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Abstract

We compute the first cohomology spaces H' (0sp(1]2); D ) (A, # € R) of the Lie
superalgebra o0sp(1|2) with coefficients in the superspace ©) , of linear differential
operators acting on weighted densities on the supercircle S*'. The structure of these
spaces was conjectured in [4]. In fact, we prove here that the situation is a little bit
more complicated. (To appear in LMP.)
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1 Introduction

The space of weighted densities with weight A (or M\-densities) on S!, denoted by:
Fr={f(dx)*, feC>(S"}, (AeR),

is the space of sections of the line bundle (7%5")®". Let Vect(S') be the Lie algebra of all
vector fields F-L on S', (F € C*°(S")). With the Lie derivative, Fy is a Vect(S')-module.
Alternatively, the Vect(S!) action can be written as follows:

Ly (F(dn)) = (Ff + AfF')(d), (11)

T

where f', F' are %, %.
Let A be a differential operator on S'. We see A as the linear mapping f(dz) —
(Af)(dz)* from Fy to F,, (A, pin R). Thus the space of differential operators is a Vect(S?)

module, denoted D, ,. The Vect(S') action is:

LYM(A) =L 0o A— Ao LY. (1.2)
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If we restrict ourselves to the Lie subalgebra of Vect(S') generated by {%, x%, xQ% ,

isomorphic to sl(2), we get a family of infinite dimensional s[(2) modules, still denoted
D -

P. Lecomte, in [5], found the cohomology spaces H! (s[(2); D, ,) and H? (s[(2); D, ,).
These spaces appear naturally in the problem of describing the deformations of the sl(2)-
module D of the differential operators acting on 8" = @, __ F Lk More precisely, the first

cohomology space H! (s1(2); V) classifies the infinitesimal deformations of a s(2) module V'
and the obstructions to integrability of a given infinitesimal deformation of V' are elements
of H? (s1(2); V). Thus, for instance, the infinitesimal deformations of the s[(2) module D
are classified by:

H' (s1(2); D) = @' (81(2); e 1 ) & G, H' (50(2); D 1z )

In this paper we are interested to the study of the corresponding super structures. More
precisely, we consider here the superspace S equipped with its standard contact structure
1-form «, and introduce the superspace §, of A-densities on the supercircle S

Let K(1) be the Lie superalgebra of contact vector fields, §y is naturally a (1)- module.
For each A, p in R, any differential operator on S*' becomes a linear mapping from F» to
8, thus the space of differential operators becomes a K(1)-module denoted D, .

To the symplectic Lie algebra sl(2) corresponds the ortosymplectic Lie superalgebra
0sp(1]2) which is naturally realized as a subalgebra of K(1). Restricting our /(1)-modules
to osp(1]2), we get osp(1]|2)-modules still denoted F», D) .

We compute here the first cohomology spaces H' (0sp(1]2); D, ), (A, 1 in R), getting
a result very close to the classical spaces H! (s[(2); D, ,,). Especially, these spaces have the
same dimension. Moreover, we give explicit formulae for all the non trivial 1-cocycles.

These spaces arise in the classification of infinitesimal deformations of the osp(1|2)-
module of the differential operators acting on 6" = @,_, Sg. We hope to be able to
describe in the future all the deformations of this module.

2 Definitions and Notations

2.1 The Lie superalgebra of contact vector fields on S'/!

We define the supercircle S'! through its space of functions, C*°(S''). A C*>°(S') has
the form:

F(x,0) = fo(x) + 0fi(2),

where z is the even variable and 6 the odd variable: we have #* = 0. Even elements
in C*®(S') are the functions F(x,0) = fy(x), the functions F(z,0) = 0f,(x) are odd
elements. Note p(F') the parity of a homogeneous function F'.

