Cohomology of $\mathfrak{osp}(1|2)$ acting on linear differential operators on the supercircle $S^{1|1}$

Imed Basdouri Mabrouk Ben Ammar[∗]

November 15, 2018

Abstract

We compute the first cohomology spaces H^1 (osp $(1|2); \mathfrak{D}_{\lambda,\mu}$) $(\lambda, \mu \in \mathbb{R})$ of the Lie superalgebra $\mathfrak{osp}(1|2)$ with coefficients in the superspace $\mathfrak{D}_{\lambda,\mu}$ of linear differential operators acting on weighted densities on the supercircle $S^{1|1}$. The structure of these spaces was conjectured in [\[4\]](#page-12-0). In fact, we prove here that the situation is a little bit more complicated. (To appear in LMP.)

Mathematics Subject Classification (2000). 53D55 Key words : Cohomology, Orthosymplectic superalgebra.

1 Introduction

The space of weighted densities with weight λ (or λ -densities) on S^1 , denoted by:

$$
\mathcal{F}_{\lambda} = \left\{ f(dx)^{\lambda}, \ f \in C^{\infty}(S^1) \right\}, \quad (\lambda \in \mathbb{R}),
$$

is the space of sections of the line bundle $(T^*S^1)^{\otimes^{\lambda}}$. Let $Vect(S^1)$ be the Lie algebra of all vector fields $F\frac{d}{dx}$ on S^1 , $(F \in C^{\infty}(S^1))$. With the Lie derivative, \mathcal{F}_{λ} is a Vect (S^1) -module. Alternatively, the $Vect(S^1)$ action can be written as follows:

$$
L_{F\frac{d}{dx}}^{\lambda}(f(dx)^{\lambda}) = (Ff' + \lambda fF')(dx)^{\lambda},\tag{1.1}
$$

where f' , F' are $\frac{df}{dx}$, $\frac{dF}{dx}$.

Let A be a differential operator on S^1 . We see A as the linear mapping $f(dx)$ ^{$\lambda \mapsto$} $(Af)(dx)^\mu$ from \mathcal{F}_λ to \mathcal{F}_μ (λ , μ in \mathbb{R}). Thus the space of differential operators is a Vect(S^1) module, denoted $\mathcal{D}_{\lambda,\mu}$. The Vect (S^1) action is:

$$
L_X^{\lambda,\mu}(A) = L_X^{\mu} \circ A - A \circ L_X^{\lambda}.
$$
 (1.2)

[∗]D´epartement de Math´ematiques, Facult´e des Sciences de Sfax, BP 802, 3038 Sfax, Tunisie. E.mails:basdourimed@yahoo.fr, mabrouk.benammar@fss.rnu.tn

If we restrict ourselves to the Lie subalgebra of $Vect(S^1)$ generated by $\{\frac{d}{dx}, x\frac{d}{dx}, x^2\frac{d}{dx}\},\$ isomorphic to $\mathfrak{sl}(2)$, we get a family of infinite dimensional $\mathfrak{sl}(2)$ modules, still denoted $\mathcal{D}_{\lambda,\mu}$.

P. Lecomte, in [\[5\]](#page-12-1), found the cohomology spaces $H^1(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu})$ and $H^2(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu})$. These spaces appear naturally in the problem of describing the deformations of the $\mathfrak{sl}(2)$ module $\mathcal D$ of the differential operators acting on $\mathcal S^n=\bigoplus_{k=-n}^n\mathcal F_{\frac{1+k}{2}}.$ More precisely, the first cohomology space $H^1(\mathfrak{sl}(2);V)$ classifies the infinitesimal deformations of a $\mathfrak{sl}(2)$ module V and the obstructions to integrability of a given infinitesimal deformation of V are elements of H² ($\mathfrak{sl}(2)$; V). Thus, for instance, the infinitesimal deformations of the $\mathfrak{sl}(2)$ module $\mathcal D$ are classified by:

$$
\mathrm{H}^1\left(\mathfrak{sl}(2) ; \mathcal{D}\right) = \oplus_{k=0}^n \mathrm{H}^1\left(\mathfrak{sl}(2) ; \mathcal{D}_{\frac{1-k}{2},\frac{1+k}{2}}\right) \oplus \oplus_{k=-n}^n \mathrm{H}^1\left(\mathfrak{sl}(2) ; \mathcal{D}_{\frac{1+k}{2},\frac{1+k}{2}}\right).
$$

In this paper we are interested to the study of the corresponding super structures. More precisely, we consider here the superspace $S^{1|1}$ equipped with its standard *contact structure* 1-form α , and introduce the superspace \mathfrak{F}_{λ} of λ -densities on the supercircle $S^{1|1}$.

Let $\mathcal{K}(1)$ be the Lie superalgebra of contact vector fields, \mathfrak{F}_{λ} is naturally a $\mathcal{K}(1)$ - module. For each λ , μ in R, any differential operator on $S^{1|1}$ becomes a linear mapping from \mathfrak{F}_{λ} to \mathfrak{F}_{μ} , thus the space of differential operators becomes a $\mathcal{K}(1)$ -module denoted $\mathfrak{D}_{\lambda,\mu}$.

To the symplectic Lie algebra $\mathfrak{sl}(2)$ corresponds the ortosymplectic Lie superalgebra $\mathfrak{osp}(1|2)$ which is naturally realized as a subalgebra of $\mathcal{K}(1)$. Restricting our $\mathcal{K}(1)$ -modules to $\mathfrak{osp}(1|2)$, we get $\mathfrak{osp}(1|2)$ -modules still denoted $\mathfrak{F}_{\lambda}, \mathfrak{D}_{\lambda,\mu}$.

We compute here the first cohomology spaces $H^1(\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu}), (\lambda, \mu \text{ in } \mathbb{R}),$ getting a result very close to the classical spaces $H^1(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu})$. Especially, these spaces have the same dimension. Moreover, we give explicit formulae for all the non trivial 1-cocycles.

These spaces arise in the classification of infinitesimal deformations of the $\mathfrak{osp}(1|2)$ module of the differential operators acting on $\mathfrak{S}^n = \bigoplus_{k=1-n}^n \mathfrak{F}_{\frac{k}{2}}$. We hope to be able to describe in the future all the deformations of this module.

