Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms

Xiang Ma, Peng Wang [∗]

School of Mathematical Sciences, Peking University, 100871 People's Republic of China

Abstract

Spacelike Willmore surfaces in 4-dimensional Lorentzian space forms, a topic in Lorentzian conformal geometry which parallels the theory of Willmore surfaces in $S⁴$, are studied in this paper. We define two kinds of transforms for such a surface, which produce the so-called left/right polar surfaces and the adjoint surfaces. These new surfaces are again conformal Willmore surfaces. For them holds interesting duality theorem. As an application spacelike Willmore 2-spheres are classified. Finally we construct a family of homogeneous spacelike Willmore tori.

Keywords: Spacelike Willmore surfaces; adjoint transforms; polar surfaces; duality theorem

1 Introduction

Willmore surfaces are the critical surfaces with respect to the conformally invariant Willmore functional. Many interesting results related to them have been obtained (see $[2,4,10,16]$), and now they are recognized as one of the most important surface classes in Möbius geometry.

For Lorentzian space forms there is also a parallel theory of conformal geometry. Thus it is natural to generalize the notion of Willmore surfaces to such a context. This idea was first followed by Alias and Palmer in [1]. They considered the codim-1 case and established such a theory as Bryant did in [2]: the conformal Gauss map was introduced; the Willmore functional was defined as the area with respect to the metric induced from this map; a surface is Willmore if, and only if, its conformal Gauss map is harmonic. Later Deng and Wang [8] treated timelike Willmore surfaces in Lorentzian 3-space; Nie [17] established a theory of conformal geometry about hypersurfaces in Lorentzian space forms and computed the first variation of Willmore functional.

[∗] e-mail: maxiang@math.pku.edu.cn, wangpeng@math.pku.edu.cn

In this paper we take the next step to study spacelike Willmore surfaces in Q_1^4 , the conformal compactification of the 4-dimensional Lorentzian space forms R_1^4 , S_1^4 and H_1^4 . In many aspects the theory is almost the same as in Möbius geometry, except that we have a distinctive construction as below.

For a spacelike surface $[Y]$ immersed into Q_1^4 , the normal plane is Lorentzian at each point. The null lines $[L], [R]$ in this plane define two conformal maps into Q_1^4 , called the left and the right polar surface, while these transforms are called $(-)$ transform and $(+)$ transform, respectively. Conversely, Y is also the right polar surface of $[L]$, and the left polar surface of $[R]$ (when $[L]$ and $[R]$ are immersions). That means $(-)$ transform and $(+)$ transform are mutual inverses to each other (this is true even without the Willmore condition). Applying these transforms successively, we obtain a sequence of conformal surfaces as described by the following diagram:

Our main result says that they are all Willmore surfaces if $|Y|$ is assumed to be so.

It is interesting to notice that the two-step transforms $[\hat{Y}]$ and $[\tilde{Y}]$ are located on the central sphere of the original Willmore surface $[Y]$ at corresponding point, which mimics the property of the adjoint transforms in $Sⁿ$ as introduced by the first author [14] (indeed they could be introduced in the same manner). In the special case that $[Y] = [Y]$, this yields a Willmore surface sharing the same central sphere congruence as $[Y]$. It generalizes the duality theorem of Bryant [2] and Ejiri [10], and such surfaces will still be called S-Willmore surfaces as in [10,13,14]. In particular, there is a surprising analogy between our transforms and the so-called forward and backward Bäcklund transforms defined by Burstall et al. for Willmore surfaces in $S⁴$ [4].

When the underlying surface M is compact, an important problem is to classify all Willmore immersions of M and to find the values of their Willmore functionals (i.e. to determine the critical values and critical points of the Willmore functional). For Willmore 2-spheres in S^3 and S^4 this question was perfectly answered by Bryant [2] and Montiel [14], respectively. Precisely speaking, any Willmore 2-spheres in $S⁴$ is the conformal compactification of a complete minimal surface in $R⁴$, or the twistor projection of a complex curve in the twistor space $\mathbb{C}P^3$. This follows from the duality theorem and the vanishing theorem about holomorphic forms on S^2 . By the same method we could obtain similar characterization result in the Lorentzian space.

Theorem. Any spacelike Willmore 2-sphere in Q_1^4 is either the conformal compactification of a complete spacelike stationary surface (i.e. $H=0$) in R_1^4 , or a polar surface of such a surface (in the latter case the surface is the twistor projection of a holomorphic curve in the twistor space of Q_1^4). For a surface of the second type, its Willmore functional always equals zero.

This paper is organized as follows. In Section 2, we describe the Lorentzian conformal space Q_1^4 as well as round 2-spheres in it. The general theory about spacelike surfaces and the characterization of Willmore surfaces are given in Section 3 and Section 4. Then we study the transforms of spacelike Willmore surfaces in Section 5. These transforms are utilized to classify spacelike Willmore 2-spheres in Section 6. Finally we discuss some special examples in Section 7 and construct a family of homogeneous spacelike Willmore tori which are not S-Willmore.

In the sequel $y : M \to Q_1^4$ will always denote a smooth spacelike immersion from an oriented surface M unless it is explicitly claimed otherwise.

2 Lorentzian conformal geometry of Q_1^4

Let \mathbb{R}^n_s be the space \mathbb{R}^n equipped with the quadric form

$$
\langle x, x \rangle = \sum_{1}^{n-s} x_i^2 - \sum_{n-s+1}^{n} x_i^2.
$$

In this paper we will mainly work with \mathbb{R}_2^6 whose light cone is denoted as C^5 . The quadric

$$
Q_1^4 = \{ [x] \in \mathbb{R}P^5 \mid x \in C^5 \setminus \{0\} \}
$$

is exactly the projectived light cone. The standard projection $\pi : C^5 \setminus \{0\} \to Q_1^4$ is a fiber bundle with fiber $\mathbb{R} \setminus \{0\}$. It is easy to see that Q_1^4 is equipped with a Lorentzian metric induced from projection $S^3 \times S^1 \to Q_1^4$. Here

$$
S^3 \times S^1 = \{ x \in \mathbb{R}_2^6 \mid \sum_{i=1}^4 x_i^2 = x_5^2 + x_6^2 = 1 \} \subset C^5 \setminus \{ 0 \}
$$
 (1)

is endowed with the Lorentzian metric $g(S^3) \oplus (-g(S^1))$, where $g(S^3)$ and $g(S^1)$ are standard metrics on S^3 and S^1 . So there is a conformal structure of Lorentzian metric [h] on Q_1^4 . By a theorem of Cahen and Kerbrat [6], we know that the conformal group of $(Q_1^4, [h])$ is exactly the orthogonal group $O(4,2)/\{\pm 1\}$, which keeps the inner product of \mathbb{R}^6_2 invariant and acts on Q_1^4 by

$$
T([x]) = [xT], \ T \in O(4, 2). \tag{2}
$$

As in the Riemannian case, there are three 4-dimensional Lorentzian space forms, each with constant sectional curvature $c = 0, +1, -1$, respectively. They are defined by

$$
R_1^4, c = 0;
$$

\n
$$
S_1^4 := \{x \in \mathbb{R}_1^5 \mid \langle x, x \rangle = 1\}, c = 1;
$$

\n
$$
H_1^4 := \{x \in \mathbb{R}_2^5 \mid \langle x, x \rangle = -1\}, c = -1.
$$

Each of them could be embedded as a proper subset of Q_1^4 :

$$
\varphi_0: R_1^4 \to Q_1^4, \qquad \varphi_0(x) = [(\frac{-1 + \langle x, x \rangle}{2}, x, \frac{1 + \langle x, x \rangle}{2})]; \n\varphi_+: S_1^4 \to Q_1^4, \qquad \varphi_+(x) = [(x, 1)]; \n\varphi_-: H_1^4 \to Q_1^4, \qquad \varphi_-(x) = [(1, x)].
$$
\n(3)

It is easy to verify that these maps are conformal embeddings. In particular, the Lorentzian conformal space Q_1^4 could be viewed as the conformal compactification of R_1^4 by attaching the light-cone at infinity to it, i.e.

$$
Q_1^4 = \varphi_0(R_1^4) \cup C_{\infty},
$$

where $C_{\infty} = \{(a, u, a) \in \mathbb{R}P^5 \mid \langle u, u \rangle = 0, a \in \mathbb{R}\}$. Thus Q_1^4 is the proper space to study the conformal geometry of these Lorentzian space forms.