Let Vect(S'') be the superspace of vector fields on S*/:

Vect(S") = {Fy0, + F10  Fy € C=(S')},
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where 85 and 9, stand for 2 and %. The vector fields f(z)0,, and 0f(x)0p are even, the
vector fields 6 f(x)0,, and f(x)0p are odd. The superbracket of two vector fields is bilinear
and defined for two homogeneous vector fields by:

[(X,Y]=XoY — (—=1)PXPrMy o X,

Denote £x the Lie derivative of a vector field, acting on the space of functions, forms,
vector fields,. ..

The supercircle S is equipped with the standard contact structure given by the fol-
lowing even 1-form:

o = dx + 0d6.

We consider the Lie superalgebra k(1) of contact vector fields on S*'. That is, k(1)
is the superspace of conformal vector fields on S'' with respect to the 1-form a:

K(1) = {X € Vect(S'") | there exists F € C*°(S"") such that £x(a) = Fa}.
Let us define the vector fields n and 77 by
=09+ 00, TN=0y—00,.

Then any contact vector field on S can be written in the following explicit form:

Xp = Fo, + %n(F)(a(, _00,) = —Fi? 4+ %U(F)ﬁ, where F e C2(S11).

Of course, K(1) is a subalgebra of Vect(S''), and K(1) acts on C*(S*') through:

£4,(G) = FG' + 3 (—)"O () (), 2.3

Let us define the contact bracket on C*(S'') as the bilinear mapping such that, for a
couple of homogenous functions F', GG,

1
{F,G} = FG' = F'G + S(=1)""7(F) - 7(G), (2.4)
Then the bracket of K(1) can be written as:

(Xr, Xa| = X(r ey

2.2 The superalgebra osp(1|2)
Recall the Lie algebra s[(2) is isomorphic to the Lie subalgebra of Vect(S!) generated by

da d ,d
de e U dr [



Similarly, we now consider the orthosymplectic Lie superalgebra as a subalgebra of K(1):
osp(1]2) = Span(Xy, X, X,2, Xug, Xp).
The space of even elements is isomorphic to sl(2):
(0sp(1]2))o = Span(X;, X,, X,2) = sl(2).
The space of odd elements is two dimensional:
(05p(112)): = Span( Xy, Xo).

The new commutation relations are

1
(X2, Xo| = —Xpo, [ Xu, Xo] = —ng, (X1, Xy] =0,

1
[Xx2>Xx€] =0, [X:cathg] - §Xx9’ [Xl’Xl’e] = Xy,

1
[Xxev X@] = §Xx

2.3 The space of weighted densities on S'/!

In the super setting, by replacing dxr by the 1-form «, we get analogous definition for
weighted densities i.e. we define the space of \-densities as

$r= {6 =F(x,0)a* | F(z,0) € C=(5'M)}). (2.5)

As a vector space, § is isomorphic to C*(S), but the Lie derivative of the density Ga*
along the vector field X in /(1) is now:

Lx,(Gat) = £%, (G)a?, with £3, (G) = £x,.(G) + A\F'G. (2.6)
Or, if we put F' = a(z) + b(x)0, G = go(z) + g1(x)0,

A A 1 A3 y o1,

€%, (G) = L, (90) + 5 bgr + | Lap,” (91) + Agob + 5900 ) 0. (2.7)
Especially, we have
AL
X (90) = Lo, (90), X, (910) = 0L, (90),
and
£%,,(90) = (Agol/ + 3950)0 £x,,(910) = 3bg1.

Of course, for all A, Fy is a K(1)-module:
[’gf)\(F’ SAXg] = ’S[)\XF7XG}'

We thus obtain a one-parameter family of X(1)-modules on C°(S!!) still denoted by .
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2.4 Differential Operators on Weighted Densities

A differential operator on S is an operator on C*°(S') of t he following form:

l
A=Y "G, 0)0. + > bi(x,0)0.0p.

l
=0 i=0

In [4], it is proved that any local operator A on S'!! is in fact a differential operator.

