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THE KÜNNETH FORMULA FOR NUCLEAR

DF -SPACES AND HOCHSCHILD COHOMOLOGY

ZINAIDA A. LYKOVA

Abstract. We consider complexes (X , d) of nuclear Fréchet spaces
and continuous boundary maps dn with closed ranges and prove
that, up to topological isomorphism, (Hn(X , d))

∗ ∼= Hn(X ∗, d∗),
where (Hn(X , d))

∗ is the strong dual space of the homology group
of (X , d) and Hn(X ∗, d∗) is the cohomology group of the strong
dual complex (X ∗, d∗). We use this result to establish the ex-
istence of topological isomorphisms in the Künneth formula for
the cohomology of complete nuclear DF -complexes and in the
Künneth formula for continuous Hochschild cohomology of nu-
clear ⊗̂-algebras which are Fréchet spaces or DF -spaces for which
all boundary maps of the standard homology complexes have
closed ranges. We describe explicitly continuous Hochschild and
cyclic cohomology groups of certain tensor products of ⊗̂-algebras
which are Fréchet spaces or nuclear DF -spaces.

2000 Mathematics Subject Classification: Primary 19D55, 22E41,
46H40, 55U25.

1. Introduction

Künneth formulae for bounded chain complexes X and Y of Fréchet
and Banach spaces and continuous boundary maps with closed ranges
were established, under certain topological assumptions, in [16, 7, 8].
Recall that in the category of nuclear Fréchet spaces short exact se-
quences are topologically pure and objects are strictly flat, and so the
Künneth formula can be used for calculation of continuous Hochschild
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homology Hn(A⊗̂B, X⊗̂Y ) if boundary maps of the standard homol-
ogy complexes have closed ranges. To compute the continuous cyclic-
type Hochschild cohomology of Fréchet algebras one has to deal with
complexes of complete DF -spaces. In the recent paper [21] the author
showed that, for a continuous morphism ϕ : X → Y of complexes of
complete nuclear DF -spaces, a surjective map of cohomology groups
Hn(ϕ) : Hn(X ) → Hn(Y) is automatically open. In this paper we
establish relations between topological properties of the homology of
complexes of Fréchet spaces and of the cohomology of their strong
dual complexes. We use these properties to show the existence of a
topological isomorphism in the Künneth formula for complexes of com-
plete nuclear DF -spaces and continuous boundary maps with closed
ranges and thereby to describe explicitly the continuous Hochschild
and cyclic homology and cohomology of A⊗̂B for certain ⊗̂-algebras
A and B which are Fréchet spaces or nuclear DF -spaces.
In Theorem 3.5 and Corollary 3.6, for a complex of nuclear Fréchet

spaces or of complete nuclear DF -spaces (X , d) and continuous bound-
ary maps dn with closed ranges, we establish that there is a topologi-
cal isomorphism, (Hn(X , d))

∗ ∼= Hn(X ∗, d∗), where (Hn(X , d))
∗ is the

dual space of the homology group of (X , d) and Hn(X ∗, d∗) is the
cohomology group of the dual complex (X ∗, d∗).
In Theorem 4.4 and Theorem 4.3, for bounded chain complexes X

and Y of complete nuclear DF -spaces or of nuclear Fréchet spaces
such that all boundary maps have closed ranges, we prove that, up to
topological isomorphism,

Hn(X⊗̂Y) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)] and

Hn((X⊗̂Y)∗) ∼=
⊕

m+q=n

[Hm(X ∗)⊗̂Hq(Y∗)].

In Corollary 4.2, for bounded chain complexes (X , dX ) of Banach
spaces and (Y , dY) of Fréchet spaces such that all boundary maps
have closed ranges, and Hn(X ) and Ker (dX )n are strictly flat in Ban
for all n, we prove that, up to topological isomorphism,

Hn(X⊗̂Y) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]
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and, up to isomorphism of linear spaces,

Hn((X⊗̂Y)∗) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]
∗.

The Künneth formulae for the continuous Hochschild homology
Hn(A⊗̂B, X⊗̂Y ) and cohomology Hn((C∼(A⊗̂B, X⊗̂Y ))

∗) are proved
in Theorem 5.4 for the underlying category of complete nuclear DF -
spaces and for the underlying category of nuclear Fréchet spaces. In
these underlying categories, for unital ⊗̂-algebrasA and B, for a unital
A-⊗̂-bimodule X and a unital B-⊗̂-bimodule Y , under the assumption
that all boundary maps of the standard homology complexes C∼(A, X)
and C∼(B, Y ) have closed ranges, we show that, up to topological iso-
morphism,

Hn(A⊗̂B, X⊗̂Y ) ∼=
⊕

m+q=n

[Hm(A, X)⊗̂Hq(B, Y )] and

Hn((C∼(A⊗̂B, X⊗̂Y ))
∗) ∼=

⊕

m+q=n

[Hm((C∼(A, X))∗)⊗̂Hq((C∼(B, Y ))
∗)].

In Theorem 5.5 we prove the Künneth formulae for the continuous
Hochschild homology groups of Banach and Fréchet algebras under
some topological assumptions. In Section 6 we describe explicitly
the continuous cyclic-type homology and cohomology of certain tensor
products of ⊗̂-algebras which are Banach or Fréchet or nuclear Fréchet
or nuclear DF -spaces.

2. Definitions and notation

We recall some notation and terminology used in homology and in
the theory of topological algebras. Homological theory can be found
in any relevant textbook, for instance, MacLane [22], Loday [17] for
the pure algebraic case and Helemskii [12] for the continuous case.
Throughout the paper ⊗̂ is the projective tensor product of com-

plete locally convex spaces. By X⊗̂n we mean the n-fold projective
tensor power X⊗̂ . . . ⊗̂X of X and id denotes the identity operator.
We use the notation Ban, Fr and LCS for the categories whose

objects are Banach spaces, Fréchet spaces and complete Hausdorff
locally convex spaces respectively, and whose morphisms in all cases
are continuous linear operators. For topological homology theory it is
important to find a suitable category for the underlying spaces of the
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algebras and modules. In [12] Helemskii constructed homology theory
for the following categories Φ of underlying spaces, for which he used
the notation (Φ, ⊗̂).

Definition 2.1. ([12, Section II.5]) A suitable category for underly-
ing spaces of the algebras and modules is an arbitrary complete sub-
category Φ of LCS having the following properties:
(i) if Φ contains a space, it also contains all those spaces topologi-

cally isomorphic to it;
(ii) if Φ contains a space, it also contains any of its closed subspaces

and the completion of any its Hausdorff quotient spaces;
(iii) Φ contains the direct sum and the projective tensor product of

any pair of its spaces;
(iv) Φ contains C.

Besides Ban, Fr and LCS important examples of suitable categories
Φ are the categories of complete nuclear spaces [29, Proposition 50.1],
nuclear Fréchet spaces and complete nuclear DF -spaces [21].
By definition a ⊗̂-algebra is a complete Hausdorff locally convex

algebra with jointly continuous multiplication. A left ⊗̂-module X
over a ⊗̂-algebra A is a complete Hausdorff locally convex space X
together with the structure of a left A-module such that the map
A × X → X , (a, x) 7→ a · x is jointly continuous. For a ⊗̂-algebra
A, ⊗̂A is the projective tensor product over A of left and right A-
⊗̂-modules (see [10], [12, II.4.1]). The category of left [unital] A-⊗̂-
modules is denoted by A-mod [A-unmod] and the category of [unital]
A-⊗̂-bimodules is denoted by A-mod-A [A-unmod-A].
Let K be a category. A chain complex X∼ in the category K is a

sequence of Xn ∈ K and morphisms dn (called boundary maps)

· · · ← Xn
dn← Xn+1

dn+1

← Xn+2 ← . . .

such that dn ◦ dn+1 = 0 for every n. The cycles are the elements of

Zn(X ) = Ker (dn−1 : Xn → Xn−1).

The boundaries are the elements of

Bn(X ) = Im (dn : Xn+1 → Xn).

The relation dn−1 ◦ dn = 0 implies Bn(X ) ⊂ Zn(X ). The homology
groups are defined by

Hn(X∼) = Zn(X )/Bn(X ).
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As usual, we will often drop the subscript n of dn. If there is a need
to distinguish between various boundary maps on various chain com-
plexes, we will use subscripts, that is, we will denote the boundary
maps on X by dX . A chain complex X is called bounded if Xn = {0}
whenever n is less than a certain fixed integer N ∈ Z.
Given E ∈ K and a chain complex (X , d) in K, we can form the

chain complex E⊗̂X of the locally convex spaces E⊗̂Xn and boundary
maps idE ⊗ d. Definitions of the totalization Tot(M) of a bounded
bicomplexM and the tensor product X⊗̂Y of bounded complexes X
and Y in Fr can be found in [12, Definitions II.5.23-25]. Recall that

X⊗̂Y
def
= Tot(X⊗̂Y) of a bounded bicomplex X⊗̂Y .

