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Abstract. We study a q-logarithm which was introduced by Euler and give
some of its properties. This q-logarithm did not get much attention in the re-
cent literature. We derive basic properties, some of which were already given
by Euler in a 1751-paper and 1734-letter to Daniel Bernoulli. The correspond-
ing q-analogue of the dilogarithm is introduced. The relation to the values at
1 and 2 of a q-analogue of the zeta function is given. We briefly describe some
other q-logarithms that have appeared in the recent literature.

1. Introduction

In a paper from 1751, Leonhard Euler (1707–1783) introduced the series [8, §6]

(1.1) s =

∞∑

k=1

(1 − x)(1 − x/a) · · · (1 − x/ak−1)

1− ak
.

We will take q = 1/a, then this series is convergent for |q| < 1 and x ∈ C. In this
paper we will assume 0 < q < 1. Then this becomes

(1.2) Sq(x) = −
∞∑

k=1

qk

1− qk
(x; q)k,

where (x; q)0 = 1, (x; q)k = (1− x)(1 − xq) · · · (1− xqk−1). This can be written as
a basic hypergeometric series

Sq(x) = −
q(1− x)

1− q
3φ2

(
q, q, qx

q2, 0
; q, q

)
.

Euler had come across this series much earlier in an attempt to interpolate the
logarithm at powers ak (or q−k), see, e.g., Gautschi’s comment [11] discussing
Euler’s letter to Daniel Bernoulli where Euler introduced the function for a = 10.
Euler was aware that this interpolation did not work very well, see [11, §3-4]. The
function in (1.2) does not seem to appear in the recent literature, even though it has
some nice properties. We will prove some of its properties, some already obtained
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2 ERIK KOELINK AND WALTER VAN ASSCHE

by Euler [8], and indicate why this should be called a q-analogue of the logarithm.
A first reason is that for 0 < q < 1

lim
q→1

(1− q)Sq(x) = −

∞∑

k=1

lim
q→1

qk
1− q

1− qk
(x; q)k = −

∞∑

k=1

(1− x)k

k
= log x,

which is only a formal limit transition, since interchanging limit and sum seems
hard to justify.

In Sections 2–3 we study this q-analogue of the logarithm more closely. In par-
ticular, we reprove some of Euler’s results. Then we go on to extend the definition
in Section 4. Finally, we study the corresponding q-analogue of the dilogarithm in
Section 5. It involves also the values at 1 and 2 of a q-analogue of the ζ-function.
We give a (incomplete) list of some other q-analogues of the logarithm appearing
in the literature in Section 6. The purpose of this note is to draw attention to the
q-analogues of the logarithm, dilogarithm and ζ-function for which we expect many
interesting results remain to be discovered.

Many results in this note use the q-binomial theorem [10, §1.3], [1, §10.2]

(1.3)
(ax; q)∞
(x; q)∞

=

∞∑

j=0

(a; q)j
(q; q)j

xj , |x| < 1.

We also use the q-exponential functions [10, p. 9], [1, p. 492]

eq(z) =
1

(z; q)∞
=

∞∑

n=0

zn

(q; q)n
, |z| < 1,

Eq(z) = (−z; q)∞ =

∞∑

n=0

qn(n−1)/2

(q; q)n
zn.
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Leonhard Euler to Daniel Bernoulli by Walter Gautschi, see [11]. We thank Wal-
ter Gautschi for useful discussions and for providing us with a translation of [8]
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http://www.math.dartmouth.edu/~euler). We thank the referee for useful com-
ments. The work of EK for this paper was mainly done at Technische Universiteit
Delft.

2. The q-logarithm as an entire function

First of all we will show that the function Sq in (1.2) is an entire function, and
as such it is a nicer function than the logarithm, which has a cut along the negative
real axis.

Property 2.1. The function Sq defined in (1.2) is an entire function of order zero.

