,i−1)/∈k

(
tc Xa

)n
(

n̄i∏

b=a+1

−f(a, b)

)(
n̄i−1∏

b=a′+1

−f(b, a)

)
q−ε(m(a), j−)Φm(a) ⊗ vj− .

As in the proof of Proposition 6.2.4 we can arrange the right hand side of the
above equation by classify the element of {a+1, . . . , n̄i}∪{a′+1, . . . , n̄i−1} into
three types, and finally we get

ei,n(Ψ
λ
c ) =

∑

X∈Rλ,i

(
tc X

)n



∏

A∈Aλ,i
A>X

−(st)−1/2 X
∗
+ (st)1/2 A

∗

X
∗
− A

∗







∏

R∈Rλ\X,i

R>X

−(st)−1/2 R
∗
+ (st)1/2 X

∗

R
∗
− X

∗


 Ψλ\X

c .

�
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7.2 Normalizations

7.2.1

Definition. For λ ∈ Π we define

N(λ) =
∏(

sxh−xttyh−yt − 1
)
,

where the product runs over all l-hooks ((xh, yh), (xt, yt)).

We can easily verify the following lemma :

Lemma. If X is a removable i-node of λ, then we have

N(λ)/N(λ\X) =
∏

A∈Aλ,i

A<X

(
A X

∗
− 1
) ∏

A∈Aλ,i

A>X

(
st X A

∗
− 1
)

∏

R∈Rλ,i

R<X

(
st R X

∗
− 1
)−1 ∏

R∈Rλ,i

R>X

(
X R

∗
− 1
)−1

.

Remark. From geometrical point of view, N(λ) is derived from the Kozsul
complex of the unstable manifold , with respect to a specific C∗-action, on which
points converge to the fixed point λ.

7.2.2

For µ ∈ Π we will define M(µ) ∈ R inductively. First we set M(∅) = 1. Let
Y = (a, b) be the most right node of the top row of µ. Then we set

M(µ) =M(µ\Y )
(
s−1/2t1/2

)di−1(µ)

Y
δ(b≡0)

×
∏

A∈Aµ,i

A<Y

(
(st)−1/2 A

) ∏

R∈Rµ\Y,i

R<Y

(
(st)−1/2 R

∗
)
.

Lemma. If X is a removable i-node of λ ∈ Π, then we have

M(λ) =M(λ\X)
(
s−1/2t1/2

)di−1(λ)

×
∏

A∈Aλ,i

A<X

(
(st)−1/2 A

) ∏

A∈Aλ,i

A>X

X

×
∏

R∈Rλ\X,i

R<X

(
(st)−1/2 R

∗
) ∏

R∈Rλ\X,i

R>X

X
∗
.

Proof. We divide λ into λl and λr by the vertical line on the right of X .

X

λl λr
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Let us write µ < λ if we can get µ from λ by successive removing the nodes
on the top of the most right line of diagrams. Take µ ∈ Π such that λl � µ < λ.
Let Y be the node on the top of the most right line of µ.

Then we can verify

M(µ)

M(µ\Y )

/
M(µ\X)

M(µ\(X ∪ Y ))

=
(
s−1/2t1/2

)δ(j−1≡i) (
(st)−1/2 X

∗
)δ(j≡i) (

(st)−1/2 X
)−δ(j≡i)

×
(
(st)−1/2 X t

)δ(j≡i−1) (
(st)−1/2 X s

)δ(j≡i+1)

=
(
s−1/2t1/2

)δ(j−1≡i)

X
δ(j≡i−1)−2δ(j≡i)+δ(j≡i+1)

.

So we have

M(λ)

M(λl)

/
M(λ\X)

M(λl\X)

=
(
s−1/2t1/2

)di−1(λr)

X
αi−1(λr)−2αi(λr)+αi+1(λr)

.

Let j denote the content of the node on the bottom of the most left line be j of
λr. Note that we have δ(b ≡ 0) = δ(j ≡ i) and

|Aλr ,i| − |Rλr ,i| = αi−1(λr)− 2αi(λr) + αi+1(λr) + δ(j ≡ i).

Finally we have

M(λ)

M(λ\X)

=
(
s−1/2t1/2

)di−1(λr)

X
αi−1(λr)−2αi(λr)+αi+1(λr)

×
(
s−1/2t1/2

)di−1(λl)

X
δ(b≡0) ∏

A∈Aλl,i

A<X

(
(st)−1/2 A

) ∏

R∈Rλl\X,i

R<X

(
(st)−1/2 R

∗
)

=
(
s−1/2t1/2

)di−1(λ)

X
|Aλr,i|−|Rλr,i|

∏

A∈Aλ,i

A<X

(
(st)−1/2 A

) ∏

R∈Rλ\X,i

R<X

(
(st)−1/2 R

∗
)
.

So the claim follows. �

7.3 Main theorem

Now we arrive at the main theorem ;

Theorem. KT
R(M) and F (0) is isomorphic as representations of U ′

R(sl l,tor).
The isomorphism is given by

N(λ)bλ 7−→M(λ)Ψλ
0 .

Proof. This follows from Theorem 3.2.3, Theorem 7.1.2, Lemma 7.2.1 and Lmma
7.2.2. �
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