We recall here the definition of a strictly flat locally convex space in
a suitable category Φ which is equivalent to that given in [12, Chapter
VII]. Note that it can be seen as a special case of the corresponding
notion for ⊗̂-modules, where the ⊗̂-algebra is taken to be the complex
numbers C.

Definition 2.2. A locally convex space G ∈ Φ is strictly flat in Φ if
for every short exact sequence

0→ X → Y → Z → 0

of locally convex spaces from Φ and continuous linear operators, the
short sequence

0→ G⊗̂X → G⊗̂Y → G⊗̂Z → 0

is also exact.

Example 2.3. (i) Nuclear Fréchet spaces are strictly flat in Fr [6,
Theorems A.1.5 and A.1.6]. (ii) Finite-dimensional Banach spaces
and L1(Ω, µ) are strictly flat in Ban [30, Theorem III.B.2] and in Fr
[26, Proposition 4.4].

If E is a topological vector space E∗ denotes its dual space of con-
tinuous linear functionals. For a subset V of E, the polar of V is

V 0 = {g ∈ E∗ : |g(x)| ≤ 1 for all x ∈ V }.

Throughout the paper, E∗ will always be equipped with the strong
topology unless otherwise stated. The strong topology is defined on
E∗ by taking as a basis of neighbourhoods of 0 the family of polars of
all bounded subsets of E; see [29, II.19.2].
Let A be a ⊗̂-algebra. A complex of A-⊗̂-modules and their mor-

phisms is called admissible if it splits as a complex in LCS [12, III.1.11].
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A complex of A-⊗̂-modules and their morphisms is called weakly ad-
missible if its strong dual complex splits.
For Y ∈ A-mod-A a complex

0←− Y
ε
←− P0

φ0

←− P1
φ1

←− P2 ←− · · · (0← Y ← P)

is called a projective resolution of Y in A-mod-A if it is admissible
and all the modules in P are projective in A-mod-A [12, Definition
III.2.1].
For any ⊗̂-algebra A, not necessarily unital, A+ is the ⊗̂-algebra

obtained by adjoining an identity to A. For a ⊗̂-algebraA, the algebra
Ae = A+⊗̂A

op
+ is called the enveloping algebra of A, where Aop

+ is the
opposite algebra of A+ with multiplication a · b = ba.
A module Y ∈ A-mod is called flat if for any admissible complex X

of right A-⊗̂-modules the complex X⊗̂AY is exact. A module Y ∈ A-
mod-A is called flat if for any admissible complex X ofA-⊗̂-bimodules
the complex X⊗̂AeY is exact.
For Y,X ∈ A-mod-A, we shall denote by TorA

e

n (X, Y ) the nth ho-
mology of the complex X⊗̂AeP, where 0 ← Y ← P is a projective
resolution of Y in A-mod-A, [12, Definition III.4.23].

Definition 2.4. A short exact sequence of locally convex spaces from
Φ and continuous operators

0→ Y
i
→ Z

j
→W → 0

is called topologically pure in Φ if for every X ∈ Φ the sequence

0→ X⊗̂Y
idX⊗̂i
→ X⊗̂Z

idX⊗̂j
→ X⊗̂W → 0

is exact.

By [2, II.1.8f and Remark after II.1.9], an extension of Banach spaces
is topologically pure in Ban if and only if it is weakly admissible in
Ban. In the category of Fréchet spaces the situation with topologically
pure extensions is more interesting. Firstly, it is known that exten-
sions of nuclear Fréchet spaces are topologically pure (see [6, Theorems
A.1.6 and A.1.5]. Note that nuclear Fréchet spaces are reflexive, and
therefore a short sequence of nuclear Fréchet spaces is weakly admis-
sible if and only if it is admissible. It is shown in [20, Lemma 2.4] that
in Fr the weak admissibility of an extension implies topological purity
of the extension, but is not equivalent to the topological purity of the
extension [20, Section 2]. Recall that extensions of Fréchet algebras
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0 → Y → Z → W → 0 such that Y has a left or right bounded
approximate identity are topologically pure [20, Lemma 2.5].

3. Topological isomorphism between (Hn(X , d))
∗ and

Hn(X ∗, d∗) in the category of complete nuclear

DF -spaces

DF -spaces were introduced by A. Grothendieck in [9]. It is well
known that the strong dual of a Fréchet space is a complete DF -space
and that nuclear Fréchet spaces and complete nuclear DF -spaces are
reflexive [23, Theorem 4.4.12]. Moreover, the correspondence E ↔ E∗

establishes a one-to-one relation between the nuclear Fréchet spaces
and complete nuclear DF -spaces [23, Theorem 4.4.13]. It is known
that there exist closed linear subspaces of DF -spaces that are not
DF -spaces. For nuclear spaces, however, we have the following.

Lemma 3.1. [23, Proposition 5.1.7] Each closed linear subspace F of
the strong dual of a nuclear Fréchet space E is also the strong dual of
a nuclear Fréchet space.

In a locally convex space a subset is called a barrel if it is absolutely
convex, absorbent and closed. Every locally convex space has a neigh-
bourhood base consisting of barrels. A locally convex space is called
a barrelled space or a t-space if every barrel is a neighbourhood [27].
A Hausdorff barrelled locally convex space with the further property
that its closed bounded subsets are compact is called a Montel space.
In particular, each nuclear Fréchet space is an FM-space, that is, a
Fréchet space that is Montel.
Let E and F be locally convex topological vector spaces and let

T : E → F be a continuous linear operator. If T is open, then it
is also called a homomorphism. Let E∗ and F ∗ have the strong dual
topologies. If T ∗ : F ∗ → E∗ is an open continuous linear operator
then T ∗ is called a strong homomorphism.

Lemma 3.2. Let X and Y be nuclear Fréchet spaces and let T : X → Y
be a continuous linear operator such that Im T is closed. Then up to
topological isomorphism, Im T ∗ ∼= (X/Ker T )∗ is the strong dual of a
nuclear Fréchet space and hence is barrelled.

Proof. In view of the algebraic identification Im T ∗ ∼= (X/Ker T )∗,
the adjoint of the quotient map X → X/Ker T is the inclusion map
Im T ∗ → X∗. Since nuclear Fréchet spaces are in particular FM-
spaces and the adjoint of a homomorphism between FM-spaces is



8 Z. A. Lykova

a strong homomorphism, the relative topology and the strong dual
topology of Im T ∗ (as the dual space of X/Ker T ) coincide. Hence, up
to topological isomorphism, Im T ∗ ∼= (X/Ker T )∗. By [27, Corollary
IV.3.1], the strong dual of a nuclear Fréchet space is barrelled. �

Further we will need the following version of the open mapping
theorem.

Corollary 3.3. [21, Corollary 3.6] Let E and F be nuclear Fréchet
spaces and let E∗ and F ∗ be the strong duals of E and F respectively.
Then a continuous linear operator T of E∗ onto F ∗ is open.

For a continuous morphism of chain complexes ψ∼ : X∼ → P∼ in
Fr, a surjective map Hn(ϕ) : Hn(X )→ Hn(Y) is automatically open,
see [12, Lemma 0.5.9]. In the category of complete nuclear DF -spaces
it was proved be the author in [21, Lemma 3.5].
The following result is known for Banach and Fréchet spaces.

Proposition 3.4. [7, Corollary 4.9] Let (X , d) be a chain complex of
Fréchet (Banach) spaces and continuous linear operators and (X ∗, d∗)
the strong dual cochain complex. Then the following are equivalent:

(1) Hn(X , d) = Ker dn−1/ Im dn is a Fréchet (Banach) space;
(2) Bn(X , d) = Im dn is closed in Xn;
(3) dn has closed range;
(4) the dual map dn = d∗n has closed range;
(5) Bn+1(X ∗, d∗) = Im d∗n is strongly closed in (Xn+1)

∗;

In the category of Banach spaces (1) - (5) are equivalent to:

(6) Bn+1(X ∗, d∗) is a Banach space;
(7) Hn+1(X ∗, d∗) = Ker d∗n+1/ Im d∗n is a Banach space.

Moreover, whenever Hn(X , d) and H
n(X ∗, d∗) are Banach spaces, up

to topological isomorphism,

Hn(X ∗, d∗) ∼= Hn(X , d)
∗.

The next theorem shows that certain niceties of the theory of nuclear
DF -spaces allow us to generalize this result to nuclear Fréchet spaces.