2 Definitions and Notations

2.1 The Lie superalgebra of contact vector fields on $S^{1|1}$

We define the supercircle $S^{1|1}$ through its space of functions, $C^{\infty}(S^{1|1})$. A $C^{\infty}(S^{1|1})$ has the form:

$$
F(x, \theta) = f_0(x) + \theta f_1(x),
$$

where x is the even variable and θ the odd variable: we have $\theta^2 = 0$. Even elements in $C^{\infty}(S^{1|1})$ are the functions $F(x,\theta) = f_0(x)$, the functions $F(x,\theta) = \theta f_1(x)$ are odd elements. Note $p(F)$ the parity of a homogeneous function F .

Let Vect($S^{1|1}$) be the superspace of vector fields on $S^{1|1}$:

$$
\text{Vect}(S^{1|1}) = \left\{ F_0 \partial_x + F_1 \partial_\theta \quad F_i \in C^\infty(S^{1|1}) \right\},
$$

where ∂_{θ} and ∂_{x} stand for $\frac{\partial}{\partial \theta}$ and $\frac{\partial}{\partial x}$. The vector fields $f(x)\partial_{x}$, and $\theta f(x)\partial_{\theta}$ are even, the vector fields $\theta f(x)\partial_x$, and $f(x)\partial_\theta$ are odd. The superbracket of two vector fields is bilinear and defined for two homogeneous vector fields by:

$$
[X,Y] = X \circ Y - (-1)^{p(X)p(Y)}Y \circ X.
$$

Denote \mathfrak{L}_X the Lie derivative of a vector field, acting on the space of functions, forms, vector fields,. . .

The supercircle $S^{1|1}$ is equipped with the standard contact structure given by the following even 1-form:

$$
\alpha = dx + \theta d\theta.
$$

We consider the Lie superalgebra $\mathcal{K}(1)$ of contact vector fields on $S^{1|1}$. That is, $\mathcal{K}(1)$ is the superspace of conformal vector fields on $S^{1|1}$ with respect to the 1-form α :

$$
\mathcal{K}(1) = \left\{ X \in \text{Vect}(S^{1|1}) \mid \text{there exists } F \in C^{\infty}(S^{1|1}) \text{ such that } \mathfrak{L}_X(\alpha) = F\alpha \right\}.
$$

Let us define the vector fields η and $\overline{\eta}$ by

$$
\eta = \partial_{\theta} + \theta \partial_{x}, \quad \overline{\eta} = \partial_{\theta} - \theta \partial_{x}.
$$

Then any contact vector field on $S^{1|1}$ can be written in the following explicit form:

$$
X_F = F\partial_x + \frac{1}{2}\eta(F)(\partial_{\theta} - \theta \partial_x) = -F\overline{\eta}^2 + \frac{1}{2}\eta(F)\overline{\eta}, \text{ where } F \in C^{\infty}(S^{1|1}).
$$

Of course, $\mathcal{K}(1)$ is a subalgebra of Vect $(S^{1|1})$, and $\mathcal{K}(1)$ acts on $C^{\infty}(S^{1|1})$ through:

$$
\mathfrak{L}_{X_F}(G) = FG' + \frac{1}{2}(-1)^{(p(F)+1)p(G)}\overline{\eta}(F) \cdot \overline{\eta}(G). \tag{2.3}
$$

Let us define the contact bracket on $C^{\infty}(S^{1|1})$ as the bilinear mapping such that, for a couple of homogenous functions F, G ,

$$
\{F, G\} = FG' - F'G + \frac{1}{2}(-1)^{p(F)+1}\overline{\eta}(F) \cdot \overline{\eta}(G),\tag{2.4}
$$

Then the bracket of $\mathcal{K}(1)$ can be written as:

$$
[X_F, X_G] = X_{\{F,G\}}.
$$

2.2 The superalgebra $\mathfrak{osp}(1|2)$

Recall the Lie algebra $\mathfrak{sl}(2)$ is isomorphic to the Lie subalgebra of Vect (S^1) generated by

$$
\left\{\frac{d}{dx},\,x\frac{d}{dx},\,x^2\frac{d}{dx}\right\}.
$$

Similarly, we now consider the orthosymplectic Lie superalgebra as a subalgebra of $\mathcal{K}(1)$:

$$
\mathfrak{osp}(1|2) = \mathrm{Span}(X_1, X_x, X_{x^2}, X_{x\theta}, X_{\theta}).
$$

The space of even elements is isomorphic to $\mathfrak{sl}(2)$:

$$
(\mathfrak{osp}(1|2))_0=\mathrm{Span}(X_1,\,X_x,\,X_{x^2})=\mathfrak{sl}(2).
$$

The space of odd elements is two dimensional:

$$
(\mathfrak{osp}(1|2))_1 = \mathrm{Span}(X_{x\theta}, X_{\theta}).
$$

The new commutation relations are

$$
[X_{x^2}, X_{\theta}] = -X_{x\theta}, \qquad [X_x, X_{\theta}] = -\frac{1}{2}X_{\theta}, \quad [X_1, X_{\theta}] = 0,
$$

$$
[X_{x^2}, X_{x\theta}] = 0, \qquad [X_x, X_{x\theta}] = \frac{1}{2}X_{x\theta}, \quad [X_1, X_{x\theta}] = X_{\theta},
$$

$$
[X_{x\theta}, X_{\theta}] = \frac{1}{2}X_x.
$$

2.3 The space of weighted densities on $S^{1|1}$

In the super setting, by replacing dx by the 1-form α , we get analogous definition for weighted densities *i.e.* we define the space of λ -densities as

$$
\mathfrak{F}_{\lambda} = \left\{ \phi = F(x, \theta) \alpha^{\lambda} \mid F(x, \theta) \in C^{\infty}(S^{1|1}) \right\}.
$$
 (2.5)

As a vector space, \mathfrak{F}_{λ} is isomorphic to $C^{\infty}(S^{1|1})$, but the Lie derivative of the density $G\alpha^{\lambda}$ along the vector field X_F in $\mathcal{K}(1)$ is now:

$$
\mathfrak{L}_{X_F}(G\alpha^{\lambda}) = \mathfrak{L}_{X_F}^{\lambda}(G)\alpha^{\lambda}, \quad \text{with} \quad \mathfrak{L}_{X_F}^{\lambda}(G) = \mathfrak{L}_{X_F}(G) + \lambda F'G. \tag{2.6}
$$

Or, if we put $F = a(x) + b(x)\theta$, $G = g_0(x) + g_1(x)\theta$,

$$
\mathfrak{L}_{X_F}^{\lambda}(G) = L_{a\partial_x}^{\lambda}(g_0) + \frac{1}{2} b g_1 + \left(L_{a\partial_x}^{\lambda + \frac{1}{2}}(g_1) + \lambda g_0 b' + \frac{1}{2} g'_0 b \right) \theta.
$$
 (2.7)

