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REGULARITY OF C1 SMOOTH SURFACES WITH PRESCRIBED

p-MEAN CURVATURE IN THE HEISENBERG GROUP

JIH-HSIN CHENG, JENN-FANG HWANG, AND PAUL YANG

Abstract. We consider a C1 smooth surface with prescribed p(or H)-mean
curvature in the 3-dimensional Heisenberg group. Assuming only the pre-
scribed p-mean curvature H ∈ C0, we show that any characteristic curve is
C2 smooth and its (line) curvature equals −H in the nonsingular domain. By
introducing characteristic coordinates and invoking the jump formulas along
characteristic curves, we can prove that the Legendrian (or horizontal) nor-
mal gains one more derivative. Therefore the seed curves are C2 smooth. We
also obtain the uniqueness of characteristic and seed curves passing through a
common point under some mild conditions, respectively. These results can be
applied to more general situations.

1. Introduction and statement of the results

The p-minimal (or X-minimal, H-minimal) surfaces have been studied exten-
sively in the framework of geometric measure theory (e.g., [9], [8], [17]). Motivated
by the isoperimetric problem in the Heisenberg group, one also studied nonzero
constant p-mean curvature surfaces and the regularity problem (e.g., [16], [4], [13],
[14], [20], [15], [18]). Starting from the work [6] (see also [5]), we studied the subject
from the viewpoint of partial differential equations and that of differential geometry.
In fact, the notion of p-mean curvature (”p-” stands for ”pseudohermitian”) can be
defined for (hyper) surfaces in a pseudohermitian manifold. The Heisenberg group
as a (flat) pseudohermitian manifold is the simplest model example, and represents
a blow-up limit of general pseudohermitian manifolds. In this paper we will deal
with the regularity problem, in particular, for a C1 smooth surface with prescribed
p-mean curvature in the 3-dimensional Heisenberg group H

1. Since our results
hold in quite general situations, we will just start with the general formulation.

Let Ω be a domain in Rm and u : Ω → R be a W 1,1 function. Let ~F be
an arbitrary (say, L1) vector field on Ω, and H ∈ L∞(Ω). In [7] we consider the
following energy functional:

F(u) ≡
∫

Ω

|∇u+ ~F |+Hu

(we omit the Euclidean volume element). When ~F ≡ 0, this is the energy functional

of least gradient. When m = 2, ~F ≡ (−y, x), and H = 0, this is the p(or H)-area
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of the graph defined by u in H
1. Let ϕ ∈ W 1,1(Ω) and uε ≡ u+ εϕ for ε ∈ R. We

computed the first variation of u in the direction ϕ and obtained

(1.1)
dF(uε)

dε
|ε=0±= ±

∫

S(u)

| ∇ϕ | +
∫

Ω\S(u)

Nu · ∇ϕ+

∫

Ω

Hϕ

(see (3.3) in [7]) where S(u) denotes the singular set of u, consisting of the points

(called singular points) where ∇u + ~F = 0, and Nu ≡ Nu
~F
≡ ∇u+~F

|∇u+~F | (called Leg-

endrian or horizontal normal). For a general ~F we cannot ignore the contribution
of the first integral in the right-hand side of (1.1), caused by the singular set S(u).

For instance, we have S(u) = Ω in the case that ~F = 0 and u = 0. For the study
of the size of singular set, we refer the reader to [1] (in which singular set is called
characteristic set). Let us denote the space of weakly differentiable functions by
W 1(Ω) (see [10] for the precise definition). By (1.1) we define weak solutions as
follows:

Definition 1.1. (Definition 3.2 in [7]) Let Ω ⊂ Rm be a bounded domain. Let
~F be an L1

loc vector field and H be an L1
loc function on Ω. We say u ∈ W 1(Ω) is a

weak solution to equation divNu = H in Ω if for any ϕ ∈ C∞
0 (Ω), there holds

(1.2)

∫

S(u)

|∇ϕ|+
∫

Ω\S(u)

Nu · ∇ϕ+

∫

Ω

Hϕ ≥ 0.

In this situation, we also say that divNu = H in the weak sense.

With ϕ replaced by −ϕ in (1.2), it follows that when the m-dimensional Haus-
dorff measure of S(u), denoted as Hm(S(u)), vanishes, then u ∈ W 1(Ω) is a weak
solution to equation divNu = H in Ω if for any ϕ ∈ C∞

0 (Ω), there holds

(1.3)

∫

Ω

Nu · ∇ϕ+

∫

Ω

Hϕ = 0.

That is, if Hm(S(u)) = 0, then divNu = H in the weak sense if (1.3) holds. In
this paper, we consider only the situation that S(u) is an empty set. A domain Ω
is called nonsingular (for u) if S(u) is empty. So we can use (1.3) as the definition
of weak solutions for a nonsingular domain Ω. In this paper we assume u to be C1,
an assumption that is almost justified according to a structure theorem of Franchi,
Serapioni, and Serra Cassano ([8]), modulo a measure zero set, the major part of a
very general surface is H-regular.

Theorem 1.1 ([8]) If E ⊆ H
1 is a H-Caccioppoli set, then ∂∗

H
E, the reduced

boundary of E, is H-rectifiable, that is

∂∗
H
E = N ∪

∞
⋃

h=1

Kh

where H3
d(N ) = 0 and Kh is a compact subset of a H-regular surface.

On the other hand, it does not follow that aH-regular surface can be represented
by a C1 graph. We thank F. Serra-Cassano and the referee for pointing out this
fact.

Let u ∈ C1(Ω), ~F ∈ C0(Ω), and Ω be nonsingular. Then Nu and Nu,⊥ exist
and are in C0(Ω), where Nu,⊥ denotes the rotation of Nu by −π

2 degrees. By
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the O.D.E. theory ([11]), the integral curves of Nu,⊥ (Nu, resp.) exist and we
call them characteristic (seed, resp.) curves. In [18], Pauls proved that for a C1

smooth (weak) solution to equation divNu = H with ~F = (−y, x) and H = 0
in a nonsingular domain, the characteristic curves are straight lines and the seed
curves are C2 smooth under the condition that Nu ∈ W 1,1. We will show that the
condition: Nu ∈ W 1,1 is not necessary while the curvature (along Nu,⊥ direction)
of a characteristic curve is −H under mild regularity condition on H (and nothing

to do with precise form of ~F ; see Theorem A, Theorem D below)

For u ∈ C1(Ω), ~F ∈ C0(Ω) in a nonsingular plane domain Ω, since |Nu| = 1, we
can write Nu = (cos θ, sin θ) locally with θ ∈ C0. We may forget u and consider θ
∈ C0 locally as an independent variable, then define N ≡ (cos θ, sin θ) such that
N and N⊥ ≡ (sin θ, − cos θ) are C0 vector fields. We also call the integral curves
of N⊥ (N, resp.) characteristic (seed, resp.) curves (see (1.6) below). Similarly to
(1.3) for θ ∈ C0(Ω) we define

(1.4) divN ≡ div(cos θ, sin θ) ≡ (cos θ)x + (sin θ)y = H

in the weak sense, meaning
∫

Ω

N · ∇ϕ+

∫

Ω

Hϕ = 0.

for any ϕ ∈ C∞
0 (Ω). On the other hand, equation divNu = H (i.e., θ arises from

u) provides more information. For u ∈ C1, ~F ∈ C0, let D ≡ |∇u+ ~F |. If D 6= 0 in

Ω, write Nu,⊥ = (sin θ, − cos θ) and ~F⊥ = (F2, −F1) for ~F = (F1, F2). Then for
any Lipschitzian domain Ω′ ⊂⊂ Ω, we have

(1.5)

∫

Ω′

(DNu,⊥ − ~F⊥) · ∇ϕ =

∫

Ω′

(uy,−ux) · ∇ϕ = 0

(see the proof of Lemma 3.1) The ”integrability” condition (1.5) (due to ”uyx =
uxy”) makes equation divNu = H have more properties than (1.4).

Now we study (1.4) as a single equation for θ. For θ ∈ C1, (1.4) is a first-order
equation whose characteristic curve Γ = {(x(σ), y(σ))} ∈ C1 satisfies

dx

dσ
= sin θ(x(σ), y(σ)),(1.6)

dy

dσ
= − cos θ(x(σ), y(σ)).

Note that σ is a unit-speed parameter of Γ. For θ ∈ C0, we still use (1.6) as the
definition of characteristic curves.

Theorem A. Let Ω be a domain of R2 and H ∈ C0(Ω). Let θ ∈ C0(Ω) satisfy
equation (1.4) in the weak sense, i.e.

(1.7)

∫

Ω

(cos θ, sin θ) · ∇ϕ+

∫

Ω

Hϕ = 0

for all ϕ ∈ C∞
0 (Ω) (cf. (1.3)). Let Γ ⊂ Ω be a (C1 smooth) characteristic curve

with σ being the unit-speed parameter, satisfying (1.6). Then Γ is C2 smooth and
the curvature of Γ (along N⊥ direction) equals −H, that is, dθ

dσ = −H.

Note that θ ∈ C0 implies N ≡ (cos θ, sin θ) ∈ C0 and N = Nu ≡ Nu
~F
∈ C0 if it

arises from u ∈ C1 and ~F ∈ C0. Recall that in Theorem A of [18], Pauls considered
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the H = 0 case, in which Γ is a straight line under the condition that components

of the horizontal Gauss map (i.e., Nu
~F
in our notation with ~F = (−y, x)) are in

W 1,1(Ω). In Theorem A above, if θ satisfies (1.7), we prove that Γ is a minimizer
for the following energy functional:

LH(Γ) ≡ |Γ| −
∫

ΩΓ

Hdxdy

where |Γ| denotes the length of Γ (see Section 2 for the definition of ΩΓ). So the
basic Calculus of Variations tells us that the curvature of Γ (along N⊥ direction)
equals −H without invoking extra regularity assumption. Also H is only required
to be C0. In [15] Monti and Rickly considered the case of H = constant for a convex
isoperimetric set. We do not need convexity in Theorem A.

For θ ∈ C0, N (N⊥, resp.) ≡ (cos θ, sin θ) (≡ (sin θ, − cos θ), resp.) is a C0

vector field. Then for any p ∈ Ω, there exists at least one integral curve, i.e., seed
curve (characteristic curve, resp.) passing through p. The uniqueness of integral
curves for a C0 vector field does not hold in general (see page 18 in [11]). In Section
3 we will prove uniqueness theorems B and B′ for characteristic and seed curves (see
below). Let p ∈ Ω and Br(p) ≡ {q ∈ Ω | |q−p| < r}. Define HM (r) ≡ maxq∈∂Br(p)

|H(q)|.