Theorem 3.5. Let (X , d) be a chain complex of Fréchet spaces and
continuous linear operators and let (X ∗, d∗) be its strong dual complex.
Suppose that, for a certain n, either dn and dn−1 have closed ranges
or d∗n and d∗n−1 have closed ranges.
(i) Then, up to isomorphism of linear spaces,

(Hn(X , d))
∗ ∼= Hn(X ∗, d∗).
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(ii) If in addition (X , d) is a chain complex of nuclear Fréchet spaces,
then Hn(X , d) is a nuclear Fréchet space and, up to topological iso-
morphism,

(Hn(X , d))
∗ ∼= Hn(X ∗, d∗) and Hn(X , d) ∼= (Hn(X ∗, d∗))∗.

Proof. We will give a proof of (ii), case (i) being simpler. By [5, Theo-
rem 8.6.13], dn has closed range if and only if d∗n has closed range. Thus
dn−1, dn, d

∗
n−1and d∗n have closed ranges. We consider the following

commutative diagram as in [22, Lemma V.10.3].

0 0
↑ ↓

0 → Bn(X )
in
→֒ Zn(X )

σn→ Hn(X ) → 0
d̃n ↑ jn ↓

Xn+1
dn→ Xn

dn−1 ↓
Xn−1

where in and jn are the natural inclusions and σn is the quotient
map. The notation d̃ is an instance of one we shall use repeatedly,
and thus we adopt the following definition. Given a continuous linear
map θ : E → F , the map θ̃ is the surjective map θ̃ : E → Im θ defined
by θ̃(t) = θ(t). Here again all the maps have closed ranges.
We form the dual diagram and add the kernel of d∗n , Zn(X ∗) =

Ker d∗n, and the image of d∗n−1 , B
n(X ∗) = Im d∗n−1 which is closed by

assumption.

0 0
↓ ↑

0 ← (Bn(X ))
∗ i∗n←− (Zn(X ))

∗ σ∗

n←− (Hn(X ))
∗ ← 0

d̃∗n ↓ j∗n ↑

X∗
n+1

d∗n←− X∗
n

iZ←− Zn(X ∗) ← 0
d∗
n−1 ↑ ↑ iB

X∗
n−1

gd∗
n−1

−→ Bn(X ∗) → 0

where d̃∗n−1 : X∗
n−1 → Im d∗n−1 : γ → [d∗n−1](γ) = γ ◦ dn−1. This

diagram commutes and has exact rows and columns. By [20, Lemma
2.3], the exactness of a complex in Fr is equivalent to the exactness
of its dual complex. Thus the exactness of the first line follows from
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[20, Lemma 2.3]; of the second line from the definition of Zn(X ∗);
of the first column from [5, Corollary 8.6.11] since the surjectivity

of d̃n implies the injectivity of d̃∗n, and of the second column from
[20, Lemma 2.3]. Commutativity only needs to be checked for the
square involving the two added terms, namely Zn(X ∗) and Bn(X ∗),
and this is obvious. By Lemma 3.1 and Lemma 3.2, Zn(X ∗) = Ker d∗n
and Bn(X ∗) = Im d∗n−1 are the strong duals of nuclear Fréchet spaces.
Therefore this diagram is one of strong duals of nuclear Fréchet spaces
and continuous linear operators with closed ranges.
By Lemma 3.2, Im σ∗

n is a strong dual of a nuclear Fréchet space.
Therefore, by Corollary 3.3, the continuous linear surjective operator

σ̃∗
n : (Hn(X ))

∗ → Im σ∗
n : γ 7→ σ∗

n(γ)

is open.
Let us define a map

ϕ : Zn(X ∗)→ (Hn(X ))
∗

by the formula ϕ = σ̃∗
n

−1
◦ j∗n ◦ iZ , where σ̃

∗
n

−1
is the inverse of the

topological isomorphism σ̃∗
n. It is now a standard diagram-chasing

argument to show that ϕ is well defined and surjective. Let us give
this argument. An element z ∈ Zn(X ∗) is sent by d∗n ◦ iZ to 0 in X∗

n+1

and therefore, since d̃n
∗
is injective, [i∗n ◦ j

∗
n ◦ iZ ](z) = 0. Hence the

element [j∗n◦iZ ](z) of (Zn(X ))
∗ belongs to Ker i∗n = Im σ∗

n, by exactness
of the first line of the diagram. Thus ϕ is a well defined continuous
linear operator. To show that this map is surjective, starting with v ∈
(Hn(X ))

∗, we get u = σ∗
n(v) ∈ (Zn(X ))

∗, and, since j∗n is surjective,
there is t ∈ X ∗

n such that j∗n(t) = u. It is easy to see that t ∈ Ker d∗n
and therefore it lifts uniquely to z ∈ Zn(X ∗) and ϕ(z) = v.

One can see that iB(B
n(X ∗)) ⊆ Ker ϕ, since d̃∗n−1 is surjective and,

for any y ∈ X∗
n−1, [j∗n ◦ d

∗
n−1](y) = 0. Suppose z ∈ Ker ϕ, hence

[j∗n ◦ iZ ](z) = 0. It implies that iZ(z) ∈ Ker j∗n = Im d∗n−1, so that
there is y ∈ X∗

n−1 such that d∗n−1(y) = iZ(z). Since iZ is injective,

z = iB(d̃
∗
n−1(y)). Thus Ker ϕ = iB[B

n(X ∗)].
By Corollary 3.3, the continuous surjective linear operator between

strong dual of nuclear Fréchet spaces

ϕ : Zn(X ∗)→ (Hn(X ))
∗

is open and, up to topological isomorphism,

(Hn(X , d))
∗ ∼= Hn(X ∗, d∗).
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By [23, Theorem 4.4.13], up to topological isomorphism,

Hn(X , d) ∼= (Hn(X ∗, d∗))∗.

�

Corollary 3.6. Let (Y , d) be a cochain complex of complete nuclear
DF -spaces and continuous operators. Suppose that, for a certain n,
dn and dn−1 have closed ranges. Then Hn(Y , d) is a complete nuclear
DF -space, Hn(Y

∗, d∗) is a nuclear Fréchet space and, up to topological
isomorphism,

(Hn(Y , d))∗ ∼= Hn(Y
∗, d∗) and Hn(Y , d) ∼= (Hn(Y

∗, d∗))∗.

Proof. By [23, Theorem 4.4.13], the complex (Y , d) is the strong dual
of the chain complex (Y∗, d∗) of nuclear Fréchet spaces and continu-
ous linear operators. By [23, Theorem 4.4.12], complete nuclear DF -
spaces are reflexive, and therefore the statement follows from Theorem
3.5 and Proposition 3.4. �

4. The Künneth formula for Fréchet and complete

nuclear DF -complexes

In this section we prove the existence of a topological isomorphism
in the Künneth formula for the cohomology groups of complete nuclear
DF -complexes (Theorem 4.3). To start with we state the result by F.
Gourdeau, M.C. White and the author on the Künneth formula for
Fréchet and Banach chain complexes. Note that similar results are
true for cochain complexes. One can see that to obtain the Künneth
formula in the category of Fréchet spaces and continuous operators,
we need the following notions of strict flatness (Def. 2.2) and of the
topological purity of short exact sequences of Fréchet spaces (Def.
2.4). These conditions allow us to deal with the known problems in
the category of Fréchet spaces that the projective tensor product of
injective continuous linear operators is not necessarily injective and
the range of an operator is not always closed.

Theorem 4.1. [7, Theorem 5.2 and Corollary 4.9] Let X and Y
be bounded chain complexes in Fr (in Ban) such that all boundary
maps have closed ranges. Suppose that the following exact sequences
of Fréchet (Banach) spaces are topologically pure for all n:

(1) 0→ Zn(X )
in→ Xn

d̃n−1

−→ Bn−1(X )→ 0
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and

(2) 0→ Bn(X )
jn
→ Zn(X )

σn→ Hn(X )→ 0.

where in and jn are the natural inclusions and σn is the quotient map.
Suppose also that Zn(X ) and Bn(X ) are strictly flat in Fr (in Ban)
for all n. Then, up to topological isomorphism,

Hn(X⊗̂Y) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)],

and, in addition, for complexes of Banach spaces, there is also a topo-
logical isomorphism

Hn((X⊗̂Y)∗) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]
∗.

Corollary 4.2. Let X and Y be bounded chain complexes of Banach
spaces and of Fréchet spaces respectively such that all boundary maps
have closed ranges, Hn(X ) and Bn(X ) are strictly flat in Ban for all
n. Then, up to topological isomorphism,

Hn(X⊗̂Y) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]

and, up to isomorphism of linear spaces,

Hn((X⊗̂Y)∗) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]
∗.

If, in addition, Y is a complex of Banach spaces, then both the above
isomorphisms are topological.