Especially, we have

$$
\begin{cases}\n\mathfrak{L}_{X_a}^{\lambda}(g_0) = L_{a\partial_x}^{\lambda}(g_0), & \mathfrak{L}_{X_a}^{\lambda}(g_1\theta) = \theta L_{a\partial_x}^{\lambda + \frac{1}{2}}(g_1), \\
\mathfrak{L}_{X_{b\theta}}^{\lambda}(g_0) = (\lambda g_0 b' + \frac{1}{2}g'_0 b)\theta & \mathfrak{L}_{X_{b\theta}}^{\lambda}(g_1\theta) = \frac{1}{2}bg_1.\n\end{cases}
$$

Of course, for all λ , \mathfrak{F}_{λ} is a $\mathcal{K}(1)$ -module:

$$
[\mathfrak{L}^{\lambda}_{X_F}, \mathfrak{L}^{\lambda}_{X_G}] = \mathfrak{L}^{\lambda}_{[X_F, X_G]}.
$$

We thus obtain a one-parameter family of $\mathcal{K}(1)$ -modules on $C^{\infty}(S^{1|1})$ still denoted by \mathfrak{F}_{λ} .

2.4 Differential Operators on Weighted Densities

A differential operator on $S^{1|1}$ is an operator on $C^{\infty}(S^{1|1})$ of the following form:

$$
A = \sum_{i=0}^{\ell} \widetilde{a}_i(x,\theta) \partial_x^i + \sum_{i=0}^{\ell} \widetilde{b}_i(x,\theta) \partial_x^i \partial_{\theta}.
$$

In [\[4\]](#page-12-0), it is proved that any local operator A on $S^{1|1}$ is in fact a differential operator.

Of course, any differential operator defines a linear mapping from \mathfrak{F}_{λ} to \mathfrak{F}_{μ} for any $\lambda, \mu \in \mathbb{R}$, thus the space of differential operators becomes a family of $\mathcal{K}(1)$ and $\mathfrak{osp}(1|2)$ modules denoted $\mathfrak{D}_{\lambda,\mu}$, for the natural action:

$$
\mathfrak{L}_{X_F}^{\lambda,\mu}(A) = \mathfrak{L}_{X_F}^{\mu} \circ A - (-1)^{p(A)p(F)} A \circ \mathfrak{L}_{X_F}^{\lambda}.
$$
 (2.8)

3 The space $H^1(\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu})$

3.1 Lie superalgebra cohomology (see [\[2\]](#page-11-0))

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a Lie superalgebra and $A = A_0 \oplus A_1$ a g module. We define the *cochain* complex associated to the module as an exact sequence:

$$
0 \longrightarrow C^{0}(\mathfrak{g}, A) \longrightarrow \cdots \longrightarrow C^{q-1}(\mathfrak{g}, A) \stackrel{\delta^{q-1}}{\longrightarrow} C^{q}(\mathfrak{g}, A) \cdots.
$$

The spaces $C^q(\mathfrak{g}, A)$ are the spaces of super skew-symmetric q linear mappings:

$$
C^0(\mathfrak{g},\;A)=A,\quad \mathrm{C}^q(\mathfrak{g},\;A)=\bigoplus_{q_0+q_1=q}\mathrm{Hom}(\bigwedge^{q_0}\mathfrak{g}_0\otimes \mathrm{S}^{q_1}\mathfrak{g}_1,\;A).
$$

Elements of $C^q(\mathfrak{g}, A)$ are called *cochains*. The spaces $C^q(\mathfrak{g}, A)$ is \mathbb{Z}_2 graded:

$$
C^q(\mathfrak{g}, A) = C_0^q(\mathfrak{g}, A) + C_1^q(\mathfrak{g}, A), \text{ with } C_p^q(\mathfrak{g}, A) = \bigoplus_{\substack{q_0 + q_1 = q \\ q_1 + r = p \mod 2}} \text{Hom}(\bigwedge^{q_0} \mathfrak{g}_0 \otimes S^{q_1} \mathfrak{g}_1, A_r).
$$

The linear mapping δ^q (or, briefly δ) is called the *coboundary operator*. This operator is a generalization of the usual Chevalley coboundary operator for Lie algebra to the case of Lie superalgebra. Explicitly, it is defined as follows. Take a cochain $c \in C^q(\mathfrak{g}, A)$, then for q_0, q_1 with $q_0 + q_1 = q + 1, \, \delta^q c$ is:

$$
\delta^{q}c(g_{1}, \ldots, g_{q_{0}}, h_{1}, \ldots, h_{q_{1}})
$$
\n
$$
= \sum_{1 \leq s < t \leq q_{0}} (-1)^{s+t-1} c([g_{s}, g_{t}], g_{1}, \ldots, \hat{g}_{s}, \ldots, \hat{g}_{t}, \ldots, g_{q_{0}}, h_{1}, \ldots, h_{q_{1}})
$$
\n
$$
+ \sum_{s=1}^{q_{0}} \sum_{t=1}^{q_{1}} (-1)^{s-1} c(g_{1}, \ldots, \hat{g}_{s}, \ldots, g_{q_{0}}, [g_{s}, h_{t}], h_{1}, \ldots, \hat{h}_{t}, \ldots, h_{q_{1}})
$$
\n
$$
+ \sum_{1 \leq s < t \leq q_{1}} c([h_{s}, h_{t}], g_{1}, \ldots, g_{q_{0}}, h_{1}, \ldots, \hat{h}_{s}, \ldots, \hat{h}_{t}, \ldots, h_{q_{1}})
$$
\n
$$
+ \sum_{s=1}^{q_{0}} (-1)^{s} g_{s}c(g_{1}, \ldots, \hat{g}_{s}, \ldots, g_{q_{0}}, h_{1}, \ldots, h_{q_{1}})
$$
\n
$$
+ (-1)^{q_{0}-1} \sum_{s=1}^{q_{1}} h_{s}c(g_{1}, \ldots, g_{q_{0}}, h_{1}, \ldots, \hat{h}_{s}, \ldots, h_{q_{1}}).
$$

where g_1, \ldots, g_{q_0} are in \mathfrak{g}_0 and h_1, \ldots, h_{q_1} in \mathfrak{g}_1 .

The relation $\delta^q \circ \delta^{q-1} = 0$ holds. The kernel of δ^q , denoted $Z^q(\mathfrak{g}, A)$, is the space of q cocycles, among them, the elements in the range of δ^{q-1} are called q coboundaries. We note $B^q(\mathfrak{g}, A)$ the space of q coboundaries.