We note that the description above is valid in n -dimensional space. The whole theory parallels Möbius geometry, and Lorentzian space forms are viewed as conic sections of Q_1^n .

Lorentzian conformal geometry is also analogous to Möbius geometry in that we have round spheres as the most important conformally invariant objects. For our purpose here we only discuss round 2-spheres (they were named *conformal 2-spheres* in [1]). Each of them could be identified with a 4-dim Lorentzian subspace in \mathbb{R}_2^6 . Given such a 4-space V, the round 2-sphere is given by

$$
S^{2}(V) := \{ [v] \in Q_{1}^{4} \mid v \in V \}.
$$

Such spheres share the same properties as the round 2-spheres in Möbius geometry: they are not only topological 2-spheres, but also geodesic 2-spheres when viewed as subsets of some Lorentzian space form; they are totally umbilic spacelike surfaces. In our terms the moduli space Σ of all round 2-spheres in Q_1^4 can be identified with the Grassmannian manifold

 $G_{3,1}(\mathbb{R}_2^6) := \{4\text{-dim Lorentzian subspaces of }\mathbb{R}_2^6\}.$

3 Basic equations for a surface in Q_1^4

For a surface $y : M \to Q_1^4$ and any open subset $U \subset M$, a local lift of y is just a map $Y: U \to C^5 \setminus \{0\}$ such that $\pi \circ Y = y$. Two different local lifts differ by a scaling, so the metric induced from them are conformal to each other.

Let M be a Riemann surface. An immersion $y : M \to Q_1^4$ is called a conformal spacelike surface, if $\langle Y_z, Y_z \rangle = 0$ and $\langle Y_z, Y_{\bar{z}} \rangle > 0$ for any local lift Y and any complex coordinate z on M. (Here $Y_z = \frac{1}{2}$ $\frac{1}{2}(Y_u - iY_v)$ is the complex tangent vector for $z = u+iv$, and $Y_{\overline{z}}$ its complex conjugate.) For such a surface there is a decomposition $M \times \mathbb{R}_2^6 = V \oplus V^{\perp}$, where

$$
V = \text{Span}\{Y, \mathrm{d}Y, Y_{z\bar{z}}\}\tag{4}
$$

is a Lorentzian rank-4 subbundle independent to the choice of Y and z . The orthogonal complement V^{\perp} is also a Lorentzian subbundle, which might be identified with the normal bundle of y in Q_1^4 . Their complexifications are denoted separately as $V_{\mathbb{C}}$ and $V_{\mathbb{C}}^{\perp}$.

Fix a local coordinate z. There is a local lift Y satisfying $|dY|^2 = |dz|^2$, called the canonical lift (with respect to z). Choose a frame $\{Y, Y_z, Y_{\bar{z}}, N\}$ of $V_{\mathbb{C}}$, where $N \in \Gamma(V)$ is uniquely determined by

$$
\langle N, Y_z \rangle = \langle N, Y_{\bar{z}} \rangle = \langle N, N \rangle = 0, \langle N, Y \rangle = -1.
$$
 (5)

For V^{\perp} which is a Lorentzian plane at every point of M, a natural frame is ${L, R}$ such that

$$
\langle L, L \rangle = \langle R, R \rangle = 0, \langle L, R \rangle = -1.
$$
 (6)

So L and R span the two null lines in V^{\perp} separately. They are determined up to a real factor around each point.

Given frames as above, it is straightforward to write down the structure equations of Y. First note that Y_{zz} is orthogonal to Y, Y_z and $Y_{\bar{z}}$. So there must be a complex function s and a section $\kappa \in \Gamma(V_{\mathbb{C}}^{\perp})$ such that

$$
Y_{zz} = -\frac{s}{2}Y + \kappa. \tag{7}
$$

This defines two basic invariants κ and s depending on coordinates z. Similar to the case in Möbius geometry, κ and s are interpreted as the conformal Hopf differential and the Schwarzian of y, separately (see [5][14]). Decompose κ as

$$
\kappa = \lambda_1 L + \lambda_2 R. \tag{8}
$$

Let D denote the normal connection, i.e. the connection in the bundle V^{\perp} . We have

$$
D_z L = \alpha L, \quad D_z R = -\alpha R
$$

for the connection 1-form αdz . Denote

$$
\langle \kappa, \bar{\kappa} \rangle = -\beta, \quad D_{\bar{z}}\kappa = \gamma_1 L + \gamma_2 R,\tag{9}
$$

where

$$
\begin{cases}\n\beta = \lambda_1 \bar{\lambda}_2 + \lambda_2 \bar{\lambda}_1, \\
\gamma_1 = \lambda_{1\bar{z}} + \lambda_1 \bar{\alpha}, \\
\gamma_2 = \lambda_{2\bar{z}} - \lambda_2 \bar{\alpha}.\n\end{cases}
$$
\n(10)

The structure equations are given as follows:

$$
\begin{cases}\nY_{zz} = -\frac{s}{2}Y + \lambda_1 L + \lambda_2 R, \\
Y_{z\bar{z}} = \beta Y + \frac{1}{2}N, \\
N_z = 2\beta Y_z - sY_{\bar{z}} + 2\gamma_1 L + 2\gamma_2 R, \\
L_z = \alpha L - 2\gamma_2 Y + 2\lambda_2 Y_{\bar{z}}, \\
R_z = -\alpha R - 2\gamma_1 Y + 2\lambda_1 Y_{\bar{z}},\n\end{cases}
$$
\n(11)

The conformal Gauss, Codazzi and Ricci equations as integrable conditions are:

$$
\begin{cases}\ns_{\bar{z}} = -2\beta_z - 4\lambda_1 \bar{\gamma}_2 - 4\lambda_2 \bar{\gamma}_1, \nIm(\gamma_{1\bar{z}} + \gamma_1 \bar{\alpha} + \frac{\bar{s}}{2}\lambda_1) = 0, \nIm(\gamma_{2\bar{z}} - \gamma_2 \bar{\alpha} + \frac{\bar{s}}{2}\lambda_2) = 0, \nD_{\bar{z}}D_zL - D_zD_{\bar{z}}L = 2(\lambda_2 \bar{\lambda}_1 - \bar{\lambda}_2\lambda_1)L, \nD_{\bar{z}}D_zR - D_zD_{\bar{z}}R = -2(\lambda_2 \bar{\lambda}_1 - \bar{\lambda}_2\lambda_1)R.\n\end{cases}
$$
\n(12)

These are quite similar to the theory in [5]. In particular, the second and the third equation above could be combined and written as a single conformal Codazzi equation:

$$
\operatorname{Im}(D_{\bar{z}}D_{\bar{z}}\kappa + \frac{\bar{s}}{2}\kappa) = 0. \tag{13}
$$

Remark 3.1. Another important fact we will need later is that κ $(\mathrm{d}z)^{\frac{3}{2}}(\mathrm{d}\bar{z})^{-\frac{1}{2}}$ is a globally defined vector-valued complex differential form.

