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Tropical analysis of plurisubharmonic singularities

Alexander Rashkovskii

Abstract

Tropical structures appear naturally in investigation of singularities of

plurisubharmonic functions. We show that standard characteristics of the

singularities can be viewed as tropicalizations of certain notions from com-

mutative algebra. In turn, such a consideration gives a tool for studying the

singularities. In addition, we show how the notion of Newton polyhedron and

its generalizations come into the picture as a result of the tropicalization.

1 Introduction

We recall that a semiring S with an addition ⊕ and multiplication ⊗ is called
idempotent if s ⊕ s = s for any s ∈ S. When S is a subset of the extended real
line, a⊕ b = max{a, b} (or min{a, b}) and a⊗ b = a+ b, such a semiring is usually
called tropical. For basics on idempotent/tropical structures, see, e.g., [18] and the
bibliography therein.

In this note, we consider certain tropical semirings arising naturally in multi-
dimensional complex analysis. This starts with a simple observation that a basic
object of pluripotential theory – plurisubharmonic functions – can be viewed as
Maslov’s dequantization of analytic functions (a basic object of the whole complex
analysis). To detect a tropical structure, we need to pass from the world of complex
values to the real one. This makes sense in consideration of asymptotic behavior of
absolute values |f(z)| of analytic functions f when z approaches either the zero set of
f or infinity. Here we will be concerned with the former (local) situation, which in-
vokes investigation of singularities of plurisubharmonic functions and corresponding
tropical semirings.

Standard characteristics of singularities of plurisubharmonic functions are thus
”tropicalizations” of notions from commutative algebra and can be viewed as func-
tionals on the corresponding tropical semiring. Central role here is played by tropi-
cally linear functionals (i.e., additive and multiplicative with respect to the tropical
operations and homogeneous with respect to the usual multiplication by positive
constants). A problem of description for such functionals is posed. On the other
hand, a larger class of the functionals, just tropically additive and positive homo-
geneous, is described, and a relation between these two classes is established. A
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few other problems are formulated as well. In addition, we show that the linear
functionals can be thought of as ”tropicalizations” of valuations on the local ring of
germs of analytic functions as well.

Another way of using Maslov’s dequantization is to perform it on the arguments
of the functions, which moves us from functions on complex manifolds to functions
on Rn. This results in a notion of local indicator, introduced from a different point
of view in [17]. The semiring of plurisubharmonic singularities maps to a tropical
semiring of the indicators, and the latter turns out to be isomorphic to an idempotent
semiring of complete convex subsets of Rn

+ = {t ∈ Rn : ti > 0, i = 1, . . . , n}.
Going this way, the notion of Newton polyhedron comes naturally into the picture,
together with generalizations of famous Kushnirenko’s and Bernstein’s results on
bounds for multiplicities of holomorphic mappings in terms of (mixed) covolumes of
the polyhedra.

Most of the results, except for those in Section 5, are obtained in [21]–[25], so
we do not present their proofs here and just put them into the context of tropical
mathematics. The proofs of the statements from Section 5 are sketched.

2 Plurisubharmonic singularities

An upper semicontinuous, real-valued function u on a complex manifold M is called
plurisubharmonic (psh) if for every holomorphic mapping λ from the unit disk D

into M , the function u ◦ λ is subharmonic (which means that for every point ζ ∈ D,

(u ◦ λ)(ζ) ≤
1

2π

∫ 2π

0

(u ◦ λ)(ζ + reiθ) dθ

for all r < 1 − |ζ |). A basic example is u = c log |f | with c > 0 and a function
f analytic on M . Moreover, as follows from Bremermann’s theorem [3], every psh
function on a pseudoconvex domain ω ⊂ M belongs to the closure (in L1

loc(ω)) of
the set of functions {supα cα log |fα|}. For standard facts on psh functions, see, e.g.,
[12], [16], [27].