Of course, any differential operator defines a linear mapping from § to §, for any
A, i € R, thus the space of differential operators becomes a family of /(1) and osp(1]2)
modules denoted ©, ,, for the natural action:

S (A) = &5 o A— (1P g0 23 (2.8)

3 The space H'(0osp(1]2); D, )

3.1 Lie superalgebra cohomology (see [2])

Let g = go @ g1 be a Lie superalgebra and A = Ag® A; a g module. We define the cochain
compler associated to the module as an exact sequence:

ga-1

0— C%g, A) — --- — C¥7g, A) 2= C%g, A)---.

The spaces C%(g, A) are the spaces of super skew-symmetric ¢ linear mappings:

q0
(g, A)=A, CYg A)= P Hom(/\go®S g, A).

qo+q1=q

Elements of C'%(g, A) are called cochains. The spaces C(g, A) is Zs graded:

q0
C'(g, A) =Cl(g, A)+Ci(g, A), with Ci(g, A)= P  Hom(/\ g0 @51, Ar).

qo+q1=q
q1+r=p mod2

The linear mapping 67 (or, briefly §) is called the coboundary operator. This operator is
a generalization of the usual Chevalley coboundary operator for Lie algebra to the case of
Lie superalgebra. Explicitly, it is defined as follows. Take a cochain ¢ € C%(g, A), then
for qo, 1 with go + ¢ = ¢+ 1, d%c is:



(SqC(gl, ey gqo, hl, Cey h'th)
= Z (_1>S+t_lc([gsvgt]7gla"'7.@87"'7.@1‘/7”'79(]07 h17"'7hQ1>

1<s<t<qo
q q1 R
+ZZ gla"'agsa"'agqoa [gsaht]ahla"'7h't7"'7h'q1)
s=1 t=1
+ Y cllho bl g Gagy P he o he By
1<s<t<q1
+Z g1y s Gaos 1y hg)

1)110—1 Zhsc(gla «+ 3y 9q0> hla sy iLS’ ] hql)'

where g1, ..., g4, are in gy and Ay, ..., hy in g.

The relation 67 o =1 = (0 holds. The kernel of §9, denoted Z9(g, A), is the space of
q cocycles, among them, the elements in the range of §7~! are called ¢ coboundaries. We
note B4(g, A) the space of ¢ coboundaries.

By definition, the ¢** cohomolgy space is the quotient space

Hi(g, A) =7%g, A)/B%(g, A).

One can check that 07(C(g, A)) C C4™'(g, A) and then we get the following sequences

0 -1 691
where p = 0 or 1. The cohomology spaces are thus graded by

Hj(g, A) = Kerd%lcgg, 4)/0°(C5 7 (g, A)).

3.2 The main theorem

The main result in this paper is the following:

Theorem 3.1. The cohomolgy spaces H})(g,’i),w) are finite dimensional. An explicit de-
scription of these spaces is the following:

1)The space Hy(osp(1]2),D, ) is

Rif A=u,
0 otherwise.

Hy(osp(1]2), D) {



A base for the space H(0sp(1|2), D) is given by the cohomology class of the 1-cocycle:

ToA(Xp) = F. (3.10)

2)The space Hi(osp(1]2), Dy ,) is

1—k k
R*if A\=> " pu="_
H (05p(1]2), D) = / 2 1T

0 otherwise.

’ (3.11)

2

A base for the space H%(Oﬁp(1|2),©17k7%) is given by the cohomology classes of the
1-cocycles:

T ) o (3.12)

Note that the 1-cocycle Tie k& coincides with the 1-cocycle 79,1 given by Gargoubi et
al. in [4]. The proof of Theorem B0 will be the subject of subsection 3.4.

3.3 Relationship between H'(osp(1]2),9,,) and H'(sl(2), D, ,)

Before proving the theorem [B.J] we present here some results illustrating the analogy be-
tween the cohomlogy spaces in super and classical settings.
First, note that:

1) As a sl(2)-module, we have §y ~ F) & H(]—"H%) and osp(1|2) ~ sl(2) @ I1(h), where
b is the subspace of F_ 1 spanned by {dx_%, l’dl’_%} and IT is the change of parity.