Proof. For k ∈ N the q-Pochhammer (z; q)k is a polynomial of degree k with zeros
at 1, 1/q, . . . , 1/qk−1. For |z| ≤ r we have the simple bound

|(z; q)k| ≤ (1 + r)(1 + r|q|) · · · (1 + r|q|k−1) = (−r; |q|)k < (−r; |q|)∞

and hence the partial sums are uniformly bounded on the ball |z| ≤ r:
∣∣∣∣∣−

n∑

k=1

qk

1− qk
(z; q)k

∣∣∣∣∣ ≤ (−r; |q|)∞

∞∑

k=1

|q|k

1− |q|k
.
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The partial sums therefore are a normal family and are uniformly convergent on
every compact subset of the complex plane. The limit of these partial sums is Sq(z)
and is therefore an entire function of the complex variable z.

Let M(r) = max|z|≤r |Sq(z)|, then

M(r) ≤ (−r; |q|)∞

∞∑

k=1

|q|k

1− |q|k

and (−r; |q|)∞ = E|q|(r) is the maximum of E|q|(z) on the ball {|z| ≤ r}. The func-
tion Eq is an entire function of order zero, which can be seen from the coefficients
an of its Taylor series and the formula [2, Theorem 2.2.2]

(2.1) lim sup
n→∞

n logn

log(1/|an|)

for the order of
∑∞

n=0 anz
n. Hence also Sq has order zero. �

Observe that for 0 < q < 1 we have

M(r) = max
|z|≤r

|Sq(z)| =

∞∑

k=1

qk

1− qk
(−r; q)k

and some simple bounds give

(q; q)∞

∞∑

k=1

qk

(q; q)k
(−r; q)k ≤ M(r) ≤ (−r; q)∞

∞∑

k=1

qk

1− qk
.

For the lower bound we can use the q-binomial theorem (1.3) to find

(−rq; q)∞ − (q; q)∞ ≤ M(r) ≤ (−r; q)∞

∞∑

k=1

qk

1− qk

which shows that M(r) behaves like Eq(qr)−C1 ≤ M(r) ≤ C2Eq(r), where C1 and
C2 are constants (which depend on q).

Euler [8, §14-15] essentially also stated the following Taylor expansion.

Property 2.2. The q-logarithm (1.2) has the following Taylor series around x = 0:

Sq(x) = −

∞∑

k=1

qk

1− qk

(
1 + qk(k−1)/2 (−x)k

(q; q)k

)
.

Proof. Use the q-binomial theorem (1.3) with x = zqk and a = q−k to find

(2.2) (z; q)k =

k∑

j=0

[
k

j

]
qj(j−1)/2(−z)j,

[
k

j

]
=

(q; q)k
(q; q)j(q; q)k−j

.

Use this in (1.2), and change the order of summation to find

Sq(x) = −

∞∑

k=1

qk

1− qk
−

∞∑

j=1

qj(j−1)/2(−x)j
∞∑

k=j

qk

1− qk
(q; q)k

(q; q)j(q; q)k−j
.

With a new summation index k = j + ℓ this becomes

Sq(x) = −

∞∑

k=1

qk

1− qk
−

∞∑

j=1

qj

1− qj
qj(j−1)/2(−x)j

∞∑

ℓ=0

qℓ
(qj ; q)ℓ
(q; q)ℓ

.
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Now use the q-binomial theorem (1.3) to sum over ℓ to find

Sq(x) = −
∞∑

k=1

qk

1− qk
−

∞∑

j=1

qj

1− qj
qj(j−1)/2 (−x)j

(q; q)j
,

and if we combine both series then the required expansion follows. �

This result can be written in terms of basic hypergeometric series as

Sq(x) = −
q

1− q
2φ1

(
q, q

q2
; q, q

)
−

qx

(1− q)2
2φ2

(
q, q

q2, q2
; q, q2x

)
.

The growth of the coefficients in this Taylor series again shows that Sq is an entire
function of order zero if we use the formula (2.1) for the order of

∑∞
n=0 anz

n, see
also [11, §4].