Let OM be the ring of analytic functions f onM . The transformation f 7→ log |f |
maps it to the cone PSH(M) of psh functions onM , and the ring operations on OM

induce a natural tropical structure on PSH(M) with the addition

u⊕̌v := max{u, v},

which is based on Maslov’s dequantization

f + g 7→
1

N
log |fN + gN | −→ max{log |f |, log |g|} as N → ∞,

and multiplication
u⊗ v := u+ v

2



(simply by fg 7→ log |fg| = log |f | ⊗ log |g|). Thus PSH(M) becomes a tropical
semiring, closed under (usual) multiplication by positive constants. (We use the
symbol ⊕̌ instead of ⊕ in order to emphasize that it is the max-addition; later on
we will need another idempotent addition, a⊕̂b = min{a, b}.) The neutral element
(tropical 0) is u ≡ −∞, and the unit (tropical 1) is u ≡ 0.

From now on, we restrict ourselves to local considerations, so in the sequel we
deal with functions defined near 0 ∈ Cn. Let O0 denote the ring of germs of analytic
functions at 0, and let m0 = {f ∈ O0 : f(0) = 0} be its maximal ideal. The above
log-transformation sends O0 to the corresponding tropical semiring PSHG0 of germs
of psh functions. We will say that a psh germ u is singular at 0 if u is not bounded
(below) in any neighbourhood of 0. For functions u = log |f | this means f ∈ m0;
asymptotic behaviour of arbitrary psh functions can be much more complicated (it
may even happen that u(0) > −∞).

A partial order on PSHG0 is given as follows:

u � v ⇔ u(z) ≤ v(z) +O(1), z → 0,

which leads to the equivalence relation u ∼ v if u(z) = v(z)+O(1). The equivalence
class cl(u) of u is called the plurisubharmonic singularity of u (in [29], a closely related
object was introduced under the name ”standard singularity”). The collection of
psh singularities PSHS0 = PSHG0/ ∼ has the same tropical structure {⊕̌,⊗} and
the partial order cl(u) ≤ cl(v) if u � v. The neutral element here is still u ≡ −∞,
while the unit is represented by any nonsingular germ.

Psh singularities form a cone with respect to the usual multiplication by positive
numbers. Finally, they are endowed with the topology where cl(uj) → cl(u) if
there exists a neighbourhood ω of 0 and psh functions vj ∈ cl(uj), v ∈ cl(u) such
that v, vj ∈ PSH(ω) and vj → v in L1(ω). By abusing the notation, we will write
occasionally u for cl(u).

3 Characteristics of singularities

1. A fundamental characteristic of an analytic germ f ∈ m0 is its multiplicity
(vanishing order)mf : if f =

∑
Pj is the expansion of f in homogeneous polynomials,

Pj(tz) = tjP (z), then mf = min{j : Pj 6≡ 0}.
The corresponding basic characteristic of singularity of u ∈ PSHG0 is its Lelong

number

ν(u) = lim
t→−∞

t−1M(u, t) = lim inf
z→0

u(z)

log |z|
= ddcu ∧ (ddc log |z|)n−1(0);

here M(u, t) is the mean value of u over the sphere {|z| = et}; d = ∂ + ∂̄, dc =
(∂− ∂̄)/2πi. If f ∈ m0, then ν(log |f |) = mf . This characteristic of singularity gives
important information on the asymptotics: u(z) ≤ ν(u) log |z|+O(1).
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Since ν(v) = ν(u) for all v ∈ cl(u), Lelong number can be considered as a
functional on PSHS0 with values in the tropical semiring R+(min,+) of non-negative
real numbers with the operations

x⊕̂y = min{x, y} and x⊗ y = x+ y.

As such, it is
(i) positive homogeneous: ν(cu) = c ν(u) for all c > 0,
(ii) additive: ν(u⊕̌v) = ν(u)⊕̂ν(v),
(iii) multiplicative: ν(u⊗ v) = ν(u)⊗ ν(v), and
(iv) upper semicontinuous: ν(u) ≥ lim sup ν(uj) if uj → u.

2. Lelong numbers are independent of the choice of coordinates (Siu’s theorem).
Let us now fix a coordinate system centered at 0. The directional Lelong number of
u ∈ PSHG0 in a direction a ∈ Rn

+ (introduced by C. Kiselman [10]) is

ν(u, a) = lim
t→−∞

t−1M(u, ta) = lim inf
z→0

u(z)

φa(z)
, (1)

where M(u, ta) is the mean value of u over the distinguished boundary of the poly-
disk {|zk| < exp(tak)} and

φa(z) = ⊕̌k a
−1
k log |zk|. (2)

Since its value is constant on cl(u), it is well defined on PSHS0. The functional has
the same properties (i)–(iv), and the collection {ν(u, a)}a gives refined information
on the singularity u; in particular, ν(u) = ν(u, (1, . . . , 1)).