2) As a sl(2)-module, we have for the homogeneous components of ®) ,:

(Dru)o =Dy ® DA+%,;¢+% and (D)1 =~ H(DAJF%,N SZ D/\,u+%)-

Proposition 3.1. Any I-cocycle T € Z'(osp(1|2); D), is decomposed into (Y, Y") in
Hom(sl(2);D,) ® Hom(h; D, ). Y and Y" are solutions of the following equations:

T'([Xg,, X)) — ST (X,,) + £3% T'(X,,) = 0, (3.13)
Y7 ([Xg, Xna]) — ST (Xno) + L3 Y (X,) =0, (3.14)
T ([Xny0, Xnoo]) — £§\(7:19T//(Xh29) — 2?5529T”(Xh19) =0, (3.15)

here, g, g1, go are polynomials in the variable x, with degree at most 2, and h, hy, hy are
affine functions in the variable x.



Proof. The equations (313), (314) and ([BIH) are equivalent to the fact that T is a
1-cocycle. For any Xp, X¢ € 0sp(1/2),

OV (Xp, X¢) =T ([Xp, X¢]) — sgr(xg) + (—1)P<F>p<G>£;gT(XF) = 0.

O
According to the Zs-grading, the even component Y and the odd component T of any
1-cocycle T can be decomposed as Ty = (Yoo, TOO%, Y110, Tll%) and Y1 = (To1o0, T01%> Y100, Tlo%),
where

TOOO : 5[(2) — D, ws TOlO 5[(2) - D)\,;H-%?
Too% : 5[(2) - DA—I—%,;H—%’ and TOl% 5[(2) - D)\-i-;/i
Tio: b — Dy 4l Tioo: b — Dip
Tll%: b — D}\_l_l“ Tw%: b — DA+;;¢+%

The decomposition T = (Y’, T”) given in proposition Bl corresponds to
T = (Tooo, T00%7 Yoo, Tm%) and T" = (Y110, Tu%’ Y100, Tm%)-

By considering the equation ([B.13), we can see the components Ygqp, Too%v To10 and
Y11 as 1-cocycles on s[(2) with coefficients respectively in D, ,, Dyi1uts Doy, and
i
The first cohomology space H'(sl(2); D, ) was computed by Gargoubi and Lecomte
[3,5]. The result is the following:

R if A=pu
H'(s[(2);Dy,) =~ ¢ R? if (A p) = (55, 25) where ke N\ {0} (3.16)
0 otherwise.

The space H!(s[(2); Dy ») is generated by the cohomology class of the 1-cocycle
d
og(F%)(fdx*) = F'fdx. (3.17)

For k € N\ {0}, the space H!(sl(2); D%#) is generated by the cohomology classes of
the 1-cocycles, Cy, and Cj, defined by

da
dx

d

%)(fdx%) = F" gt (3.18)

ColF—)(fdz =) = F'f®dz™>  and Cy(F

We shall need the following description of s[(2) invariant mappings.

Lemma 3.2. Let

A:hx Fr— Fu,  (hdz2, fd2?) — A(h, f)dz"



be a bilinear differential operator. If A is sl(2)-invariant then
1
,u:)\—§+k, where ke N

and the following relation holds
Ag(h, f) = ap(hf® +k@A+k—1D)R fED) where k(k—1)(2A+k—1)(2A+k—2)a;, = 0.

Proof. A straightforward computation.
O

Now, let us study the relationship between these 1-cocycles and their analogues in
the super setting. We know that any element T € Z'(osp(1]2),D,,,) is decomposed into
T = T + 7T where Y € Hom (sl(2),D,,) and Y' € Hom (h,D,,). The following
lemma shows the close relationship between the cohomolgy spaces H'(osp(1|2),D,,) and
H'(s1(2), Dy ).

Lemma 3.3. The I-cocycle Y is a coboundary for osp(1|2) if and only if X' is a coboundary
for sl(2).

Proof. It is easy to see that if T is a coboundary for osp(1]2) then " is a coboundary
over sl(2). Now, assume that Y’ is a coboundary for sl(2), that is, there exists A € D, ,
such that for all g polynomial in the variable x with degree at most 2

T'(X,) = LY'A.

