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FREENESS OF CONIC-LINE ARRANGEMENTS IN P2

HAL SCHENCK AND ŞTEFAN O. TOHǍNEANU

Abstract. Let C =
Sn

i=1
Ci ⊆ P2 be a collection of smooth rational plane

curves. We prove that the addition-deletion operation used in the study of
hyperplane arrangements has an extension which works for a large class of
arrangements of smooth rational curves, giving an inductive tool for under-
standing the freeness of the module Ω1(C) of logarithmic differential forms
with pole along C. We also show that the analog of Terao’s conjecture (free-
ness of Ω1(C) is combinatorially determined if C is a union of lines) is false in
this setting.

1. Introduction

One of the fundamental objects associated to a hyperplane arrangement A ⊆
PK(V ) is the module Ω1(A) of logarithmic one-forms with pole along the arrange-
ment or (dually) the module D(A) of derivations tangent to the arrangement. Both
are graded S = Sym(V ∗) modules; D(A) ⊆ DerK(S) is defined via:

Definition 1.1. D(A) = {θ|θ(li) ∈ 〈li〉} for all li such that V (li) ∈ A.

Over a field of characteristic zero, D(A) ≃ E ⊕ D0(A), where E is the Euler
derivation and D0(A) corresponds to the module of syzygies on the Jacobian ideal
of the defining polynomial of A. When K = C or R, an elegant theorem of Terao
relates the freeness of the module D(A) to the Poincaré polynomial of V \ A. In
this note, we restrict to P2, but broaden the class of curves which make up the
arrangement. In particular, suppose

C =

n⋃

i=1

Ci,

where each Ci is a smooth rational plane curve; call such a collection a conic-line
(CL) arrangement.

Example 1.2. For the CL arrangement below, D(C) ≃ S(−1)⊕ S(−2)⊕ S(−5).
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1.1. Line arrangements. We begin with some facts about hyperplane arrange-
ments; for more information see Orlik and Terao [5]. A hyperplane arrangement A
is a finite collection of codimension one linear subspaces of a fixed vector space V.
A is central if each hyperplane contains the origin 0 of V. The intersection lattice
LA of A consists of the intersections of the elements of A; the rank of x ∈ LA is
simply the codimension of x. V is the lattice element 0̂; the rank one elements are
the hyperplanes themselves. A is called essential if rank LA = dim V .

Definition 1.3. The Möbius function µ : LA −→ Z is defined by

µ(0̂) = 1

µ(t) = −
∑
s<t

µ(s), if 0̂ < t

We now restrict to the case that V is complex. A foundational result is that the
Poincaré polynomial of X = V \ A is purely combinatorial; in particular

P (X, t) =
∑

x∈LA

µ(x) · (−t)rank(x).

An arrangement A is free if D(A) ≃ ⊕S(−ai); the ai are called the exponents of A.
Terao’s famous theorem [11] is that if D(A) ≃ ⊕S(−ai), then P (X, t) =

∏
(1+ait).

If A ⊆ C
3 is central, then A also defines a set of lines in P

2, and obviously X =

C3 \ A ≃ C∗ × X̃, where X̃ is the complement of the corresponding arrangement
of lines in P

2. Hence

P (X̃, t) = 1 + (n− 1)t+ (
∑

x∈LA

rank(x)=2

µ(x) − n+ 1)t2

It follows from Terao’s theorem that if D0(A) ≃ S(−a) ⊕ S(−b), then P (X̃, t) =
(1 + at)(1 + bt). This can be generalized [9] to line arrangements which are not
free, using the Chern polynomial. The motivating question of this paper is: what

happens if the arrangement of lines is replaced with a CL arrangement?

1.2. Rational curve arrangements. In [2], Cogolludo-Agust́ın studies the com-
plement of an arrangement of rational curves in P2, where the individual curves
can have singularities, and can meet non-transversally. The main result is that the
cohomology ring of the complement to a rational curve arrangement is generated
by logarithmic 1 and 2-forms and its structure depends on a finite number of in-

variants of the curve. One fact is that if X̃ is the complement of an arrangement
of n irreducible curves in P2, then

h1(X̃,C) = n− 1

h2(X̃,C) = 1 +
∑

p∈Sing(C)

(rp − 1)−
n∑

1

(χ(Ĉi)− 1),

where rp is the number of branches passing thru p, and Ĉi is the normalization of
Ci. Since we are assuming that all the Ci are smooth and rational, we have that

h2(X̃,C) =
∑

p∈L2(C)

(rp − 1)− |C|+ 1,

where the intersection poset L(C) is defined precisely as for a linear arrangement
(typically, L(C) is only a poset, not a lattice).
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1.3. Milnor and Tjurina numbers. A crucial distinction between line and curve
arrangements, even in our simple setting, is the difference between the Milnor and
Tjurina numbers at a singularity. Let C = V (f) be a reduced (but not necessarily
irreducible) curve in C2, let (0, 0) ∈ C, and let C{x, y} denote the ring of convergent
power series.

Definition 1.4. The Milnor number of C at (0, 0) is

µ(0,0)(C) = dimC C{x, y}/〈
∂f

∂x
,
∂f

∂y
〉.

To define µp for an arbitrary point p, we translate so that p is the origin.

Definition 1.5. The Tjurina number of C at (0, 0) is

τ(0,0)(C) = dimC C{x, y}/〈
∂f

∂x
,
∂f

∂y
, f〉.

Definition 1.6. A singularity is quasihomogeneous iff there exists a holomor-

phic change of variables so the defining equation becomes weighted homogeneous;

f(x, y) =
∑
cijx

iyj is weighted homogeneous if there exist rational numbers α, β
such that

∑
cijx

i·αyj·β is homogeneous.

In [6], Reiffen proved that if f(x, y) is a convergent power series with isolated sin-
gularity at the origin, then f(x, y) is in the ideal generated by the partial derivatives
if and only if f is quasihomogeneous (see [8] for a generalization).