For polynomilas or, more generally, analytic functions f =
∑
cJz

J ∈ m0, it can
be computed as

ν(log |f |, a) = ⊕̂{〈a, J〉 : cJ 6= 0},

the expression in the right-hand side being known in number theory as the index of
f with respect to the weight a [14].

3. A general notion of Lelong number with respect to a plurisubharmonic weight
was introduced by J.-P. Demailly [4] (concerning the complex Monge-Ampère oper-
ator (ddc)n, the reader can consult [12] and [6]). Let ϕ ∈ PSHG0 be continuous and
locally bounded outside 0. Then the mixed Monge–Ampère current ddcu∧(ddcϕ)n−1

is well defined for any psh function u and is equivalent to a positive Borel measure.
Its mass at 0,

ν(u, ϕ) = ddcu ∧ (ddcϕ)n−1({0}), (3)

is the generalized, or weighted, Lelong number of u with respect to the weight ϕ. By
Demailly’s comparison theorem, it is constant on cl(u) and thus defines a functional
on PSHS0. It still has the above properties (i), (iii), and (iv), however in general is
only subadditive: ν(u⊕̌v, ϕ) ≤ ν(u, ϕ)⊕̂ν(v, ϕ).
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4. One more characteristic, the integrability index

λu = inf{λ > 0 : e−u/λ ∈ L2
loc}, (4)

is both subadditive and submultiplicative, and it is also upper semicontinuous [7].
If f = (f1, . . . , fm) ∈ m

m
0 , the value λlog |f | is known as the Arnold multiplicity of the

ideal I generated by fj, and
lc(I) = λ−1

log |f | (5)

is the log canonical threshold of I.

4 Additive functionals

Another generalization of the notion of Lelong number was introduced in [25]. Let
ϕ ∈ PSHG0, singular at 0, be locally bounded and maximal outside 0 (that is,
satisfies (ddcϕ)n = 0 on a punctured neighbourhood of 0); the collection of all such
germs (maximal weights) will be denoted by MW0. An important example of such a
weight is ϕ = log |F | for an equidimensional holomorphic mapping F with isolated
zero at the origin.

For u ∈ PSHG0 (or u ∈ PSHS0), its type relative to ϕ ∈ MW0 is defined as

σ(u, ϕ) = lim inf
z→0

u(z)

ϕ(z)
.

When u = log |f | and ϕ = log |F |, the relative type σ(u, ϕ) equals the value ν̄I(f)
considered in [15], I being the ideal in O0 generated by the components of the
mapping F . For the directional weights φa (2),

σ(u, φa) = ν(u, a) = a1 . . . an ν(u, φa).

Since the function t 7→ sup {u(x) : ϕ(x) < t} is convex, one has the relation

u � σ(u, ϕ)ϕ.

Given ϕ ∈ MW0, the functional σ(·, ϕ) : PSHS0 → [0,+∞] is positive homoge-
neous, additive, supermultiplicative, and upper semicontinuous. Actually, relative
types give a general form for all ”reasonable” additive functionals on PSHS0:

Theorem 4.1 [25] Let a functional σ : PSHS0 → [0,∞] be such that

1) σ(cu) = c σ(u) for all c > 0;

2) σ(⊕̌uk) = ⊕̂σ(uk), k = 1, 2;

3) if uj → u, then lim sup σ(uj) ≤ σ(u);
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4) σ(log |z|) = 1;

5) σ(u) <∞ if u 6≡ −∞.

Then there exists a weight ϕ ∈ MW0 such that σ(u) = σ(u, ϕ) for every singularity
u ∈ PSHS0. The representation is essentially unique: if two maximal weights ϕ and
ψ represent σ, then cl(ϕ) = cl(ψ).