Theorem B. (a) Let θ ∈ C0(Ω) and H ∈ L1
loc(Ω) satisfy (1.7). Let p ∈ Ω and

suppose there is r0 > 0 such that Br0(p) ⊂⊂ Ω and

(1.8)

∫ r0

0

HM (r)dr <∞.

Then there is r1, 0 < r1 ≤ r0, such that there exists a unique seed curve passing
through p in Br1(p).

(b) Let θ ∈ C0(Ω) and H ∈ C0,1(Ω) (Lipschitzian) satisfy (1.7). Then for any
point p ∈ Ω, we can find r1 > 0 such that there exists a unique characteristic curve
passing through p in Br1(p).

In Theorem B (b), if H is only continuous, we can give an example for the
nonuniqueness of characteristic curves (see Example 3.2). Note that u is not in-

volved in Theorems A and B. Now we consider u. Let u ∈ C1 and ~F = (F1, F2) ∈
C1. Recall that a point p ∈ Ω ⊂ R2 is called singular (nonsingular, resp.) if ∇u +
~F = 0 (6= 0, resp.) at p. At a nonsingular point, we recall N ≡ Nu ≡ ∇u+~F

|∇u+~F | . We

call Ω nonsingular if every point of Ω is not singular. We have another uniqueness
theorem for characteristic curves.

Theorem B′. Let u : Ω ⊂ R2 → R be a C1 smooth function such that Ω is a

nonsingular domain with ~F ∈ C1(Ω). Then for any point p ∈ Ω, we can find r1
> 0 such that Br1(p) ⊂ Ω and there exists a unique characteristic curve passing
through p in Br1(p).

In Theorem B′ we only assume u, ~F ∈ C1, and do not use any property of H,
in contrast to Theorem B (b). Even for the case H = 0, seed curves may only be
C1 smooth, but not C2 smooth (see the remark after the proof of Theorem D in
Section 5). However if N ≡ (cos θ, sin θ) arises from u (i.e., N = Nu; see (1.3)),
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Pauls ([18]) proved that when u ∈ C1, θ ∈ C0 ∩W 1,1, and H = 0, then the seed
curves are C2 smooth. In Theorem D we prove the same conclusion under the
condition that u ∈ C1 (θ ∈ C0 follows) and H ∈ C1 (in fact, that H ∈ C0 and only
C1 in the N direction is enough).

If u ∈ C1(Ω) also satisfies (1.3) with ~F ∈ C1(Ω) and S(u) is empty in Ω, can we
have higher order regularity for u, say, u ∈ C2? This is impossible as shown by the
following example. Let ug ≡ xy + g(y) where g ∈ C1\C2. Then ug satisfies (1.3)

with H = 0, ~F = (−y, x) on any nonsingular domain Ω for ug. On the other hand,
the characteristic and seed curves associated to ug are all the same for different g’s.
That is, g determines the differentiability of ug, but does not affect the shape of
characteristic and seed curves. So we can prove that θ is in fact C1 smooth (hence
N ∈ C1, but not u ∈ C2) (see Theorem D below). Before doing this we need to
introduce some kind of special coordinates.

Definition 1.2. Let N be a C0 vector field with |N | ≡ 1 on a domain Ω ⊂ R2.
A system of C1 smooth local coordinates s, t is called a system of characteristic
coordinates if s and t have the property that ∇s ‖ N⊥ and ∇t ‖ N, i.e., ∇s and ∇t
are parallel to N⊥ and N , resp.. It follows that {t = constant} are characteristic
curves while {s = constant} are seed curves.

Let Γ(x,y)(σ) (Λ(x,y)(τ ), resp.) denote a characteristic (seed, resp.) curve passing

through (x, y), parametrized by the arc length σ (τ , resp.) with
dΓ(x,y)(σ)

dσ = N⊥

(
dΛ(x,y)(τ)

dτ = N, resp.). For continuous functions g, f we write

(N⊥g)(x, y) ≡ dg(Γ(x,y)(σ))

dσ
|σ=σ0

((Nf)(x, y) ≡ df(Λ(x,y)(τ))

dτ |τ=τ0 , resp.) if exists, where (x, y) = Γ(x,y)(σ0) ((x, y)

= Λ(x,y)(τ0), resp.). For a planar C1 vector field ~F = (F1, F2), we define

rot ~F := (F2)x − (F1)y .

We construct a system of characteristic coordinates in the following theorem.

Theorem C. Let u : Ω ⊂ R2 → R be a C1 smooth solution to (1.3) (Ω being

nonsingular) with ~F ∈ C1(Ω) and H ∈ C0(Ω). Then for any point p0 ∈ Ω there
exist a neighborhood Ω′ ⊂ Ω and real functions s, t ∈ C1(Ω′) such that {t = con-
stants} and {s = constants} are characteristic curves and seed curves, respectively.
Moreover, there are positive functions f, g ∈ C0(Ω′) such that

(1.9) ∇s = fN⊥,∇t = gDN.

Also Nf and N⊥g exist and are continuous in Ω′. In fact, f and g satisfy the
following equations

(1.10) Nf + fH = 0, N⊥g +
(rot ~F )g

D
= 0.

For a perhaps smaller neighborhood Ω′′ ⊂ Ω′ of p0, the map Ψ : (x, y) ∈ Ω′′ →
(s, t) ∈ Ψ(Ω′′) is a C1 diffeomorphism such that

(1.11) Ψ∗(
ds2

f2
+

dt2

g2D2
) = dx2 + dy2.
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We remark that the existence of C1 smooth s can be proved for N satisfying
(1.7) (i.e., not defined by u) instead of (1.3) (see Theorem 4.1).

Recall that for u ∈ C1(Ω), ~F ∈ C0(Ω), and Ω being nonsingular, there exists θ
∈ C0 locally such that Nu = (cos θ, sin θ).

Corollary C.1. Suppose we are in the situation of Theorem C. Then θ is C1

smooth in s and there holds

(1.12) θs ≡
∂θ

∂s
= −H

f
.

Note that by θ being C1 smooth in s, we mean that θs ≡ ∂θ
∂s exists and is

continuous. Since f is C1 smooth in t, θs is also C1 smooth in t if we assume that
H has the same property according to (1.12). In fact, we can prove that θ is C1

smooth in t too, and hence θ ∈ C1. That is, θ gains one derivative.

Theorem D. Let u : Ω ⊂ R2 → R be a C1 smooth (weak) solution to divNu

= H in Ω (Ω being nonsingular) with ~F ∈ C1(Ω) and H ∈ C0(Ω). Suppose N(H)
exists and is continuous. Then θ ∈ C1 and the characteristic and seed curves are
C2 smooth. Moreover, N⊥D exists and is continuous in Ω. In (s, t) coordinates
near a given point as in Theorem C, we have

(1.13) θt ≡
∂θ

∂t
=
rot ~F

gD2
− N⊥(logD)

gD
=

1

gD2
(rot ~F −N⊥D).

We remark that in case H = 0 or constant, we can prove Theorem D directly
from the precise parametric expression of x or y. The situation H = a nonzero con-
stant arises from considering the boundary of a C2 isoperimetric set. Pansu ([16])
conjectured that an isoperimetric set is congruent with a certain type of sphere. In
[20], Ritoré and Rosales proved Pansu’s conjecture for isoperimetric sets of class
C2 without any symmetry assumption. Later Monti and Rickly ([15]) obtained the
same result for convex isoperimetric sets without regularity assumptions.

We outline the proof of θ ∈ C1 in Theorem D as follows. According to (1.12),
we have good control for θ along the characteristic curves, i.e. the s-direction. If
the control for θ fails along a seed curve, i.e. t-direction, say, at some s0, then
we show that it fails also for s near s0. That is, the jump of a certain concerned
quantity is kept in short ”s-time” along the characteristic curves. This ends up
to reach a contradiction. We borrow the idea of conveying information along the
characteristic curves from the study of hyperbolic P.D.E. ([12]). After this paper
was submitted, we were informed of recent results about regularity ([2], [3]) by the
referee. In [3], Capogna, Citti, and Manfredini proved an interesting result, among
others, that the Lipschitz minimizer obtained in Theorem A of [7] is actually C1,α in
a neighborhood of a nonsingular point under some extra condition. We would like
to thank the referee for useful information, detailed comments, and grammatical
suggestions.
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2. Curvature of characteristic curves-proof of Theorem A

The following lemma should be a standard result. For completeness we give a
proof.

Lemma 2.1. Let θ ∈ C0(Ω) and H ∈ L1
loc(Ω) satisfy (1.7). Then for any

Lipschitzian domain Ω′ ⊂⊂ Ω and ϕ ∈ C1(Ω), there holds

(2.1)

∮

∂Ω′

ϕN · ν =

∫

Ω′

(∇ϕ) ·N + ϕH

where N ≡ (cos θ, sin θ) and ν denotes the unit outer normal to ∂Ω′.

Proof. Take a Lipschitzian domain Ω′′ such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω. Then there exists
a sufficiently small number ε0 > 0 such that for any ψ ∈ C1

0 (Ω
′′) and any ε, 0 < ε

< ε0, the mollifier ψε ∈ C∞
0 (Ω). From (1.7) we have

0 =

∫

Ω

N · ∇ψε +Hψε =

∫

Ω′′

Nε · ∇ψ +Hεψ.

It then follows that div Nε = Hε (strong sense) in Ω′′ and since ϕ ∈ C1(Ω), we
have

(2.2)

∮

∂Ω′

ϕNε · ν =

∫

Ω′

(∇ϕ) ·Nε + ϕHε.

Since N ∈ C0(Ω), Nε converges to N uniformly in Ω′′ while Hε converges to H in
L1(Ω′′) as ε→ 0. Therefore letting ε→ 0 in (2.2) gives (2.1).

�

By taking ϕ ≡ 1 in (2.1), we obtain

Corollary 2.2. Let θ ∈ C0(Ω) and H ∈ L1
loc(Ω) satisfy (1.7). Then for any

Lipschitzian domain Ω′ ⊂⊂ Ω, we have

(2.3)

∮

∂Ω′

N · ν =

∫

Ω′

H

where N ≡ (cos θ, sin θ).