4 Willmore functional and Willmore surfaces

Definition 4.1. For a conformal spacelike surface $y : M \to Q_1^4$, the 4-dim Lorentzian subspace

$$
V = \text{Span}\{Y, \mathrm{d}Y, Y_{z\bar{z}}\}
$$

at one point $p \in M$ is identified with a round 2-sphere $S^2(V)$ in Q_1^4 as in Section 2. We call it the central sphere of the surface y at p.

The notion of central spheres comes from Möbius geometry, where it is of great importance in the study of surfaces (and general submanifolds) [2,5,8,19]. It is also known as the mean curvature sphere of the immersed surface y at p , characterized as the unique round 2-sphere y^* tangent to y at p and sharing the same mean curvature vector as y at this point. (The ambient space is endowed with a metric of some space form). In the Lorentzian case this is also true.

Proposition 4.2. A surface immersed in a lorentzian space form envelops its central sphere congruence and shares the same mean curvature with these round 2-spheres at corresponding points.

Proof. To prove the conclusion for the flat space R_1^4 , consider a surface y: $M \to R_1^4$ and a point $p \in M$. Let $y^* : S^2 \to R_1^4$ be the mean curvature sphere associated with y at p as characterized above. It suffices to show that y^* coincides with the central sphere of y at p. Embed surface y into Q_1^4 via φ_0 as given by [\(3\)](#page-3-0), with lift

$$
Y = \left(\frac{-1 + \langle y, y \rangle}{2}, y, \frac{1 + \langle y, y \rangle}{2}\right).
$$

Computation shows that the central sphere of y at p, identified with $V =$ $Span{Y, Re(Y_z), Im(Y_z), Y_{z\bar{z}}\}\$, is determined by the position vector $y(p)$, the tangent plane $dy(TM_p)$, and the mean curvature vector $H(p)$, which coincide with those of y^* by our assumption. So y, y^* share the same central sphere at p. Yet for the round 2-sphere y^* , its central sphere at any point is exactly itself (they fall into the same 4-dim subspace), which verifies our assertion. For surfaces in S_1^4 or H_1^4 the proof is similar. \Box

Corollary 4.3. In particular, if the central sphere congruence of y is a family of planes in R_1^4 , this surface must have mean curvature zero at every point, thus be a stationary surface in R_1^4 .

The central sphere congruence is conformally invariant in the sense that for two surfaces $[Y']$, $[Y]$ differing to each other by the action of $T \in O(4, 2)$, their central spheres at corresponding points also differ by this transformation. This tells us that although the mean curvature sphere of a surface at one point is defined in terms of metric geometry, it is indeed a conformal invariant by Proposition 4.2 and the observation above. Viewed as a map from M to Σ , the moduli space of round 2-spheres, it has another name, the conformal Gauss map of y [1,2]. In Section 2 we have identified Σ with the Grassmannian $G_{3,1}(\mathbb{R}_2^6)$, which could be further embedded into the space of multi-vectors (of certain type and of length 1) in \mathbb{R}_2^6 :

$$
\Sigma \simeq G_{3,1}(\mathbb{R}^6_2) \hookrightarrow \Lambda_{3,1}(\mathbb{R}^6_2).
$$

The latter is endowed with the canonical semi-Riemannian metric as usual. This provides the appropriate framework for the discussion of the geometry of the conformal Gauss map.

Definition 4.4. For a conformally immersed surface $y : M \to Q_1^4$ with canonical lift Y (with respect to a local coordinate z), define

$$
G := Y \wedge Y_u \wedge Y_v \wedge N = -2i \cdot Y \wedge Y_z \wedge Y_{\bar{z}} \wedge N, \ z = u + iv,
$$

where $N \equiv 2Y_{z\bar{z}} (\bmod Y)$ is the frame vector determined in [\(5\)](#page-4-0). Note that $\langle G, G \rangle = 1$ and that G is well defined. We call $G : M \to G_{3,1}(\mathbb{R}^6)$ the conformal Gauss map of y. It is noteworthy that $V \in G_{3,1}(\mathbb{R}^6)$ determines $V^{\perp} \in G_{1,1}(\mathbb{R}^6_2)$ and vice versa. Hence the geometry of G is equivalent to the geometry of the associated map

$$
G^{\perp} := L \wedge R : M \to G_{1,1}(\mathbb{R}^6_2),
$$

where L, R are normal vectors as given in (6) .

The conformal Gauss map is important in that it induces a conformally invariant conformal metric. Direct computation using [\(11\)](#page-4-2) shows

Proposition 4.5. For a conformal surface $y : M \to Q_1^4$, G induces a metric

$$
g := \frac{1}{4} \langle \mathrm{d}G, \mathrm{d}G \rangle = \langle \kappa, \bar{\kappa} \rangle |dz|^2
$$

on M, where $\kappa = \lambda_1 L + \lambda_2 R$ is the conformal Hopf differential. This metric might be positive definite, negative definite, or degenerate according to the sign of $\langle \kappa, \bar{\kappa} \rangle = -\beta = -(\lambda_1 \bar{\lambda}_2 + \lambda_2 \bar{\lambda}_1).$

Now we can introduce the Willmore functional and Willmore surfaces.

Definition 4.6. The Willmore functional of y is defined as the area of M with respect to the metric above:

$$
W(y) := \frac{i}{2} \int_M |\kappa|^2 dz \wedge d\bar{z}.\tag{14}
$$

An immersed surface $y : M \to Q_1^4$ is called a Willmore surface, if it is a critical surface of the Willmore functional with respect to any variation of the $map y: M \to Q_1^4.$

Willmore surfaces can be characterized as follows, which is similar to the conclusions in codim-1 case $[1,8]$ as well as in Möbius geometry $[2,5,10,14]$.

Theorem 4.7. For a conformal spacelike surface $y : M \to Q_1^4$, the following four conditions are equivalent:

 (i) y is Willmore.

(ii) The conformal Gauss map G is a harmonic map into $G_{3,1}(\mathbb{R}^6)$.

(iii) The conformal Hopf differential κ of y satisfies the Willmore condition as below, which is stronger than the conformal Codazzi equation [\(13\)](#page-5-0):

$$
D_{\bar{z}}D_{\bar{z}}\kappa + \frac{\bar{s}}{2}\kappa = 0. \tag{15}
$$

(iv) In a Lorentzian space form of sectional curvature c, y satisfies the Euler-Lagrange equation

$$
\Delta \vec{H} - 2(|\vec{H}|^2 + K - c)\vec{H} = 0.
$$
 (16)

Here Δ , \vec{H} , K are the Laplacian of the induced metric, the mean curvature vector, and the Gaussian curvature of y, respectively.

The proof to Theorem [4.7](#page-7-0) is completely the same as in Möbius geometry (we refer the reader to [15]). Note that when we take a variation y_t of the immersion y , generally y_t is not conformal to y , hence we have to consider the variation of the Willmore functional with respect to a varied complex structure J_t over M. Yet one can verify that this change of complex structure J contributes nothing to the first variation of the Willmore functional. Then the Willmore condition [\(15\)](#page-7-1) can be derived easily.

The equivalent condition [\(16\)](#page-7-2) in this theorem also implies that stationary surfaces (i.e. surfaces with mean curvature $\vec{H} = 0$) in Lorentzian space forms are Willmore. Indeed they belong to a subclass of Willmore surfaces, the socalled S-Willmore surfaces. The latter are exactly those Willmore surfaces with dual surfaces (see the next section). See Ejiri [10] and Ma $[14]$ for the counterpart in Möbius geometry.