In particular, such a functional σ is always supermultiplicative; if n = 1, it is
multiplicative (equal to the mass of the Riesz measure 1

2π
∆u at 0).

The function ϕ ∈ MW0 from the theorem can be constructed by the Perron
method (as a corresponding Green function): given a bounded hyperconvex neigh-
bourhood Ω of 0, ϕ is the upper envelope of all negative psh functions v in Ω such
that σ(v) ≥ 1.

5 Additivity vs linearity

A functional on PSHS0 is (tropically) linear if it is both additive and multiplicative;
we will also assume it to be positive homogeneous and upper semicontinuous. The
collection of all such functionals will be denoted by L0.

An example of linear functional is u 7→ ν(u ◦ µ, p), the Lelong number of the
pullback of u by a holomorphic mapping µ at p ∈ µ−1(0). Another example are the
directional Lelong numbers ν(u, a) defined by (1).

In a usual vector space, every convex function is an upper envelope of affine ones.
In our situation, any tropically additive functional is superadditive in the usual sense,
while tropically linear ones are additive. This raises the following question.

Problem 1. Is it true that all tropically additive functionals on PSHS0 can be
represented as lower envelopes of tropically linear ones?

We can answer the question for the functionals generated by weights that can be
approximated by multiples of logarithms of moduli of holomorphic mappings. First,
let us take ϕ = log |F | ∈ MW0, where F is an equidimensional holomorphic mapping
with isolated zero at the origin. By the Hironaka desingularization theorem, there
exists a ”log resolution” for the mapping F , i.e., a proper holomorphic mapping µ of a
manifoldX to a neighborhood U of 0, that is an isomorphism between X\µ−1(0) and
U \ {0}, such that µ−1(0) is a normal crossing divisor with components E1, . . . , EN ,
and in local coordinates centered at a generic point p of a nonempty intersection
EI = ∩i∈IEi, I ⊂ {1, . . . , N},

(F ◦ µ)(x) = h(x)
∏
i∈I

xmi

i

with h(0) 6= 0. Then for any u ∈ PSHS0, one has

σ(u, ϕ) = min{νI,mI
(u ◦ µ) : EI 6= ∅},
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where

νI,mI
(u ◦ µ) = lim inf

x→0

(u ◦ µ)(x)∑
i∈I mi log |xi|

at a generic point of p ∈ EI . It is then easy to see that

νI,mI
(u ◦ µ) ≥ min

i∈I
νi,mi

(u ◦ µ) = min
i∈I

m−1
i νi(u ◦ µ),

where νi(u ◦ µ) is the Lelong number of u ◦ µ at a generic point of Ei, which is a
linear functional. This gives us the following result (proved for ideals I ⊂ O0 in
[15]).

Theorem 5.1 For any weight log |F | ∈ MW0 there exist finitely many functionals
lj ∈ L0 such that σ(u, log |F |) = minj lj(u) for every u ∈ PSHS0; in other words,

σ(u, log |F |) = ⊕̂j lj(u), u ∈ PSHS0.

Furthermore, let us say that a function ϕ ∈ PSHG0 has asymptotically analytic
singularity if for any ǫ > 0 there exist positive integers p and q, a constant C > 0,
a neighbourhood U of 0, and a holomorphic mapping f : U → Cp such that

(1 + ǫ)ϕ(z)− C ≤ q−1 log |f(z)| ≤ (1− ǫ)ϕ(z) + C, z ∈ U. (6)

It can be easily shown that any weight ϕ ∈ MW0 with asymptotically analytic
singularity has a continuous representative ψ ∈ cl(ϕ) ∩MW0 which can be approx-
imated as in (6) with p = n for all ǫ > 0. By using Demailly’s approximation
theorem [5], it was shown in [2] that (6) holds if eϕ is Hölder continuous or, more
generally, if ϕ is a tame weight, which means that there exists a constant Cϕ > 0
such that for any t > Cϕ the condition |f | exp{−tϕ} ∈ L2

loc for a function f ∈ O0

implies σ(log |f |, ϕ) ≥ t−Cϕ. (Actually, we are unaware of any example of maximal
weight whose singularity is not asymptotically analytic.)

The following result is a direct consequence of Theorem 5.1; for tame weights it
is essentially proved in [2].