Proof. (of Theorem A). Without loss of generality, we may assume that locally
Γ is a piece of a C1 smooth graph (x, y(x)) with 0 ≤ x ≤ a (a > 0) where y(x)
> 0, y′(x) is bounded, and the domain ΩΓ surrounded by Γ and the three line
segments connecting (0, y(0)), (0, 0), (a, 0), (a, y(a)) satisfies ΩΓ ⊂⊂ Ω. We may

also assume that N⊥ ≡ (sin θ, − cos θ) = (1,y′)√
1+(y′)2

on Γ. Let Γε be a family of small

perturbations of Γ, having the same endpoints (0, y(0)), (a, y(a)) and described by
(x, y(x) + εϕ(x)) (ϕ ∈ C∞

0 ([0, a])) (see Figure 2.1)
The domain ΩΓε are defined similarly and ΩΓε ⊂⊂ Ω for |ε| small enough. Note

that yε(x) ≡ y(x) + εϕ(x) > 0 (on [0, a]) also for |ε| small enough. Let σ denote
the arc length parameter. Let

G(Γε) ≡
∫

Γε

N · νdσ −
∫

ΩΓε

Hdxdy

where ν denotes the unit outer normal of ΩΓε . Observe that
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Γǫ

Γ

y

x
(0, 0) (a, 0)

(0, y(0))

(a, y(a))

Figure 2.1

G(Γε)−G(Γ)(2.4)

= {
∮

∂ΩΓε

N · νdσ −
∫

ΩΓε

Hdxdy} − {
∮

∂ΩΓ

N · νdσ −
∫

ΩΓ

Hdxdy}

= 0− 0 = 0

by (2.3). Let |Γ| denote the length of Γ. Along Γ we have ν = N since N⊥ is

tangent to Γ, a characteristic curve, y(x) > 0 and N⊥ = (1,y′)√
1+(y′)2

on Γ. It follows

that

|Γ| −
∫

ΩΓ

Hdxdy = G(Γ) = G(Γε) (by (2.4))(2.5)

≤
∫

Γε

|N · ν|dσ −
∫

ΩΓε

Hdxdy

≤ |Γε| −
∫

ΩΓε

Hdxdy (by |N · ν| ≤ |N ||ν| = 1).

Let

LH(Γ) ≡ |Γ| −
∫

ΩΓ

Hdxdy.

We learn from (2.5) that LH(Γ) is the minimum of LH(Γε). Therefore for ε ∈
R\{0}, |ε| small enough, we have

0 ≤ |ε|−1{(|Γε| −
∫

ΩΓε

Hdxdy)− (|Γ| −
∫

ΩΓ

Hdxdy)}(2.6)

= |ε|−1(|Γε| − |Γ|)− |ε|−1(

∫

ΩΓε

Hdxdy −
∫

ΩΓ

Hdxdy).

Compute
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ε−1(|Γε| − |Γ|)(2.7)

= ε−1{
∫ a

0

√

1 + (y′(x) + εϕ′(x))2dx−
∫ a

0

√

1 + (y′(x))2dx}

=

∫ a

0

2y′(x)ϕ′(x) + ε(ϕ′(x))2
√

1 + (y′(x) + εϕ′(x))2 +
√

1 + (y′(x))2
dx

→
∫ a

0

y′(x)
√

1 + (y′(x))2
ϕ′(x)dx

while for some ỹε(x) between y(x) and y(x) + εϕ(x) by the mean value theorem,
we have

ε−1(

∫

ΩΓε

Hdxdy −
∫

ΩΓ

Hdxdy)(2.8)

= ε−1

∫ a

0

H(x, ỹε(x))εϕ(x)dx

→
∫ a

0

H(x, y(x))ϕ(x)dx

as ε → 0 by Lebesgue’s dominated convergence theorem.
From (2.6), (2.7), and (2.8) we obtain

(2.9)
d

dx
(

y′(x)
√

1 + (y′(x))2
) = −H(x, y(x))

in the weak sense. Since y′(x)√
1+(y′(x))2

and H(x, y(x)) are continuous in x, we actually

have y′(x)√
1+(y′(x))2

∈ C1 with respect to x and (2.9) holds in the strong sense. Also

it follows that y ∈ C2 since y′(x) = h(x)√
1−(h(x))2

∈ C1 where h(x) = y′(x)√
1+(y′(x))2

. We

have proved that Γ is C2 smooth. Since (cos θ, sin θ) = (1,y′)√
1+(y′)2

, we have

d sin θ

dx
= −H

by (2.9). It follows from dx
dσ = cos θ that −H = cos θ dθ

dx = dθ
dσ .

�

3. Uniqueness of Characteristic and seed curves

Since N and N⊥ are C0 vector fields, there exist integral curves (called seed
and characteristic curves, resp.) of N and N⊥ passing through any given point.
Uniqueness does not hold in general (see [11], page 18). However, if N satisfies
(1.7), we have uniqueness.

Proof. (of Theorem B) First we will prove (a). Since N ∈ C0(Ω), we can choose
r2, 0 < r2 < r0, such that

(3.1) |N(q)−N(p)| ≤ 1

2
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for all q ∈ Br2(p). Let Γ1, Γ2 are two seed curves passing through p. For j = 1, 2,
let Γj = Γ+

j ∪ Γ−
j , Γ

+
j ∩ Γ−

j = {p} where Γ+
j (Γ−

j , resp.) is the part of Γj emanating

from p along the +N (−N, resp.) direction. Then for any r, 0 ≤ r < r2, there exist
p±j,r, j = 1, 2 such that ∂Br(p) ∩ Γ±

j = {p±j,r} where ∂B0(p) ≡ {p}. Suppose (a)
fails to hold. Then without loss of generality, we may assume there exists r4, 0 <
r4 < r2 such that p+1,r4 6= p+2,r4 and there exists a unique r3 depending on r4 only

such that 0 ≤ r3 < r4 and p+1,r3 = p+2,r3 (if r3 = 0, p+1,r3 = p+2,r3 = p), p+1,r 6= p+2,r
for r3 < r < r4 (see Figure 3.1).

Let ℓr denote the shorter arc of ∂Br(p) connecting p+1,r and p+2,r. For perhaps
smaller r3, r4 we have

(3.2) N(p) · ∂r(q) ≥
3

4

where q ∈ ℓr and ∂r(q) = q−p
|q−p| is the unit outer normal to ℓr for r3 < r < r4. It

then follows from (3.1) and (3.2) that

(3.3)
1

4
≤ N · ∂r ≤ 1 on ℓr

for r3 < r < r4. Let Ωr be the domain surrounded by Γ+
i ∩ (Br(p)\B̄r3(p)), i = 1,

2, and ℓr with vertices p3 (= p+1,r3 = p+2,r3), p
+
2,r, and p

+
1,r, where B̄r3(p) ≡ {p} if r3

= 0. Let

(3.4) h(r) ≡
∮

∂Ωr

N · ν.

Observe that N · ν = 0 along Γ1 and Γ2 and ν = ∂r on ℓr. It follows from (3.3) and
(3.4) that

(3.5)
1

4
|ℓr| ≤ h(r) ≤ |ℓr|

b b

b

0 = r3

r4

or

0

r3
r4

Figure 3.1
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for r3 < r < r4 where |ℓr| denotes the arc length of ℓr. On the other hand, we
compute from (2.3) that

h(r) ≡
∮

∂Ωr

N · ν =

∫

Ωr

H

and hence by (3.5) we have

(3.6) h′(r) =

∫

ℓr

H ≤ HM (r)|ℓr| ≤ 4HM (r)h(r)

for r3 < r < r4. We can therefore have

d

dr
[h(r)e

−4
R

r
r3

HM (r)dr
](3.7)

= [h′(r) − 4HM (r)h(r)]e
−4

R r
r3

HM (r)dr ≤ 0

by (3.6). It follows from (3.7) that

(3.8) h(r)e
−4

R

r
r3

HM (r)dr ≤ h(r3) = 0.

By assumption (1.8) we have
∫ r

0
HM (r)dr < ∞ and hence h(r) = 0 by (3.8) for r3

≤ r ≤ r4. From (3.5) |ℓr| = 0 for r3 ≤ r ≤ r4, which implies that p+1,r = p+2,r for r3
< r < r4. We have reached a contradiction and hence proved (a).

Next we will prove (b). Suppose Γ1 and Γ2 are two characteristic curves passing
through p. Without loss of generality we may assume that locally Γ1 and Γ2 are
graphs (x, y1(x)) and (x, y2(x)), |x| ≤ x1 for some positive constant x1, respectively
and p = (0, y1(0)) = (0, y2(0)), y

′
1(0) = y′2(0) = 0. To prove (b) we need to show

that y1(x) = y2(x) on [−x′0, x′0] for some small positive number x′0 ≤ x1. We will
only show that y1(x) = y2(x) on [0, x0] for some small positive number x0 ≤ x1(see
below) since a similar argument works for the interval of nonpositive numbers. We
take x0 = 1

2H1
for a large constant H1 such that |H | ≤ H1 on Γ1 and Γ2 for x ∈

[0, x0].
By Theorem A the curvature of Γj , j = 1, 2, equals −H. Namely, we have (2.9)

and hence (say, for x ∈ [0, 1
2H1

])

(3.9)
y′j(x)

√

1 + (y′j(x))
2
= −

∫ x

0

H(x, yj(x))dx

for j = 1, 2. It follows that

(3.10) |
y′j(x)

√

1 + (y′j(x))
2
| ≤ 1

2

and hence

(3.11) |y′j(x)| ≤ 1√
3

for x ∈ [0, 1
2H1

], j = 1, 2. We want to prove that y2(x) = y1(x) for all x ∈ [0, 1
2H1

].
If not, we may assume

(3.12) y2(x) > y1(x)

for all x ∈ (0, 1
2H1

] (otherwise we can find an interval [a, b] ⊂ [0, 1
2H1

], a <

b, such that y1(a) = y2(a), y1(b) = y2(b), y
′
1(a) = y′2(a), and y2(x) > y1(x) (or
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y2(x) < y1(x)) for x ∈ (a, b). Applying a similar reasoning below to [a, b] instead of
[0, 1

2H1
], we will reach y2(x) = y1(x) for all x ∈ [a, b], a contradiction). From (3.9)

we compute

| y′2(x)
√

1 + (y′2(x))
2
− y′1(x)

√

1 + (y′1(x))
2
|(3.13)

≤
∫ x

0

|H(x, y2(x)) −H(x, y1(x))|dx ≤ C1

∫ x

0

(y2(x) − y1(x))dx

where C1 is the Lipschitzian constant of H. Let

h(x) ≡
∫ x

0

(y2(x) − y1(x))dx.