Definition 4.8. A conformal Willmore surface $y : M \to Q_1^4$ is called a S-Willmore surface if it satisfies $D_{\bar{z}}\kappa \parallel \kappa$, i.e., $D_{\bar{z}}\kappa = -\frac{\bar{\mu}}{2}$ $\frac{\mu}{2}$ к for some local function μ when $\kappa \neq 0$.

Definition 4.9. Let $y : M \to Q_1^4$ be a spacelike surface. We call y nullumbilic if its Hopf differential is isotropic, i.e. $\langle \kappa, \kappa \rangle = 0$ (equivalently, λ_1 or λ_2 vanishes). y is umbilic if $\kappa = 0$ (equivalently, $\lambda_1 = \lambda_2 = 0$).

So far our notions, constructions and results can all be easily generalized to n-dimensional spaces. Yet in Q_1^4 null-umbilic surfaces have a special meaning. They are equivalent to \mathcal{O}^+ -holomorphic maps into the twistor space of Q_1^4 according to [12]. Thus they are similar to isotropic surfaces in $S⁴$ (which are also twistor projection of complex curves). Yet there are also important differences. For example, isotropic surfaces in $S⁴$ are always S-Willmore, yet for null-umbilic surfaces this is not necessarily true. (Only under the additional Willmore condition can we show that a null-umbilic surface is S-Willmore.)

5 Transforms of Spacelike Willmore surfaces

In this section, we will define two transforms for surfaces in Q_1^4 and show that the new surfaces derived from them are also Willmore if the original surface is Willmore.

5.1 Right/left polar surfaces; (+/−)transforms

For a conformal spacelike surface $y: M \to Q_1^4$ with canonical lift $Y: M \to R_2^6$ with respect to complex coordinate $z = u + iv$, its normal plane at any point is spanned by two lightlike vectors L, R . Suppose that R_2^6 is endowed with a fixed orientation and that

$$
\{Y, Y_u, Y_v, N, R, L\}
$$

form a positively oriented frame. $\{R, L\}$ might also be viewed as a frame of the normal plane compatible with the orientation of M and that of the ambient space. Since $\langle L, R \rangle = -1$ has been fixed in [\(6\)](#page-4-1), either one of the null lines [L] $([R])$ is well-defined.

Definition 5.1. The two maps

$$
[L],[R]:M\to Q_1^4
$$

are named the left and the right polar surface of $y = [Y]$, respectively.

Remark 5.2. Denote $e_+ = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(R-L), e_{-} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(R+L)$. Then $\{e_+,e_-\}$ is a positively oriented orthonormal frame of the normal plane, and L, R could be written as

$$
L = \frac{1}{\sqrt{2}}(e_- - e_+), \quad R = \frac{1}{\sqrt{2}}(e_- + e_+).
$$

Thus we also call [L] the (−)transform, and [R] the (+)transform of [Y]. At the same time these names correspond to the directions of these transforms in the diagram below:

The name polar surfaces comes from Lawson's similar construction for minimal surfaces in S^3 [11].

Proposition 5.3. The polar surfaces $[L], [R] : M \rightarrow Q_1^4$ are both conformal maps. [L] ([R]) is degenerate if, and only if, $\lambda_2 = 0$ ($\lambda_1 = 0$); it is a spacelike immersion otherwise. The original surface $[Y]$ is the left polar surface of $[R]$ (the right polar surface of $[L]$) when $[R]$ ($[L]$) is not degenerate.

Proof. The first two conclusions for $[L]$ follow directly from

$$
L_z = \alpha L - 2\gamma_2 Y + 2\lambda_2 Y_{\bar{z}}
$$

by (11) . Differentiating this equation once more, by $(10)(11)$ we find

$$
L_{z\bar{z}} = \bar{\alpha}L_z + \alpha L_{\bar{z}} + (\alpha_{\bar{z}} - \alpha \bar{\alpha} + 2\lambda_2 \bar{\lambda}_1)L + 2\lambda_2 \bar{\lambda}_2 \cdot R - 2(\gamma_{2\bar{z}} - \gamma_2 \bar{\alpha} + \frac{\bar{s}}{2}\lambda_2)Y.
$$
 (17)

When $\lambda_2 \neq 0$, we can verify directly that Y and

$$
\hat{Y} = 2\left|\frac{\gamma_2}{\lambda_2}\right|^2 Y - 2\frac{\bar{\gamma}_2}{\bar{\lambda}_2} Y_z - 2\frac{\gamma_2}{\lambda_2} Y_{\bar{z}} + N + \frac{\gamma_{2\bar{z}} - \gamma_2 \bar{\alpha} + \frac{\bar{s}}{2}\lambda_2}{\lambda_2 \bar{\lambda}_2} L \qquad (18)
$$

are two lightlike vectors in the orthogonal complement of $\text{Span}\{L, L_z, L_{\bar{z}}, L_{z\bar{z}}\}$ with $\langle Y, Y \rangle = -1$, and that $\{L, L_z, L_{\bar{z}}, L_{z\bar{z}}, Y, Y\}$ is again a positively oriented frame. So for $[L]$, the left polar surface of $[Y]$, its right polar surface is exactly [Y]. For $[R]$ the proof is similar. In other words, the $(+)$ transform is the inverse to the (−)transform and vice versa when all surfaces concerned are immersed. \Box immersed.

Remark 5.4. On the other hand, $[\hat{Y}]$ might be viewed as the 2-step (−)transform of $y = [Y]$. Similarly we have the 2-step $(+)$ transform $[\tilde{Y}]$ as the right polar surface of $[R]$:

Note that $[L], [R]$ are also 2-step transforms to each other.

5.2 $(+/-)$ transforms preserve Willmore property

Assume $y: M \to Q_1^4$ is an immersed spacelike Willmore surface with canonical lift $Y: M \to R_2^6$ for a given coordinate z locally. We want to show that the (+)transform and (−)transform again produce Willmore surfaces.

Assume that the left polar surface [L] is an immersion, i.e. $\lambda_2 \neq 0$. Set

$$
-\frac{\bar{\mu}}{2} := \frac{\gamma_2}{\lambda_2}.\tag{19}
$$

According to the conclusions of Theorem [4.7](#page-7-0) and Proposition [5.3,](#page-8-0) we need to show that the conformal Gauss map of [L], represented by $Y \wedge \hat{Y}$, is a harmonic map. The Willmore condition (15) for y amounts to say

$$
\begin{cases}\n\gamma_{1\bar{z}} + \gamma_1 \bar{\alpha} + \frac{\bar{s}}{2} \lambda_1 = 0, \\
\gamma_{2\bar{z}} - \gamma_2 \bar{\alpha} + \frac{\bar{s}}{2} \lambda_2 = 0.\n\end{cases}
$$
\n(20)

Hence the expression of \hat{Y} in (18) is simplified to

$$
\hat{Y} := \frac{|\mu|^2}{2}Y + \bar{\mu}Y_z + \mu Y_{\bar{z}} + N. \tag{21}
$$

The Willmore condition also implies

$$
\mu_z - \frac{\mu^2}{2} - s = 0,\tag{22}
$$

because one can verify directly that

$$
2(\gamma_{2\bar{z}}-\gamma_2\bar{\alpha}+\frac{\lambda_2\bar{s}}{2})=(-\bar{\mu}_{\bar{z}}+\frac{\bar{\mu}^2}{2}+\bar{s})\lambda_2
$$

using the expressions of γ_2 [\(10\)](#page-4-3) and μ [\(19\)](#page-9-0).