Theorem 5.2 If ϕ ∈ MW0 has asymptotically analytic singularity, then

σ(u, ϕ) = ⊕̂ {l(u) : l ∈ L0, l ≥ σ(·, ϕ)}, u ∈ PSHS0.

In view of Theorem 4.1, the following problems are natural.

Problem 2. Describe all ϕ ∈ MW0 such that the functional σ(·, ϕ) ∈ L0.

Problem 3. What are functionals satisfying all the conditions of Theorem 4.1
except for the last one?

Problem 4. Does there exist a functional σ 6= 0 satisfying conditions 1)–3) and 5)
of Theorem 4.1, such that σ(log |z|) = 0?

Problem 5. What are multiplicative functionals on PSHS0?
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6 Relative types and valuations

For basics on valuation theory, we refer to [30]. Recall that a valuation on the
analytic ring O0 is a nonconstant function µ : O0 → [0,+∞] such that

µ(f1f2) = µ(f1) + µ(f2), µ(f1 + f2) ≥ min{µ(f1), µ(f2)}, µ(1) = 0;

a valuation µ is centered if µ(f) > 0 for all f ∈ m0.
Every ϕ ∈ MW0 generates a functional σϕ(f) = σ(log |f |, ϕ) on O0 satisfying

σϕ(f1f2) ≥ σϕ(f1) + σϕ(f2), σϕ(f1 + f2) ≥ min{σϕ(f1), σϕ(f2)}, σϕ(1) = 0.

(In [15] such functions are called order functions, and in [21] – filtrations.) If the
relative type functional σ(·, ϕ) is multiplicative, then σϕ is a valuation, centered if
σ(log |z|, ϕ) > 0.

One can thus consider tropically linear functionals on PSHS0 as tropicalizations
of certain valuations on O0. For example, the (usual) Lelong number is the trop-
icalization of the multiplicity valuation mf . The types relative to the directional
weights φa (2) are multiplicative functionals on PSHS0, and σφa

(Kiselman’s direc-
tional Lelong numbers) are monomial valuations on O0.

It was shown in [8] for n = 2 and in [2] in the general case that an important class
of valuations (quasi-monomial valuations) can be realized as σφ; all other centered
valuations are limits of increasing sequences of the quasi-monomial ones. In addition,
the Demailly’s weighted Lelong number ν(·, ϕ) (3) with a tame weight ϕ is an average
of valuations [2].

7 Local indicators as Maslov’s dequantizations

Singular psh germs appear as Maslov’s dequantization of analytic functions. As
indicated by constructions in tropical algebraic geometry [28], it is reasonable to
perform a dequantization in the argument as well. This turns out to be equivalent
to consideration of local indicators, a notion introduced in [17] by a completely
different argument.

For a fixed coordinate system at 0, let ν(u, a) be the directional Lelong number
of u ∈ PSHS0 in the direction a ∈ Rn

+, see (1). Then the function

ψu(t) = −ν(u,−t), t ∈ R
n
− = −R

n
+,

is convex and increasing in each tk, so ψu(log |z1|, . . . , |zn|) can be extended (in a
unique way) to a function Ψu(z) plurisubharmonic in the unit polydisk Dn, the local
indicator of u at 0 [17]. Note that the map u 7→ Ψu keeps the tropical structure:

Ψu⊕̌v = Ψu⊕̌Ψv, Ψu⊗v = Ψu ⊗Ψv, Ψc u = cΨu.
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It is easy to see that the indicators have the log-homogeneity property

Ψu(z1, . . . , zn) = Ψu(|z1|, . . . , |zn|) = c−1Ψu(|z1|
c, . . . , |zn|

c) ∀c > 0. (7)

In particular, this implies (ddcΨu)
n = 0 on {Ψu > −∞}, so if Ψu is locally bounded

outside 0, then Ψu ∈ MW0,
(ddcΨu)

n = Nuδ0

for some Nu ≥ 0, and Nu = 0 if and only if Ψu ≡ 0 (δ0 is Dirac’s δ-function at 0).
The indicator can be viewed as the tangent (in the logarithmic coordinates) for

the function u at 0 in the following sense.