Next we mention the following q-integral representation, where we use Jackson’s
q-integral, see [10, §1.11]

(2.3)

∫ a

0

f(t) dqt = (1 − q)a
∞∑

k=0

f(aqk) qk,

defined for functions f whenever the right hand side converges.

Property 2.3. For every x ∈ C we have

Sq(x) = −
q(1− x)

1− q

∫ 1

0

Gq(qx, qt) dqt,

with

Gq(x, t) =
∞∑

k=0

tk(x; q)k = 2φ1

(x, q
0

; q, t
)
=

1

1− t
1φ1

(
q

qt
; q, xt

)
.

Since
∫ a

0 f(t) dqt →
∫ a

0 f(t) dt when q → 1 and Gq(x, t) → 1/(1− t(1− x)) when
q → 1 for x > 0, we see (at least formally) that Property 2.3 is a q-analogue of the
integral representation

log(x) = −

∫ 1

0

1− x

1− t(1− x)
dt, x /∈ (−∞, 0]

for the logarithm.

Proof. Observe that

1− q

1− qk+1
= (1− q)

∞∑

p=0

q(k+1)p =

∫ 1

0

tk dqt.

Inserting this in the definition (1.2) of Sq and interchanging summations, which
is justified by the absolute convergence of the double sum, gives the result. The
identity between the basic hypergeometric series representing Gq(x, t) is the case
c = 0 of [10, (III.4)]. �

Note that, as in the proof of Property 2.2, one can show that

(2.4) Gq(x, t) =

∞∑

j=0

(−xt)jqj(j−1)/2

(t; q)j+1
.



EULER’S q-LOGARITHM 5

3. q-difference equation

The function Sq satisfies a simple q-difference equation:

Property 3.1. The q-logarithm (1.2) satisfies

(3.1) Sq(x/q)− Sq(x) = 1− (x; q)∞.

Proof. Recall the q-difference operator

Dqf(x) =
f(qx)− f(x)

x(q − 1)
,

then a simple exercise is

D1/q(x; q)k = −
1− qk

1− q
(x; q)k−1.

Use this in (1.2) to find

D1/qSq(x) =
∞∑

k=1

qk

1− qk
1− qk

1− q
(x; q)k−1 =

q

1− q

∞∑

k=0

qk(x; q)k.

Observe that (x; q)k+1 − (x; q)k = (x; q)k[1− xqk − 1] = −xqk(x; q)k, and summing
we find −x

∑n
k=0 q

k(x; q)k = (x; q)n+1 − (x; q)0, and when n → ∞

∞∑

k=0

qk(x; q)k =
1− (x; q)∞

x
.

If we use this result, then

D1/qSq(x) =
q

1− q

1− (x; q)∞
x

,

which is (3.1). �

In order to see how this is related to the classical derivative of log x, one may
rewrite this as

Dq((1− q)Sq(x)) =
1

x
−

(qx; q)∞
x

.

This q-difference equation can already be found in [8, §6], where Euler writes s =
Sq(x) and t = Sq(x/q) and gives the relation

1 + s− t = (1− x)
(
1−

x

a

)(
1−

x

a2

)(
1−

x

a3

)(
1−

x

a4

)(
1−

x

a5

)
· · · ,

where q = 1/a.
As a corollary one has [8, §7]

Property 3.2. For every positive integer n one has Sq(q
−n) = n.

Proof. Use (3.1) with x = q−n+1 to find Sq(q
−n) − Sq(q

−n+1) = 1, since (x; q)∞
vanishes whenever x = q−n for n ≥ 0. The result then follows by induction and
Sq(1) = 0. �

It is this property, which is quite similar to loga a
n = n, where loga is the loga-

rithm with base a, which gives Sq the flavor of a q-logarithm, and which made Euler
consider this function as an interpolation of the logarithm, see [11, §1]. Observe
that this interpolation property can be stated as follows: − log q Sq(x) approximates
log x as q ↑ 1 and for fixed q this approximation is perfect if x = q−n (n = 1, 2, . . .).
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Another interesting value is

Sq(0) = −

∞∑

k=1

qk

1− qk
= −ζq(1),

which is a q-analogue of the harmonic series, where the q-analogue of the ζ-function
is defined by

ζq(s) =

∞∑

n=1

ns−1qn

1− qn
.