It follows that h′(x) = y2(x)−y1(x) and h′′(x) = y′2(x) − y′1(x). On the other hand,
observe that f ′(t) = ( 1

1+t2 )
3/2 for f(t) = t

(1+t2)1/2
. By the mean-value theorem and

(3.11), we have

| y′2(x)
√

1 + (y′2(x))
2
− y′1(x)

√

1 + (y′1(x))
2
|(3.14)

≥ (
3

4
)3/2|y′2(x) − y′1(x)|.

From (3.14) and (3.13) we obtain the following differential inequality for h : (C2

= (43 )
3/2C1)

(3.15) h′′(x) ≤ C2h(x).

Multiplying (3.15) by h′(x) (> 0 by (3.12)) and integrating from 0 to x ∈ (0, 1
2H1

],
we get

(3.16) h′(x) ≤
√

C2h(x)

in view of h(x) > 0, h′(x) > 0, and h′(0) = h(0) = 0. Writing (3.16) as (log h)′(x)
≤ √

C2 and then integrating from ε (> 0) to x, we obtain

(3.17) h(x) ≤ h(ε)e
√
C2(x−ε).

Letting ε→ 0 in (3.17) gives h(x) ≡ 0 on [0, 1
2H1

], a contradiction. We have proved

(b).
�

We remark that we can give an alternative proof of part (b) of Theorem B
by applying Picard-Lindelöf’s Theorem ([11], Theorem 1.1) to (3.9). Recall (see

Section 1) that for u ∈ C1 and ~F ∈ C1, let D ≡ |∇u + ~F |, and if D 6= 0, we let N

≡ Nu
~F
≡ ∇u+~F

|∇u+~F | . Hence N
⊥ ≡ Nu,⊥

~F
= D−1 (uy + F2, −ux − F1) where we write

~F = (F1, F2). Recall the definition of rot ~F as follows:

rot ~F = (F2)x − (F1)y.

It is easy to see that div (DN⊥) = rot ~F if u ∈ C2. Note that rot ~F = 2 for ~F =
(−y, x). For u ∈ C1, we have the following result.
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Lemma 3.1. Let u : Ω ⊂ R2 → R be a C1 smooth function such that D 6= 0 on

Ω (i.e., Ω is a nonsingular domain) with ~F ∈ C1(Ω). Let Ω′′ ⊂⊂ Ω be a bounded
Lipschitzian domain. Then for ϕ ∈ C1(Ω) there holds

(3.18)

∮

∂Ω′′

ϕDN⊥ · ν =

∫

Ω′′

{(∇ϕ) · (DN⊥) + ϕrot ~F }.

Proof. Write DN⊥ = (uy, −ux) + (F2, −F1). Let vε denote a mollifier of v. Observe
that (uy)ε = (uε)y, (ux)ε = (uε)x. It follows that

div((uy)ε, (−ux)ε) = div((uε)y ,−(uε)x)(3.19)

= (uε)yx − (uε)xy = 0.

Now using the divergence theorem, we compute
∮

∂Ω′′

ϕ[((uy)ε, (−ux)ε) + (F2,−F1)] · ν(3.20)

=

∫

Ω′′

(∇ϕ) · [((uy)ε, (−ux)ε) + (F2,−F1)] + ϕdiv[((uy)ε, (−ux)ε) + (F2,−F1)]

=

∫

Ω′′

(∇ϕ) · [((uy)ε, (−ux)ε) + (F2,−F1)] + ϕrot ~F

by (3.19) and noting that div(F2,−F1) = rot ~F . Taking the limit ε → 0 in (3.20)
gives (3.18).

�

Proof. (of Theorem B′) Since N⊥ ∈ C0(Ω), we can choose r2 > 0 such that Br2(p)
⊂⊂ Ω and

(3.21) |N⊥(q)−N⊥(p)| ≤ 1

2

for all q ∈ Br2(p). Let Γ1, Γ2 be two characteristic curves passing through p. For
j = 1, 2, let Γj = Γ+

j ∪ Γ−
j , Γ

+
j ∩ Γ−

j = {p} where Γ+
j (Γ−

j , resp.) is the part

of Γj emanating from p along the +N⊥ (−N⊥, resp.) direction.Then for any r, 0

≤ r < r2, there exist p±j,r, j = 1, 2 such that ∂Br(p) ∩ Γ±
j = {p±j,r}. Suppose the

conclusion is false. Then without loss of generality, we may assume there exists r4,
0 < r4 < r2 such that p+1,r4 6= p+2,r4 and there exists a unique r3 depending on r4
only such that 0 ≤ r3 < r4 and p+1,r3 = p+2,r3 (if r3 = 0, p+1,r3 = p+2,r3 = p), p+1,r 6=
p+2,r for r3 < r < r4. Let ℓr denote the shortest arc of ∂Br(p) connecting p

+
1,r and

p+2,r. For perhaps smaller r3, r4 we have

(3.22) N⊥(p) · ∂r(q) ≥
3

4

where q ∈ ℓr and ∂r(q) = q−p
|q−p| is the unit outer normal to ℓr for r3 < r < r4. It

then follows from (3.21) and (3.22) that

(3.23)
1

4
≤ N⊥ · ∂r ≤ 1 on ℓr
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for r3 < r < r4. Let Ωr be the domain surrounded by Γ+
i ∩ (Br(p)\B̄r3(p)), i = 1,

2, and ℓr with vertices p3 (= p+1,r3 = p+2,r3), p
+
2,r, and p

+
1,r. Let

(3.24) h(r) ≡
∮

∂Ωr

DN⊥ · ν.

Observe that N⊥ · ν = 0 along Γ1 and Γ2 and ν = ∂r on ℓr. It follows from (3.23)
and (3.24) that

(3.25)
1

4
C1|ℓr| ≤ h(r) ≤ C2|ℓr|

where |ℓr| denotes the arc length of ℓr, C1 ≡ minB̄r4 (p)
D > 0 since D > 0 on the

nonsingular domain Ω, and C2 ≡ maxB̄r4
(p)D. On the other hand, we compute

from (3.24) and (3.18) with ϕ ≡ 1 that

h(r) ≡
∮

∂Ωr

DN⊥ · ν =

∫

Ωr

rot ~F

and hence

(3.26) h′(r) =

∫

ℓr

rot ~F ≤ C3|ℓr| ≤
4C3

C1
h(r)

by (3.25) for r3 < r < r4, where |rot ~F | ≤ C3 ≡ maxB̄r4(p)
|rot ~F |. We can therefore

have

d

dr
[h(r)e

− 4C3r
C1 ](3.27)

= [h′(r) − 4C3

C1
h(r)]e

− 4C3r
C1 ≤ 0

by (3.26). It follows from (3.27) that

h(r)e
− 4C3r

C1 ≤ h(r3)e
− 4C3r3

C1 = 0.

Therefore h(r) = 0 for r3 < r < r4 and then from (3.25) we have |ℓr| = 0 for r3 <
r < r4 which implies that p+1,r = p+2,r for r3 < r < r4, a contradiction.

�

Note that on the boundary of any Lipschitzian domain Ω′ ⊂⊂ Ω (Ω being non-

singular), N⊥ · ν = N · ( dxdσ ,
dy
dσ ) where σ is the unit-speed parameter and the unit

tangent ( dxdσ ,
dy
dσ ) is the rotation of the unit outer normal ν by π

2 degrees. It follows

that for ~F = (−y, x), DN⊥ · ν dσ = DN · (dx, dy) = (ux − y) dx + (uy +x) dy =
du + xdy − ydx which is the standard contact form of R3, restricted to the surface
(x, y, u(x, y)).

Example 3.2. We will define a family of curves to be the characteristic curves
(for N⊥ being its unit tangent vector field). Let p0 = (x0, y0) in the xy-plane.
Case 1: For y0 − x40 ≥ 0, we take y = x4 + (y0 − x40) to be the characteristic curve
passing through p0. Case 2: For y0 − x40 < 0 and y0 > 0 (or equivalently, 0 < y0

x4
0
<

1 and x0 6= 0), we take y = y0

x4
0
x4 to be the characteristic curve passing through p0.

Case 3: For y0 ≤ 0, we take y = y0 to be the characteristic curve passing through p0.
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Note that there are infinite number of the above-mentioned (characteristic) curves
passing through the origin (0, 0) (see Figure 3.2 below).

y

x

y = x4 + C1, C1 > 0

y = x4

y = ax4, 0 < a < 1

y = C2, C2 < 0

Figure 3.2

We compute the curvature of this family of curves as follows. For case 1, the
curvature at p0 equals 12x20(1 + 16x60)

−3/2. For case 2, the curvature at p0 equals
12( y0

x4
0
)x20[1 + 16( y0

x4
0
)2x60]

−3/2. For case 3, the curvature at p0 vanishes. According

to Theorem A the curvature of a characteristic curve is −H (with this value (1.7)
holds since N = (cos θ, sin θ) is C1 smooth away from (0, 0)). So we can easily
verify that H ∈ C0. On the other hand, we observe that

H(x, y)−H(x, 0)

y
= −12x2(1 + 16x6)−3/2 − 0

x4
→ −∞

as x→ 0 for y = x4. ThereforeH /∈ C0,1 in a neighborhood of (0, 0). Altogether this
is a counterexample to Theorem B (b) if H is only continuous, but not Lipschitzian.

4. Characteristic coordinates

In this section we will introduce a system of characteristic coordinates (see Def-
inition 1.2) for later use.

Theorem 4.1. Let Ω be a domain of R2 and H ∈ C0(Ω). Let θ ∈ C0(Ω) satisfy
(1.7), i.e.