Theorem 7.1 [21] The indicator Ψu(z) is a unique L1
loc-limit of the functions

Tmu(z) = m−1u(zm1 , . . . , z
m
n ), m→ ∞. (8)

In the tropical language, this means that for f ∈ m0, the sublinear function
ψlog |f |(t) on Rn

− is just a Maslov’s dequantization of f :

ψlog |f |(t) = lim
m→∞

m−1 log |f(em(t1+iθ1), . . . , em(tn+iθn))|,

an interesting moment here being that the arguments become real by themselves.
The indicators are psh characteristics of psh singularities:

u(z) ≤ Ψu(z) +O(1); (9)

if Ψ ∈ L∞
loc(D

n \ {0}), then Ψu ∈ MW0 and the relative type σ(u,Ψu) = 1. When
u has isolated singularity at 0, this implies (by Demailly’s comparison theorem [4])
the following relation between the Monge-Ampère measures:

(ddcu)n ≥ (ddcΨu)
n = Nuδ0;

note that the measures (ddc Tmu)
n of Tmu (8) need not converge to (ddcΨu)

n.
More generally, if for an n-tuple of psh functions uk the current dd

cu1∧. . .∧dd
cun

is well defined near 0, then

ddcu1 ∧ . . . ∧ dd
cun ≥ ddcΨu1

∧ . . . ∧ ddcΨun
= N{uk}δ0.

In addition, relation (9) gives an upper bound for the integrability index λu (4),

λu ≥ λΨu
; (10)

unlike the situation with the Monge-Ampère measures, one in fact has λTmu → λΨu

for the functions Tmu defined by (8), which follows from a semicontinuity property
for the integrability indices proved in [7].

In the case of a multicircled singularity u(z) = u(|z1|, . . . , |zn|), one has actually
the equalities (ddcu)n(0) = (ddcΨu)

n(0) (proved in [22]) and λu = λΨu
, which follows,

by the same semicontinuity property, from the observation that in this case, Ψu is
the upper envelope of negative psh functions v in Dn such that v ≤ u+O(1) near 0.
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8 Indicators and Newton polyhedra

Since Ψu is log-homogeneous, one can compute explicitly its Monge-Ampère mass
and integrability index.

By transition from the psh function Ψu to the convex function

ψu(t) = Ψu(e
t1 , . . . , etn), t ∈ R

n
−, (11)

and from the complex Monge-Ampère operator to the real one, we get a representa-
tion of the Monge-Ampère measures in terms of euclidian volumes. Let 〈a, b〉 stand
for the scalar product in Rn. The convex image ψu of the indicator Ψu coincides
with the support function to the convex set

Γu = {b ∈ R
n
+ : ψu(t) ≥ 〈b, t〉 ∀t ∈ R

n
−} = {b ∈ R

n
+ : ν(u, a) ≤ 〈a, b〉 ∀a ∈ R

n
+},

that is,
ψu(t) = sup {〈t, a〉 : a ∈ Γu}.

These transformations define an isomorphism between the semiring of the indicators
Ψ and the semiring of complete convex subsets Γ of Rn

+ (the completeness being in
the sense a ∈ Γ ⇒ a+ Rn

+ ∈ Γ), endowed with the operations

Γ1⊕̇Γ2 = conv (Γ1 ∪ Γ2)

(the convex hull of the union) and

Γ1⊗̇Γ2 = Γ1 + Γ2 = {a+ b : a ∈ Γ1, b ∈ Γ2}

(Minkowski’s addition), and multiplication by positive scalars c. We get then

Γu⊕̌v = Γu⊕̇Γv, Γu⊗v = Γu⊗̇Γv, Γc u = cΓu.

Let Covol (Γ) denote the euclidian volume of Rn
+ \ Γ.