It has been proved, see Erdős [7], Borwein [3, 4], Van Assche [26] that this quantity
is irrational whenever q = 1/p with p an integer ≥ 2. For the specific argument 1
this coincides, up to a factor, with the value at 1 of the q-ζ-function considered by
Ueno and Nishizawa [25].

The values of Sq(q
n) for n ∈ N are distinctly different and for these values we

do not get the same flavor as the logarithm.

Property 3.3. For every positive integer n one has

(3.2) Sq(q
n) = −n+ (q; q)∞

n−1∑

k=0

1

(q; q)k
.

Proof. Choose x = qk+1 in (3.1), then Sq(q
k)−Sq(q

k+1) = 1−(qk+1; q)∞. Summing
and the telescoping property gives

Sq(q
0)− Sq(q

n) =

n−1∑

k=0

(
Sq(q

k)− Sq(q
k+1)

)
= n−

n−1∑

k=0

(qk+1; q)∞.

By Property 3.2 we have Sq(1) = 0. Now (qk+1; q)∞ = (q; q)∞/(q; q)k gives the
required expression (3.2). �

In order to see how this approximates log x, one may reformulate this as

− log q Sq(q
n) = log qn − log q

n−1∑

k=0

(qk+1; q)∞.

In [8, §10] Euler writes s = Sq(q
n), t = Sq(q

n−1), u = Sq(q
n−2) and he writes the

recursion

s =
2t− u+ aqn(1− t)

1− aqn
,

where q = 1/a. In contemporary notation we write yn = Sq(q
n) and obtain the

recurrence relation

yn(1− qn−1)− (2− qn−1)yn−1 + yn−2 = qn−1.

One can verify that this recurrence relation indeed holds for yn = Sq(q
n) given in

(3.2). More generally one in fact has

(1− qx)Sq(q
2x)− (2− qx)Sq(qx) + Sq(x) = qx,

which is non-homogeneous a second order q-difference equation for Sq.
Note that the explicit evaluation S(q−n) = n, n ∈ N, gives the following sum-

mation formulas

(3.3)

n∑

k=1

(q−n; q)k
1− qk

qk = −n,

∞∑

k=1

qk(k+1)/2(−1)k−1q−nk

(1 − qk) (q; q)k
= n+

∞∑

k=1

qk

1− qk
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using the definition of Sq(x) and the Taylor expansion in Property 2.2. Similarly,
the evaluation at qn, n ∈ N, given in (3.2) gives the summation formulas

∞∑

k=1

(qn; q)k
1− qk

qk = n−

n−1∑

k=0

(qk+1; q)∞,

∞∑

k=1

qk(k+1)/2(−1)k−1qnk

(1− qk) (q; q)k
= −n+

∞∑

k=1

qk

1− qk
+

n−1∑

k=0

(qk+1; q)∞.

(3.4)

Note that all infinite series are absolutely convergent and that for n = 0 the results
in (3.3) and (3.4) coincide. The first sums become trivial, and the second gives an
expansion for the ζq(1)

(3.5) ζq(1) =
∞∑

k=1

qk

1− qk
=

∞∑

k=1

qk(k+1)/2(−1)k−1

(1− qk) (q; q)k
.

Using (3.5) in Property 2.2 gives the expansion

Sq(x) = −

∞∑

k=1

qk(k+1)/2(−1)k−1(1− xk)

(1− qk) (q; q)k
,

so that in particular

−
dSq

dx
(1) = lim

x→1

Sq(x)

1− x
= −

∞∑

k=1

k qk(k+1)/2(−1)k−1

(1− qk) (q; q)k
.