(4.1)

∫

Ω

(cos θ, sin θ) · ∇ϕ+

∫

Ω

Hϕ = 0

for all ϕ ∈ C∞
0 (Ω). Then given a point p0 ∈ Ω, there exist a small neighborhood Ω′

of p0 and a function s ∈ C1(Ω′) such that ∇s = fN⊥ for some positive function
f ∈ C0(Ω′) and the curves defined by s = c, constants, are seed curves . Moreover,
Nf exists and is continuous. In fact, f satisfies the following equation:

(4.2) Nf + fH = 0.
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Proof. Without loss of generality we may assume p0 = (0, 0), the origin, and θ(p0)
= π

2 . That is, N ≡ (cos θ, sin θ) = (0, 1) at p0. Let Υ denote the x-axis, i.e., Υ =
{ (x, y) ∈ Ω | y = 0 }. Since θ is continuous, we can find a small ball Br1(p0) ⊂⊂
Ω of radius r1 > 0 such that for any point q ∈ Br1(p0), |θ(q) − π

2 | << 1 and there
exists a seed curve passing through q and intersecting Υ at p. Now we define s :
Br1(p0) → R by

(4.3) s(q) = s(p) = x if p = (x, 0).

Then s is well defined by the uniqueness of seed curves according to Theorem B
(a). We can find smaller positive numbers r3 < r2 < r1 such that Br3(p0) ⊂⊂
(−r2, r2) × (−r2, r2) ⊂⊂ Br1(p0) and for c ∈ R, if {s = c} ∩ Br3(p0) 6= φ, then
{s = c} ∩ (−r2, r2) × (−r2, r2) is a graph, denoted by (xc(y), y), for −r2 < y < r2
(see Figure 4.1).

b

b

N

b

b

N

∼

Ω

(xs1 (y), y)

s1

(xs2 (y), y)

s2
x

y

p0 = (0, 0)

y

Figure 4.1

It follows that for c1 < c2

s−1((c1, c2)) ∩Br3(p0)

= [
⋃

c1<c<c2

{(xc(y), y)| − r2 < y < r2}] ∩Br3(p0)

is open. So s ∈ C0(Br3(p0)) and xc4(y) > xc3(y) if and only if c4 > c3. Next we
are going to prove s ∈ C1. Given a point (x1, y) ∈ Br3(p0), let s1 = s(x1, y). Then
x1 = xs1(y) by the definition of xc(y). Similarly for (x2, y) near (x1, y) and x2
> x1, let s2 = s(x2, y). Then x2 = xs2(y) and s2 > s1. We want to compute the
difference quotient

(4.4)
s(x2, y)− s(x1, y)

x2 − x1
=
s2 − s1
x2 − x1

=
s2 − s1

xs2(y)− xs1(y)
.

Now let

(4.5) A(y) ≡
∫ xs2(y)

xs1(y)

sin θ(x, y)dx.
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We want to know the relation between A(y) and A(0). Without loss of generality

we may assume that y > 0. Let Ω̃ ≡ { (ς, η) | 0 < η < y, xs1(η) < ς < xs2(η)}.
Recall that (2.3) (which is obtained from (4.1)) reads

(4.6)

∫

∂Ω̃

N · ν =

∫

Ω̃

H.

Observe that ν = ±N⊥ along the seed curves {s = sj}, j = 1, 2 while ν = (0, 1)
on { (x, y) | xs1 (y) < x < xs2(y)} and ν = (0, −1) on { (x, 0) | s1 < x < s2}. It
follows from (4.6) that (recall that N = (cos θ, sin θ))

(4.7)

∫ xs2(y)

xs1(y)

sin θ(x, y)dx+

∫ s2

s1

(− sin θ(x, 0))dx =

∫ y

0

(

∫ xs2(η)

xs1(η)

H(ς, η)dς)dη.

Then by (4.7) we deduce that

(4.8) A′(y) =

∫ xs2(y)

xs1(y)

H(x, y)dx.

By the mean value theorem, there exist ςj = ςj(y, s1, s2), j = 1, 2 such that xs1(y)
< ςj < xs2(y) and

A(y) = (xs2(y)− xs1(y)) sin θ(ς1, y)(4.9)

A′(y) = (xs2(y)− xs1(y))H(ς2, y)

in view of (4.5) and (4.8). By (4.9) we obtain

(4.10)
d logA(y)

dy
=
A′(y)

A(y)
=

H(ς2, y)

sin θ(ς1, y)

(noting that sin θ is close to 1 near p0 where θ equals π
2 by assumption). Integrating

both sides of (4.10) gives

(4.11)
A(y)

A(0)
= exp

∫ y

0

H(ς2, η)

sin θ(ς1, η)
dη.

Observe that A(0) = (s2 − s1) sin θ(ς1, 0) by (4.9). It then follows from (4.11) that

(4.12)
s2 − s1

xs2(y)− xs1(y)
=

sin θ(ς1(y), y)

sin θ(ς1(0), 0)
exp(−

∫ y

0

H(ς2(η), η)

sin θ(ς1(η), η)
dη).

We have omitted the dependence of s1 and s2 for the expression of ς1 and ς2 in
(4.12). Combining (4.4) and (4.12) and taking the limit x2 → x1, we finally obtain

(4.13)
∂s

∂x
(x1, y) =

sin θ(x1, y)

sin θ(s1, 0)
exp(−

∫ y

0

H(xs1(η), η)

sin θ(xs1 (η), η)
dη).

Here we have applied Lebesgue’s Dominated Convergence Theorem since H(ς2(η),η)
sin θ(ς1(η),η)

is uniformly bounded and ςj converges to x
s1 pointwise. Let τ denote the arc length

(unit-speed) parameter of the seed curve {s = s1}. By (4.3), the definition of s, we
have ∂s

∂τ = 0. Note that Ndτ = (dx, dy) along {s = s1} = { (xs1 (y), y) }. It then
follows that

∂s

∂y
(x1, y) = − ∂s

∂x
(x1, y)

dxs1(y)

dy
= − ∂s

∂x
(x1, y)

cos θ(x1, y)

sin θ(x1, y)
(4.14)

= f(x1, y)(− cos θ(x1, y))
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by (4.13), where

(4.15) f(x1, y) ≡
1

sin θ(s1, 0)
exp(−

∫ y

0

H(xs1(η), η)

sin θ(xs1 (η), η)
dη).

Suppose τ = 0 at (s1, 0) and τ = l at (x1, y). Recall that Ndτ = (dx, dy) and
hence sin θ(xs1 (η), η) dτ = dη. So we can rewrite (4.15) as

(4.16) f(x1, y) = f(s1, 0) exp(−
∫ l

0

H(Λ(s1,0)(τ ))dτ )

where Λ(s1,0) denotes the seed curve {s = s1} from (s1, 0) to (x1, y), parametrized

by τ . Since s ∈ C0, H(xs1 (η),η)
sin θ(xs1(η),η) is uniformly bounded, and H(xs2 (η),η)

sin θ(xs2(η),η) converges

to H(xs1 (η),η)
sin θ(xs1(η),η) pointwise as x2 → x1, we can apply Lebesgue’s Dominated Con-

vergence Theorem to conclude that f is continuous in x1 in view of (4.15). On the
other hand, f is continuous along the seed curve in view of (4.16). Together we
have f ∈ C0 near p0. From (4.14), (4.13), and (4.15), we have proved s ∈ C1 and

∇s = f(sin θ,− cos θ) = fN⊥

with f > 0 and f ∈ C0 near p0.Moreover, recall that (Nf)(x1, y)≡ df(Λ(s1,0)(τ ))/dτ
at τ = l (if exists). Now (4.2) easily follows from (4.16).

�

Note that we do not need ”u” (solution to divNu = H, see (1.3)) to construct s
in Theorem 4.1.

Theorem 4.2. Let u : Ω ⊂ R2 → R be a C1 smooth function and ~F ∈ C1(Ω)

such that D ≡ |∇u + ~F | 6= 0 on Ω (i.e., Ω is a nonsingular domain). Suppose
we have uniqueness of characteristic curves passing through a common point. Then
given a point p0 ∈ Ω, there exist a neighborhood Ω′ of p0 and a function t ∈ C1(Ω′)
such that ∇t = gDN(u) for some positive g ∈ C0(Ω′) and the curves defined by t
= c, constants, are characteristic curves . Moreover, N⊥g exists and is continuous.
In fact, g satisfies the following equation:

(4.17) N⊥g +
(rot ~F )g

D
= 0.

Proof. The idea similar to that in the proof of Theorem 4.1 works by switching the
role of N and N⊥. Let us sketch a proof. Without loss of generality we may assume
p0 = (0, 0), the origin, and θ(p0) =

π
2 . That is, N

⊥ ≡ (sin θ, − cos θ) = (1, 0) at p0.
Let Υ denote the y-axis. Since θ is continuous, we can find a small ball Br1(p0) of
radius r1 > 0 such that for any point q ∈ Br1(p0) there exists a characteristic curve
passing through q and intersecting with Υ at p. Now we define t : Br1(p0) → R by

(4.18) t(q) = t(p) = y if p = (0, y).

Then t is well defined by the uniqueness of characteristic curves according to the
assumption. We can find smaller positive numbers r3 < r2 < r1 such that Br3(p0)
⊂⊂ (−r2, r2) × (−r2, r2) ⊂⊂ Br1(p0) and for c ∈ R, if {t = c} ∩ Br3(p0) 6= φ, then
{t = c} ∩ (−r2, r2) × (−r2, r2) is a graph, denoted by (x, yc(x)), for −r2 < x <
r2. By a similar argument as in the proof of Theorem 4.1 we can prove that t is
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C0 in Br3(p0). Given a point (x, y1) ∈ Br3(p0), let t1 = t(x, y1). Then y1 = yt1(x).
Similarly for (x, y2) near (x, y1) and y2 > y1, let t2 = t(x, y2). Then y2 = yt2(x)
and t2 > t1. We want to compute

t(x, y2)− t(x, y1)

y2 − y1
=

t2 − t1
y2 − y1

=
t2 − t1

yt2(x) − yt1(x)

Now let

(4.19) B(x) ≡
∫ yt2 (x)

yt1 (x)

D(x, y) sin θ(x, y)dy.

We want to know how B(x) is related to B(0). Without loss of generality we may
assume that x > 0. Instead of (4.6) we have

(4.20)

∮

∂Ω̃

DN⊥ · ν =

∫

Ω̃

rot ~F

by letting ϕ = 1 in (3.18), where Ω̃ ≡ { (ς, η) | 0 < ς < x, yt1(ς) < η < yt2(ς)}.
Observe that ν = ±N along the characteristic curves {t = tj}, j = 1, 2 while ν =
(1, 0) on { (x, y) | yt1(x) < y < yt2(x)} and ν = (−1, 0) on { (0, y) | t1 < y < t2}.
It follows from (4.20) that (recall that N⊥ = (sin θ, − cos θ))

∫ yt2 (x)

yt1(x)

D(x, y) sin θ(x, y)dy +

∫ t1

t2

(−D(0, y) sin θ(0, y))dy(4.21)

=

∫ x

0

(

∫ yt2(ς)

yt1(ς)

rot ~F dη)dς.