Theorem 8.1 [21] The residual Monge-Ampère mass of u ∈ PSHG0 with isolated
singularity at 0 has the lower bound

(ddcu)n(0) ≥ (ddcΨu)
n(0) = n! Covol (Γu). (12)

Similarly, the mass of the mixed Monge-Ampère current ddcΨu1
∧ . . . ∧ ddcΨun

(when well defined) equals n! Covol (Γu1
, . . . ,Γun

), where Covol (A1, . . . , An) is an
n-linear form on convex subsets of Rn

+ such that Covol (A, . . . , A) = Covol (A). This
gives the relation

ddcu1 ∧ . . . ∧ dd
cun(0) ≥ n! Covol (Γu1

, . . . ,Γun
),

provided the left-hand side is well defined.
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If 0 is an isolated zero of a holomorphic mapping F = (f1, . . . , fn), then its
multiplicity equals mF = (ddc log |F |)n(0) = ddc log |f1|∧ . . .∧dd

c log |fn|(0) and the
set Γlog |F | is the convex hull of the union of the Newton polyhedra

Γlog |fj | = conv{J + R
n
+ : D(J)fj(0) 6= 0}

of fj at 0, 1 ≤ j ≤ n. Therefore, Theorem 8.1 implies Kushnirenko’s bound [13]

mF ≥ n! Covol (Γlog |F |), (13)

while the relation mF ≥ n! Covol (Γlog |f1|, . . . ,Γlog |fn|) is a modification of the local
variant of D. Bernstein’s theorem [1, Theorem 22.10]. As shown in [25], an equality
in (13) is true if and only if log |F | = Ψlog |F | +O(1).

The class of all log-homogeneous psh weights Ψ is generated by the directional
weights φa (2), in the sense that Ψ(z) = ⊕̌{φa(z) : φa ≤ Ψ} and the relative type

σ(u,Ψ) = ⊕̂{ν(u, a) : a ∈ AΨ}, (14)

where AΨ = {a ∈ R
n
+ : ν(Ψ, a) ≥ 1}. Moreover, the generalized Lelong number with

respect to any log-homogeneous weight can be represented in terms of the directional
numbers, too:

Theorem 8.2 [22] For each ϕ ∈ MW0 there exists a positive Borel measure γϕ on
the set Aϕ such that

ν(u, ϕ) ≥ ν(u,Ψϕ) =

∫
Aϕ

ν(u, a) dγϕ(a), u ∈ PSHS0. (15)

Note that representation (15) for ν(u,Ψ) is a (tropically) multiplicative analogue
of the additive representation (14) for σ(u,Ψ).

The function ψu (11) can be considered as the restriction of the valuative trans-
form of u (action of u on valuations [8], [2]) to the set of all monomial valuations.
Although relations (12) and (15) are coarser than the corresponding estimates in
terms of the valuative transforms from [8] and [2], they give bounds that can be
explicitly computed (the measure γϕ is defined constructively [22]). This reflects
one of the benefits of using tropical mathematics.

Finally, a direct computation involving the function ψu (11) shows that the inte-
grability index (4) for the indicator Ψu can be computed as λΨu

= sup{ψu(t)/
∑
tj}.

By (10), it gives the bound in terms of the directional numbers ν(u, a):

λu ≥ λΨu
= sup{ν(u, a) :

∑
k

ak = 1},

with an equality in the case of multicircled singularity u (see the remark in the end
of Section 7). This recovers [11, Thm. 5.8], which in turn implies a formula for the
log canonical threshold (5) for monomial ideals proved independently in [9].
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9 Related topics

The results on local indicators have global counterparts for psh functions of log-
arithmic growth in Cn (i.e., lim sup|z|→∞ u(z)/ log |z| < ∞, a basic example being
u = log |P | for a polynomial mapping P ), see [23] and [24]; they are also connected
with the notion of amoebas of holomorphic functions [20]. Similar notions con-
cerning Maslov’s dequantization in Cn and generalized Newton polytops were also
considered in [19].

References

[1] L.A. Aizenberg and Yu.P. Yuzhakov, Integral Representations and
Residues in Multidimensional Complex Analysis. Nauka, Novosibirsk, 1979.
English transl.: AMS, Providence, R.I., 1983.

[2] S. Boucksom, C. Favre and M. Jonsson, Valuations and plurisubharmonic
singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 449–494.

[3] H. Bremermann, On the conjecture of the equivalence of the plurisubharmonic
functions and the Hartogs functions, Math. Ann. 131 (1956), 76–86.

[4] J.-P. Demailly, Nombres de Lelong généralisés, théorèmes d’intégralité et
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