Proof. In the category of Banach spaces, by [12, Proposition VII.1.17],
Bn(X ) and Hm(X ) strictly flat implies that Zn(X ) is strictly flat as
well. By [26, Proposition 4.4], Bn(X ), Hm(X ) and Zn(X ) are also
strictly flat in Fr. By [7, Lemma 4.3], strict flatness of Bn(X ) and
Hm(X ) in Ban implies that the short exact sequences (1) and (2)
of Banach spaces are weakly admissible. By [20, Lemma 2.4], the
short exact sequences (1) and (2) are topologically pure in Fr. The
statement follows from Theorem 4.1 and Theorem 3.5.
By Proposition 3.4, in the case that both X and Y are from Ban,

we have a topological isomorphism Hn((X⊗̂Y)∗) ∼= (Hn(X⊗̂Y))
∗. �

The topological isomorphism (3) for homology groups under the
assumptions of Part (i) of the following theorem is already known, see
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M. Karoubi [16]. To get the isomorphism for cohomology groups of
dual complexes he required Hn(X ∗) to be finite-dimensional.

Theorem 4.3. Let X and Y be bounded chain complexes in Fr such
that all boundary maps have closed ranges.
(i) Suppose that one of complexes, say X , is a complex of nuclear

Fréchet spaces. Then, up to topological isomorphism,

(3) Hn(X⊗̂Y) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]

and, up to isomorphism of linear spaces,

Hn((X⊗̂Y)∗) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]
∗ ∼=

⊕

m+q=n

[Hm(X ∗)⊗̂[Hq(Y)]
∗].

(ii) Suppose that X and Y are complexes of nuclear Fréchet spaces.
Then, up to topological isomorphism,

Hn((X⊗̂Y)∗) ∼= Hn(X ∗⊗̂Y∗) ∼=
⊕

m+q=n

[Hm(X ∗)⊗̂Hq(Y∗)].

Proof. (i) Suppose that X is a complex of nuclear Fréchet spaces.
Since all boundary maps have closed ranges, Zn(X ) and Bn(X ) are
nuclear Fréchet spaces. By Theorem A.1.6 and Theorem A.1.5 of [6],
Zn(X ) and Bn(X ) are strictly flat all n in Fr and the short exact
sequences (1) and (2) are topologically pure in Fr. The first part
of the statement follows from Theorem 4.1. By Theorem 3.5, up to
isomorphism of linear spaces, Hn((X⊗̂Y)∗) = (Hn(X⊗̂Y))

∗. Thus, up
to isomorphism of linear spaces,

Hn((X⊗̂Y)∗) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]
∗

By assumption, Hm(X ) is a nuclear Fréchet space for all m. By [15,
Theorem 21.5.9] and by Theorem 3.5, up to topological isomorphism,

[Hm(X )⊗̂Hq(Y)]
∗ ∼= [Hm(X )]

∗⊗̂[Hq(Y)]
∗ ∼= Hm(X ∗)⊗̂[Hq(Y)]

∗

for all m, q.
(ii) Since X and Y are complexes of nuclear Fréchet spaces, by [15,

Theorem 21.5.9], up to topological isomorphism, (X⊗̂Y)∗ ∼= X ∗⊗̂Y∗,
and so

Hn((X⊗̂Y)∗) ∼= Hn(X ∗⊗̂Y∗).
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By [29, Proposition III.50.1], the projective tensor product of nuclear
Fréchet spaces is a nuclear Fréchet space. Hence X⊗̂Y is a complex
of nuclear Fréchet spaces. By (i), for all n,

Hn(X⊗̂Y) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)],

is a nuclear Fréchet space. By Proposition 3.4 and Theorem 3.5,

Hn((X⊗̂Y)∗) ∼= (Hn(X⊗̂Y))
∗ ∼=

(
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]

)∗

.

By [15, Theorem 21.5.9] and Theorem 3.5, since Hm(X ) and Hq(Y)
are nuclear Fréchet spaces,

⊕

m+q=n

[Hm(X )⊗̂Hq(Y)]
∗ ∼=

⊕

m+q=n

[Hm(X )]
∗⊗̂[Hq(Y)]

∗

∼=
⊕

m+q=n

[Hm(X ∗)⊗̂Hq(Y∗)].

�

Theorem 4.4. (i) Let X and Y be bounded chain complexes of
complete nuclear DF -spaces such that all boundary maps have closed
ranges. Then, up to topological isomorphism,

Hn(X⊗̂Y) ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)].

(ii) Let X be a bounded chain complex of complete nuclear DF -
spaces such that all boundary maps have closed ranges, and let Y be a
bounded chain complex of complete DF -spaces such that all boundary
maps of its strong dual complex Y∗ have closed ranges. Then, up to
topological isomorphism,

Hn((X⊗̂Y)∗) ∼= Hn(X ∗⊗̂Y∗) ∼=
⊕

m+q=n

Hm(X ∗)⊗̂Hq(Y∗).

Proof. (i) By [23, Theorem 4.4.13], the chain complexes X and Y are
the strong duals of cochain complexes X ∗ and Y∗ of nuclear Fréchet
spaces and continuous linear operators. By Proposition 3.4, all bound-
ary maps of complexes X ∗ and Y∗ have closed ranges. By Theorem
4.3 (ii), for the complexes X ∗ and Y∗ of nuclear Fréchet spaces, up to
topological isomorphism,

Hn(X⊗̂Y) ∼= Hn((X
∗)∗⊗̂(Y∗)∗)
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∼=
⊕

m+q=n

[Hm((X
∗)∗)⊗̂Hq((Y

∗)∗)] ∼=
⊕

m+q=n

[Hm(X )⊗̂Hq(Y)].

(ii) Since X is the complex of complete nuclear DF -spaces, then, by
[15, Theorem 21.5.9], (X⊗̂Y)∗ ∼= X ∗⊗̂Y∗ and

Hn((X⊗̂Y)∗) ∼= Hn(X ∗⊗̂Y∗).

By Proposition 3.4, all boundary maps of complexes X ∗ have closed
ranges. By Theorem 4.3 (i), for the cochain complex of nuclear Fréchet
spaces X ∗ ([23, Theorem 4.4.13]) and for the cochain complex of
Fréchet spaces Y∗,

Hn(X ∗⊗̂Y∗) ∼=
⊕

m+q=n

Hm(X ∗)⊗̂Hq(Y∗).

�

5. The Künneth formula for Hochschild cohomology of

⊗̂-algebras which are nuclear DF - or Fréchet spaces

Let A be a ⊗̂-algebra and let X be an A-⊗̂-bimodule. We assume
here that the category of underlying spaces Φ has the properties from
Definition 2.1. Let us recall the definition of the standard homological
chain complex C∼(A, X). For n ≥ 0, let Cn(A, X) denote the pro-

jective tensor product X⊗̂A⊗̂
n

. The elements of Cn(A, X) are called
n-chains. Let the differential dn : Cn+1 → Cn be given by

dn(x⊗ a1 ⊗ . . .⊗ an+1)=x · a1 ⊗ . . .⊗ an+1

+

n∑

k=1

(−1)k(x⊗ a1 ⊗ . . .⊗ akak+1 ⊗ . . .⊗ an+1)

+(−1)n+1(an+1 · x⊗ a1 ⊗ . . .⊗ an)

with d−1 the null map. The space of boundaries Bn(C∼(A, X)) = Im dn
is denoted by Bn(A, X) and the space of cycles Zn(C∼(A, X)) =
Ker dn−1 is denoted by Zn(A, X). The homology groups of this com-
plex Hn(C∼(A, X)) = Zn(A, X)/Bn(A, X) are called the continuous
Hochschild homology groups of A with coefficients in X and are de-
noted by Hn(A, X) [12, Definition II.5.28].
We also consider the cohomology groups Hn((C∼(A, X))∗) of the

dual complex (C∼(A, X))∗ with the strong dual topology. For Banach
algebras A, (C∼(A, X))∗ is topologically isomorphic to the Hochschild
cohomology Hn(A, X∗) of A with coefficients in the dual A-bimodule
X∗ [12, Definition I.3.2 and Proposition II.5.27].
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Let A be in Φ and be a unital ⊗̂-algebra. We put βn(A) = A
⊗̂

n+2

,
n ≥ 0 and let dn : βn+1(A)→ βn(A) be given by

dn(a0 ⊗ . . .⊗ an+2) =

n+1∑

k=0

(−1)k(a0 ⊗ . . .⊗ akak+1 ⊗ . . .⊗ an+2).

By [12, Proposition III.2.9], the complex over A, π : β(A) → A :
a⊗ b 7→ ab, where β(A) denotes

0← β0(A)
d0←− β1(A)

d1←− · · · ← βn(A)
dn←− βn+1(A)← . . .

is a projective resolution of A-⊗̂-bimodule A. β(A) is called the
bar resolution of A. The complex has a contracting homotopy sn :
βn(A)→ βn+1(A), (n ≥ 1), given by

sn(a0 ⊗ a1 ⊗ · · · ⊗ an+1) = 1⊗ a0 ⊗ a1 ⊗ · · · ⊗ an+1,

which is to say that dnsn + sn−1dn−1 = 1βn(A).