By definition, the q^{th} cohomolgy space is the quotient space

$$
H^q(\mathfrak{g}, A) = \mathbb{Z}^q(\mathfrak{g}, A)/\mathbb{B}^q(\mathfrak{g}, A).
$$

One can check that $\delta^q(C_p^q(\mathfrak{g}, A)) \subset C_p^{q+1}(\mathfrak{g}, A)$ and then we get the following sequences

$$
0 \longrightarrow C_p^0(\mathfrak{g}, A) \longrightarrow \cdots \longrightarrow C_p^{q-1}(\mathfrak{g}, A) \stackrel{\delta^{q-1}}{\longrightarrow} C_p^q(\mathfrak{g}, A) \cdots,
$$

where $p = 0$ or 1. The cohomology spaces are thus graded by

$$
H_p^q(\mathfrak{g}, A) = \text{Ker}\delta^q|_{C_p^q(\mathfrak{g}, A)}/\delta^{q-1}(C_p^{q-1}(\mathfrak{g}, A)).
$$

3.2 The main theorem

The main result in this paper is the following:

Theorem 3.1. The cohomolgy spaces $H_p^1(\mathfrak{g}, \mathfrak{D}_{\lambda,\mu})$ are finite dimensional. An explicit description of these spaces is the following:

1) The space $H_0^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu})$ is

$$
H_0^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu}) \simeq \begin{cases} \mathbb{R} & \text{if } \lambda = \mu, \\ 0 & \text{otherwise.} \end{cases}
$$
 (3.9)

A base for the space $H_0^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\lambda})$ is given by the cohomology class of the 1-cocycle:

$$
\Upsilon_{\lambda,\lambda}(X_F) = F'.\tag{3.10}
$$

2) The space $H_1^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu})$ is

$$
H_1^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu}) \simeq \begin{cases} \mathbb{R}^2 & \text{if } \lambda = \frac{1-k}{2}, \ \mu = \frac{k}{2}, \\ 0 & \text{otherwise.} \end{cases}
$$
(3.11)

A base for the space $H_1^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\frac{1-k}{2}, \frac{k}{2}})$ is given by the cohomology classes of the 1-cocycles:

$$
\begin{split} \Upsilon_{\frac{1-k}{2},\frac{k}{2}}(X_F) &= \overline{\eta}^2(F)\overline{\eta}^{2k-1}, \\ \widetilde{\Upsilon}_{\frac{1-k}{2},\frac{k}{2}}(X_F) &= (k-1)\eta^4(F)\overline{\eta}^{2k-3} + \eta^3(F)\overline{\eta}^{2k-2}. \end{split} \tag{3.12}
$$

Note that the 1-cocycle $\Upsilon_{\frac{1-k}{2},\frac{k}{2}}$ coincides with the 1-cocycle γ_{2k-1} given by Gargoubi et al. in [\[4\]](#page-12-0). The proof of Theorem [3.1](#page-5-0) will be the subject of subsection 3.4.

3.3 Relationship between $\mathrm{H}^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})$ and $\mathrm{H}^1(\mathfrak{sl}(2),\mathcal{D}_{\lambda,\mu})$

Before proving the theorem [3.1](#page-5-0) we present here some results illustrating the analogy between the cohomlogy spaces in super and classical settings.

First, note that:

- 1) As a $\mathfrak{sl}(2)$ -module, we have $\mathfrak{F}_{\lambda} \simeq \mathcal{F}_{\lambda} \oplus \Pi(\mathcal{F}_{\lambda + \frac{1}{2}})$ and $\mathfrak{osp}(1|2) \simeq \mathfrak{sl}(2) \oplus \Pi(\mathfrak{h})$, where h is the subspace of $\mathcal{F}_{-\frac{1}{2}}$ spanned by $\{dx^{-\frac{1}{2}}, xdx^{-\frac{1}{2}}\}$ and Π is the change of parity.
- 2) As a $\mathfrak{sl}(2)$ -module, we have for the homogeneous components of $\mathfrak{D}_{\lambda,\mu}$:

$$
(\mathfrak{D}_{\lambda,\mu})_0 \simeq \mathcal{D}_{\lambda,\mu} \oplus \mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}} \quad \text{and} \quad (\mathfrak{D}_{\lambda,\mu})_1 \simeq \Pi(\mathcal{D}_{\lambda+\frac{1}{2},\mu} \oplus \mathcal{D}_{\lambda,\mu+\frac{1}{2}}).
$$

Proposition 3.1. Any 1-cocycle $\Upsilon \in Z^1(\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu})$, is decomposed into (Υ', Υ'') in $Hom(\mathfrak{sl}(2); \mathfrak{D}_{\lambda,\mu}) \oplus Hom(\mathfrak{h}; \mathfrak{D}_{\lambda,\mu}).$ Y' and Υ'' are solutions of the following equations:

$$
\Upsilon'([X_{g_1}, X_{g_2}]) - \mathfrak{L}_{X_{g_1}}^{\lambda,\mu} \Upsilon'(X_{g_2}) + \mathfrak{L}_{X_{g_2}}^{\lambda,\mu} \Upsilon'(X_{g_1}) = 0, \tag{3.13}
$$

$$
\Upsilon''([X_g, X_{h\theta}]) - \mathfrak{L}_{X_g}^{\lambda,\mu} \Upsilon''(X_{h\theta}) + \mathfrak{L}_{X_{h\theta}}^{\lambda,\mu} \Upsilon'(X_g) = 0, \tag{3.14}
$$

$$
\Upsilon'([X_{h_1\theta}, X_{h_2\theta}]) - \mathfrak{L}_{X_{h_1\theta}}^{\lambda,\mu} \Upsilon''(X_{h_2\theta}) - \mathfrak{L}_{X_{h_2\theta}}^{\lambda,\mu} \Upsilon''(X_{h_1\theta}) = 0, \qquad (3.15)
$$

here, g, g_1 , g_2 are polynomials in the variable x, with degree at most 2, and h, h_1 , h_2 are affine functions in the variable x.