For convenience of computation, set a new frame

$$
\{Y, \hat{Y}, P, \bar{P}, L, R\}, \quad \text{with } P := Y_z + \frac{\mu}{2}Y,
$$

so that $\langle Y, P \rangle = \langle \hat{Y}, P \rangle = 0$. Differentiating \hat{Y} and invoking [\(22\)](#page-10-0), we find

$$
\hat{Y}_z = \frac{\mu}{2}\hat{Y} + \rho P + \sigma L,\tag{23}
$$

where

$$
\begin{cases}\n\rho = \bar{\mu}_z + 2\lambda_1 \bar{\lambda}_2 + 2\lambda_2 \bar{\lambda}_1 = \bar{\mu}_z + 2\beta, \\
\sigma = 2\gamma_1 + \lambda_1 \bar{\mu}.\n\end{cases} (24)
$$

For the frame $\{Y, \hat{Y}, P, \bar{P}, L, R\},$ the structure equations are

$$
\begin{cases}\nY_z = -\frac{\mu}{2}Y + P, \\
\hat{Y}_z = \frac{\mu}{2}\hat{Y} + \rho P + \sigma L, \\
P_z = \frac{\mu}{2}P + \lambda_1 L + \lambda_2 R, \\
\bar{P}_z = -\frac{\mu}{2}\bar{P} + \frac{\rho}{2}Y + \frac{1}{2}\hat{Y}, \\
L_z = \alpha L + 2\lambda_2 \bar{P}, \\
R_z = -\alpha R + 2\lambda_1 \bar{P} - \sigma Y.\n\end{cases}
$$
\n(25)

Now the Willmore condition, [\(22\)](#page-10-0) and the first one in [\(20\)](#page-9-1), yields

$$
\rho_{\bar{z}} = \bar{\mu}\rho - 2\bar{\lambda}_2\sigma,\tag{26}
$$

$$
\sigma_{\bar{z}} = (-\bar{\alpha} + \frac{\bar{\mu}}{2})\sigma.
$$
\n(27)

The computation is straightforward by the expressions $(24)(10)$ $(24)(10)$ and the first equation in [\(12\)](#page-4-4) (the conformal Gauss equation).

After these preparations, now we can compute out that

$$
(Y \wedge \hat{Y})_z = P \wedge \hat{Y} + \rho Y \wedge P + \sigma Y \wedge L,
$$

\n
$$
(Y \wedge \hat{Y})_{z\bar{z}} = \frac{\rho + \bar{\rho}}{2} Y \wedge \hat{Y} + \sigma \bar{P} \wedge L + \bar{\sigma} P \wedge L + \rho \bar{P} \wedge P + \bar{\rho} P \wedge \bar{P} + (\rho_{\bar{z}} - \bar{\mu}\rho + 2\sigma \bar{\lambda}_2) Y \wedge P + (\sigma_{\bar{z}} - \frac{\bar{\mu}}{2}\sigma + \bar{\alpha}\sigma) Y \wedge L.
$$

Thus $Y \wedge \hat{Y}$ is a (conformal) harmonic map into $G_{1,1}(\mathbb{R}^6)$ as desired. This shows that $[L]$ is Willmore. For $[R]$ the proof is similar. Sum together, we have proved

Theorem 5.5. Let $y : M \to Q_1^4$ be a spacelike Willmore surface. Then its left and right polar surfaces $[L], [R] : M \to Q_1^4$ are also spacelike Willmore surfaces when they are not degenerate.

Since the $(-)$ transform and the $(+)$ transform preserve the Willmore property, the same holds true for the 2-step transforms $[\hat{Y}], [\hat{Y}]$ when they are defined.

Definition 5.6. When $[Y]$ is Willmore, $[\hat{Y}], [\hat{Y}]$ are also conformal spacelike Willmore surfaces, called separately the left adjoint transform and the right adjoint transform of $[Y]$.

Remark 5.7. Another equivalent way to define adjoint transforms of a given Willmore surface is to follow the idea in [14]. In particular, the adjoint transforms defined at here share many properties as before. Taking $[Y]$ for example, we have:

- (1) The (left) adjoint transform $[\hat{Y}]$ is conformal to $[Y]$; it locates on the central sphere congruence of $[Y]$ according to [\(21\)](#page-9-2) and Definition [4.1.](#page-5-1)
- (2) $Y \wedge \hat{Y}$ is a conformal harmonic map into the Grassmannian $G_{1,1}(\mathbb{R}_2^6)$.
- (3) When the two adjoint transforms coincide, this surface $[\hat{Y}] = [\hat{Y}]$ will share the same central sphere congruence with $[Y]$. (See the duality theorem in the next subsection.)

The interested reader may confer [14] for a comparison. Here we derive them from the polar surfaces, which seems more natural in our context. Note that $[L], [R]$ are also adjoint transforms to each other, as visualized below:

The chain of $(-)$ transforms and $(+)$ transforms also demonstrates a striking similarity with the backward and forward Bäcklund transforms introduced for Willmore surfaces in S^4 [4]. In particular, the 2-step Bäcklund transforms there could also be identified with the adjoint transforms in [14]. An interesting difference is that our $(-/+)$ transforms are defined in a conformally invariant way, whereas the 1-step Bäcklund transforms are only properly defined in some affine space R^4 .

5.3 Duality theorem of S-Willmore surfaces

In the picture given above, a special case is noteworthy, namely that when $[\tilde{Y}] = [Y]$. This might be characterized by the following

Theorem 5.8 (Duality Theorem). Let $y = [Y] : M \to Q_1^4$ be a spacelike S-Willmore surface with polar surfaces $[L], [R]$ and adjoint transforms $[\hat{Y}], [\hat{Y}]$. Suppose that both of $[L], [R]$ are not degenerate, i.e., $\lambda_1 \neq 0, \lambda_2 \neq 0$. Then the conditions below are equivalent:

- (1) $[\hat{Y}] = [\tilde{Y}]$, i.e., the two adjoint transforms coincide.
- (2) $y = [Y]$ is a S-Willmore surface, i.e. $D_{\bar{z}}\kappa = -\frac{\bar{\mu}}{2}$ $\frac{\mu}{2}\kappa$ for some μ .
- (3) $[\hat{Y}]$ (or $[\tilde{Y}]$) shares the same central sphere congruence with $[Y]$.

Proof. When y is Willmore, its right adjoint transform $|\tilde{Y}|$ might be given in a formula similar to [\(21\)](#page-9-2) with

$$
\tilde{Y} := \frac{|\mu_1|^2}{2}Y + \bar{\mu}_1 Y_z + \mu_1 Y_{\bar{z}} + N, \quad -\frac{\bar{\mu}_1}{2} := \frac{\gamma_1}{\lambda_1}.
$$

Thus it is obvious that $[\hat{Y}] = [\tilde{Y}]$ if and only if $-\bar{\mu}/2 = \gamma_1/\lambda_1 = \gamma_2/\lambda_2$, which is equivalent to the S-Willmore condition. This shows " $(1) \Leftrightarrow (2)$ ". By (25) we also know that

$$
\text{Span}\{\hat{Y}, \hat{Y}_z, \hat{Y}_{\bar{z}}, \hat{Y}_{z\bar{z}}\} = \text{Span}\{Y, Y_z, Y_{\bar{z}}, Y_{z\bar{z}}\}
$$

if and only if $\sigma := 2\gamma_1 + \lambda_1 \bar{\mu} = 0$, where $-\bar{\mu}/2 := \gamma_2/\lambda_2$. This shows that $[\hat{Y}]$ has the same central sphere congruence as [Y] exactly when $-\bar{\mu}/2 = \gamma_1/\lambda_1 = \gamma_2/\lambda_2$. So "(3) \Leftrightarrow (2)", and the proof is completed. γ_2/λ_2 . So "(3) \Leftrightarrow (2)", and the proof is completed.