Proposition 5.1. Let A1 and A2 be unital ⊗̂-algebras, let 0← X
ε1←−

X be a projective resolution of X ∈ A1-unmod and 0← Y
ε2←− Y be a

projective resolution of Y ∈ A2-unmod. Then 0 ← X⊗̂Y
ε1⊗ε2←− X⊗̂Y

is a projective resolution of X⊗̂Y ∈ A1⊗̂A2-unmod.

Proof. The proof requires only minor modifications of that of [22,
Proposition X.7.1]. �

Note that the statement of Proposition 5.1 is also true in the cat-
egory of bimodules. In the next theorem we extend the result [7,
Theorem 6.2] to the category of complete nuclear DF -spaces.

Theorem 5.2. Let the category for underlying spaces Φ be Fr or the
category of complete nuclear DF -spaces. Let A and B be unital ⊗̂-
algebras with identities eA and eB, let X be an A-⊗̂-bimodule and let
Y be a B-⊗̂-bimodule. Then, up to topological isomorphism, for all
n ≥ 1,

Hn(A⊗̂B, X⊗̂Y ) ∼= Hn(A⊗̂B, eAXeA⊗̂eBY eB)

∼= Hn(C∼(A, eAXeA)⊗̂C∼(B, eBY eB)).

If X and Y are also unital, then, up to topological isomorphism, for
all n ≥ 0,

Hn(A⊗̂B, X⊗̂Y ) ∼= Hn(C∼(A, X)⊗̂C∼(B, Y )).
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Proof. It is well known that, for a ⊗̂-algebra U with an identity e and
for a U-⊗̂-bimodule Z, up to topological isomorphism, for all n ≥ 1,

Hn(U , Z) ∼= Hn(U , eZe),

where eZe is a unital U-⊗̂-bimodule. Therefore, up to topological
isomorphism, for all n ≥ 1,

Hn(A⊗̂B, X⊗̂Y ) ∼= Hn(A⊗̂B, eAXeA⊗̂eBY eB).

Let β(A) and β(B) be the bar resolutions of A and B. Since the bar
resolution β(A) is an A-biprojective resolution of A and β(B) is a B-
biprojective resolution of B, by Proposition 5.1 their projective tensor
product β(A)⊗̂β(B) is an A⊗̂B-biprojective resolution of A⊗̂B.
The open mapping theorem holds in the categories of Fréchet spaces

and of complete nuclear DF -spaces, see Corollary 3.3 for DF -spaces,
and, for a continuous morphism of chain complexes ψ∼ : X∼ → P∼

in these categories, a surjective map Hn(ϕ) : Hn(X ) → Hn(Y) is
automatically open, see [12, Lemma 0.5.9] and [21, Lemma 3.5].
For a unital ⊗̂-algebra U and for a unital U-⊗̂-bimodule Z, by [12,

Theorem III.4.25], the Hochschild chain complex C∼(U , Z) is isomor-
phic to Z⊗̂Ueβ(U) and, up to topological isomorphism, for all n ≥ 0,

Hn(U , Z) ∼= TorU
e

n (Z,U) ∼= H n(Z⊗̂Ueβ(U)).

By [12, Section III.3.15], the nth derived functor TorU
e

n (·,U) does not
depend on the choice of a U-biprojective resolution of U . Therefore in
these categories, up to topological isomorphism, for all n ≥ 0,

Hn(A⊗̂B, eAXeA⊗̂eBY eB) ∼= Tor(A⊗̂B)e

n (eAXeA⊗̂eBY eB,A⊗̂B)

∼= Hn((eAXeA⊗̂eBY eB)⊗̂(A⊗̂B)eβ(A⊗̂B))

∼= Hn((eAXeA⊗̂eBY eB)⊗̂(A⊗̂B)e(β(A)⊗̂β(B))).

By [12, Section II.5.3], one can prove that the following chain com-
plexes are isomorphic:

(eAXeA⊗̂eBY eB)⊗̂(A⊗̂B)e(β(A)⊗̂β(B))
∼=

(eAXeA⊗̂Aeβ(A))⊗̂(eBY eB⊗̂Beβ(B)) ∼=

C∼(A, eAXeA)⊗̂C∼(B, eBY eB)

Thus, up to topological isomorphism, for all n ≥ 0,

Hn(A⊗̂B, eAXeA⊗̂eBY eB) ∼=

Hn((eAXeA⊗̂eBY eB)⊗̂(A⊗̂B)e(β(A)⊗̂β(B)))
∼=

Hn(C∼(A, eAXeA)⊗̂C∼(B, eBY eB)).
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�

Remark 5.3. For a ⊗̂-algebra U with an identity e and for a U-⊗̂-
bimodule Z, up to topological isomorphism, for all n ≥ 1,

Hn(U , Z) ∼= Hn(U , eZe),

where eZe is a unital U-⊗̂-bimodule. Thus it is easy to see that
if the boundary maps of the standard homology complex C∼(U , Z)
have closed ranges then the boundary maps of the standard homology
complex C∼(U , eZe) have closed ranges. The previous theorem and
this remark show that further we may concentrate on unital bimodules.

Theorem 5.4. Let the category for underlying spaces Φ be Fr or
the category of complete nuclear DF -spaces. Let A and B be unital
⊗̂-algebras, let X be a unital A-⊗̂-bimodule and let Y be a unital B-⊗̂-
bimodule. Suppose that all boundary maps of the standard homology
complexes C∼(A, X) and C∼(B, Y ) have closed ranges. Then
(i) up to topological isomorphism in the category of complete nuclear

DF -spaces and in the category Fr under the assumption that either
A and X or B and Y are nuclear, for all n ≥ 0,

Hn(A⊗̂B, X⊗̂Y ) ∼=
⊕

m+q=n

[Hm(A, X)⊗̂Hq(B, Y )];

(ii) up to topological isomorphism in the category of complete nuclear
DF -spaces and in the category Fr under the assumption that A, X,
B and Y are nuclear, for all n ≥ 0,

Hn((C∼(A⊗̂B, X⊗̂Y ))
∗) ∼=

(
Hn(A⊗̂B, X⊗̂Y )

)∗

∼=
⊕

m+q=n

[Hm((C∼(A, X))∗)⊗̂Hq((C∼(B, Y ))∗)];

(iii) up to isomorphism of linear spaces, in the category Fr under the
assumption that either A and X or B and Y are nuclear, for all n ≥ 0,

Hn((C∼(A⊗̂B, X⊗̂Y ))
∗) ∼=

(
Hn(A⊗̂B, X⊗̂Y )

)∗

∼=
⊕

m+q=n

[Hm(C∼(A, X))]∗⊗̂[Hq(C∼(B, Y ))]
∗.

Proof. By Theorem 5.2, up to topological isomorphism, for all n ≥ 0,

Hn(A⊗̂B, X⊗̂Y ) ∼= Hn(C∼(A, X)⊗̂C∼(B, Y )).

By [29, Proposition III.50.1], the projective tensor product of nu-
clear Fréchet spaces is a nuclear Fréchet space. By [29, Proposition
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III.50.1] and [15, Theorem 15.6.2], the projective tensor product of
complete nuclear DF -spaces is a complete nuclear DF -space. There-
fore C∼(A, X) and C∼(B, Y ) are complexes of complete nuclear DF -
spaces or of [nuclear] Fréchet spaces such that all boundary maps
have closed ranges. The results follow from Theorem 4.3 and Theo-
rem 4.4. �

Theorem 5.5. Let A and B be unital Banach and Fréchet algebras
respectively, let X be a unital Banach A-bimodule and let Y be a unital
Fréchet B-bimodule. Suppose that all boundary maps of the standard
homology complexes C∼(A, X) and C∼(B, Y ) have closed ranges. Sup-
pose that Hn(A,X ) and Bn(A,X ) are strictly flat in Ban. Then, up
to topological isomorphism,

Hn(A⊗̂B, X⊗̂Y ) ∼=
⊕

m+q=n

[Hm(A, X)⊗̂Hq(B, Y )],

and, up to isomorphism of linear spaces,

Hn((C∼(A⊗̂B, X⊗̂Y ))
∗) ∼=

⊕

m+q=n

[Hm(A, X)⊗̂Hq(B, Y )]∗.

Proof. It follows from Theorem 5.2 and Corollary 4.2. �

Example 5.6. Let A = ℓ1(Z+) where

ℓ1(Z+) =

{
(an)

∞
n=0 :

∞∑

n=0

|an| <∞

}

be the unital semigroup Banach algebra of Z+ with convolution mul-
tiplication and norm ‖(an)

∞
n=0‖ =

∑∞

n=0 |an|. In [7, Theorem 7.4]
we showed that all boundary maps of the standard homology com-
plex C∼(A,A) have closed ranges and that Hn(A,A) and Bn(A,A)
are strictly flat in Ban. In [7, Theorem 7.5] we describe explicitly
the simplicial homology groups Hn(ℓ

1(Zk
+), ℓ

1(Zk
+)) and cohomology

groups Hn(ℓ1(Zk
+), (ℓ

1(Zk
+))

∗) of the semigroup algebra ℓ1(Zk
+).