Proof. The equations [\(3.13\)](#page-6-0), [\(3.14\)](#page-6-1) and [\(3.15\)](#page-6-2) are equivalent to the fact that Υ is a 1-cocycle. For any X_F , $X_G \in \mathfrak{osp}(1|2)$,

$$
\delta \Upsilon(X_F, X_G) := \Upsilon([X_F, X_G]) - \mathfrak{L}_{X_F}^{\lambda, \mu} \Upsilon(X_G) + (-1)^{p(F)p(G)} \mathfrak{L}_{X_G}^{\lambda, \mu} \Upsilon(X_F) = 0.
$$

According to the \mathbb{Z}_2 -grading, the even component Υ_0 and the odd component Υ_1 of any 1-cocycle Υ can be decomposed as $\Upsilon_0 = (\Upsilon_{000}, \Upsilon_{00\frac{1}{2}}, \Upsilon_{110}, \Upsilon_{11\frac{1}{2}})$ and $\Upsilon_1 = (\Upsilon_{010}, \Upsilon_{01\frac{1}{2}}, \Upsilon_{100}, \Upsilon_{10\frac{1}{2}})$, where

 \Box

$$
\left\{\begin{array}{lcll} \Upsilon_{000}: & \mathfrak{sl}(2) &\rightarrow & \mathcal{D}_{\lambda,\mu}, \\ \Upsilon_{00\frac{1}{2}}: & \mathfrak{sl}(2) &\rightarrow & \mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}},\\ \Upsilon_{110}: & \mathfrak{h} &\rightarrow & \mathcal{D}_{\lambda,\mu+\frac{1}{2}},\\ \Upsilon_{11\frac{1}{2}}: & \mathfrak{h} &\rightarrow & \mathcal{D}_{\lambda+\frac{1}{2},\mu} \end{array}\right. \quad \text{and} \quad \left\{\begin{array}{lcl} \Upsilon_{010}: & \mathfrak{sl}(2) &\rightarrow & \mathcal{D}_{\lambda,\mu+\frac{1}{2}},\\ \Upsilon_{01\frac{1}{2}}: & \mathfrak{sl}(2) &\rightarrow & \mathcal{D}_{\lambda+\frac{1}{2},\mu}\\ \Upsilon_{100}: & \mathfrak{h} &\rightarrow & \mathcal{D}_{\lambda,\mu},\\ \Upsilon_{10\frac{1}{2}}: & \mathfrak{h} &\rightarrow & \mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}.\end{array}\right.
$$

The decomposition $\Upsilon = (\Upsilon', \Upsilon'')$ given in proposition [3.1](#page-6-3) corresponds to

$$
\Upsilon'=(\Upsilon_{000},\Upsilon_{00\frac{1}{2}},\Upsilon_{010},\Upsilon_{01\frac{1}{2}}) \quad \text{and} \quad \Upsilon''=(\Upsilon_{110},\Upsilon_{11\frac{1}{2}},\Upsilon_{100},\Upsilon_{10\frac{1}{2}}).
$$

By considering the equation [\(3.13\)](#page-6-0), we can see the components Υ_{000} , $\Upsilon_{00\frac{1}{2}}$, Υ_{010} and $\Upsilon_{01\frac{1}{2}}$ as 1-cocycles on $\mathfrak{sl}(2)$ with coefficients respectively in $\mathcal{D}_{\lambda,\mu}$, $\mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}$, $\mathcal{D}_{\lambda,\mu+\frac{1}{2}}$, and $\mathcal{D}_{\lambda+\frac{1}{2},\mu}.$

The first cohomology space $H^1(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu})$ was computed by Gargoubi and Lecomte [\[3,](#page-11-1) [5\]](#page-12-1). The result is the following:

$$
H^{1}(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\mu}) \simeq \begin{cases} \mathbb{R} & \text{if } \lambda = \mu \\ \mathbb{R}^{2} & \text{if } (\lambda,\mu) = (\frac{1-k}{2}, \frac{1+k}{2}) \text{ where } k \in \mathbb{N} \setminus \{0\} \\ 0 & \text{otherwise.} \end{cases}
$$
 (3.16)

The space $H^1(\mathfrak{sl}(2); \mathcal{D}_{\lambda,\lambda})$ is generated by the cohomology class of the 1-cocycle

$$
C'_{\lambda}(F\frac{d}{dx})(fdx^{\lambda}) = F'fdx^{\lambda}.
$$
\n(3.17)

For $k \in \mathbb{N} \setminus \{0\}$, the space $H^1(\mathfrak{sl}(2); \mathcal{D}_{\frac{1-k}{2}, \frac{1+k}{2}})$ is generated by the cohomology classes of the 1-cocycles, C_k and \tilde{C}_k defined by

$$
C_k(F\frac{d}{dx})(fdx^{\frac{1-k}{2}}) = F'f^{(k)}dx^{\frac{1+k}{2}} \quad \text{and} \quad \widetilde{C}_k(F\frac{d}{dx})(fdx^{\frac{1-k}{2}}) = F''f^{(k-1)}dx^{\frac{1+k}{2}}.
$$
 (3.18)

We shall need the following description of $\mathfrak{sl}(2)$ invariant mappings.

Lemma 3.2. Let

$$
A: \mathfrak{h} \times \mathcal{F}_\lambda \to \mathcal{F}_\mu, \qquad (h dx^{-\frac{1}{2}}, f dx^\lambda) \mapsto A(h, f) dx^\mu
$$

be a bilinear differential operator. If A is $\mathfrak{sl}(2)$ -invariant then

$$
\mu = \lambda - \frac{1}{2} + k, \quad \text{where} \quad k \in \mathbb{N}
$$

and the following relation holds

 $A_k(h, f) = a_k(hf^{(k)} + k(2\lambda + k-1)h'f^{(k-1)}), \text{ where } k(k-1)(2\lambda + k-1)(2\lambda + k-2)a_k = 0.$

Proof. A straightforward computation.

Now, let us study the relationship between these 1-cocycles and their analogues in the super setting. We know that any element $\Upsilon \in Z^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu})$ is decomposed into $\Upsilon = \Upsilon' + \Upsilon''$ where $\Upsilon' \in Hom(\mathfrak{sl}(2), \mathfrak{D}_{\lambda,\mu})$ and $\Upsilon'' \in Hom(\mathfrak{h}, \mathfrak{D}_{\lambda,\mu})$. The following lemma shows the close relationship between the cohomolgy spaces $H^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu})$ and $H^1(\mathfrak{sl}(2), \mathcal{D}_{\lambda,\mu}).$

Lemma 3.3. The 1-cocycle Υ is a coboundary for $\mathfrak{osp}(1|2)$ if and only if Υ' is a coboundary for $\mathfrak{sl}(2)$.