4. An extension of the q-logarithm and Lambert series

Having the definition of Sq(x) resembling Lambert series, it is natural to look
for the extension

(4.1) Fq(x, t) = −

∞∑

k=1

(x; q)k
tk

1− tk
,

which is a Lambert series, see [14, §58.C]. Since |(x; q)k| ≤ (−|x|; |q|)k ≤ (−r; |q|)∞
for x in {x ∈ C | |x| ≤ r}, the convergence in (4.1) is uniform on compact sets
in x and on compact subsets of the open unit disk in t. Also since the series
−
∑∞

k=1(x; q)kt
k is absolutely convergent for |t| < 1 uniformly in x in compact sets,

it follows by [14, Satz 259], that Fq is analytic for (x, t) ∈ C × {t ∈ C | |t| < 1}.
Observe that Sq(x) = Fq(x, q).

The general theory of Lambert series then gives the power series of F in powers
of t;

Fq(x, t) =

∞∑

ℓ=1

(∑

k|ℓ

(x; q)k

)
tℓ =⇒ Sq(x) =

∞∑

ℓ=1

(∑

k|ℓ

(x; q)k

)
qℓ

We are mainly interested in the power series development with respect to x.

Property 4.1. For |t| < 1 one has

Fq(x, t) = −
∞∑

k=1

tk

1− tk
−

∞∑

ℓ=1

xℓ(−1)ℓqℓ(ℓ−1)/2

(
∞∑

n=1

tnℓ
(tnqℓ+1; q)∞
(tn; q)∞

)
.
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In case t = q, Property 4.1 reduces to Property 2.2, and this is equivalent to the
summation formula

(4.2)
∞∑

n=1

qnℓ
(qℓ+n+1; q)∞
(qn; q)∞

=
qℓ

(1 − qℓ) (q; q)ℓ
=⇒

∞∑

n=1

(q; q)n−1

(qℓ+1; q)n
qnℓ =

qℓ

1− qℓ

for ℓ ∈ N, ℓ ≥ 1. This can be obtained as a special case of q-Gauss sum [10, (1.5.1)].

Proof. The proof is along the same lines as the proof of Property 2.2. We find
similarly

Fq(x, t) = −
∑

k=1

tk

1− tk
−

∞∑

j=1

qj(j−1)/2(−xt)j
∞∑

ℓ=0

(qj+1; q)ℓ
(q; q)ℓ

tℓ

1− tj+ℓ

and we write

∞∑

ℓ=0

(qj+1; q)ℓ
(q; q)ℓ

tℓ

1− tj+ℓ
=

∞∑

ℓ=0

(qj+1; q)ℓ
(q; q)ℓ

tℓ
∞∑

p=0

tp(j+ℓ)

=

∞∑

p=0

tjp
∞∑

ℓ=0

(qj+1; q)ℓ
(q; q)ℓ

tℓ(1+p) =

∞∑

p=0

tjp
(t1+pqj+1; q)∞
(t1+p; q)∞

using the q-binomial theorem again and the absolute convergence of the double sum,
which justifies the interchange of summations. Using this and replacing n = p+ 1
gives the result. �

Consider the case t = q2. Following the line of proof of Property 2.2 we write

−

∞∑

k=1

q2k(x; q)k
1− q2k

= −

∞∑

k=1

q2k

1− q2k
−

∞∑

j=1

(−1)jqj(j−1)/2xj

(q; q)j

∞∑

ℓ=0

(q; q)ℓ+j q
2ℓ+2j

(q; q)ℓ (1− q2ℓ+2j)

and the inner sum over ℓ can be written as
∞∑

ℓ=0

(q; q)ℓ+j−1 q
2ℓ+2j

(q; q)ℓ (1 + qℓ+j)
=

(q; q)j−1q
2j

1 + qj

∞∑

ℓ=0

(qj ; q)ℓ(−qj ; q)ℓ
(q; q)ℓ(−qj+1; q)ℓ

q2ℓ.