As noted earlier, for a line arrangement with defining polynomial F , D0(A) con-
sists of the syzygies on the Jacobian ideal JF of F . If V (F ) ⊆ P2 is a reduced curve,
then after a change of coordinates, we may assume that V (F ) has no singularities
on the line z = 0. Dehomogenizing so that f(x, y) = F (X,Y, 1) yields:

deg(JF ) = dimCC[x, y]/〈
∂f

∂x
,
∂f

∂y
, f〉 =

∑

p∈Sing(C)

τp(f).

It follows that if all the singular points are quasihomogeneous then

deg(JF ) =
∑

p∈Sing(V (f))

µp(f).

For a line arrangement, the singularities are always quasihomogeneous, but this is
not the case for CL arrangements:

Example 1.7. Let C = V (xy(x− y)(x − 2y)(x2 − xz + y2 − yz)) be as below:

C has five singular points, all ordinary. When p is an ordinary singularity and C has
n distinct branches at p, then µp(C) = (n− 1)2, so the sum of the Milnor numbers
is 20. However, deg(J) = 19; at (0 : 0 : 1) we have µ = 16 but τ = 15.
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1.4. Criteria for freeness. The first criterion for the freeness of D(A) is

Proposition 1.8 (Saito, [7]). A is free exactly when there exist n+ 1 elements

θi =

n∑

j=0

fij
∂

∂xj
∈ D(A)

such that the determinant of the matrix [fij ] is a nonzero constant multiple of the

defining polynomial of A.

Saito’s criterion holds for an arrangement of reduced hypersurfaces C ⊆ Pn; let
C = V (F ) where F = f1 · · · fd, and gcd(fi, fj) = 1. By induction,

θ(f1 · · · fd) = f1θ(f2 · · · fd) + f2 · · · fdθ(f1) ∈ 〈f1 · · · fd〉,

so we have

D(C) = {θ ∈ DerK(S) | θ(fi) ∈ 〈fi〉, i = 1, . . . , d} = {θ ∈ DerK(S) | θ(F ) ∈ 〈F 〉}.

Any arrangement of (reduced) hypersurfaces will have a singular locus of codimen-
sion two. As for a linear arrangement, D(C) ≃ E ⊕D0(C), with D0(C) = syz(JF ),
so freeness is equivalent to pdim(S/JF ) = 2 (so also equivalent to JF Cohen-
Macaulay). By the Hilbert-Burch theorem ([3]), any codimension two Cohen-
Macaulay ideal I with m + 1 generators is generated by the maximal minors of
an m ×m + 1 matrix M , whose columns generate the module of first syzygies on
I. So when I = JF , appending a column vector [x0, . . . , xn] to M and taking the
determinant yields a multiple of F , by Euler’s formula. Saito’s criterion is most
useful when an explicit set of candidates for the generating set of syz(JF ) is known.

There are two other fundamental tools that can be used to prove that a line
arrangement is free. The first method is based on an inductive operation known as
deletion-restriction: given an arrangement A and a choice of hyperplane H ∈ A,
set

A′ = A \H and A′′ = A|H .

The collection (A′,A,A′′) is called a triple, and a triple yields (see Proposition 4.45
of [5]) a left exact sequence

0 −→ D(A′)(−1)
·H
−→ D(A) −→ D(A′′).

For a triple with A ⊆ P2, more is true (see [10]): after pruning the Euler derivations
and sheafifying, there is an exact sequence

(1) 0 −→ D0
′(−1) −→ D0 −→ i∗D0

′′ −→ 0,

where i : H →֒ P2; i∗D0
′′ ≃ OH(1− |A′′|). In [12], Terao showed that freeness of a

triple is related via:

Theorem 1.9. (Addition-Deletion) Let (A′,A,A′′) be a triple. Then any two of

the following imply the third

• D(A) ≃ ⊕ni=1S(−bi)
• D(A′) ≃ S(−bn + 1)⊕n−1

i=1 S(−bi)

• D(A′′) ≃ ⊕n−1
i=1 S(−bi)

Theorem 1.9 applies in general, not just to arrangements in P2. A smooth conic
is intrinsically a P1, so it is natural to ask if CL arrangements which admit a short
exact sequence similar to (1) have an addition-deletion theorem; we tackle this in
the next two sections.
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A second criterion for freeness is special to the case of line arrangements; to state
it we need to define freeness for multiarrangements. A multiarrangement (A,m) is
an arrangement together with a multiplicity mi for each hyperplane. The module
of derivations consists of θ such that lmi

i |θ(li). As shown by Ziegler in [15], freeness
of multiarrangements is not combinatorial; for recent progress see [13].

Theorem 1.10. (Yoshinaga’s multiarrangement criterion [16]) A ⊆ P2 is free iff

π(A, t) = (1+t)(1+at)(1+bt) and ∀H ∈ A the multiarrangement A|H has minimal

generators in degree a and b.

The main results of this paper (Theorems 2.5 and 3.4) show that an addition-
deletion construction holds for CL arrangements with quasihomogeneous singular-
ities; the freeness of Example 1.2 is explained by our results. As one application,
we show that a free CL arrangement, when restricted to different lines, can yield
multiarrangements with different exponents; hence any version of Theorem 1.10 for
CL arrangements will be quite subtle. An addition-deletion theorem for multiar-
rangements has recently been proven by Abe-Terao-Wakefield in [1]; our results are
the first (to our knowledge) to give an inductive criterion for freeness for nonlinear
arrangements.

2. Addition-Deletion for a line

Let (C′, C, C′′) be a triple of CL arrangements in P2, where C′ = C\{L}, C′′ = C|L
and L ∈ C is a line. We begin by examining some examples:

Example 2.1. Let C′ be the union of:

C1 = x2 − xz + 5y2 − 5yz = 0
C2 = x2 + 2y2 − xz − 2yz = 0
L1 = x = 0
L2 = y = 0
L3 = x+ y − z = 0

D(C′) is free with exponents {1, 2, 4}, and the degree of the Jacobian ideal is
28, which is equal to the sum of the Milnor numbers at the intersection points.
Therefore at each singular point τ = µ. If we restrict to any line, the corresponding
multiarrangement has two points of multiplicity 3, and it follows from [13] that
the exponents are {3, 3}. Hence the obvious generalization of Yoshinaga’s criterion
does not hold.
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Example 2.2. Let L4 = {x − y = 0} and let C1 = C′ ∪ L4. The degree of the
Jacobian ideal is 39, which is equal to the sum of Milnor numbers at the points. It
will follow from our results that D(C1) is free with exponents {1, 2, 5}.