Proof. It is easy to see that if Υ is a coboundary for $\mathfrak{osp}(1|2)$ then Υ' is a coboundary over $\mathfrak{sl}(2)$. Now, assume that Υ' is a coboundary for $\mathfrak{sl}(2)$, that is, there exists $A \in \mathfrak{D}_{\lambda,\mu}$ such that for all q polynomial in the variable x with degree at most 2

$$
\Upsilon'(X_g) = \mathfrak{L}_{X_g}^{\lambda,\mu} \widetilde{A}.
$$

By replacing Υ by $\Upsilon - \delta \widetilde{A}$, we can suppose that $\Upsilon' = 0$. But, in this case, the map Υ'' must satisfy, for all h , h_1 , h_2 polynomial with degree 0 or 1 and g polynomial with degree 0,1 or 2, the following equations

$$
\mathfrak{L}_{X_g}^{\lambda,\mu} \Upsilon''(X_{h\theta}) - \Upsilon''([X_g, X_{h\theta}]) = 0,\tag{3.19}
$$

$$
\mathfrak{L}_{X_{h_1\theta}}^{\lambda,\mu} \Upsilon''(X_{h_2\theta}) + \mathfrak{L}_{X_{h_2\theta}}^{\lambda,\mu} \Upsilon''(X_{h_1\theta}) = 0.
$$
\n(3.20)

1) If Υ is an even 1-cocycle then Υ'' is decomposed into Υ''_{00} : $\mathfrak{h} \otimes \mathcal{F}_{\lambda + \frac{1}{2}} \to \mathcal{F}_{\mu}$ and $\Upsilon_{01}'' : \mathfrak{h} \otimes \mathcal{F}_{\lambda} \to \mathcal{F}_{\mu + \frac{1}{2}}$. The equation [\(3.19\)](#page-8-0) tell us that Υ_{00}'' and Υ_{01}'' are $\mathfrak{sl}(2)$ invariant bilinear maps. Therefore, the expressions of Υ_{00}'' and Υ_{01}'' are given by Lemma [3.2.](#page-7-0) So, we must have $\mu = \lambda + k = (\lambda + \frac{1}{2})$ $(\frac{1}{2}) - \frac{1}{2} + k$ (and then $\mu + \frac{1}{2} = \lambda - \frac{1}{2} + k + 1$). More precisely, using the equation [\(3.20\)](#page-8-1), we get up to a factor:

$$
\Upsilon = \begin{cases}\n0 & \text{if } k(k-1)(2\lambda + k)(2\lambda + k - 1) \neq 0 \text{ or } k = 1 \text{ and } \lambda \notin \{0, -\frac{1}{2}\}, \\
\delta(\theta \partial_{\theta} \partial_{x}^{k}) & \text{if } (\lambda, \mu) = \left(-\frac{k}{2}, \frac{k}{2}\right), \\
\delta(\partial_{x}^{k} - \theta \partial_{\theta} \partial_{x}^{k}) & \text{if } (\lambda, \mu) = \left(\frac{1-k}{2}, \frac{1+k}{2}\right) \text{ or } \lambda = \mu.\n\end{cases}
$$

 \Box

2) If Υ is an odd 1-cocycle then Υ'' is decomposed into Υ''_{00} : $\mathfrak{h} \otimes \mathcal{F}_{\lambda} \to \mathcal{F}_{\mu}$ and Υ''_{01} : $\not\to \mathcal{F}_{\lambda+\frac{1}{2}} \to \mathcal{F}_{\mu+\frac{1}{2}}$. As in the previous case, the expressions of Υ_{00}'' and Υ_{01}'' are given by Lemma [3.2.](#page-7-0) So, we must have $\mu = \lambda - \frac{1}{2} + k$ (and then $\mu + \frac{1}{2} = (\lambda + \frac{1}{2})$ $(\frac{1}{2}) - \frac{1}{2} + k$.) More precisely, using the equation [\(3.20\)](#page-8-1), we get:

$$
\Upsilon = \begin{cases}\n0 & \text{if } k(k-1)(2\lambda + k - 1) \neq 0 \\
\delta(\theta) & \text{if } \mu = \lambda - \frac{1}{2}, \\
\delta(\partial_{\theta}) & \text{if } \mu = \lambda + \frac{1}{2}, \\
\delta(\theta \partial_x^k) & \text{if } (\lambda, \mu) = (\frac{1-k}{2}, \frac{k}{2}).\n\end{cases}
$$

Now, the space $Z^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu})$ of 1-cocycles is \mathbb{Z}_2 -graded:

$$
Z^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})=Z^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})_0\oplus Z^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\lambda,\mu})_1. \hspace{1cm} (3.21)
$$

 \Box

Therefore, any element $\Upsilon \in Z^1(\mathfrak{osp}(1|2), \mathfrak{D}_{\lambda,\mu})$ is decomposed into an even part Υ_0 and odd part Υ_1 . Each of Υ_0 and Υ_1 is decomposed into two components: $\Upsilon_0 = (\Upsilon_{00}, \Upsilon_{11})$ and $\Upsilon_1 = (\Upsilon_{01}, \Upsilon_{10})$, where

$$
\left\{\begin{array}{ll}\Upsilon_{00}:\mathfrak{sl}(2) & \to (\mathfrak{D}_{\lambda,\mu})_0,\\ \Upsilon_{11}:\mathfrak{h}\end{array}\right. \rightarrow (\mathfrak{D}_{\lambda,\mu})_1,\quad \text{and}\quad \left\{\begin{array}{ll}\Upsilon_{01}:\mathfrak{sl}(2) & \to (\mathfrak{D}_{\lambda,\mu})_1,\\ \Upsilon_{10}:\mathfrak{h}\end{array}\right. \rightarrow (\mathfrak{D}_{\lambda,\mu})_0.
$$

The components Υ_{11} and Υ_{10} of Υ_0 and Υ_1 are also decomposed as follows: $\Upsilon_{11} = \Upsilon_{110} +$ $\Upsilon_{11\frac{1}{2}}$ and $\Upsilon_{10} = \Upsilon_{100} + \Upsilon_{10\frac{1}{2}}$, where $\Upsilon_{110} \in Hom\left(\mathfrak{h}, \mathcal{D}_{\lambda,\mu+\frac{1}{2}}\right)$ $\Big), \ \Upsilon_{11\frac{1}{2}} \in Hom\left(\mathfrak{h}, \mathcal{D}_{\lambda+\frac{1}{2},\mu}\right),$ $\Upsilon_{100} \in Hom\left(\mathfrak{h},\mathcal{D}_{\lambda,\mu}\right), \, \Upsilon_{10\frac{1}{2}} \in Hom\left(\mathfrak{h},\mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}\right)$.

As in [\[1\]](#page-11-2), the following lemma gives the general form of each of Υ_{110} and $\Upsilon_{11\frac{1}{2}}$.