Remark 5.9. Condition (3) in this theorem tells us that when $[Y]$ is S-Willmore, [Y] must also be S-Willmore. Each of them could be obtained as the unique adjoint transform, or the second envelopping surface of the central sphere congruence, of the other. $[\tilde{Y}]$ is called the dual Willmore surface of $[Y]$, and vice versa. Note that when $\lambda_2 \equiv 0(\lambda_1 \equiv 0)$, $[L](R)$ degenerates to a single point. This happens exactly when y is a null-umbilic surface in Q_1^4 . Yet the dual Willmore surface could still be defined if the other $\lambda_i \neq 0$.

Corollary 5.10. When $y = [Y] : M \to Q_1^4$ is a S-Willmore surface without umbilic points, $[L]$ and $[R]$ are a pair of S-Willmore surfaces being adjoint transform to each other (one of them might be degenerate). In particular, the $(-/+)$ transforms preserve the S-Willmore property.

Proof. Since y has no umbilic points, λ_1, λ_2 could not vanish simultaneously. Without loss of generality, assume $\lambda_2 \neq 0$. Then [L] is an immersion. By the Duality Theorem above, we see that $[Y] (= [Y])$ is defined. The transform chain appeared in Remark [5.7](#page-11-0) then closes up as below:

It tells us that $[L]$ is the 2-step (−)transform and the 2-step (+)transform of [R] at the same time. Equivalently, that means [L] and [R] are the left and the right adjoint transform of each other. This proves the conclusion by the Duality Theorem above. 口

6 Spacelike Willmore 2-spheres in Q_1^4

In this section, we will classify spacelike Willmore 2-spheres in Q_1^4 . This is done by constructing globally defined holomorphic forms on S^2 ; the vanishing of such forms then enables us to draw strong conclusions. The reader will see that our method and result are still similar to the case for Willmore 2-spheres in S^4 [4,16].

Lemma 6.1. (i) Let $y : M \to Q_1^4$ be a spacelike Willmore surface with conformal Hopf differential κ for a given coordinate z. Then the 6-form

$$
\Theta(\mathrm{d}z)^6 = \left[\langle D_{\bar{z}}\kappa, \kappa \rangle^2 - \langle \kappa, \kappa \rangle \cdot \langle D_{\bar{z}}\kappa, D_{\bar{z}}\kappa \rangle \right] (\mathrm{d}z)^6 \tag{28}
$$

is a globally defined holomorphic 6-form on M.

(ii) When $M = S^2$, we have $\Theta \equiv 0$ and y is S-Willmore. On the subset $M_0 \subset M$ where y has no umbilic points, let Y be the canonical lift of y, and \hat{Y} a local lift of its dual Willmore surface satisfying $\langle Y, \hat{Y} \rangle = -1$. Then

$$
\Omega(\mathrm{d}z)^{8} = \langle Y_{zz}, Y_{zz} \rangle \langle \hat{Y}_{zz}, \hat{Y}_{zz} \rangle (\mathrm{d}z)^{8} \tag{29}
$$

is a globally defined holomorphic 8-form on S^2 . So $\Omega \equiv 0$.

Proof. It is easy to verify that these two differential forms are well-defined (one may use the fact that κ $(dz)^{\frac{3}{2}}(d\overline{z})^{-\frac{1}{2}}$ is globally defined). The holomorphicity of $\Theta(\mathrm{d}z)^6$ follows directly from the Willmore condition [\(15\)](#page-7-1).

For conclusion (ii), by the well-known fact that every holomorpic form on S^2 must vanish, we know $\Theta \equiv 0$. On the other hand, $\Theta = (\lambda_1 \gamma_2 - \lambda_2 \gamma_1)^2$ by [\(8\)](#page-4-5)[\(9\)](#page-4-6). So on S^2 we have $\lambda_1 \gamma_2 - \lambda_2 \gamma_1 = 0$. It is just the S-Willmore condition. Thus on M_0 where $\kappa \neq 0$, there is $D_{\bar{z}}\kappa = -\frac{\bar{\mu}}{2}$ $\frac{\mu}{2}\kappa$ for some local function μ . Define \hat{Y} and ρ as in [\(21\)](#page-9-2) and [\(24\)](#page-10-1), and compute \hat{Y}_{zz} using [\(25\)](#page-10-2). We get $\langle \hat{Y}_{zz}, \hat{Y}_{zz} \rangle = -2\rho^2 \lambda_1 \lambda_2$. Hence

$$
\Omega = \langle Y_{zz}, Y_{zz} \rangle \langle \hat{Y}_{zz}, \hat{Y}_{zz} \rangle = 4(\rho \lambda_1 \lambda_2)^2.
$$

Note that in the S-Willmore case

$$
\sigma = \bar{\mu}\lambda_1 + 2\gamma_1 = 0 = \bar{\mu}\lambda_2 + 2\gamma_2. \tag{30}
$$

So $\rho_{\bar{z}} = \bar{\mu}\rho$ according to [\(26\)](#page-10-3). On the other hand,

$$
(\lambda_1 \lambda_2)_{\bar{z}} = -\frac{1}{2} \langle \kappa, \kappa \rangle_{\bar{z}} = -\langle D_{\bar{z}} \kappa, \kappa \rangle = \frac{\bar{\mu}}{2} \langle \kappa, \kappa \rangle = -\bar{\mu} \lambda_1 \lambda_2.
$$

Combined together, they show that $(\rho \lambda_1 \lambda_2)_{\bar{z}} = 0$ and $\Omega(\mathrm{d}z)^8$ is a holomorphic differential form defined on M_0 .

To show $\Omega(\mathrm{d}z)^8$ extends to M as a holomorphic form, note that by [\(30\)](#page-13-0),

$$
\bar{\mu}_z \lambda_1 \lambda_2 = (\bar{\mu} \lambda_1 \lambda_2)_z - \bar{\mu} (\lambda_1 \lambda_2)_z = (-2\gamma_1 \lambda_2)_z + 2\gamma_1 (\lambda_2)_z + 2\gamma_2 (\lambda_1)_z
$$

is a smooth function (depending on z). Then for $\rho = \bar{\mu}_z + 2\lambda_1 \bar{\lambda}_2 + 2\lambda_2 \bar{\lambda}_1$ [\(24\)](#page-10-1), we see that $(\rho \lambda_1 \lambda_2)^2 (\mathrm{d}z)^8$ extends smoothly to M as desired. It is holomorphic both on M_0 and in the interior of $M \setminus M_0$ (it vanishes in the latter case). So
it is holomorphic on the whole $M = S^2$. This completes the proof. it is holomorphic on the whole $M = S^2$. This completes the proof.

Theorem 6.2. Let $y: S^2 \to Q_1^4$ be a spacelike Willmore 2-sphere. Then it must be a surface among the following two classes:

(i) it is the conformal compactification of a stationary surface in \mathbb{R}^4_1 .

(ii) it is one of the polar surfaces of a surface in class (i) .

Proof. First we observe that $(10)(20)$ $(10)(20)$ may be re-written as

$$
\begin{cases} \lambda_{1\bar{z}} = -\bar{\alpha}\lambda_1 + \gamma_1, \\ \gamma_{1\bar{z}} = -\frac{\bar{s}}{2}\lambda_1 - \bar{\alpha}\gamma_1. \end{cases}
$$

By a lemma of Chern (see section 4 in [7]), either λ_1 is identically zero on S^2 , or it has only isolated zeroes. The same conclusion holds for λ_2 . Now that we have shown $\rho \lambda_1 \lambda_2 \equiv 0$, one of ρ , λ_1 , λ_2 must vanish identically on S^2 .