Example 2.3. Let L4 = {x− 2y = 0} and let C2 = C′ ∪ L4. Then C2 is free with
exponents {1, 3, 4}. The degree of the Jacobian ideal is 37, whereas the sum of the
Milnor numbers is 38; the singularity at (0 : 0 : 1) has τ = 15 and µ = 16.

For CL arrangements similar to C1, there is an addition-deletion theorem:

Definition 2.4. A triple (C′, C, C′′) of CL arrangements is called quasihomogeneous

if τ = µ at each singular point of C′ and C.

Theorem 2.5. Let (C′, C, C′′) be a quasihomogeneous triple with |L∩C| = |C′′| = k.
The following are equivalent:

(1) C′ is free with exponents {1, k − 1, a}.
(2) C is free with exponents {1, k − 1, a+ 1}.

Examples 2.1 and 2.2 illustrate the theorem; before giving the proof of Theorem
2.5, we need some preliminaries.

Lemma 2.6. Let L = {x = 0}. Then the maps p : D(C′) −→ D(C), p(θ) = xθ and

q : D(C) −→ D(C′′), q(a∂x + b∂y + c∂z) = b(0, y, z)∂y + c(0, y, z)∂z are well defined

and yield an exact sequence:

0 −→ D(C′) −→ D(C) −→ D(C′′).
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Proof. Let f = xf ′ be the defining polynomial of C, where f ′ is the defining polyno-
mial of C′. Then the defining polynomial of C′′ is f ′′ = Rad(f ′|x=0). If θ

′ ∈ D(C′),
then θ′(f ′) = Pf ′ for some P ∈ S;

p(θ′)(f) = xθ′(xf ′) = x(f ′θ′(x) + xθ′(f ′)) ∈ 〈f〉.

So p is well defined and injective. Let θ = a∂x + b∂y + c∂z ∈ D(C). Then θ(x) =
a ∈ 〈x〉, so a = xa′. If θ ∈ ker(q), then b = xb′ and c = xc′, hence θ = xθ′, where
θ′ = a′∂x + b′∂y + c′∂z. Because θ ∈ D(C), θ(f ′) = xθ′(f ′) ∈ 〈f ′〉. Since x and f ′

are relatively prime, we get that θ′(f ′) ∈ 〈f ′〉, which implies that θ ∈ Im(p).
It remains to show is that q is well defined. For suitable ui, vi ∈ C and mi ∈ Z

we have that

f ′|x=0 =
∏

i

(uiy + viz)
mi , so f ′′ =

∏

i

(uiy + viz).

Let L′ be a line in C′ defined by the vanishing of tix + uiy + viz = 0 for some i
and ti ∈ C, and let θ = a∂x + b∂y + c∂z ∈ D(C). Then θ(L′) ∈ 〈L′〉, so evaluating
at x = 0 and using the earlier observation that a = xa′, we find (b(0, y, z)∂y +
c(0, y, z)∂z)(uiy + viz) ∈ 〈uiy + viz〉.

Now suppose C is a conic in C′; after a change of coordinates we may assume
C intersects L = {x = 0} in the points (0 : 0 : 1) and (0 : u : v). Then C =
xA+ y(vy − uz) and C|x=0 = y(vy − uz), where A is some linear form. We have

θ(C)=a(A+x∂x(A))+x(b∂y(A)+c∂z(A))+b∂y(y(vy−uz))+c∂z(y(vy−uz))∈〈C〉.

Evaluating at x = 0 and again using that a = xa′ we find

(b(0, y, z)∂y + c(0, y, z)∂z)(y(vy − uz)) ∈ 〈y(vy − uz)〉.

Since y and vy − uz are relatively prime we obtain

(b(0, y, z)∂y + c(0, y, z)∂z)(y) ∈ 〈y〉
(b(0, y, z)∂y + c(0, y, z)∂z)(vy − uz) ∈ 〈vy − uz〉.

This shows that for each factor uiy + viz of f ′′,

(b(0, y, z)∂y + c(0, y, z)∂z)(uiy + viz) ∈ 〈uiy + viz〉,

so the map q is well defined. It follows that D0(C
′′) = C[y, z](−(k − 1)), where

k = |L ∩ C′| = deg(f ′′). A similar argument works if C is tangent to L. �

Lemma 2.7. Let X and Y be two reduced plane curves with no common component,

meeting at a point p. Then

µp(X ∪ Y ) = µp(X) + µp(Y ) + 2(X · Y )p − 1,

where (X · Y )p is the intersection number of X and Y at p.

Proof. See [14], Theorem 6.5.1; the point is that the Milnor fiber is a connected
curve, and the result follows from using the additivity of the Euler characteristic
and the interpretation of µp as the first betti number of the Milnor fiber. �

Proposition 2.8. Let (C′, C, C′′) be a quasihomogeneous triple. Then

0 −→ D0
′(−1) −→ D0 −→ i∗D0

′′.

is also right exact.
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Proof. It follows from Lemma 2.6 that quotienting by the Euler derivation and
sheafifying yields the left exact sequence above; so it will suffice to show that
HP (D0, t) = HP (D′

0(−1), t) + HP (i∗D
′′
0 , t), where HP (−, t) denotes the Hilbert

polynomial. For an CL arrangement C with m lines and n conics, let d = 2n+m−1.
We have an exact sequence:

0 −→ D0(C) −→ S3 −→ S(d) −→ S(d)/J −→ 0,

where S = K[x, y, z] and J is the Jacobian ideal of the defining polynomial of C.
Since

HP (D0, t) = 3

(
t+ 2

2

)
−

(
t+ 2 + d

2

)
+ deg(J)

HP (D′
0(−1), t) = 3

(
t+ 1

2

)
−

(
t+ d

2

)
+ deg(J ′),

we find that

HP (D0, t)−HP (D
′
0(−1), t) = deg(J)− deg(J ′) + t− 2d+ 2.