Lemma 3.4. Up to a coboundary, the maps Υ_{110} , $\Upsilon_{11\frac{1}{2}}$, Υ_{100} and $\Upsilon_{10\frac{1}{2}}$ are given by

$$
\begin{aligned}\n\Upsilon_{110}(X_{h\theta}) &= a_0 h\theta \partial_x^k + a_1 h'\theta \partial_x^{k-1} \quad \text{and} \quad \Upsilon_{11\frac{1}{2}}(X_{h\theta}) = b_0 h\partial_\theta \partial_x^k + b_1 h'\partial_\theta \partial_x^{k-1}, \\
\Upsilon_{110}(X_{h\theta}) &= c_0 h\theta \partial_x^k + c_1 h'\theta \partial_x^{k-1} \quad \text{and} \quad \Upsilon_{11\frac{1}{2}}(X_{h\theta}) = d_0 h\partial_\theta \partial_x^k + d_1 h'\partial_\theta \partial_x^{k-1},\n\end{aligned}
$$

where the coefficients a_i , b_i , c_i , and d_i are constants.

Proof. The coefficients a_i , b_i , c_i , and d_i a priori are some functions of x, but we shall now prove $\partial_x a_i = \partial_x b_i = 0$ (and similarly $\partial_x c_i = \partial_x d_i = 0$). To do that, we shall simply show that $\mathfrak{L}_{\partial x}^{\lambda,\mu}$ $\partial_x^{\lambda,\mu}(\Upsilon_{11})=0.$

First, for all h polynomial with degree 0 or 1, we have

$$
(\mathfrak{L}_{\partial_x}^{\lambda,\mu} \Upsilon_{11})(X_{h\theta}) = \mathfrak{L}_{\partial_x}^{\lambda,\mu} (\Upsilon_{11}(X_{h\theta})) - \Upsilon_{11}([\partial_x, X_{h\theta}]). \tag{3.22}
$$

On the other hand, from Lemma [3.3,](#page-8-2) it follows that, up to a coboundary, Υ_{00} is a linear combination of some 1-cocycles for sl(2) given by [\(3.17\)](#page-7-1) and [\(3.18\)](#page-7-2). So, we have $\Upsilon_{00}(\partial_x) = 0$ and then

$$
\mathfrak{L}_{X_{h\theta}}^{\lambda,\mu}(\Upsilon_{00}(\partial_x))=0.
$$

Therefore, the equation (3.22) becomes, for all h,

$$
-(\mathfrak{L}_{\partial_x}^{\lambda,\mu}\Upsilon_{11})(X_{h\theta})=\Upsilon_{11}([\partial_x,X_{h\theta}])-\mathfrak{L}_{\partial_x}^{\lambda,\mu}(\Upsilon_{11}(X_{h\theta}))+\mathfrak{L}_{X_{h\theta}}^{\lambda,\mu}(\Upsilon_{00}(\partial_x)).
$$
\n(3.23)

The right-hand side of [\(3.23\)](#page-10-0) is nothing but $\delta\Upsilon_0(\partial_x, X_{h\theta})$. But, Υ_0 is a 1-cocycle, then $\mathfrak{L}^{\lambda,\mu}_{\partial_{\mathbb{H}}}$ $\partial_{\alpha}^{\lambda,\mu}(\Upsilon_{11})=0.$ Lemma [3.4](#page-9-1) is proved.

3.4 Proof of Theorem [3.1](#page-5-0)

The first cohomology space $H^1(\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu})$ inherits the \mathbb{Z}_2 -grading from [\(3.21\)](#page-9-2) and is decomposed into odd and an even subspaces:

$$
\mathrm{H}^1(\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu}) = \mathrm{H}_0^1(\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu}) \oplus \mathrm{H}_1^1(\mathfrak{osp}(1|2); \mathfrak{D}_{\lambda,\mu}).
$$

We compute each part separetly.

1) Let Υ_0 be a non trivial even 1-cocycle for $\mathfrak{osp}(1|2)$ in $\mathfrak{D}_{\lambda,\mu}$. According to the \mathbb{Z}_2 grading, Υ_0 should retain the following general form: $\Upsilon_0 = \Upsilon_{000} + \Upsilon_{00\frac{1}{2}} + \Upsilon_{110} + \Upsilon_{11\frac{1}{2}}$ such that $\overline{}$

$$
\begin{cases}\n\Upsilon_{000} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda,\mu}, \\
\Upsilon_{00\frac{1}{2}} : \mathfrak{sl}(2) \to \mathcal{D}_{\lambda\frac{1}{2}f,\mu+\frac{1}{2}}, \\
\Upsilon_{110} : \mathfrak{h} \to \mathcal{D}_{\lambda,\mu+\frac{1}{2}}, \\
\Upsilon_{11\frac{1}{2}} : \mathfrak{h} \to \mathcal{D}_{\lambda+\frac{1}{2},\mu}.\n\end{cases} (3.24)
$$

 \Box

Then, by using Lemma [3.3,](#page-8-2) we deduce that, up to coboundary, Υ_{000} and $\Upsilon_{00\frac{1}{2}}$ can be expressed in terms of C'_λ , C_k and \widetilde{C}_k where $\lambda \in \mathbb{R}$ and $k \in \mathbb{N} \setminus \{0\}$. We thus consider three cases:

i)
$$
\lambda = \mu
$$
, $\Upsilon_{000} = \alpha C'_{\lambda}$, and $\Upsilon_{00\frac{1}{2}} = \beta C'_{\lambda\frac{1}{2}f}$.
\nii) $(\lambda, \mu) = (\frac{1-k}{2}, \frac{1+k}{2})$, $\Upsilon_{000} = \alpha_1 C_k + \alpha_2 \widetilde{C}_k$, and $\Upsilon_{00\frac{1}{2}} = 0$.
\niii) $(\lambda, \mu) = (\frac{-k}{2}, \frac{k}{2})$, $\Upsilon_{000} = 0$ and $\Upsilon_{00\frac{1}{2}} = \alpha_1 C_k + \alpha_2 \widetilde{C}_k$.

Put $\Upsilon' = \Upsilon_{000} + \Upsilon_{00\frac{1}{2}}$ and $\Upsilon'' = \Upsilon_{110} + \Upsilon_{11\frac{1}{2}}$. In each case, the 1-cocycle Υ_0 must satisfy

$$
\begin{cases}\n\Upsilon''[X_g, X_{\theta h}] = \mathfrak{L}_{X_g}^{\lambda, \mu} \Upsilon''(X_{\theta h}) - \mathfrak{L}_{X_{\theta h}}^{\lambda, \mu} \Upsilon'(X_g), \\
\Upsilon'[X_{\theta h_1}, X_{\theta h_2}] = \mathfrak{L}_{X_{\theta h_1}}^{\lambda, \mu} \Upsilon''(X_{\theta h_2}) + \mathfrak{L}_{X_{\theta h_2}}^{\lambda, \mu} \Upsilon''(X_{\theta h_1}),\n\end{cases}
$$
\n(3.25)

where h, h_1 , and h_2 are polynomials of degree 0 or 1, g polynomial of degree 0, 1 or 2.