If $\rho \equiv 0$, [Y] degenerates to a single point due to [\(23\)](#page-10-4) and $\sigma = 0$. Applying a transformation $T \in O(4, 2)$ if necessary, we can set $\tilde{Y} = (1, 0, 0, 0, 0, 1)$ and $Y = \left(\frac{-1 + \langle u, u \rangle}{2}, u, \frac{1 + \langle u, u \rangle}{2} \right)$ where $u : U \to \mathbb{R}^4_1$. Let z be an arbitrary complex coordinate. Then we have

$$
Y_{z\bar{z}} = aY + \langle Y_z, Y_{\bar{z}} \rangle N, \quad \hat{Y} = N + \bar{\mu}Y_z + \mu Y_{\bar{z}} + \langle Y_z, Y_{\bar{z}} \rangle |\mu|^2 Y,
$$

where a, μ are two functions. It is easy to see

$$
\hat{Y}_z = -\mu \langle Y_z, Y_{\bar{z}} \rangle \hat{Y} + \cdots.
$$

So $\mu \equiv 0$ and $Y_{z\bar{z}} = aY + \langle Y_z, Y_{\bar{z}} \rangle \hat{Y}$. Replacing by u leads to

$$
(\langle u_{z\bar{z}}, u \rangle, u_{z\bar{z}}, \langle u_{z\bar{z}}, u \rangle) = \left(\frac{-a + a \langle u, u \rangle}{2}, au, \frac{a + a \langle u, u \rangle}{2}\right).
$$

This implies $a \equiv 0$ and $u_{z\bar{z}} \equiv 0$. So u is a stationary surface in \mathbb{R}^4_1 , and $y = [Y]$ belongs to class (i). $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

If $\lambda_1 \equiv 0(\lambda_2 \equiv 0)$, $[R](L)$ is a point. Using the conclusion in (i) for surface $[R]$) finishes the proof. $[L](R)$ finishes the proof.

Remark 6.3. Note that surfaces of class (ii) are exactly spacelike null-umbilic Willmore surfaces. So one has

$$
\langle \kappa, \bar{\kappa} \rangle = -\lambda_1 \bar{\lambda}_2 - \lambda_2 \bar{\lambda}_1 = 0.
$$

As a consequence, its induced conformal metric $\langle \kappa, \bar{\kappa} \rangle (dz)^2$ as well as the Willmore functional is always zero, which is different from the case in $S⁴$. Here a left question is: For a space-like Willmore 2-sphere in Q_1^4 , if its Willmore functional equals zero, must it be of type $(ii)?$

¹An alternative proof is by the meaning of the mean curvature sphere. Since every central sphere of y passing through a fixed point $[\hat{Y}]$ of Q_1^4 , which could be viewed as a point at infinity for some affine \mathbb{R}^4_1 , each sphere is a plane in this \mathbb{R}^4_1 . Corollary [4.3](#page-5-2) implies the conclusion.

7 Examples

First let us see some special Willmore surfaces contained in a 3-dimensional space.

Example 7.1. Embed $\mathbb{R}^3 \subset \mathbb{R}^4_1$ via $u \to (u, 1)$, $\mathbb{R}^3_1 \subset \mathbb{R}^4_1$ via $u \to (1, u)$.

(i) Let $u : M^2 \to \mathbb{R}^3$ be a minimal surface. Then $(u, 1) : M^2 \to \mathbb{R}^4_1$ is a spacelike stationary surface in \mathbb{R}^4_1 , and

$$
Y = \left(\frac{\langle u, u \rangle}{2} - 1, u, 1, \frac{\langle u, u \rangle}{2}\right) : M^2 \to C^5
$$

gives a spacelike S-Willmore surface $[Y]: M^2 \to Q_1^4$. (Essentially this comes from the conformal embedding φ_0 . Let $g : M^2 \to S_1^4 \subset R_1^5$ denote the conformal Gauss map of u as in [2] and $e = (-1, 0, 0, 0, -1, 1) \in \mathbb{R}_2^6$. It is straightforward to verify that $[e + (g, 0)]$ and $[e - (g, 0)]$ are the polar surfaces of $[Y]$.

(ii) Let $u : M^2 \to \mathbb{R}^3_1$ be a spacelike maximal surface. Then $(1, u) : M^2 \to$ \mathbb{R}_1^4 is a spacelike stationary surface in \mathbb{R}_1^4 , and

$$
Y = \left(\frac{\langle u, u \rangle}{2}, 1, u, \frac{\langle u, u \rangle}{2} + 1\right) : M^2 \to C^5
$$

gives a spacelike S-Willmore surface $[Y]: M^2 \to Q_1^4$. Let $\tilde{g}: M^2 \to H_1^4 \subset R_2^5$ denote the conformal Gauss map of u as in [1] and $\tilde{e} = (1, 1, 0, 0, 0, 1) \in \mathbb{R}_2^6$. Then $[\tilde{e} + (0, \tilde{g})]$ and $[\tilde{e} - (0, \tilde{g})]$ are the polar surfaces of [Y].

(iii) Suppose $u : M^2 \to \mathbb{R}^3$ is a Laguerre minimal surface and $n : M^2 \to S^2$ its Gauss map. Its Laguerre lift

$$
Y = (n, u \cdot n, -u \cdot n, 1) : M^2 \to C^5
$$

gives a spacelike S-Willmore surface $[Y]: M^2 \to Q_1^4$. We denote $g': M^2 \to$ $R_1^4 \hookrightarrow C^5$ its Laguerre Gauss map (see [18]). Then the point $[(0,0,0,1,-1,0)]$ and $[g']$ are the polar surfaces of $[Y]$.

Example 7.2. Consider a spacelike Willmore surface $y = [Y]$ both of type (i) and type (ii) as in Theorem [6.2.](#page-14-1) That means either of $[Y]$ and $[L]$ is a single point, and $[Y]$ is the conformal compactification of a stationary surface $x: M^2 \to \mathbb{R}_1^4$. Without loss of generality, suppose

$$
\hat{Y} = (1, 0, 0, 0, 0, 1), L = (0, 1, 0, 0, 1, 0), Y = \left(\frac{-1 + \langle x, x \rangle}{2}, x, \frac{1 + \langle x, x \rangle}{2}\right).
$$

From $\langle Y, L \rangle = 0$, we see that the surface $x = (x_1, x_2, x_3, x_4)$ must satisfy $x_1 = x_4$, which means that x in fact is a zero mean curvature surface in $\mathbb{R}^3_0 \subset \mathbb{R}^4_1$. For details of such surfaces, see [18].

Among compact surfaces, 2-spheres and tori are simplest and most important. In general, Willmore tori are not necessarily S-Willmore surfaces. Here we give such a class of spacelike Willmore tori which are homogenous.

Example 7.3. Let

$$
e_1 = (\cos\frac{t\theta}{\sqrt{t^2 - 1}}\cos\phi, \cos\frac{t\theta}{\sqrt{t^2 - 1}}\sin\phi, \sin\frac{t\theta}{\sqrt{t^2 - 1}}\cos\phi, \sin\frac{t\theta}{\sqrt{t^2 - 1}}\sin\phi),
$$

$$
e_2 = \frac{\partial e_1}{\partial \phi} = e_{1\phi}, e_3 = \frac{\sqrt{t^2 - 1}}{t}e_{1\theta}, e_4 = \frac{\sqrt{t^2 - 1}}{t}e_{2\theta},
$$

where $t > 1$. Let

$$
Y_t(\theta, \phi) : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}_2^6
$$

$$
Y_t(\theta, \phi) = (e_1, \cos \frac{\theta}{\sqrt{t^2 - 1}}, \sin \frac{\theta}{\sqrt{t^2 - 1}}).
$$
 (31)

For simplicity, we omit the subscript " $_t$ " of Y_t . We have that $y = [Y] : \mathbb{R} \times \mathbb{R} \to$ Q_1^4 is a spacelike Willmore torus of Q_1^4 for any rational number $t > 1$.