By the assumption that (C′, C, C′′) is a quasihomogeneous triple,

deg(J) =
∑

p∈Sing(C)

µp(C) and deg(J ′) =
∑

p∈Sing(C′)

µp(C
′).

Let α be the sum of Milnor numbers of points off L, so

deg(J) = α+
∑

p∈L∩C′

µp(C).

Since µp(L) = 0, by Lemma 2.7, the above is

α+
∑

p∈L∩C′

(µp(C
′) + 2(L · C′)p − 1).

As deg(J ′) = α+
∑

p∈L∩C′ µp(C
′) and | L ∩ C′ |= k, we obtain:

deg(J)− deg(J ′) = 2
∑

p∈L∩C′

(L · C′)p − k.

By Bezout’s theorem, ∑

p∈L∩C′

(L · C′) = d,

so deg(J)− deg(J ′) = 2d− k, hence

HP (D0, t)−HP (D
′
0(−1), t) = t+ 2− k = t+ 1− (|C′′| − 1).

Since i∗D0
′′ = OL(1 − |C

′′|), this yields the result. �

Definition 2.9. A coherent sheaf F on Pr is m−regular iff HiF(m − i) = 0 for

every i ≥ 1. The smallest number m such that F is m−regular is reg(F).

Lemma 2.10. For a quasihomogeneous triple with |C′′| = k,

reg(D0) ≤ max{reg(D′
0) + 1, k − 1}.

Proof. Immediate from Proposition 2.8 (see [10]). �

Lemma 2.11. If D′
0 = OP2(1 − k) ⊕ OP2(−a), then there is an exact sequence of

S-modules:

0 −→ D′
0(−1) −→ D0 −→ D′′

0 −→ 0.
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Proof. For all t, H1(D′
0(t−1)) = 0, so the long exact sequence in cohomology arising

from Proposition 2.8 and the vanishing of H1(D′
0(t)) yield an exact sequence:

0 −→
⊕

t

H0(D′
0(−1)(t)) −→

⊕

t

H0(D0(t)) −→
⊕

t

H0(D′′
0 (t)) −→ 0.

Theorem A.4.1 of [3] relates a graded module to its sheaf and local cohomology (at
the maximal ideal m) modules:

0 −→ H0
m
(D0) −→ D0 −→

⊕

t

H0(D0(t)) −→ H1
m
(D0) −→ 0.

This is true also for D′
0(−1) and D′′

0 . By [3], A.4.3, H0
m
(M) = H1

m
(M) = 0 if

depth(M) ≥ 2. Lemma 2.1 of [4] gives the desired bound on depth for the modules
of derivations, which concludes the proof. �

The next two lemmas prove the two implications (1) → (2) and (2) → (1) of
Theorem 2.5. In what follows, (C′, C, C′′) is a quasihomogeneous triple, with L a
line and |L ∩ C| = |C′′| = k.

Lemma 2.12. If C′ is free with exp(C′) = {1, k−1, a}, then C is free with exp(C) =
{1, k − 1, a+ 1}.

Proof. First, if S = K[x1, . . . , xℓ], and S(−i) is a free graded S-module with gener-
ator in degree i, then the Hilbert series satisfies

HS(S(−i), t) =
∑

j∈Z

dimKS(−i)j · t
j =

ti

(1− t)ℓ
.

If C′ is free with exponents {1, k − 1, a}, then D′
0(−1) ≃ S(−k) ⊕ S(−1 − a). It

follows from the proof of Proposition 2.8 that HS(D′′
0 , t) =

tk−1

(1−t)2 . So by Lemma

2.11 and the additivity of Hilbert series on an exact sequence,

HS(D0) =
tk + ta+1

(1 − t)3
+

tk−1

(1 − t)2
=
ta+1 + tk−1

(1− t)3
.

Since D′
0 ≃ S(−k + 1) ⊕ S(−a), reg(D′

0) = max{k − 1, a}. By Lemma 2.10, if
a ≥ k − 1, then reg(D0) ≤ a+ 1; and if a ≤ k − 2, then reg(D0) ≤ k. If a ≤ k − 2,
then a free resolution for D0 is of the form :

0←− D0 ←− S(−k + 1)⊕ S(−a− 1)⊕ S(−b)d ←− S(−b)d ←− 0.

From regularity constraints, b must be at most k. As this is a minimal free resolu-
tion, and it is impossible to have a syzygy on a single generator, the only situation
which can actually arise occurs when b = k:

0←− D0 ←− S(−k + 1)⊕ S(−a− 1)⊕ S(−k)d ←− S(−k)d ←− 0.

Let t1, t2 be two independent derivations in D0 of degrees deg(t1) = a + 1 and
deg(t2) = k− 1; our computation of the Hilbert series, combined with the fact that
pdim(D0) ≤ 1 means such derivations must exist. Let E, t′1, t

′
2 be a basis for D′

with deg(t′1) = a and deg(t′2) = k − 1, and E the Euler derivation.
Now note that t′1 ∈ D′

0 \ D0, for otherwise in D0 there would be an element
of degree a. So t′1(x) /∈ 〈x〉. Since D ⊂ D′, then t1 = f1E + xt′1 and t2 =
f2E + ut′2 + ft′1, where u is a constant, deg(f) = k − 1 − a, deg(f1) = a and
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deg(f2) = k− 2. For a resolution as above, gt1 = Lt2, where L is a linear form and
deg(g) = k − (a+ 1). Hence

(gf1 − Lf2)E + (gx− Lf)t′1 + (−Lu)t′2 = 0,

and since E, t′1, t
′
2 is a basis we find that u vanishes and gx = Lf . But (t2 −

f2E)(x) ∈ 〈x〉 and t′1(x) /∈ 〈x〉. Since u = 0, x must divide f , and so g = Lg′ for
some g′. Since gt1 = Lt2, we obtain t2 = g′t1, a contradiction. If a ≥ k− 1, simply
switch the roles of a and k above. �

Lemma 2.13. If C is free with exp(C) = {1, k − 1, a + 1}, then C′ is free with

exp(C′) = {1, k − 1, a}.