Using Property 4.1 for t = q2 then gives

(4.3)

∞∑

n=1

q2nj
(q2n+j+1; q)∞
(q2n; q)∞

=
q2j

(1 − q2j)

∞∑

ℓ=0

(qj ; q)ℓ(−qj; q)ℓ
(q; q)ℓ(−qj+1; q)ℓ

q2ℓ.

This can also be proved directly using the q-binomial theorem and geometric series.
We can rewrite (4.3) in standard basic hypergeometric series form, see [10], as the
quadratic transformation

(4.4)
(1− q2j)

(q2; q)j+1
3φ2

(
q2, q2, q3

qj+3, qj+4
; q2, q2

)
= 2φ1

(
qj ,−qj

−qj+1
; q, q2

)
.

Analogous to Property 2.3, and using the notation of Property 2.3 we have the
following.

Property 4.2. For |p| < 1 one has

Fq(x, p) =
−p(1− x)

(1− p)

∫ 1

0

G(qx, pt) dpt.
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5. A q-analogue of the dilogarithm

Euler’s dilogarithm is defined by the first equality in

Li2(x) =

∞∑

n=1

xn

n2
= −

∫ x

0

log(1− t)

t
dt = −

∫ 1

1−x

log(t)

1− t
dt =

π2

6
− Li2(1− x)

for 0 ≤ x ≤ 1, see [17], [13], for more information and references. Here we use

Li2(1) = ζ(2) = π2

6 . In particular, xdLi2
dx = − log(1 − x), and the definition by the

series can be extended to complex x being absolutely convergent for |x| ≤ 1.
We define the q-dilogarithm by

(5.1) Li2(x; q) =

∞∑

k=1

qk

(1− qk)2
(x; q)k.

We have limq↑1(1−q)2Li2(x; q) =
∑∞

k=1(1−x)k/k2 = Li2(1−x). In this case we can
justify the interchange of the limit and summation using dominated convergence.
We assume 0 < q < 1, and we first observe that |(x; q)k| ≤ 1 for |1 − x| ≤ 1. Next
we use

1− qk

1− q
=

k−1∑

j=0

qj = q(k−1)/2





∑ k
2
−1

j=0

(
qj+

1

2 + q−j− 1

2

)
, k even,

1 +
∑ k−1

2
−1

j=0

(
qj+1 + q−j−1

)
, k odd,

and x+ 1/x ≥ 2 for x ∈ [0, 1] then gives

1− qk

1− q
≥ kq(k−1)/2,

so that

qk
(1− q)2

(1− qk)2
≤

1

k2
.

Combining both estimates gives

|
qk

(1 − qk)2
(x; q)k| ≤

1

k2

for |1− x| ≤ 1 and dominated convergence is established.
We list some properties of the q-dilogarithm. In the following we use ζq(2) =∑∞
k=1

qk

(1−qk)2
, as an analogue of 1

6π
2. This is equal to the q-ζ-function

ζq(s) =

∞∑

n=1

ns−1qn

1− qn

for s = 2 since
∞∑

n=1

nqn

1− qn
=

∞∑

n=1

∞∑

k=1

nqnk =
∞∑

k=1

qk

(1− qk)2
,

(see, e.g., [20, Part VIII, Chapter 1, problem 75]). This quantity was considered
by Zudilin [27, 28], Krattenthaler et al. [16], Postelmans and Van Assche [21], who
studied its irrationality when 1/q is an integer ≥ 2. Note that this does no longer

correspond to Ueno and Nishizawa [25], who essentially have
∑∞

k=1
q2k

(1−qk)2
as the

value at 2 for their q-ζ-function.
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Property 5.1. Li2( · ; q) is an entire function of order zero. Moreover, we have the
special values

Li2(1; q) = 0, Li2(0; q) = ζq(2), Li2(q
−n; q) = −

n∑

k=1

k

1− qk
,

and (1− q)(1 − x)
(
DqLi2( · ; q)

)
(x) = Sq(x) and

Li2(x; q) = ζq(2) +
1

1− q

∫ x

0

Sq(t)

1− t
dqt.