Then by (4.21) and (4.19) we deduce that

(4.22) B′(x) =

∫ yt2(x)

yt1(x)

rot ~F (x, y)dy = rot ~F (x, η′)(yt2(x)− yt1(x)).

and

(4.23) B(x) = (yt2(x) − yt1(x))D(x, η) sin θ(x, η)

for η′ = η′(x, t1, t2), η = η(x, t1, t2) such that yt1(x) < η, η′ < yt2(x) by the mean
value theorem. By (4.22) and (4.23) we obtain

(4.24)
d logB(x)

dx
=
B′(x)

B(x)
=

rot ~F (x, η′)

D(x, η) sin θ(x, η)

(noting that sin θ is close to 1 near p0 where θ equals π
2 by assumption). Integrating

both sides of (4.24) gives

(4.25)
B(x)

B(0)
= exp

∫ x

0

rot ~F (ς, η′)

D(ς, η) sin θ(ς, η)
dς.

Observe that B(0) = (t2 − t1) D(0, η(0, t1, t2)) sin θ(0, η(0, t1, t2)) by (4.23). It
then follows from (4.25) that

t2 − t1
yt2(x) − yt1(x)

(4.26)

=
D(x, η(x)) sin θ(x, η(x))

D(0, η(0)) sin θ(0, η(0))
exp(−

∫ x

0

rot ~F (ς, η′(ς))

D(ς, η(ς)) sin θ(ς, η(ς))
dς).
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We have omitted the dependence of t1 and t2 for the expression of η and η′ in
(4.26). Combining (4.4) with s replaced by t and (4.26) and taking the limit y2 →
y1, we finally obtain

(4.27)
∂t

∂y
(x, y1) =

D(x, y1) sin θ(x, y1)

D(0, t1) sin θ(0, t1)
exp(−

∫ x

0

rot ~F (ς, yt1(ς))

D(ς, yt1(ς)) sin θ(ς, yt1(ς))
dς).

Here we have used Lebesgue’s Dominated Convergence Theorem since rot~F (ς,η′(ς))
D(ς,η(ς)) sin θ(ς,η(ς))

is uniformly bounded and both η′ and η converge to yt1 pointwise. Let σ denote the
arc length (unit-speed) parameter of the characteristic curve {t = t1}. By (4.18),
the definition of t, we have ∂t

∂σ = 0. Note that N⊥dσ = (dx, dy) along {t = t1} =
{ (x, yt1(x)) }. It then follows that

∂t

∂x
(x, y1) = − ∂t

∂y
(x, y1)

dyt1(x)

dx
= − ∂t

∂y
(x, y1)(−

cos θ(x, y1)

sin θ(x, y1)
)(4.28)

= g(x, y1)D(x, y1) cos θ(x, y1)

by (4.27), where

(4.29) g(x, y1) ≡
1

D(0, t1) sin θ(0, t1)
exp(−

∫ x

0

rot ~F (ς, yt1(ς))

D(ς, yt1(ς)) sin θ(ς, yt1(ς))
dς).

Suppose σ = 0 at (0, t1) and σ = l at (x, y1). Recall that N⊥dσ = (dx, dy) and
hence sin θ(ς, yt1(ς)) dσ = dς. So we can rewrite (4.29) as

(4.30) g(x, y1) = g(0, t1) exp(−
∫ l

0

rot ~F (Γ(0,t1)(σ))

D(Γ(0,t1)(σ))
dσ)

where Γ(0,t1) denotes the characteristic curve {t= t1} from (0, t1) to (x, y1), parametrized

by σ. Since t ∈ C0, rot~F (ς,yt1(ς))
D(ς,yt1(ς)) sin θ(ς,yt1(ς)) is uniformly bounded and yt2 converges

to yt1 pointwise as y2 → y1, we can apply Lebesgue’s Dominated Convergence The-
orem to (4.29) and conclude that g is continuous in y1. On the other hand, g is
continuous along the characteristic curve in view of (4.30). Together we have g
∈ C0 near p0 since the characteristic curves are transverse to the y-axes {x = c,
constants} near p0. From (4.28), (4.27), and (4.29), we have proved t ∈ C1 and

∇t = gD(cos θ, sin θ) = gDN

with g > 0 and g ∈ C0 near p0.Moreover, recall that (N⊥g)(x, y1)≡ dg(Γ(0,t1)(σ))/dσ
at σ = l (if exists). Now (4.17) easily follows from (4.30).

�

Proof. (of Theorem C) The existence of s, t and (1.9), (1.10) follow from Theorem
4.1 and Theorem 4.2 in view of Theorem 3.2. By (1.9) and (1.10) we learn that
the Jacobian of Ψ does not vanish. So by the inverse function theorem Ψ is a C1

diffeomorphism near p0 and (1.11) follows from (1.9).
�
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Proof. (of Corollary C.1) Observe that by (1.6) we have

(4.31) y′(x) = −cos θ

sin θ

(Recall that we have assumed that the characteristic curve Γ is a piece of a C1

smooth graph (x, y(x)) so that sin θ > 0 without loss of generality). Since sin θ >
0, we obtain from (4.31) that

(4.32)
y′(x)

√

1 + (y′(x))2
= − cos θ.

In the proof of Theorem A, we have shown that the left-hand side of (4.32) is C1

smooth in x. It follows that θ is also C1 smooth in x and by (2.9) we obtain

(4.33) (sin θ)θx = −H.
Recall that σ denotes the arc-length parameter. Along Γ we have

(4.34)
dθ

dσ
= θx

dx

dσ
= θx sin θ

in view of (1.6). From (1.11) we have (Ψ∗) ds = fdσ along Γ which is defined by t
= constant. Hence we can compute

θs =
1

f

dθ

dσ
= −H

f

by (4.34) and (4.33).
�

5. Regularity of θ and characteristic and seed curves

In Section 4, for a C1 smooth solution u to (1.3) with ~F ∈ C1(Ω), H ∈ C0(Ω),
and Ω nonsingular, we can find locally C1 smooth characteristic coordinates s,
t, that is, a local coordinate change Ψ : (x, y) → (s, t) which is a C1 smooth
diffeomorphism such that {s = constants} are seed curves and {t = constants} are
characteristic curves. In this section we will prove that if N(H) exists and is in
C0, then θ is C1 smooth with respect to x, y coordinates. This is equivalent to
proving that θ is C1 smooth with respect to s, t coordinates since Ψ is a C1 smooth
diffeomorphism. So we consider only s, t coordinates throughout this section.

Definition 5.1. Let Ω1 and Ω be domains of R2 such that Ω1 ⊂⊂ Ω. We call
s, t C1 coordinates of Ω̄1 if there exists a domain Ω2 such that Ω1 ⊂⊂ Ω2 ⊂ Ω
and s, t are C1 coordinates of Ω2, i.e., the coordinate change Ψ : (x, y) → (s, t)
is a C1 smooth diffeomorphism onto Ω2.

Lemma 5.1. Let Ω1 and Ω be domains of R2 such that Ω1 ⊂⊂ Ω. Let s, t be
C1 coordinates of Ω̄1 and Ω1 = (0, s̃) × (0, t̃) for some s̃, t̃ > 0. Suppose h ∈
C0(Ω), and for points in Ω̄1, h is C1 smooth in s and hs ≡ ∂h

∂s is C1 smooth in t.

Let (s2, t2), (s1, t2), (s2, t1), (s1, t1) ∈ Ω̄1 with t2 6= t1.
(a) Let M > 0 be a given constant. Let s0 = min{s̃, M

2 (maxΩ̄1
|(hs)t|+ 1)−1}.

Then if h(s1,t2)−h(s1,t1)
t2−t1

> M > 0(or < −M, resp.), then h(s2,t2)−h(s2,t1)
t2−t1

> M
2 (<

−M
2 , resp.) for |s2 − s1| ≤ s0.
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(b) Given s′0, 0 ≤ s′0 ≤ s̃. Let M0 = 2s′0 maxΩ̄1
|(hs)t|. Then for any M ≥ M0,

|s2 − s1| ≤ s′0, if
h(s1,t2)−h(s1,t1)

t2−t1
> M (or < −M, resp.), then h(s2,t2)−h(s2,t1)

t2−t1
>

M
2 (< −M

2 , resp.).

Recall that by h being C1 smooth in s we mean that hs ≡ ∂h
∂s exists and is

continuous. Since we only assume that h is C1 smooth in s, we need to consider
the behavior of h with respect to t in order to prove h ∈ C1 for later applications.

Therefore we study the properties of difference quotient h(s,t2)−h(s,t1)
t2−t1

.

Proof. We can write

(5.1) h(s2, t)− h(s1, t) =

∫ s2

s1

hs(s, t)ds

by the fundamental theorem of calculus. With t = t2 and t1 in (5.1) respectively,
we then substract one resulting formula from the other to get

(5.2)
h(s2, t2)− h(s2, t1)

t2 − t1
− h(s1, t2)− h(s1, t1)

t2 − t1
=

∫ s2

s1

hs(s, t2)− hs(s, t1)

t2 − t1
ds.

By the mean value theorem we can find t′ = t′(s) between t1 and t2 such that

(5.3)
hs(s, t2)− hs(s, t1)

t2 − t1
= (hs)t(s, t

′)

since hs is C1 smooth in t by assumption. Substituting (5.3) into (5.2), we obtain

(5.4)
h(s2, t2)− h(s2, t1)

t2 − t1
− h(s1, t2)− h(s1, t1)

t2 − t1
=

∫ s2

s1

(hs)t(s, t
′(s))ds.

From (5.4) we can easily deduce (a) and (b).
�

Lemma 5.2. Suppose we have the same situation as in Lemma 5.1.
(a) Given ε > 0 we can find δ0 = δ0((hs)t|Ω̄1

, ε) > 0 such that for p, q ∈ Ω̄1,
|p− q| < δ0, there holds

(5.5) |(hs)t(p)− (hs)t(q)| < ε.