Proof. In order to obtain an appropriate vanishing, we need to dualize. Apply
Hom(−,OP2) to the exact sequence

0 −→ D0
′(−1) −→ D0 −→ i∗D0

′′ −→ 0.

The vanishing of HomO
P2
(OP1(t),OP2) and Ext1O

P2
(D0,OP2) yield an exact se-

quence:

0 −→ D∨
0 −→ D

′∨
0 (1) −→ Ext1S(OL(1− k),OP2) −→ 0.

The free OP2 resolution for OL(1− k) is:

0 −→ OP2(−k) −→ OP2(1− k) −→ OL(1− k) −→ 0,

so Ext1S(OL(1−k),OP2) ≃ OL(k). Since D
∨
0 = OP2(k− 1)⊕OP2(a+1), combining

this with the long exact sequence in cohomology yields a regularity bound

reg(D′∨
0 ) ≤ max{reg(D∨

0 ) + 1, 1− k},

and the exact sequence of S−modules:

0 −→ D∨
0 (−1) −→ D′∨

0 −→ S(k − 1)/L −→ 0,

with D∨
0 = S(k − 1)⊕ S(a+ 1). So:

HS(D′∨
0 ) =

t−a + t1−k

(1− t)3
.

An argument as in the proof of Lemma 2.12 shows that D′∨
0 = S(a) ⊕ S(k − 1),

hence D(C′) is free with exponents {1, k − 1, a}. �

Corollary 2.14. A free CL arrangement, when restricted to a line, can yield dif-

ferent multiarrangements.

Proof. In Example 2.2, add the line L = {x − αy + (α − 1)z = 0}, where α 6∈
{0, 1,−5,−2,∞}. Then L passes through (1 : 1 : 1), and the choices for α ensure
that L is not tangent to any conic, and misses all singularities save (1 : 1 : 1). The
new arrangement is quasihomogeneous, and L meets C1 in six points. By Theorem
2.5, the new arrangement is free with exponents {1, 3, 5}.

Restrict this new arrangement to the line L3 = {x+ y− z = 0}. After a change
of coordinates, we obtain a multiarrangement with defining polynomial

x3y3(x − y)(αx− y).

This is exactly Ziegler’s example from [15]: α = −1 gives exponents {3, 5}, and for
α 6= −1, the exponents are {4, 4}. �
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3. Addition-Deletion for a conic

Let (C′, C, C′′) be a triple of CL arrangements in P
2, where C is a conic in C, and

C′ = C \ {C}, C′′ = C′|C . We begin with some examples.

Example 3.1. Suppose C is as in Example 2.2, so C has quasihomogeneous sin-
gularities, and is free with exponents {1, 2, 5}. If we delete one of the conics, the
resulting arrangement C′ is free and quasihomogeneous, with exponents {1, 2, 3}.

When k is odd, the situation is more complicated:

Example 3.2. Let C′ be the braid arrangementA3 = V (xyz(x−z)(y−z)(x+y−z)),
and C = C′ ∪C, where the conic C = V (xy + 7xz + 13yz).

C′ is a free arrangement with exponents {1, 2, 3}, and |C′′| = 7. C is also quasiho-
mogeneous, but not free.

Example 3.3. Let C be the quasihomogeneous CL arrangement with defining
polynomial (x2−xz+2y2−2yz)xy(x+y−z). D(C) is free with exponents {1, 2, 2}.

Deleting the conic yields a free line arrangement with exponents {1, 1, 1}.

Theorem 3.4. Let (C′, C, C′′) be a quasihomogeneous triple, with |C∩C′|= |C′′|=k.
If k = 2m then the following are equivalent:

(1) C′ is free with exp(C′) = {1,m, a}.
(2) C is free with exp(C) = {1,m, a+ 2}.

If k = 2m+ 1 then:

(1) exp(C′) = {1,m,m} ⇐⇒ exp(C) = {1,m+ 1,m+ 1}.
(2) if exp(C′) = {1,m, a} with a 6= m then C is not free.

(3) if exp(C) = {1,m+ 1, a+ 1} with a 6= m then C′ is not free.
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We begin with some preliminaries. After an appropriate change of coordinates,
we may suppose that C = {y2 − xz = 0}. Let i be the composition of the maps

P
1 v
−→ C →֒ P

2,

where v(s : t) = (s2 : st : t2), and let ψ be the composite map:

S = K[x, y, z]
φ
−→ K[s2, st, t2] →֒ K[s, t],

where φ(x) = s2, φ(y) = st, φ(z) = t2.

Let θ = a1∂x + a2∂y + a3∂z ∈ D(C) be a derivation. Then θ(C) ∈ 〈C〉, which
means −za1 + 2ya2 − xa3 = (y2 − xz)P for some P ∈ S. Via the map ψ this
translates into

t2ψ(a1)− 2stψ(a2) + s2ψ(a3) = 0.

So there exist Q1, Q2 ∈ K[s, t] such that

ψ(a1) = sQ1

ψ(a2) = tQ1+sQ2

2
ψ(a3) = tQ2.

If ψ : S −→ A is a ring map and M is an A−module, let Mψ denote the
S−module obtained by restriction of scalars.

Proposition 3.5. There is an exact sequence of S−modules

0 −→ D(C′)(−2)
·C
−→ D(C)

ρ
−→ D(A′′)ψ,

where

ρ(a1∂x + a2∂y + a3∂z) = Q1∂s +Q2∂t,

for every a1∂x + a2∂y + a3∂z ∈ D(C) and Q1, Q2 are defined as above; and A′′ is

the arrangement of the reduced points i−1(C ∩ C′) in P1.

Proof. It is easy to check that ρ is a homomorphism. For exactness, note:

θ = a1∂x + a2∂y + a3∂z ∈ ker(ρ) ↔ Q1 = 0 and Q2 = 0
↔ ψ(a1) = ψ(a2) = ψ(a3) = 0
↔ a1, a2, a3 ∈ 〈y

2 − xz〉
↔ θ = Cθ′ with θ′ ∈ D(C′).