Example 5.7. In [21, Theorem 5.3] we describe explicitly the cyclic-
type homology and cohomology groups of amenable Fréchet algebras
B. In particular we showed that all boundary maps of the standard
homology complex C∼(B,B) have closed ranges. In [26, Corollary 9.9]
Pikovskii showed that an amenable unital uniform Fréchet algebra is
topologically isomorphic to the algebra C(Ω) of continuous complex-
valued functions on a hemicompact k-space Ω. Recall that a Hausdorff
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topological space Ω is hemicompact if there exists a countable exhaus-
tion Ω =

⋃
Kn with Kn compact such that each compact subset of Ω

is contained in some Kn. A Hausdorff topological space Ω is a k-space
if a subset F ⊂ Ω is closed whenever F ∩K is closed for every com-
pact subset K ⊂ Ω. For example, C(R) is an amenable unital Fréchet
algebra.

The closure in a ⊗̂-algebra A of the linear span of elements of the
form {ab− ba : a, b ∈ A} is denoted by [A,A].

Corollary 5.8. Let A = ℓ1(Z+) and let I = ℓ1(N) be the closed
ideal of ℓ1(Z+) consisting of those elements with a0 = 0. Let C be
an amenable unital Fréchet algebra or an amenable Banach algebra.
Then

Hn(ℓ
1(Zk

+)⊗̂C, ℓ
1(Zk

+)⊗̂C)
∼= {0} if n > k;

Hn
(
C∼
(
ℓ1(Zk

+)⊗̂C, ℓ
1(Zk

+)⊗̂C
)∗) ∼= {0} if n > k;

up to topological isomorphism,

Hn(ℓ
1(Zk

+)⊗̂C, ℓ
1(Zk

+)⊗̂C)
∼=
⊕(k

n
) (
I⊗̂

n

⊗̂A⊗̂
k−n
)
⊗̂ (C/[C, C])

if n ≤ k; and, up to isomorphism of linear spaces for Fréchet algebras
C and up to topological isomorphism for Banach algebras C,

Hn
(
C∼
(
ℓ1(Zk

+)⊗̂C, ℓ
1(Zk

+)⊗̂C
)∗) ∼=

⊕(kn)
(
I⊗̂

n

⊗̂A⊗̂
k−n

⊗̂ (C/[C, C])
)∗

if n ≤ k. Moreover, for Banach algebras C, up to topological isomor-
phism, for all n ≥ 0,

Hn(ℓ1(Zk
+)⊗̂C, (ℓ

1(Zk
+)⊗̂C)

∗) ∼= Hn(C∼(ℓ
1(Zk

+)⊗̂C, ℓ
1(Zk

+)⊗̂C)
∗).

Proof. By [21, Theorem 5.3], for an amenable Fréchet algebra C,
H0(C, C) ∼= C/[C, C] and Hn(C, C) ∼= {0} for all n ≥ 1. Recall that an
amenable Banach algebra has a bounded approximate identity.
In [7, Theorem 7.4] we showed that all boundary maps of the stan-

dard homology complex C∼(A,A) have closed ranges and thatHn(A,A)
and Bn(A,A) are strictly flat in Ban. By [7, Proposition 7.3], up to
topological isomorphism, the simplicial homology groups Hn(A,A)
are given by H0(A,A) ∼= A = ℓ1(Z+), H1(A,A) ∼= I = ℓ1(N),
Hn(A,A) ∼= {0} for n ≥ 2.

Note that ℓ1(Zk
+)⊗̂C

∼= A⊗̂B where B = ℓ1(Zk−1
+ )⊗̂C. We use in-

duction on k to prove the corollary for homology groups. For k = 1,
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the result follows from Theorem 5.5 for an amenable unital Fréchet
algebra C, and from [8, Theorem 5.5] for an amenable Banach algebra
C. The simplicial homology groups Hn(A⊗̂C,A⊗̂C) are given, up to
topological isomorphism, by

H0(A⊗̂C,A⊗̂C) ∼= A⊗̂ (C/[C, C]) ,

H1(A⊗̂C,A⊗̂C) ∼= I⊗̂ (C/[C, C]) ,

Hn(A⊗̂C,A⊗̂C) ∼= {0} for n ≥ 2.

Let k > 1 and suppose that the result for homology holds for k − 1.
As ℓ1(Zk

+)⊗̂C
∼= A⊗̂B where B = ℓ1(Zk−1

+ )⊗̂C, we have

Hn(ℓ
1(Zk

+)⊗̂C, ℓ
1(Zk

+)⊗̂C)
∼= Hn(A⊗̂B,A⊗̂B).

Also, it follows from the inductive hypothesis that, for all n, the
Hn(B,B) are Fréchet [Banach] spaces and hence the Bn(B,B) are
closed. We can therefore apply Theorem 5.5 for an amenable uni-
tal Fréchet algebra C and [8, Theorem 5.5] for an amenable Banach
algebra C, to get

Hn(A⊗̂B,A⊗̂B) ∼=
⊕

m+q=n

[
Hm(A,A)⊗̂Hq(B,B)

]
.

The terms in this direct sum vanish for m ≥ 2, and thus we only need
to consider

(
H0(A,A)⊗̂Hn(B,B)

)
⊕
(
H1(A,A)⊗̂Hn−1(B,B)

)
.

The rest is clear. �

Example 5.9. Let A be the convolution Banach algebra L1(R+)
of complex-valued, Lebesgue measurable functions f on R+ with fi-
nite L1-norm. In [8, Theorem 4.6] we showed that all boundary
maps of the standard homology complex C∼(A,A) have closed ranges
and that Hn(A,A) and Bn(A,A) are strictly flat in Ban. In [8,
Theorem 6.4] we describe explicitly the simplicial homology groups
Hn(L

1(Rk
+), L

1(Rk
+)) and cohomology groups Hn(L1(Rk

+), (L
1(Rk

+))
∗)

of the semigroup algebra L1(Rk
+).

Corollary 5.10. Let A = L1(Rk
+) and let C be an amenable Banach

algebra. Then

Hn(L
1(Rk

+)⊗̂C, L
1(Rk

+)⊗̂C)
∼= {0} if n > k;

Hn
(
L1(Rk

+)⊗̂C,
(
L1(Rk

+)⊗̂C
)∗) ∼= {0} if n > k;
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up to topological isomorphism,

Hn(L
1(Rk

+)⊗̂C, L
1(Rk

+)⊗̂C)
∼=
⊕(k

n
)
L1(Rk

+)⊗̂ (C/[C, C]) if n ≤ k;

and

Hn(L∞(Rk
+)⊗̂C, (L

∞(Rk
+)⊗̂C)

∗) ∼=
⊕(k

n
) [
L∞(Rk

+)⊗̂ (C/[C, C])
]∗

if n ≤ k.

Proof. Note that A and C have bounded approximate identities. By
[21, Theorem 5.3], for an amenable Banach algebra C, Hn(C, C) ∼= {0}
for all n ≥ 1, H0(C, C) ∼= C/[C, C]. Therefore all boundary maps of the
standard homology complex C∼(C, C) have closed ranges.
In [8, Theorem 4.6] we showed that all boundary maps of the stan-

dard homology complex C∼(A,A) have closed ranges and thatHn(A,A)
and Bn(A,A) are strictly flat in Ban. By [8, Theorem 4.6], up to
topological isomorphism, the simplicial homology groupsHn(A,A) are
given by H0(A,A) ∼= H1(A,A) ∼= A = L1(R+) and Hn(A,A) ∼= {0}
for n ≥ 2.

Note that L1(Rk
+)⊗̂C

∼= A⊗̂B where B = L1(Rk−1
+ )⊗̂C. We use

induction on k to prove the corollary for homology groups. For k = 1,
the result follows from [8, Theorem 5.5]. The simplicial homology
groups Hn(A⊗̂C,A⊗̂C) are given, up to topological isomorphism, by

H0(A⊗̂C,A⊗̂C) ∼= H1(A⊗̂C,A⊗̂C) ∼= A⊗̂ (C/[C, C])

and

Hn(A⊗̂C,A⊗̂C) ∼= {0}

for n ≥ 2.
Let k > 1 and suppose that the result for homology holds for k− 1.

As L1(Rk
+)⊗̂C

∼= A⊗̂B where B = L1(Rk−1
+ )⊗̂C, we have

Hn(L
1(Rk

+)⊗̂C, L
1(Rk

+)⊗̂C)
∼= Hn(A⊗̂B,A⊗̂B).