(b) Let (s2, t3), (s1, t3), (s2, t2), (s1, t2), (s2, t1), (s1, t1) ∈ Ω̄1 with t3 6= t1, t2
6= t1. Given ε > 0. Then for |t3 − t1| + |t2 − t1| < δ0 (as in (a)), there holds

|[h(s2, t3)− h(s2, t1)

t3 − t1
− h(s2, t2)− h(s2, t1)

t2 − t1
](5.6)

−[
h(s1, t3)− h(s1, t1)

t3 − t1
− h(s1, t2)− h(s1, t1)

t2 − t1
]|

≤ |s2 − s1|ε.

Proof. (a) follows by observing that (hs)t is uniformly continuous on Ω̄1 since it is
continuous on Ω̄1 and Ω̄1 is compact. For the proof of (b), following the proof of
Lemma 5.1, similarly to (5.4), we can find t′′ between t1 and t3 such that

(5.7)
h(s2, t3)− h(s2, t1)

t3 − t1
− h(s1, t3)− h(s1, t1)

t3 − t1
=

∫ s2

s1

(hs)t(s, t
′′)ds.
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Substracting (5.4) from (5.7), we can then estimate

|[h(s2, t3)− h(s2, t1)

t3 − t1
− h(s1, t3)− h(s1, t1)

t3 − t1
]

−[
h(s2, t2)− h(s2, t1)

t2 − t1
− h(s1, t2)− h(s1, t1)

t2 − t1
]|

≤
∫ s2

s1

|(hs)t(s, t′′)− (hs)t(s, t
′)|ds

≤ |s2 − s1|ε
by (5.5) since |(s, t′′) − (s, t′)| = |t′′ − t′| ≤ |t3 − t1| + |t2 − t1| ≤ δ0.

�

Lemma 5.3. Let u : Ω ⊂ R2 → R be a C1 smooth solution to (1.3) with ~F
∈ C1(Ω) and H ∈ C0(Ω) such that Ω is nonsingular . Let p0 ∈ Ω and θ (defined
locally) ∈ C0 such that (cos θ, sin θ) = Nu

~F
with θ(p0) =

π
2 . Then

(a) there exists a domain Ω1 such that p0 ∈ Ω1 ⊂⊂ Ω, Ω̄1 has C1 coordinates
s, t, Ω1 = (0, s̃) × (0, t̃) in s, t coordinates, and |θ − π

2 | << 1 in Ω̄1.

(b) Take s, t coordinates as in (a). Suppose H is C1 smooth in t. Then there

exists a constant M = M(s̃, maxΩ̄1
|yt|, maxΩ̄1

|f |, maxΩ̄1
| ftf2 |, maxΩ̄1

|(θs)t|) > 0

such that

(5.8) | θ(s, t2)− θ(s, t1)

t2 − t1
|≤M

for any (s, t2), (s, t1) ∈ Ω̄1 and t2 6= t1.

Proof. (a) follows from Theorem C and θ ∈ C0. To prove (b), by (1.11) we first
rewrite the equations (1.6) of the characteristic curves in (s, t) coordinates:

dx(s, t)

ds
=

sin θ(s, t)

f(s, t)
,(5.9)

dy(s, t)

ds
= −cos θ(s, t)

f(s, t)
.

From the second formula of (5.9) we have, for 0 ≤ s1, s2 ≤ s̃, 0 ≤ t1, t2 ≤ t̃ and t2
6= t1,

y(s2, t2)− y(s2, t1)

t2 − t1
− y(s1, t2)− y(s1, t1)

t2 − t1
(5.10)

=
y(s2, t2)− y(s1, t2)

t2 − t1
− y(s2, t1)− y(s1, t1)

t2 − t1

=

∫ s2

s1

1

t2 − t1
[
cos θ(s, t1)

f(s, t1)
− cos θ(s, t2)

f(s, t2)
]ds

=

∫ s2

s1

(A+B)ds.
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where

A =
−1

f(s, t2)

cos θ(s, t2)− cos θ(s, t1)

t2 − t1
,(5.11)

B = −cos θ(s, t1)

t2 − t1
[

1

f(s, t2)
− 1

f(s, t1)
].

Observe that

(5.12) A =
sin θ′

f(s, t2)

θ(s, t2)− θ(s, t1)

t2 − t1

where θ′ is a number between θ(s, t2) and θ(s, t1) and

(5.13) B =
cos θ(s, t1)

f2(s, t′)

∂f

∂t
(s, t′)

where t′ is a number between t2 and t1 by the mean value theorem (noting that f
> 0 is C1 smooth in t by Theorem C). Since |θ − π

2 | << 1 in Ω̄1, we have

(5.14)
sin θ′

f(s, t2)
≥ C1 ≡ 1

2maxΩ̄1
|f | , | B |≤ C2 ≡ max

Ω̄1

| ft
f2

|

in Ω̄1.
On the other hand, we have

∣

∣

∣

∣

y(s2, t2)− y(s2, t1)

t2 − t1
− y(s1, t2)− y(s1, t1)

t2 − t1

∣

∣

∣

∣

(5.15)

≤ 2max
Ω̄1

|yt| ≤ C3 ≡ 2max
Ω̄1

|yt|+ 1

since y is C1 smooth on Ω̄1. Since θs = −H
f (see Corollary C.1), (θs)t = −(Hf )t

∈ C0 by the assumption on H and f being C1 in t due to Theorem C. So the
assumptions of Lemma 5.1 are satisfied for h = θ. Take s′0 = s̃ in Lemma 5.1 (b).
Since 0 ≤ s1, s2 ≤ s̃, we have |s2 − s1| ≤ s̃. Let M = max{M0 ≡ 2s̃maxΩ̄1

|(θs)t|,
2(2C3+s̃C2)

s̃C1
}. Suppose (5.8) fails to hold. Then we can find (s1, t2), (s1, t1) ∈ Ω̄1,

t2 6= t1, such that

θ(s1, t2)− θ(s1, t1)

t2 − t1
> M (or < −M, resp.).

Applying Lemma 5.1(b) to h = θ gives

(5.16)
θ(s2, t2)− θ(s2, t1)

t2 − t1
>
M

2
(or < −M

2
, resp.).

for all s2 ∈ [0, s̃]. From (5.10), (5.15), (5.14), and (5.16), we estimate

C3 ≥ |y(s
′
2, t2)− y(s′2, t1)

t2 − t1
− y(s1, t2)− y(s1, t1)

t2 − t1
|(5.17)

=

∣

∣

∣

∣

∣

∫ s′2

s1

(A+B)ds

∣

∣

∣

∣

∣

> |s′2 − s1|(
M

2
C1 − C2) ≥

s̃

2
(
M

2
C1 − C2) ≥ C3

for some s′2, 0 ≤ s′2 ≤ s̃, satisfying |s′2 − s1| ≥ s̃
2 . We have reached a contradiction.

Therefore (5.8) holds.
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�

The following lemma should be a basic fact in calculus. For completeness we
give a proof.

Lemma 5.4. Let w be a real C1 smooth function of (s, t) ∈ Ω ⊂ R2. Suppose
further that (ws)t exists and is continuous. Then (wt)s exists and equals (ws)t
(hence is continuous).

Proof. Take (s0, t0) ∈ Ω. Then there exists r0 > 0 such that Br0((s0, t0)) ⊂ Ω. For
(s1, t1) ∈ Br0((s0, t0)) we write

w(s1, t1)− w(s0, t1) =

∫ s1

s0

ws(s, t1)ds(5.18)

w(s1, t0)− w(s0, t0) =

∫ s1

s0

ws(s, t0)ds.

Take the difference of the two equalities in (5.18) divided by t1 − t0. Let t1 approach
t0 in the resulting formula to get

(5.19) wt(s1, t0)− wt(s0, t0) =

∫ s1

s0

(ws)t(s, t0)ds.

Now dividing (5.19) by s1 − s0 and applying the mean value theorem to (ws)t, we
obtain

wt(s1, t0)− wt(s0, t0)

s1 − s0
=

1

s1 − s0

∫ s1

s0

(ws)t(s, t0)ds(5.20)

= (ws)t(s̃, t0)

for s0 < s̃ < s1. Letting s1 tend to s0 in (5.20), we obtain the existence of
(wt)s(s0, t0) and

(wt)s(s0, t0) = (ws)t(s0, t0)

since (ws)t is continuous.
�

Proof. (of Theorem D) Given a point p0 ∈ Ω, we may assume θ(p0) =
π
2 without

loss of generality. By Theorem C and θ (defined locally) ∈ C0, we can choose a
domain Ω1, p0 ∈ Ω1 ⊂⊂ Ω, such that Ω̄1 has C1 coordinates s, t, Ω1 = (0, s̃) ×
(0, t̃) in s, t coordinates, and |θ − π

2 | << 1 in Ω̄1. Since N = gD ∂
∂t in view of (1.11),

we have Ht =
1
gDN(H) ∈ C0. It follows from Lemma 5.3 (b) that

| θ(s, t2)− θ(s, t1)

t2 − t1
|≤M =M(s̃, max

Ω̄1

|yt|, max
Ω̄1

|f |, max
Ω̄1

| ft
f2

|, max
Ω̄1

|(θs)t|)

for any (s, t2), (s, t1) ∈ Ω̄1 and t2 6= t1 (see (5.8)). We claim that for (s1, t), (s1,
t1) ∈ Ω1 and t 6= t1,

θ(s1, t)− θ(s1, t1)

t− t1
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is a Cauchy sequence as t → t1 (if so, ∂θ
∂t exists at (s1, t1)). If not, there exists κ

> 0 such that for any positive integer n, there exist t′′n, t
′
n ∈ (0, t̃), t′′n 6= t1, t

′
n 6= t1

satisfying |t′′n − t1| + |t′n − t1| ≤ min(t̃, 1
n ) and

(5.21)
θ(s1, t

′′
n)− θ(s1, t1)

t′′n − t1
− θ(s1, t

′
n)− θ(s1, t1)

t′n − t1
> κ (or < −κ, resp.).