It remains to show that the image of ρ is in D(A′′)ψ. Suppose αx+ βy+ γz = 0 is
a line of C. Let θ = a1∂x + a2∂y + a3∂z ∈ D(C). Then

αa1 + βa2 + γa3 = (αx+ βy + γz)P1

for some P1 ∈ S. Therefore

αψ(a1) + βψ(a2) + γψ(a3) = (αs2 + βst+ γt2)ψ(P1),

which implies

(2αs+ βt)Q1 + (βs+ 2γt)Q2 = 2(αs2 + βst+ γt2)ψ(P1).

This means that (Q1∂s +Q2∂t)(αs
2 + βst + γt2) ∈ (αs2 + βst+ γt2)K[s, t]. Since

αs2 + βst+ γt2 is the defining polynomial of the two points i−1({αx+ βy + γz =
0}∩C) in P1, we get that Q1∂s+Q2∂t is a derivation on the arrangement of these
two points.
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Suppose C′ = {u0x
2 + u1xy + u2xz + u3y

2 + u4yz + u5z
2 = 0} is a conic in the

CL arrangement C. Let θ = a1∂x + a2∂y + a3∂z ∈ D(C). Computations as above
show that

(Q1∂s +Q2∂t)(u0s
4 + u1s

3t+ (u2 + u3)s
2t2 + u4st

3 + u5t
4)

∈ (u0s
4 + u1s

3t+ (u2 + u3)s
2t2 + u4st

3 + u5t
4)K[s, t].

Since u0s
4+u1s

3t+(u2+u3)s
2t2+u4st

3+u5t
4 is the defining polynomial of the four

points i−1(C′∩C) in P1, we get that Q1∂s+Q2∂t is a derivation on the arrangement
of these four points. Similar arguments work in the case of tangencies. �

Let θ = a1∂x+a2∂y+a3∂z ∈ D(C)d such that ρ(θ) = s∂s+ t∂t. Then a1, a2, a3 ∈
Sd with ψ(a1) = s2, ψ(a2) = st, ψ(a3) = t2. Thus d = 1 and θ is the Euler derivation
in D(C). So quotienting by the Euler derivations yields an exact sequence:

0 −→ D′
0(−2)

·C
−→ D0

ρ
−→ (D(A′′)0)ψ .

Since |A′′| = k, after sheafifying, D0(A
′′) = OP1(−k), and hence the sheafification

of D0(A
′′)ψ is i∗OP1(−k).

Lemma 3.6. HP (i∗OP1(−k), t) = 2t+ 1− k.

Proof. CASE 1: k = 2m. Let E be the divisor of the reduced k points i−1(C ∩C′).
Then the ideal sheaf IE = 〈f〉, where f ∈ K[s, t] of degree k = 2m. There exists
g ∈ Sm, unique modulo (y2−xz), such that g(s2, st, t2) = f . Clearly y2−xz cannot
divide g, otherwise g(s2, st, t2) = 0 = f , so the ideal of the reduced k points on C
is 〈y2 − xz, g〉. Hence i∗IE = 〈ḡ〉 as an ideal of S/〈y2 − xz〉. As an S−module, it
has free resolution

0 −→ S(−2−m)
·C
−→ S(−m) −→ 〈ḡ〉 −→ 0,

which yields:

HP (i∗OP1(−2m), t) =

(
t+ 2−m

2

)
−

(
t−m

2

)
= 2t+ 1− 2m.

CASE 2: k = 2m + 1. Let E be the divisor of the reduced k points i−1(C ∩ C′).
Then the ideal sheaf IE = 〈f〉, where f ∈ K[s, t] of degree k = 2m + 1. Let
L1, L2 ∈ K[s, t]1 be two independent linear forms which do not divide f , and let
fi = Lif . Since 〈L1f, L2f〉 = 〈L1, L2〉 ∩ 〈f〉, then 〈f1, f2〉 defines the same ideal
sheaf on P1 as 〈f〉. So IE = 〈f1, f2〉.

Both f1 and f2 are of even degree 2m+ 2. So there exist g1, g2 ∈ S = K[x, y, z]
of degree m + 1 such that gi(s

2, st, t2) = fi, i = 1, 2. Next we show that J =
〈y2 − xz, g1, g2〉 is the ideal of the reduced points C ∩ C′ on C. To see this, note
that if p ∈ C ∩ C′, then fi(i

−1(p)) = 0, i = 1, 2. So gi(p) = 0, i = 1, 2, and hence
gi ∈ J, i = 1, 2. Clearly y2 − xz does not divide gi, otherwise fi is identically zero.
Also, suppose g2 = λg1 + P (y2 − xz), where λ is a constant. Then f2 = λf1,
i.e. L2 = λL1; a contradiction. So J is the ideal of 2m + 1 points on the conic
y2 − xz = 0. By the Hilbert-Burch theorem, such an ideal is minimally generated
by the 2× 2 minors of




x y
y z
αβ
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where both α and β have degree m. So indeed 〈y2 − xz, g1, g2〉 = J , and i∗IE =
〈ḡ1, ḡ2〉 ⊆ S/〈y

2 − xz〉. As an S−module it has free resolution

0 −→ S2(−2−m)

»

x y

y z

–

−→ S2(−1−m) −→ 〈ḡ1, ḡ2〉 −→ 0,

so for the odd case we find that

HP (i∗OP1(−2m− 1), t) = 2

(
t+ 1−m

2

)
− 2

(
t−m

2

)

= 2t− 2m = 2t+ 1− (2m+ 1).

�

Proposition 3.7. For a quasihomogeneous triple (C′, C, C′′ = C′|C), the sequence

0 −→ D′
0(−2)

·C
−→ D0 −→ i∗OL(−k) −→ 0

is exact, where i : L
[s2:st:t2]
−→ P2.