Moreover, the q-dilogarithm has the Taylor expansion

Li2(x; q) = ζq(2) +

∞∑

j=1

(−1)jqj(j+1)/2 xj

(1− qj)2
2φ1

(
qj , qj

qj+1
; q, q

)
.

Here the 2φ1-series is defined by

2φ1

(
qj , qj

qj+1
; q, q

)
=

∞∑

ℓ=0

(qj ; q)ℓ(q
j ; q)ℓ

(q; q)ℓ(qj+1; q)ℓ
qℓ =

∞∑

ℓ=0

(qj ; q)ℓ(1− qj)

(q; q)ℓ(1− qj+ℓ)
qℓ.

Unfortunately, this series cannot be summed using the (non-terminating) q-Chu-
Vandermonde sum.

Note that after multiplying the integral representation for Li2(x; q) by (1 − q)2

we can take a formal limit q ↑ 1 to get

Li2(1 − x) =
π2

6
+

∫ x

0

log(t)

1− t
dt = −

∫ 1−x

0

log(1 − t)

t
dt,

so that we recover the integral representation for the dilogarithm.

Proof. The proof of Li2( · ; q) being an entire function of order zero is derived as in
Property 2.1. Since (qx; q)k − (x; q)k = x(1 − qk)(qx; q)k−1 we obtain

Li2(qx; q) − Li2(x; q) =
x

1− x

∞∑

k=1

qk(x; q)k
1− qk

=
−x

1− x
Sq(x).(5.2)

This implies (1− q)(1 − x)
(
DqLi2( · ; q)

)
(x) = Sq(x).

Using (5.2) for x = q−n, n ∈ N, and Li2(1; q) = 0, S(q−n) = n we find the value
for Li2(q

−n; q). Iterating (5.2) we get

Li2(x; q) =

N∑

k=0

xqk

1− xqk
Sq(xq

k) + Li2(xq
N+1; q)

and by letting N → ∞ we get the convergent series expansion

Li2(x; q) = Li2(0; q) +

∞∑

k=0

xqk

1− xqk
Sq(xq

k) = ζq(2) +
1

1− q

∫ x

0

Sq(t)

1− t
dqt.

Finally, the Taylor expansion proceeds as in the proof of Property 2.2, and we
find

Li2(x; q) =

∞∑

k=1

qk

(1 − qk)2
+

∞∑

j=1

(−x)jqj(j−1)/2

(q; q)j

∞∑

ℓ=0

(q; q)j+ℓ q
j+ℓ

(q; q)ℓ (1 − qj+ℓ)2
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The inner sum over ℓ can be rewritten as

qj(q; q)j−1

1− qj

∞∑

ℓ=0

(qj ; q)ℓ(q
j ; q)ℓ

(q; q)ℓ(qj+1; q)ℓ
qℓ

and this gives the result. �

The evaluation of the q-dilogarithm gives the following summation, cf. (3.3),

(5.3)

n∑

k=1

(q−n; q)kq
k

(1− qk)2
= −

n∑

k=1

k

1− qk

=

∞∑

j=1

qj

(1− qj)2
+

∞∑

j=1

(−1)jqj(j+1)/2 q−nj

(1− qj)2
2φ1

(
qj , qj

qj+1
; q, q

)
.

In particular, for n = 0 we obtain an alternating series representation for ζq(2);

ζq(2) =

∞∑

j=1

(−1)j−1qj(j+1)/2

(1 − qj)2
2φ1

(
qj , qj

qj+1
; q, q

)
.