By replacing T by T — 511, we can suppose that Y/ = 0. But, in this case, the map T”
must satisfy, for all h, hy, hy polynomial with degree 0 or 1 and g polynomial with degree
0,1 or 2, the following equations

ST (Xng) = T ([ Xy, Xnol) = 0, (3.19)
£x 1" (Xio) + L5 T (Xinio) = 0. (3.20)

1) If T is an even l-cocycle then Y” is decomposed into Yj, : h ® Firpr — Fu and
1o, :h®F\ — Fur1- The equation B.I9) tell us that Y{, and Y{, are s[(2) invariant
bilinear maps. Therefore, the expressions of T(, and Y{;, are given by Lemma 3.2l So, we
must have g =A+k = (A+3) — 2 +k (and then g+ 1 = XA — 1 +k +1). More precisely,
using the equation ([B.20), we get up to a factor:

(0 i k(k—1)2A+ k) (2A+k—1)£0 or k—1and A ¢ {0, —%},
=8 S(0a,) i () = ()
300k —00u%) it (\) = (5 ) or A=




2) If T is an odd 1-cocycle then Y” is decomposed into Y, : h ® F\ — F, and Yy, :
h® F, 1= Fot 1. As in the previous case, the expressions of T(, and Y, are given by
Lemma B2 So, we must have 1 = A — 3 + k (and then g+ 5 = (A+ 1) — 1 + k.) More
precisely, using the equation ([B.20), we get:

0 it k(k—1)@2\+k—1)#0
T 5(0) if p=XA-3,
6(0p) i p=A+3,
o(00y) it (A p) = (355 5).
O
Now, the space Z'(0sp(1]2),D, ) of 1-cocycles is Zy-graded:
ZM(0sp(112), Dz ) = Z'(05p(1]2), D)o ® Z' (05p(1]2), Dy )1 (3.21)

Therefore, any element T € Z'(0sp(1]2),D,,,) is decomposed into an even part Ty and
odd part T;. Each of T and T; is decomposed into two components: Yo = (Yoo, T11)
and Tl = (T(]l, TlO); where

{ TOO 5[(2) — (©>\7M)0> and { TOl 5[(2) — (@)\7M)1,
Ti:h — (D)1, Tio:h — (D)o

The components T1; and Yo of T and T are also decomposed as follows: Y13 = Tq19 +
i1 and Tig = Tig + Ty1, where Ty € Hom (b,DMH%), T,,; € Hom (h,DA+%7M),
Ti00 € Hom (haD)\,u)a T10% € Hom (b,DH%,w%)-

As in [I], the following lemma gives the general form of each of Y159 and TH% .

Lemma 3.4. Up to a coboundary, the maps Y119, TH%, T199 and TIO% are given by

T110(Xno) = aohf0; +arh'09;" and Y111 (Xpg) = bohOpdy + bih'Dp0; ",
TllO(Xhﬁ) = CoheaI; + Clhleai?_l and TH%(X}LQ) = doh@gaI; + dlh’%@’;_l,

where the coefficients a;, b;, ¢;, and d; are constants.

Proof. The coefficients a;, b;, ¢;, and d; a priori are some functions of x, but we shall
now prove d,a; = 0,b; = 0 (and similarly 0,¢; = 0,d; = 0). To do that, we shall simply
show that Qg;“(Tn) =0.