Now, thanks to Lemma [3.4,](#page-9-1) we can write

$$
\Upsilon_{110}(X_{h\theta}) = a_0 h\theta \partial_x^k + a_1 h'\theta \partial_x^{k-1} \text{ and } \Upsilon_{11\frac{1}{2}}(v_{h\theta}) = b_0 h\partial_\theta \partial_x^k + b_1 h'\partial_\theta \partial_x^{k-1}.
$$

Let us now solve the equations [\(3.25\)](#page-10-1). We obtain $\lambda = \mu$ and $\Upsilon_{\lambda,\lambda}(X_F) = F'$. This completes the proof of part 1).

2) Consider a non trivial odd 1-cocycle Υ_1 for $\mathfrak{osp}(1|2)$ in $\mathfrak{D}_{\lambda,\mu}$ and its decomposition $\Upsilon_1 = \Upsilon_{010} + \Upsilon_{01\frac{1}{2}} + \Upsilon_{100} + \Upsilon_{10\frac{1}{2}}$, where

$$
\begin{cases}\n\Upsilon_{010} : \mathfrak{sl}(2) \rightarrow \mathcal{D}_{\lambda,\mu+\frac{1}{2}},\\ \Upsilon_{01\frac{1}{2}} : \mathfrak{sl}(2) \rightarrow \mathcal{D}_{\lambda+\frac{1}{2},\mu},\\ \Upsilon_{100} : \mathfrak{h} \rightarrow \mathcal{D}_{\lambda,\mu},\\ \Upsilon_{10\frac{1}{2}} : \mathfrak{h} \rightarrow \mathcal{D}_{\lambda+\frac{1}{2},\mu+\frac{1}{2}}.\n\end{cases} (3.26)
$$

We must have $(\lambda, \mu) = \left(\frac{1-k}{2}, \frac{k}{2}\right)$ $\frac{k}{2}$) with $k \in \mathbb{N} \setminus \{0\}$. Moreover $\Upsilon_1 = \Upsilon_{000} + \Upsilon_{00\frac{1}{2}} + \Upsilon_{110} + \Upsilon_{11\frac{1}{2}}$ is a 1-cocycle for $\mathcal{K}(1)$ if and only if

$$
\begin{cases}\n\Upsilon_{010} = \alpha_1 C_k + \alpha_2 \tilde{C}_k \\
\Upsilon_{01\frac{1}{2}} = \beta_1 C_{k-1} + \beta_2 \tilde{C}_{k-1} \\
\Upsilon''[X_g, X_{\theta h}] = \mathfrak{L}_{X_g}^{\lambda, \mu} \Upsilon''(X_{\theta h}) - \mathfrak{L}_{X_{\theta h}}^{\lambda, \mu} \Upsilon'(X_g), \\
\Upsilon'[X_{\theta h_1}, X_{\theta h_2}] = \mathfrak{L}_{X_{\theta h_1}}^{\lambda, \mu} \Upsilon''(X_{\theta h_2}) + \mathfrak{L}_{X_{\theta h_2}}^{\lambda, \mu} \Upsilon''(X_{\theta h_1}),\n\end{cases}
$$
\n(3.27)

where $\Upsilon' = \Upsilon_{010} + \Upsilon_{01\frac{1}{2}}$ and $\Upsilon'' = \Upsilon_{100} + \Upsilon_{10\frac{1}{2}}$.

As above, we then can write

$$
\Upsilon_{100}(X_{h\theta}) = a_0 h\theta \partial_x^k + a_1 h'\theta \partial_x^{k-1} \text{ and } \Upsilon_{10\frac{1}{2}}(v_{h\theta}) = b_0 h\partial_\theta \partial_x^k + b_1 h'\partial_\theta \partial_x^{k-1}.
$$

According to Lemma [3.3,](#page-8-2) the map Υ_1 is a non trivial 1-cocycle if and only if at least one of the maps Υ_{010} and $\Upsilon_{01\frac{1}{2}}$ is a non trivial 1-cocycle for $\mathfrak{sl}(2)$, that means $(\alpha_1, \alpha_2, \beta_1, \beta_2) \neq$ $(0, 0, 0, 0)$. Let us determine the linear maps Υ_{100} and $\Upsilon_{10\frac{1}{2}}$. Up to factor, we get:

$$
\Upsilon_1 = \alpha_1 \Upsilon_{\frac{1-k}{2},\frac{k}{2}} + \alpha_2 \widetilde{\Upsilon}_{\frac{1-k}{2},\frac{k}{2}} + a_0 \delta(2\theta \partial_x^k).
$$

Thus, the cohomology classes of $\Upsilon_{\frac{1-k}{2},\frac{k}{2}}$ and $\Upsilon_{\frac{1-k}{2},\frac{k}{2}}$ generate $H_1^1(\mathfrak{osp}(1|2),\mathfrak{D}_{\frac{1-k}{2},\frac{k}{2}})$. The proof is now complete.

References

- [1] I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelbene and K. Kammoun Cohomology of the Lie Superalgebra of Contact Vector Fields on $\mathbb{R}^{1|1}$ and Deformations of the Superspace of Symbols, [math.RT/0702645.](http://arxiv.org/abs/math/0702645)
- [2] Fuchs D B, Cohomology of infinite-dimensional Lie algebras, Plenum Publ. New York, 1986.
- [3] H. Gargoubi, Sur la géométrie de l'espace des opérateurs différentiels lineaires sur \mathbb{R} , Bull. Soc. Roy. Sci. Liège. Vol. 69, 1, 2000, 2147.
- [4] H. Gargoubi, N. Mellouli and V. Ovsienko Differential Operators on Supercircle: Conformally Equivariant Quantization and Symbol Calculus, Letters in Mathematical Physics (2007) 79: 5165.
- [5] P. B. A. Lecomte, On the cohomology of $\mathfrak{sl}(n+1;\mathbb{R})$ acting on differential operators and $\mathfrak{sl}(n+1;\mathbb{R})$ -equivariant symbols, Indag. Math. NS. 11 (1), (2000), 95 114.
- [6] A. Nijenuis, R. W. Richardson Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175–179.