Proof. We have HP (D0, t)−HP (D
′
0(−2), t) = 2t− 4d+ 9+ (deg(Jf )− deg(Jf ′)),

where d + 1 is the degree of the defining polynomial f of C and f ′ is the defining
polynomial of C′. Since (C′, C, C′′) is a quasihomogeneous triple, Bezout’s theorem
and Lemma 2.7 imply that deg(Jf )− deg(Jf ′) = 4d− 4− k and hence

HP (D0, t)−HP (D
′
0(−2), t) = 2t+ 1− k.

By Lemma 3.6, this is exactly the Hilbert polynomial of the sheaf i∗OP1(−k) asso-
ciated to D0(C

′′)ψ. �

Lemma 3.8. For a quasihomogeneous triple such that C′ is free with exponents

{1,m, a},

0 −→ D′
0(−2) −→ D0 −→ D0(A

′′)ψ −→ 0

is exact.

Proof. As we’ve seen,
⊕

tH
0((i∗OL(−k))(t)) =

⊕
tH

0(OP1(2t − k)) = D0(A
′′)ψ.

With the assumption on C′, H1(D′
0(t− 2)) vanishes for all t, and exactness follows

as in the proof of Lemma 2.11. �

Theorem 3.4 will follow from the next two lemmas.

Lemma 3.9. Let (C′, C, C′′) be a quasihomogeneous triple, with |C ∩ C′|= |C′′|=k.
If C′ is free with exponents {1,m, a}, then

(1) If k = 2m then C is free with exp(C) = {1,m, a+ 2}.
(2) If k = 2m+ 1 and a = m, then C is free with exp(C) = {1,m+ 1,m+ 1}.
(3) If k = 2m+ 1 and a 6= m, then C is not free.

Proof. It follows from the computations in the proof of Lemma 3.6 that

• If k = 2m+ 1, then HS(D0(A
′′)ψ, t) =

2tm+1

(1−t)2 .

• If k = 2m, then HS(D0(A
′′)ψ, t) =

tm(1+t)
(1−t)2 .

Combining these results yields the Hilbert series of D0.
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CASE 1: k = 2m. By Lemma 3.8,

HS(D0, t) =
tm + ta+2

(1− t)3
.

Since pdim(D0) ≤ 1, this means that there exist minimal generators θ, η ∈ D0 with
deg(θ) = m and deg(η) = a+ 2. Suppose {E, θ1, θ2} basis for D

′ with E the Euler
derivation and deg(θ1) = m, deg(θ2) = a. We now use that D ⊂ D′.

• m < a. Since θ ∈ D0, θ = fE + cθ1 for some c ∈ C∗. Then {E, θ, θ2} is a
basis for D′, so by Saito’s criterion {E, θ, Cθ2} is a basis for D.
• m = a. Then θ = fE+c1θ1+c2θ2, where c1, c2 constants, not both zero. If
c2 6= 0, then {E, θ1, θ} is a basis for D′, so by Saito’s criterion {E,Cθ1, θ}
is a basis for D.
• m = a + 1. Then θ = fE + c1θ1 + L2θ2, where c is a constant and L2 is
a linear form, not both zero. If c1 = 0 then L2θ2(C) ∈ 〈C〉. Since C is
irreducible, then θ2(C) ∈ 〈C〉, and so θ2 ∈ D0 is of degree a < m, a+2. This
is inconsistent with the Hilbert series of D0. So c1 6= 0, and so {E, θ, θ2} is
a basis for D′, and again by Saito’s criterion {E, θ, Cθ2} is a basis for D.
• m = a + 2. Then θ = f1E + c1θ1 + g1θ2, where c1 is a constant and g1
is a quadratic form, not both zero and η = f2E + c2θ1 + g2θ2, where c2
is a constant and g2 is a quadratic form, not both zero. If c1 = c2 = 0,
then either gi = c′iC, c

′
i 6= 0, i = 1, 2 or θ2 ∈ D0, a contradiction (because

deg(θ2) = a). Therefore c′2θ− c
′
1η ∈ D0 ∩ES = {0}, contradicting the fact

that θ, η are minimal generators of D0. So if c2 6= 0, then {E, η, θ2} is a
basis for D′, and so by Saito’s criterion {E, η, Cθ2} is a basis for D.
• m > a + 2. Then θ = f1E + c1θ1 + g1θ2, where c1 is a constant and g1
is a polynomial, not both zero and η = f2E + c2θ1 + g2θ2, where c2 is a
constant and g2 is a quadratic form, not both zero. If c1 = c2 = 0, then
g1 = Cg′1, g

′
1 6= 0 and g2 = c′2C, c

′
2 nonzero constant, and the argument

used above yields a contradiction. So c1 6= 0 or c2 6= 0. Applying Saito’s
criterion yields the desired result.

CASE 2: k = 2m+ 1,m = a. By Lemma 3.8,

HS(D0, t) =
2tm+1

(1− t)3
.

This implies there exist degree m + 1 minimal generators θ, µ ∈ D0. Suppose
{E, θ1, θ2} is a basis for D′ where E is the Euler derivation and deg(θ1) =
m, deg(θ2) = m. So θ = f1E + L1θ1 + K1θ2 and µ = f2E + L2θ1 +K2θ2, where
L1, L2,K1,K2 are linear forms, and for any i = 1, 2, Li,Ki cannot be simultane-
ously zero. Hence L2θ − L1µ− (L2f1 − L1f2)E = (L2K1 − L1K2)θ2 ∈ D(C). But
θ2 is in D(C′) and θ2(C) /∈ 〈C〉, else (D0)m is nonzero, which is inconsistent with
the Hilbert Series. Hence L2K1 − L1K2 = cC, where c is a constant.

If c = 0, then L1 = uK1, L2 = uK2, u 6= 0 or L1 = vL2,K1 = vK2, v 6= 0, where
u, v are constants, and that K2f1 = K1f2 and L2f1 = L1f2. If L1 = uK1, L2 =
uK2, u 6= 0, andK1 6= ct·K2 we get θ = K1(gE+uθ1+θ2). SinceK1 6= 0 (else L1 =
0) then θ(C) ∈ 〈C〉 implies (gE+uθ1+θ2)(C) ∈ 〈C〉, yielding a degreem derivation
in D(C), a contradiction. If K1 = ct ·K2, then θ and µ are not minimal generators,
also a contradiction. If c 6= 0, then we find det[E, θ, µ] = cC det[E, θ1, θ2], and
Saito’s criterion shows that {E, θ, µ} is a basis for D(C).
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CASE 3: k = 2m+ 1,m 6= a. By Lemma 3.8,

HS(D0, t) =
ta+2 + 2tm+1 − tm+2

(1− t)3
.