First, for all h polynomial with degree 0 or 1, we have
(€51 T11)(Xno) = L5 (T11(Xno)) — Y11([0s, Xno))- (3.22)

On the other hand, from Lemma B.3] it follows that, up to a coboundary, Yy is a linear
combination of some 1-cocycles for sl(2) given by ([B.17) and (B.I8]). So, we have Yo(9,) =0
and then

31, (Yoo(0:)) = 0.
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Therefore, the equation (B:22]) becomes, for all h,
— (£5011)(Xno) = T11([00, Xna]) = L5 (T11(Xno)) + LX2, (Lo (D)) (3.23)

The right-hand side of (8:23) is nothing but 6Y (0., Xng). But, Ty is a 1-cocycle, then
23;“('1”11) = 0. Lemma 3.4 is proved.
O

3.4 Proof of Theorem 3.1

The first cohomology space H'(0sp(1]2);D, ) inherits the Z,-grading from (321 and is
decomposed into odd and an even subspaces:

H' (05p(1]2): D5,.) = Hy(0sp(1]2): D5,.) © Hi(0sp(1]2); D).

We compute each part separetly.

1) Let Ty be a non trivial even 1-cocycle for osp(1|2) in ©,,. According to the Zo-
grading, T should retain the following general form: Ty = Yoo+ Ty 1 + Y10+ Tll% such
that

TOOO : 5[(2) — D)\“u,

TOO% cosl(2) — DA%L/H-%’ (3.24)
TllO : b — D)\,u—l—%’ )
Tll% : b — DM—%,#‘

Then, by using Lemma [B.3] we deduce that, up to coboundary, Yooy and Too% can be

expressed in terms of C4, Cy and C, where A € R and k € N\ {0}. We thus consider three
cases:

1) A= W, TOOO = OéC;\, and T(]Ol = 50;1 .
2 5[
i) (A p) = (155, 125), Tooo = a1 Gy, + a2Cl, and Yoo = 0.
111) ()\,u) = (_Tk, §)> TOOO =0 and TOO% = ale + Oégak.

Put T/ = Yoo + Too% and Y’ = Ty0 + TH%. In each case, the 1-cocycle Ty must satisfy

A, A,
{T"[Xg,Xeh] = LT (Xon) — L), T'(X,), (3.25)

T'[Xon,, Xon,] = Sﬁéfth"(Xehz)+’3§<’fh2T"(Xeh1),

where h, hy, and hs are polynomials of degree 0 or 1, g polynomial of degree 0, 1 or 2.
Now, thanks to Lemma [3.4] we can write

TllO(Xhﬁ) = aoheﬁi + alh’eﬁi_l and Tll%(vhg) = boh@ga]; + blh’(‘?g@i‘l.
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Let us now solve the equations (3:25). We obtain A = p and Y \(Xp) = F’. This
completes the proof of part 1).

2) Consider a non trivial odd 1-cocycle Ty for osp(1]2) in ®) , and its decomposition
Tl = TOIO + TOI% + TIOO + TlO%? where

TOIO : 5[(2) — D}\,}L+%7

TOl% : 5[(2) — DA-#—%,M’ (3 26)
Tio h — D, '
TlO% : f) — DA-I—%,;H—%‘

We must have (X, 1) = (15, %) with k € N\ {0}. Moreover T = Tooo+Toor +Trr0+ T2

is a 1-cocycle for /(1) if and only if

Yoo = oCi + a26k~

Yoz = [(1Ck1+ B2Ck1

T 3( X - W LWTRVY (327>
[ g Gh] - ng T (X@h) - QXQ;LT (Xg)7

Y[ Xon,, Xon,] = 2?55,” T"(Xon,) + 2?5222 T"(Xon, ),

where T/ = TOlO + TOl% and T = TlOO + TlO%'
As above, we then can write

TIOO(Xh€> = CLO}LH&I; + alh’Hﬁfﬁ_l and TIO% (Uhg) = boh@g&i + blh/ﬁgaﬁ_l.

According to Lemma [3.3, the map YT; is a non trivial 1-cocycle if and only if at least one
of the maps Y19 and Tm% is a non trivial 1-cocycle for sl(2), that means (a1, as, 81, B2) #

(0,0,0,0). Let us determine the linear maps Y1go and TlO%' Up to factor, we get:
Tl = OélT%’g +QQT%’§ +CL05(290§)

Thus, the cohomology classes of Tix » and T%% generate H%(Oﬁp(1|2),®ﬂ’§). The

2
proof is now complete.
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