For the lift Y we set $z = \theta + i\phi$. It is easy to verify Y is a canonical lift with respect to z. We have

$$
\begin{cases}\nY_{z\bar{z}} = -\frac{t^2}{4(t^2 - 1)}Y + \frac{1}{2}N, \\
Y_{zz} = -\frac{1}{4(t^2 - 1)}Y - \frac{it}{2\sqrt{2}\sqrt{t^2 - 1}}(L - R), \\
L_z = -\frac{i}{2\sqrt{t^2 - 1}}L - \frac{t}{2\sqrt{2}(t^2 - 1)}Y + \frac{it}{\sqrt{2}\sqrt{t^2 - 1}}Y_{\bar{z}}, \\
R_z = \frac{i}{2\sqrt{t^2 - 1}}R - \frac{t}{2\sqrt{2}(t^2 - 1)}Y - \frac{it}{\sqrt{2}\sqrt{t^2 - 1}}Y_{\bar{z}}, \\
N_z = -\frac{t^2}{2(t^2 - 1)}Y_z - \frac{1}{2(t^2 - 1)}Y_{\bar{z}} + \frac{t}{2\sqrt{2}(t^2 - 1)}L + \frac{t}{2\sqrt{2}(t^2 - 1)}R.\n\end{cases}
$$
\n(32)

Here

$$
\begin{cases}\nY_z = \frac{1}{2\sqrt{t^2 - 1}}(te_3 - i\sqrt{t^2 - 1}e_2, -\sin\frac{\theta}{\sqrt{t^2 - 1}}, \cos\frac{\theta}{\sqrt{t^2 - 1}}), \\
N = \frac{1}{2}(-e_1, \cos\frac{\theta}{\sqrt{t^2 - 1}}, \sin\frac{\theta}{\sqrt{t^2 - 1}}), \\
L = \frac{1}{\sqrt{2}\sqrt{t^2 - 1}}(\sqrt{t^2 - 1}e_4 + e_3, -t\sin\frac{\theta}{\sqrt{t^2 - 1}}, t\cos\frac{\theta}{\sqrt{t^2 - 1}}), \\
R = \frac{1}{\sqrt{2}\sqrt{t^2 - 1}}(-\sqrt{t^2 - 1}e_4 + e_3, -t\sin\frac{\theta}{\sqrt{t^2 - 1}}, t\cos\frac{\theta}{\sqrt{t^2 - 1}}).\n\end{cases} (33)
$$

So it is easy to see that Y is spacelike Willmore and not S-Willmore. The adjoint surface of Y with respect to L is

$$
\hat{Y} = \frac{1}{2} \left(\frac{2 - t^2}{t^2 - 1} e_1 + \frac{1}{\sqrt{t^2 - 1}} e_2, \frac{t^2}{t^2 - 1} \cos \frac{\theta}{\sqrt{t^2 - 1}}, \frac{t^2}{t^2 - 1} \sin \frac{\theta}{\sqrt{t^2 - 1}} \right).
$$

The adjoint surface of Y with respect to R is

$$
\tilde{Y} = \frac{1}{2} \left(\frac{2 - t^2}{t^2 - 1} e_1 - \frac{1}{\sqrt{t^2 - 1}} e_2, \frac{t^2}{t^2 - 1} \cos \frac{\theta}{\sqrt{t^2 - 1}}, \frac{t^2}{t^2 - 1} \sin \frac{\theta}{\sqrt{t^2 - 1}} \right).
$$

We point out that Y is a homogenous torus which is the orbit of the subgroup

$$
G = \begin{pmatrix} e_1^T & e_2^T & e_3^T & e_4^T & 0 & 0\\ 0 & 0 & 0 & 0 & \cos\frac{\theta}{\sqrt{t^2 - 1}} & -\sin\frac{\theta}{\sqrt{t^2 - 1}}\\ 0 & 0 & 0 & 0 & \sin\frac{\theta}{\sqrt{t^2 - 1}} & \cos\frac{\theta}{\sqrt{t^2 - 1}} \end{pmatrix}
$$

acting on $(1, 0, 0, 0, 1, 0)^T$. Here ^T denotes transposition.

If y_t is a torus, then t must be some rational number. Suppose $t = \frac{p}{q}$ $\frac{p}{q}$, where $p, q \in \mathbb{N}$. Then the Willmore functional of y_t is

$$
W(y_t) = \frac{p^2}{\sqrt{p^2 - q^2}} \pi^2
$$
\n(34)

So the minimum of Willmore functional of y_t is $\frac{4}{\sqrt{5}}$ $\frac{1}{3}\pi^2$.

Reference

- [1] Alias, L.J., Palmer, B. Conformal geometry of surfaces in Lorentzian space forms, Geometriae Dedicata, 60(1996), 301-315.
- [2] Bryant, R. A duality theorem for Willmore surfaces J. Diff.Geom. 20(1984), 23-53.
- [3] Burstall, F. Isothermic surfaces: conformal geometry, Clifford algebras and integrable systems, Stud. Adv. Math. 36, Amer. Math. Soc., Providence, RI, 2006. http://arxiv.org/abs/math/0003096
- [4] Burstall, F., Ferus, D., Leschke, K., Pedit, F., Pinkall, U. Conformal geometry of surfaces in $S⁴$ and quaternions, Lecture Notes in Mathematics 1772. Springer, Berlin, 2002.
- [5] Burstall, F., Pedit, F., Pinkall, U. Schwarzian derivatives and flows of surfaces, Contemporary Mathematics 308, 39-61, Providence, RI: Amer. Math. Soc., 2002
- [6] Cahen, M., Kerbrat, Y. Domaines symetriques des quacriques projectives, J. Math. Pureset Appl., 62(1983), 327-348.
- [7] Chern, S.S. On the minimal immersions of the two-sphere in a space of constant curvature, Problems in Analysis, 27–40, Princeton Univ. Press, Princeton, NJ, 1970
- [8] Deng,Y.J., Wang, C.P. Time-like Willmore surfaces in Lorentzian 3 space, Sci. in China: Series A Math., 49(2006), No.1, 75-85.
- [9] Ejiri, N. A counterexample for Weiner's open question, Indiana Univ. Math. J., 31(1982), No.2, 209-211.
- [10] Ejiri, N. Willmore surfaces with a duality in $Sⁿ(1)$, Proc. London Math.Soc. (3), 57(2)(1988), 383-416.
- [11] Lawson, H.B. Complete minimal surfaces in S 3 . Ann. of Math. (2) 92(1970), 335-374.
- [12] Leitner, F. Twistorial construction of spacelike surfaces in Lorentzian 4 manifolds, Geometry and Topology of Submanifolds X, World Scientific, 1999, 113-135.
- [13] Ma, X. Isothermic and S-Willmore surfaces as solutions to a Problem of Blascke, Results in Math. 48(2005), 301-309.
- [14] Ma, X. Adjoint transforms of Willmore surfaces in $Sⁿ$, manuscripta math., 120(2006), 163-179.
- [15] Ma, X. Willmore surfaces in $Sⁿ$: transforms and vanishing theorems, dissertation, Technischen Universität Berlin, 2005. http:// edocs.tuberlin.de/diss/2005/ma xiang.pdf
- [16] Montiel, S. Willmore two spheres in the four-sphere, Trans. Amer.Math. Soc. 2000, 352(10), 4469-4486.
- [17] Nie, C.X. Conformal geometry of hypersurfaces and surfaces in Lorentzian space forms, dissertation, Peking University, 2006.
- [18] Song, Y.P., Wang, C.P. Classification of Laguerre minimal surfaces, to appear.
- [19] Wang, C.P. Moebious geometry of submanifolds in $Sⁿ$, manuscripta math., 96(1998), No.4, 517-534.