Also, it follows from the inductive hypothesis that, for all n, the
Hn(B,B) are Banach spaces and hence the Bn(B,B) are closed. We
can therefore apply [8, Theorem 5.5] for an amenable Banach algebra
C, to get

Hn(A⊗̂B,A⊗̂B) ∼=
⊕

m+q=n

[
Hm(A,A)⊗̂Hq(B,B)

]
.
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The terms in this direct sum vanish for m ≥ 2, and thus we only need
to consider

(
H0(A,A)⊗̂Hn(B,B)

)
⊕
(
H1(A,A)⊗̂Hn−1(B,B)

)
.

For cohomology groups, by [7, Corollary 4.9],

Hn(L∞(Rk
+)⊗̂C, (L

∞(Rk
+)⊗̂C)

∗) ∼= Hn
(
C∼
(
L1(Rk

+)⊗̂C, L
1(Rk

+)⊗̂C
)∗)

∼=
⊕(k

n
) [
L∞(Rk

+)⊗̂ (C/[C, C])
]∗

if n ≤ k. �

6. Applications to the cyclic-type cohomology of

certain Fréchet and DF algebras

In this section we give explicit formulae for the continuous cyclic-
type homology and cohomology of projective tensor products of certain
⊗̂-algebras which are Fréchet spaces or complete nuclear DF -spaces.
One can consult the books by Loday [17] or Connes [4] on cyclic-

type homological theory. The continuous bar and ‘naive’ Hochschild
homology of a ⊗̂-algebra A are defined respectively as

Hbar
∗ (A) = H∗(C(A), b

′) and Hnaive
∗ (A) = H∗(C(A), b),

where Cn(A) = A
⊗̂(n+1), and the differentials b, b′ are given by

b′(a0 ⊗ · · · ⊗ an) =
n−1∑

i=0

(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an) and

b(a0 ⊗ · · · ⊗ an) = b′(a0 ⊗ · · · ⊗ an) + (−1)n(ana0 ⊗ · · · ⊗ an−1).

Note that Hnaive
∗ (A) is just another way of writing H∗(A,A), the

continuous homology of A with coefficients in A, as described in [12,
14].

For a ⊗̂-algebra A, consider the mixed complex (Ω̄A+, b̃, B̃), where

Ω̄nA+ = A⊗̂(n+1) ⊕A⊗̂n and

b̃ =

(
b 1− λ
0 −b′

)
; B̃ =

(
0 0
N 0

)

where λ(a1 ⊗ · · · ⊗ an) = (−1)n−1(an ⊗ a1 ⊗ · · · ⊗ an−1) and N =
id+λ+ · · ·+λn−1 [17, 1.4.5]. The continuous Hochschild homology of
A, the continuous cyclic homology of A and the continuous periodic
cyclic homology of A are defined by

HH∗(A) = Hb
∗(Ω̄A+, b̃, B̃), HC∗(A) = Hc

∗(Ω̄A+, b̃, B̃) and
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HP∗(A) = Hp
∗ (Ω̄A+, b̃, B̃)

where Hb
∗, H

c
∗ and Hp

∗ are Hochschild homology, cyclic homology and

periodic cyclic homology of the mixed complex (Ω̄A+, b̃, B̃) in the
category LCS of locally convex spaces and continuous linear operators;
see, for example, [19].
There is also a cyclic cohomology theory associated with a com-

plete locally convex algebra A, obtained when one replaces the chain
complexes of A by their dual complexes of strong dual spaces. For
example, the continuous bar cohomology Hn

bar(A) of A is the cohomol-
ogy of the dual complex (C(A)∗, (b′)∗) of (C(A), b′).

Example 6.1. Some examples of C∗-algebras without non-zero bounded
traces are:
(i) The C∗-algebraK(H) of compact operators on an infinite-dimensional
Hilbert space H ; see [1, Theorem 2]. We can also show that
C(Ω,K(H))tr = 0, where Ω is a compact space.
(ii) Properly infinite von Neumann algebras U ; see [18, Example 4.6].
This class includes the C∗-algebra B(H) of all bounded operators on
an infinite-dimensional Hilbert space H ; see also [11] for the statement
B(H)tr = 0.

Example 6.2. Let H = lim
→
i

Hi be a strict inductive limit of Hilbert

spaces. Suppose that H1 and Hm+1/Hm, m = 1, 2, . . . , are infinite-
dimensional spaces. Consider the Fréchet locally C∗-algebra L(H) of
continuous linear operators T on H that leave each Hi invariant and
satisfy TjPij = PijTj for all i < j where Tj = T |Hj : Tj(η) = T (η) for
η ∈ Hj and Pij is the projection from Hj onto Hi. By [19, Example
6.6] that, for all n ≥ 0, Hn(L(H),L(H)) = {0}.

Corollary 6.3. Let A be a Fréchet algebra belonging to one of the
following classes:
(i) A = ℓ1(Zk

+)⊗̂C, where C is a C
∗-algebra without non-zero bounded

traces;
(ii) A = L1(Rk

+)⊗̂C, where C is a C∗-algebra without non-zero
bounded traces;
(iii) A = ℓ1(Zk

+)⊗̂C, where C is the Fréchet locally C∗-algebra L(H)
of continuous linear operators on a strict inductive limit H = lim

→
i

Hi of
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Hilbert spaces such that H1 and Hm+1/Hm, m = 1, 2, . . . , are infinite-
dimensional spaces;
(iv) A = D⊗̂C, where D is a unital nuclear Fréchet algebra such

that all boundary maps of the standard homology complex C∼(D,D)
have closed ranges and C is the Fréchet locally C∗-algebra L(H) of
continuous linear operators on a strict inductive limit H = lim

→
i

Hi of

Hilbert spaces such that H1 and Hm+1/Hm, m = 1, 2, . . . , are infinite-
dimensional spaces.
Then, Hn(A,A) ∼= {0} and H

n(A,A) ∼= {0} for all n ≥ 0;

HHn(A) ∼= HHn(A) ∼= {0} for all n ≥ 0,

HCn(A) ∼= HCn(A) ∼= {0} for all n ≥ 0,

and
HPm(A) ∼= HPm(A) ∼= {0} for m = 0, 1.

Proof. By [3, Theorem 4.1 and Corollary 3.3], for a C∗-algebra U with-
out non-zero bounded traces Hn(U ,U∗) ∼= {0} for all n ≥ 0. By [19,
Example 6.6], for the Fréchet locally C∗-algebra L(H),
Hn(L(H),L(H)) ∼= {0} for all n ≥ 0.
In cases (i) and (ii) we use induction by k and apply [8, Theo-

rem 5.5] for a C∗-algebra C without non-zero bounded traces, to get
Hn(A,A) ∼= {0} for all n ≥ 0. For example, as in Corollary 5.8, note
that ℓ1(Zk

+)⊗̂C
∼= ℓ1(Z+)⊗̂B where B = ℓ1(Zk−1

+ )⊗̂C. The algebras
ℓ1(Z+) and B satisfy the conditions of Theorem 5.5. We use induction
on k to prove that

Hn(ℓ
1(Zk

+)⊗̂C, ℓ
1(Zk

+)⊗̂C)
∼= {0}

for all n ≥ 0.
In case (iii) we use induction on k and apply Theorem 5.5 for the

Fréchet locally C∗-algebra L(H), to get Hn(A,A) ∼= {0} for all n ≥ 0.
In case (iv) we apply Theorem 5.4, to get Hn(A,A) ∼= {0} for all

n ≥ 0.
The triviality of the continuous cyclic and periodic cyclic homology

and cohomology groups follows from [19, Corollory 4.7]. �

A ⊗̂-algebra A is said to be biprojective if it is projective in the
category of A-⊗̂-bimodules [12, Def. 4.5.1]. A ⊗̂-algebra A is said to
be contractible if A+ is projective A-⊗̂-bimodules. A ⊗̂-algebra A is
contractible if and only if A is biprojective and has an identity [12,
Def. 4.5.8].
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Recall that, for a ⊗̂-algebra A and for an A-⊗̂-bimodule X , [X,A] is
the closure inX of the linear span of elements of the form a·x−x·a; x ∈
X, a ∈ A;

CenAX = {x ∈ X : a · x = x · a for all a ∈ A} and

CenAX
∗ = {f ∈ X∗ : f(a · x) = f(x · a) for all a ∈ A and x ∈ X.}

Theorem 6.4. Let the category for underlying spaces Φ be Fr or
the category of complete nuclear DF -spaces. Let A and B be unital
⊗̂-algebras, let Y be a unital B-⊗̂-bimodule and let X be a unital A-
⊗̂-bimodule such that H0(A, X) is Hausdorff and Hn(A, X) = {0} for
all n ≥ 1. Suppose that all boundary maps of the standard homology
complex C∼(B, Y ) have closed ranges. Then
(i) up to topological isomorphism in the category of complete nuclear

DF -spaces and in the category Fr under the assumption that either
A and X or B and Y are nuclear, for all n ≥ 0,

Hn(A⊗̂B,X⊗̂Y ) ∼= X/[X,A]⊗̂Hn(B, Y );

(ii) up to topological isomorphism in the category of complete nuclear
DF -spaces and in the category Fr under the assumption that A, X,
B and Y are nuclear, for all n ≥ 0,

Hn((C∼(A⊗̂B, X⊗̂Y ))
∗) ∼=

(
Hn(A⊗̂B, X⊗̂Y )

)∗

∼= CenAX
∗⊗̂Hn((C∼(B, Y ))

∗);

(iii) up to isomorphism of linear spaces, in the category Fr under
the assumption that either A and X or B and Y are nuclear, for all
n ≥ 0,

Hn((C∼(A⊗̂B, X⊗̂Y ))
∗) ∼=

(
Hn(A⊗̂B, X⊗̂Y )

)∗

∼= (X/[X,A])∗⊗̂(Hn(B, Y ))∗.