Sincem 6= a, there is no cancellation in the numerator, henceD0 cannot be free. �

Lemma 3.10. Let (C′, C, C′′) be a quasihomogeneous triple, with |C ∩C′|= |C′′|=k.
If C is free, then

(1) If k=2m and exp(C)={1,m, a+2}, then C′ is free with exp(C′)={1,m, a}.
(2) If k=2m+1 and exp(C)={1,m+1,m+1}, then C′ is free with exp(C′) =
{1,m,m}.

(3) If k=2m+1 and exp(C)={1,m+1, a+1} with a 6=m, then C′ is not free.

Proof. As in Lemma 2.13, apply Hom(−,OP2) to the exact sequence

0 −→ D′
0(−2)

·C
−→ D0 −→ i∗OL(−k) −→ 0.

Since i∗OL(−k) is supported on the conic C, Hom(i∗OL(−k),OP2) = 0. The
assumption that D0 is free implies that Ext1S(D0,OP2) = 0. This yields an exact
sequence:

0 −→ D∨
0 −→ D

′∨
0 (2) −→ Ext1S(i∗OL(−k),OP2) −→ 0.

As D0 free with known exponents, so also is D∨
0 , and the Hilbert Series is known.

The proof of Lemma 3.6 provides a free resolution of i∗IE , which allows us to
compute Ext1S(i∗IE , S). Combining everything yields the Hilbert Series of D′∨

0 ,
and the result follows as in the previous analysis. �

4. Freeness of CL arrangements is not combinatorial

We close with a pair of examples which show that in the CL case, Terao’s con-
jecture that freeness is a combinatorial invariant of an arrangement is false.

Example 4.1. Let C1 be given by

C1 = {y2 + xz = 0}
C2 = {y2 + x2 + 2xz = 0}
L1 = {x = 0}

L1 is tangent to both C1 and C2 at the point P = (0 : 0 : 1); C1 and C2 have two
other points in common. Adding the line L = {y = 0} passing through P to C1
yields a quasihomogeneous, free CL arrangement C, with D0(C) ≃ S(−2)⊕S(−3) :

The line L′ = {x − 13y = 0} passes through P , and misses the other singularities
of C1. The CL arrangement C′ = L′ ∪ C1 is combinatorially identical to C, but C′ is
not quasihomogeneous, and not free:

0 −→ S(−9) −→ S(−8)3 −→ D0(C
′) −→ 0.
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Even for CL arrangements with ordinary singularities, there are counterexamples:

Example 4.2. Let A be the union of the five smooth conics:

C1 = (x− 3z)2 + (y − 4z)2 − 25z2 = 0
C2 = (x− 4z)2 + (y − 3z)2 − 25z2 = 0
C3 = (x+ 3z)2 + (y − 4z)2 − 25z2 = 0
C4 = (x+ 4z)2 + (y − 3z)2 − 25z2 = 0
C5 = (x− 5z)2 + y2 − 25z2 = 0

A has 13 singular points, all ordinary. At 10 of these points only two branches of A
meet, while at the points (0 : 0 : 1), (1 : i : 0), (1 : −i : 0), all five conics meet. The
Milnor and Tjurina numbers agree at all singularities except (0 : 0 : 1), where τ = 15
and µ = 16. Adding lines L1, L2, L3 connecting (0 : 0 : 1), (1 : i : 0), (1 : −i : 0)
yields a free CL arrangement C, with D0(C) = S(−6)2.

Next, let A′ be the union of the following five smooth conics:

C1 = x2 + 8y2 + 21xy − xz − 8yz = 0
C2 = x2 + 5y2 + 13xy − xz − 5yz = 0
C3 = x2 + 9y2 − 4xy − xz − 9yz = 0
C4 = x2 + 11y2 + xy − xz − 11yz = 0
C5 = x2 + 17y2 − 5xy − xz − 17yz = 0

A′ is combinatorially identical to A, but at the points (0 : 0 : 1), (1 : 0 : 1), (0 : 1 : 1)
where all the branches meet, τ = 15 and µ = 16. Adding the lines connecting these
three points yields an CL arrangement C′ which is combinatorially identical to C
but not free; the free resolution of D0(C

′) is:

0 −→ S(−8)2 −→ S(−7)4 −→ D0(C
′) −→ 0.

As was pointed out by the referee, the complements of arrangements A and A′

are homeomorphic (via a Cremona transformation centered on the three multiple
intersection points) to the complements of a pair of line arrangements consisting of
eight lines in general position. The moduli space of such objects is connected, so
the complements are rigidly isotopic, hence homeomorphic. So freeness is also not
a topological invariant.
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Concluding Remarks:

(1) As noted in §1.2, for the complement X of an CL arrangement in P2 the
betti numbers h1(X) and h2(X) depend only on the combinatorics, and so
if X is quasihomogeneous and free, there is a version of Terao’s theorem,
which we leave for the interested reader.

(2) In the examples above, the Jacobian ideals are of different degrees, so are
not even members of the same Hilbert scheme. Do there exist CL ar-
rangements with isomorphic intersection poset and singularities which are
locally isomorphic, one free and one nonfree? Do there exist counterexam-
ples where all singularities are quasihomogeneous?

(3) As shown by Example 2.3, quasihomogenity is not a necessary condition
for freeness of CL arrangements. However, without this assumption, the
sequences in Propositions 2.8 and 3.8 may not be exact, which means that
any form of addition-deletion will require hypotheses on higher cohomology.

Acknowledgments: Macaulay2 computations were essential to our work. We also
thank an anonymous referee for many useful suggestions, in particular for pointing
out that we should remove one of our original conditions (that C has only ordinary
singularities).
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