Take h = θ and ε = κ
2s̃ in Lemma 5.2. Then there exists 0 < δ0 = δ0((θs)t|Ω̄1

, ε)

≤ t̃ such that

|(θ(s2, t
′′
n)− θ(s2, t1)

t′′n − t1
− θ(s2, t

′
n)− θ(s2, t1)

t′n − t1
)

−(
θ(s1, t

′′
n)− θ(s1, t1)

t′′n − t1
− θ(s1, t

′
n)− θ(s1, t1)

t′n − t1
)|

≤ |s2 − s1|ε ≤
κ

2

for 0 ≤ s2 ≤ s̃, |t′′n − t1| + |t′n − t1| ≤ δ0 (see (5.6)). So if we require t′′n 6= t1, t
′
n

6= t1 satisfying |t′′n − t1| + |t′n − t1| ≤ min(t̃, 1
n , δ0), we can then estimate

θ(s2, t
′′
n)− θ(s2, t1)

t′′n − t1
− θ(s2, t

′
n)− θ(s2, t1)

t′n − t1
(5.22)

≥ θ(s1, t
′′
n)− θ(s1, t1)

t′′n − t1
− θ(s1, t

′
n)− θ(s1, t1)

t′n − t1
− κ

2

> κ− κ

2
=
κ

2
( < −κ

2
, resp.)

by (5.21) for 0 ≤ s2 ≤ s̃. By (5.10) we have

y(s2, t
′
n)− y(s2, t1)

t′n − t1
− y(s1, t

′
n)− y(s1, t1)

t′n − t1
(5.23)

=

∫ s2

s1

(A′
n +B′

n)ds

where

A′
n =

−1

f(s, t′n)

cos θ(s, t′n)− cos θ(s, t1)

t′n − t1
,(5.24)

B′
n = −cos θ(s, t1)

t′n − t1
[

1

f(s, t′n)
− 1

f(s, t1)
].

Since |B′
n| ≤ maxΩ̄1

| ftf2 | and B′
n converges to cos θ(s, t1)

ft
f2 (s, t1) pointwise, we

conclude from Lebesgue’s Dominated Convergence Theorem that limn→∞
∫ s2
s1
A′

nds

exists and

(5.25) lim
n→∞

∫ s2

s1

A′
nds = yt(s2, t1)− yt(s1, t1)−

∫ s2

s1

cos θ(s, t1)
ft
f2

(s, t1)ds.

Similarly with t′n replaced by t′′n in (5.23) and the same reasoning, we also obtain

(5.26) lim
n→∞

∫ s2

s1

A′′
nds = yt(s2, t1)− yt(s1, t1)−

∫ s2

s1

cos θ(s, t1)
ft
f2

(s, t1)ds

where

A′′
n =

−1

f(s, t′′n)

cos θ(s, t′′n)− cos θ(s, t1)

t′′n − t1
.
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Therefore by (5.25) and (5.26) we have

(5.27) lim
n→∞

∫ s2

s1

(A′′
n −A′

n)ds = 0.

On the other hand, using the mean value theorem, we can find θ̃
′
(θ̃

′′
, resp.) between

θ(s, t′n) (θ(s, t
′′
n), resp.) and θ(s, t1) such that

A′
n =

sin θ̃
′

f(s, t′n)

θ(s, t′n)− θ(s, t1)

t′n − t1
,

A′′
n =

sin θ̃
′′

f(s, t′′n)

θ(s, t′′n)− θ(s, t1)

t′′n − t1
.

Hence we can write

A′′
n −A′

n =
sin θ̃

′′

f(s, t′′n)
[
θ(s, t′′n)− θ(s, t1)

t′′n − t1
− θ(s, t′n)− θ(s, t1)

t′n − t1
](5.28)

+(
sin θ̃

′′

f(s, t′′n)
− sin θ̃

′

f(s, t′n)
)
θ(s, t′n)− θ(s, t1)

t′n − t1

The second term in the right-hand side of (5.28) is uniformly bounded by Lemma
5.3 (b) and converges to zero pointwise. Therefore the integral (from s1 to s2)

of this term goes to zero as n → ∞ (while t′′n, t
′
n → t1 and θ̃

′′
, θ̃

′ → θ(s, t1))
by Lebesgue’s Dominated Convergence Theorem. But the first term in the right-
hand side of (5.28) ≥ 1

2 (maxΩ̄1
|f |)−1 κ

2 (or ≤ − 1
2 (maxΩ̄1

|f |)−1 κ
2 , resp.) by (5.22).

Altogether from (5.28) we have the following estimate

| lim
n→∞

∫ s2

s1

(A′′
n −A′

n)ds |≥ |s2 − s1|
κ

4
(max

Ω̄1

|f |)−1

which contradicts (5.27). Therefore the claim holds, which implies the existence of
θt ≡ ∂θ

∂t at any point p0.
For continuity of θt, we start with (5.2) taking h = θ. For 0 ≤ s1, s

′ ≤ s̃, 0 ≤
t1, t

′ ≤ t̃, t′ 6= t1, we have

(5.29)
θ(s′, t′)− θ(s′, t1)

t′ − t1
− θ(s1, t

′)− θ(s1, t1)

t′ − t1
=

∫ s′

s1

θs(s, t
′)− θs(s, t1)

t′ − t1
ds

where θs = −H
f ∈ C1 in t by (1.12), Theorem C, and the assumption (note that

NH = gD ∂
∂tH). Taking the limit t′ → t1 in (5.29), we obtain

(5.30) θt(s
′, t1)− θt(s1, t1) =

∫ s′

s1

(θs)t(s, t1)ds.

It follows from (5.30) that θt is continuous in the s direction at (s1, t1), for all 0 ≤
s1 ≤ s̃, 0 ≤ t1 ≤ t̃. So to prove θt is continuous at (s1, t1), it suffices to show that
θt is continuous in the t direction at (s1, t1), for all 0 ≤ s1 ≤ s̃, 0 ≤ t1 ≤ t̃. Suppose
this fails to hold. Then there exists M ′ > 0 such that for any positive integer m,
we can find t′m 6= t1 satisfying |t′m − t1| < min{t̃, 1

m} and

(5.31) θt(s1, t
′
m)− θt(s1, t1) > M ′ (or < −M ′, resp.).
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We take the difference of the formula (5.30) with t1 replaced by t′m and the formula
(5.30) itself to obtain

θt(s
′, t′m)− θt(s

′, t1) = θt(s1, t
′
m)− θt(s1, t1)(5.32)

+

∫ s′

s1

((θs)t(s, t
′
m)− (θs)t(s, t1))ds.

For |s′ − s1| ≤ min{M ′

4 (maxΩ̄1
|(θs)t|)−1, s̃} we then have

(5.33) θt(s
′, t′m)− θt(s

′, t1) >
M ′

2
(or < −M

′

2
, resp.)

by (5.31) and (5.32). On the other hand, we have a similar formula as (5.25):

lim
m→∞

∫ s′

s1

A′
mds = yt(s

′, t1)− yt(s1, t1)−
∫ s′

s1

cos θ(s, t1)
ft
f2

(s, t1)ds.

where

A′
m =

−1

f(s, t′m)

cos θ(s, t′m)− cos θ(s, t1)

t′m − t1
.

Since A′
m is uniformly bounded (θ is Lipschitzian) and converges pointwise as m→

∞ (θt exists), we obtain

yt(s
′, t1)− yt(s1, t1) =

∫ s′

s1

sin θ(s, t1)

f(s, t1)
θt(s, t1)(5.34)

+

∫ s′

s1

cos θ(s, t1)
ft
f2

(s, t1)ds

by Lebesgue’s dominated convergence theorem. Replacing t1 by t
′
m in (5.34), taking

the difference of the resulting formula and (5.34), and letting m → ∞, we finally
obtain

(5.35) lim
m→∞

∫ s′

s1

sin θ(s, t1)

f(s, t1)
(θt(s, t

′
m)− θt(s, t1))ds = 0

by a similar reasoning as before. On the other hand, we estimate

sin θ(s, t1)

f(s, t1)
(θt(s, t

′
m)− θt(s, t1))

≥ 1

2maxΩ̄1
|f |

M ′

2
(or ≤ −1

2maxΩ̄1
|f |

M ′

2
, resp.)

by (5.33), which contradicts (5.35). Thus we have shown that θt is continuous. Since
θs is continuous by Corollary C.1, we conclude that θ ∈ C1 in s, t coordinates, and
hence θ ∈ C1 in x, y coordinates. It follows that the characteristic curves are then
C2 smooth in view of (1.6). Similarly the seed curves are also C2 smooth.

To compute θt, we first show that Ds (= f−1N⊥(D)) exists and is continuous.
Observe that

(5.36) xs =
sin θ

f
, xt =

cos θ

gD
, ys = −cos θ

f
, yt =

sin θ

gD

and (xs)t ((ys)t ,resp.) exists and is continuous since θ ∈ C1 and f is C1 in t by
Theorem C. It follows from Lemma 5.4 that (xt)s ((yt)s, resp.) exists and equals
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(xs)t ((ys)t, resp.). So by (5.36) Ds exists and is continuous (either cos θ 6= 0 or
sin θ 6= 0). Now computing xst = xts and yst = yts, we get

(5.37)
(cos θ)θtf − ft sin θ

f2
=

−(sin θ)θsgD − (gD)s cos θ

(gD)2

and

(5.38)
(sin θ)θtf − ft(− cos θ)

f2
=

(cos θ)θsgD − (gD)s sin θ

(gD)2
.

Multiply (5.37) by cos θ and (5.38) by sin θ, respectively, and then add the resulting
equalities to obtain

(5.39)
θtf

f2
=

−(gD)s
(gD)2

.

We can now compute

θt = − fgs
g2D

− fDs

gD2

=
(rot ~F )g

(gD)2
− fDs

gD2
(by (1.10) and noting that N⊥g = fgs)

=
rot ~F

gD2
− N⊥(logD)

gD

which is (1.13).
�

We remark that seed curves may only be C1 smooth, but not C2 smooth if u
is only Lipschitzian, but not C1 smooth even in the case of H = 0. An example

is given by u(x, y) = xy for y > 0 and u = 0 for y ≤ 0 with ~F = (−y, x) (see
Example 7.2 in [7]). The seed curve Λa passing through a point (a, 0), a 6= 0, is the
union of the straight line {x = ±a} for y ≥ 0 and the semi-circle of center (0, 0)
and radius |a| for y < 0. It is easy to see that Λa is C∞ smooth except at (±a, 0)
where Λa is only C1 smooth, but not C2 smooth. Note that u is not C1 smooth
at the x-axis while it is a Lipschitzian p-minimizer on any bounded plane domain.
For more examples, see ([19]).
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