Writing Li2(x; q) =
∑∞

n=0 anx
n, Sq(x) =

∑∞
n=0 bnx

n temporarily, then (5.2)
implies that qnan − an equals the coefficient, say cn, of x

n in −Sq(x)x/(1 − x).

Using −x/(1 − x) =
∑∞

k=1 −xk, it follows that cn = −
∑n−1

p=0 bp. Note that the
relation is trivial in case n = 0, and for integer n ≥ 1 we find from the explicit
Taylor expansions for Sq( · ) and Li2( · ; q) the relation

(−1)n−1qn(n+1)/2

(1 − qn)
2φ1

(
qn, qn

qn+1
; q, q

)
=

∞∑

k=1

qk

1− qk
+

n−1∑

j=1

(−1)jqj(j+1)/2

(1− qj) (q; q)j
.

Note that this relation gives an explicit expression for the remainder if approximat-
ing ζq(1) with the alternating series as in (3.5). Of course, we get the same result if
we use the Taylor expansion of Sq as in Property 2.2 in the integral representation
for the q-dilogarithm in Property 5.1.

The classical dilogarithm satisfies many interesting properties, such as a sim-
ple functional equation, a five-term recursion, a characterisation by these first two
properties, explicit evaluation at certain special points, etc., see [17], [13] for more
information and references. It would be interesting to see if these interesting prop-
erties have appropriate analogues for the q-analogue of the dilogarithm discussed
here.

6. Other q-logarithms

In physics literature, see e.g. [24], one defines lnq(x) = x1−q−1
1−q . There are no

q-series, q-Pochhammer symbols, q-difference relations, etc. The choice of the letter
q and the fact that limq→1 lnq(x) = log x is not sufficient motivation to call this a
q-analogue. It just shows that the logarithmic function is somewhere between the
constant function and powers xα − 1 for α > 0.

Borwein [4], Zudilin et al. [18], Van Assche [26] consider

lnq(1 + z) =

∞∑

k=1

(−1)kzk

1− qk
, |z| < |q|,
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with |q| > 1. They prove that lnq(1 + z) is irrational for z = ±1 and q an integer
greater than 2. For z = −1 one has a q-analogue of the harmonic series and this is
essentially the generating function of dn =

∑
k|n 1, i.e. the number of divisors of n.

A similar formula, but now for 0 < q < 1

logq(z) =

∞∑

k=1

zn

1− qn
=

z e′q(z)

eq(z)
, |z| < 1

has been considered as a q-analogue of the logarithm by Kirillov [13] and Koorn-
winder [15]. This q-analogue is well adapted to non-commutative algebras, see
[13, §2.5, Ex. 11], [15, Prop. 6.1], since logq(x + y − xy) = logq(x) + logq(y) for
xy = qyx. The corresponding q-analogue of the dilogarithm, provisionally denoted

by L̃i2(x; q), is defined by

L̃i2(x; q) =
∞∑

k=1

zk

k (1− qk)
= log(eq(z)) =⇒ logq(z) = z L̃i2

′
(z; q).

Zudilin [28] considers a similar q-logarithm but a different q-dilogarithm

L1(x; q) =

∞∑

n=1

(xq)n

1− qn
, L2(x; q) =

∞∑

n=1

n(xq)n

1 − qn
,

and mainly studies simultaneous rational approximation to L1 and L2 in order to
obtain quantitative linear independence over Q for certain values of these functions.

Other q-logarithms are defined as inverses of q-exponential functions, see Nelson
and Gartley [19] for two different cases viewed from complex function theory, and
Chung et al. [5], where implicitly q-commuting variables are used. Fock and Gon-
charov [9, 12] introduce a q-logarithm of ln(ez+1) by an integral. The corresponding
q-dilogarithm is essentially Ruijsenaars’ hyperbolic Γ-function, see [22, II.A]. For
other q-logarithms based on Jacobi theta functions, see Sauloy [23] and Duval [6],
where the q-logarithms play a role in difference Galois theory in constructing the
analogue of a unipotent monodromy representation.
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