Proof. By assumption H0(A, X) is Hausdorff, and so H0(A, X) ∼=
X/[X,A]. The result follows from Theorem 5.4. �

Lemma 6.5. Let the category for underlying spaces Φ be Fr or the
category of complete nuclear DF -spaces. Let A be a contractible ⊗̂-
algebra. Then, for each A-⊗̂-bimodule X, H0(A, X) is Hausdorff and
Hn(A, X) ∼= {0} for all n ≥ 1.

Proof. In the categories of Fréchet spaces and complete nuclear DF -
spaces, the open mapping theorem holds. Therefore, by [12, Theorem
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III.4.25], for all n ≥ 0 and all A-⊗̂-bimodule X , up to topological
isomorphism,

Hn(A, X) ∼= TorA
e

n (X,A+).

Since A is contractible, by [12, Proposition III.3.5 and Proposition
VII.1.2], Hn(A, X) ∼= {0} for all n ≥ 1 andH0(A, X) ∼= TorA

e

0 (X,A+)
is Hausdorff. �

6.1. Contractible ⊗̂-algebras.
Example 6.6. A countable direct product

∏
i∈J Mni

(C) of full ma-
trix algebras is contractible Fréchet algebra [28].

Example 6.7. Let G be a compact Lie group and let E∗(G) be the
strong dual to the nuclear Fréchet algebra of smooth functions E(G) on
G with the convolution product, so that E∗(G) is a complete nuclear
DF -space. This is a ⊗̂-algebra with respect to convolution multiplica-
tion: for f, g ∈ E∗(G) and x ∈ E(G), < f ∗g, x >=< f, y >, where y ∈
E(G) is defined by y(s) =< g, xs >, s ∈ G and xs(t) = x(s−1t), t ∈ G.
J.L. Taylor proved that the algebra of distributions E∗(G) on a com-
pact Lie group G is contractible [28].

Example 6.8. Fix a real number 1 ≤ R ≤ ∞ and a nondecreasing
sequence α = (αi) of positive numbers with limi→∞ αi = ∞. The
power series space

ΛR(α) = {x = (xn) ∈ C
N : ‖x‖r =

∑

n

|xn|r
αn <∞ for all 0 < r < R}

is a Fréchet Köthe algebra with pointwise multiplication. The topol-
ogy of ΛR(α) is determined by a countable family of seminorms {‖x‖rk :
k ∈ N} where {rk} is an arbitrary increasing sequence converging to
R.
By [25, Corollary 3.3], ΛR(α) is biprojective if and only if R = 1 or

R =∞.
By the Grothendieck-Pietsch criterion, ΛR(α) is nuclear if and only

if for limn
logn
αn

= 0 for R < ∞ and limn
logn
αn

< ∞ for R = ∞, see [24,

Example 3.4].
By [25, Proposition 3.15], for the Fréchet Köthe algebra Λ1(α), the

following conditions are equivalent: (i) Λ1(α) is contractible, (ii) Λ1(α)
is nuclear, (iii) Λ1(α) is unital.
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By [25, Corollary 3.18], if Λ∞(α) is nuclear, then the strong dual
Λ∞(α)∗ is a nuclear, contractible Köthe ⊗̂-algebra which is a DF -
space.

The algebra ΛR((n)) is topologically isomorphic to the algebra of
functions holomorphic on the open disc of radius R, endowed with
Hadamard product, that is, with “co-ordinatewise” product of the Tay-
lor expansions of holomorphic functions.

Example 6.9. The algebra H(C) ∼= Λ∞((n)) of entire functions, en-
dowed with the Hadamard product, is a biprojective nuclear Fréchet
algebra [25]. The strong dual H(C)∗ is a nuclear contractible Köthe
⊗̂-algebra which is a DF -space.

Example 6.10. The algebra H(D1) ∼= Λ1((n)) of functions holomor-
phic on the open unit disc, endowed with the Hadamard product, is a
biprojective nuclear Fréchet algebra. Moreover it is contractible, since
the function z 7→ (1− z)−1 is an identity for H(D1) [25].

Example 6.11. The nuclear Fréchet algebra of rapidly decreasing
sequences

s = {x = (xn) ∈ C
N : ‖x‖k =

∑

n

|xn|n
k <∞ for all k ∈ N}

is a biprojective Köthe algebra [24]. The algebra s is topologically iso-
morphic to Λ∞(α) with αn = logn [25]. The nuclear Köthe ⊗̂-algebra
s∗ of sequences of polynomial growth is contractible [28].

The space of continuous traces on a topological algebra A is denoted
by Atr, that is,

Atr = CenAA
∗ = {f ∈ A∗ : f(ab) = f(ba) for all a, b ∈ A}.

The closure in A of the linear span of elements of the form {ab− ba :
a, b ∈ A} is denoted by [A,A]. Recall that b0 : A⊗̂A → A is uniquely
determined by a⊗ b 7→ ab− ba.

Corollary 6.12. Let the category for underlying spaces Φ be Fr or
the category of complete nuclear DF -spaces. Let A and B be unital
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⊗̂-algebras such that H0(A,A) and H0(B,B) are Hausdorff, and

Hn(A,A) ∼= Hn(B,B) ∼= {0}

for all n ≥ 1. Then
(i) up to topological isomorphism in the category of complete nuclear

DF -spaces and in the category Fr under the assumption that either
A or B is nuclear,

(4)

HH0(A⊗̂B) ∼= H
naive
0 (A⊗̂B) ∼= A/[A,A]⊗̂B/[B,B] and

HHn(A⊗̂B) ∼= H
naive
n (A⊗̂B) ∼= {0} for all n ≥ 1;

HC2ℓ(A⊗̂B) ∼= A/[A,A]⊗̂B/[B,B] and
HC2ℓ+1(A⊗̂B) ∼= {0} for all ℓ ≥ 0;

(ii) up to topological isomorphism in the category of complete nuclear
DF -spaces and in the category Fr under the assumption that A and
B are nuclear,

(5)

HH0(A⊗̂B) ∼= H0
naive(A⊗̂B)

∼= (A⊗̂B)tr and
HHn(A⊗̂B) ∼= Hn

naive(A⊗̂B)
∼= {0} for all n ≥ 1;

HC2ℓ(A⊗̂B) ∼= (A⊗̂B)tr and
HC2ℓ+1(A⊗̂B) ∼= {0} for all ℓ ≥ 0;

(iii) up to topological isomorphism in the category Fr under the
assumption that A and B are nuclear and up to isomorphism of lin-
ear spaces in the category of complete nuclear DF -spaces and in the
category Fr under the assumption that either A or B nuclear,

(6)
HP0(A⊗̂B) ∼= A/[A,A]⊗̂B/[B,B] and HP1(A) ∼= {0};
HP0(A⊗̂B) ∼= (A⊗̂B)tr and HP1(A⊗̂B) ∼= {0}.

Proof. Since A and B are unital, Hbar
n (A⊗̂B) ∼= {0} for all n ≥ 0. By

Theorem 6.4, up to topological isomorphism,

Hnaive
0 (A⊗̂B) ∼= A/[A,A]⊗̂B/[B,B]

and so is Hausdorff, and Hnaive
n (A⊗̂B) ∼= {0} for all n ≥ 1. The result

follows from [21, Theorem 5.3]. Note that, by definition, the Hausdorff
Hnaive

0 (A⊗̂B) ∼= (A⊗̂B)/[A⊗̂B,A⊗̂B]. �
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The Künneth formula for nuclear DF -spaces 31

[26] A. Yu. Pirkovskii, Flat cyclic Fréchet modules, amenable Fréchet algebras,
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