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SYMMETRIC α-STABLE SUBORDINATORS AND CAUCHY
PROBLEMS

ERKAN NANE

Abstract. We survey the results in Nane (E. Nane, Higher order PDE’s and

iterated processes, Trans. American Math. Soc. (to appear)) and Baeumer, Meer-
schaert, and Nane (B. Baeumer, M.M. Meerschaert and E. Nane, Brownian subor-

dinators and fractional Cauchy problems: Submitted (2007)) which deal with PDE
connection of some iterated processes, and obtain a new probabilistic proof of the
equivalence of the higher order PDE’s and fractional in time PDE’s.

1. Introduction

In recent years, starting with the articles of Burdzy [9, 10], researchers have shown
interest in iterated processes in which one changes the time parameter with one-
dimensional Brownian motion.
To define iterated Brownian motion Zt, due to Burdzy [9], started at z ∈ R, let

X+
t , X

−
t and Yt be three independent one-dimensional Brownian motions, all started

at 0. Two-sided Brownian motion is defined to be

Xt =

{

X+
t , t ≥ 0

X−

(−t), t < 0.

Then iterated Brownian motion started at z ∈ R is Zt = z +X(Yt), t ≥ 0.

1.1. BM versus IBM. This process is not Markovian or Gaussian but, it has many
properties analogous to those of Brownian motion. We list a few;
IBM Zt has stationary (but not independent) increments, and is a self-similar

process of index 1/4. Laws of the iterated logarithm (LIL) holds: usual LIL
by Burdzy [9] shows

lim sup
t→∞

Z(t)

t1/4(log log(1/t))3/4
=

25/4

33/4
a.s.

Chung-type LIL is obtained by Khoshnevisan and Lewis [19] and Hu et al. [17].
Khoshnevisan and Lewis [18] extended results of Burdzy [10], to develop a stochastic
calculus for iterated Brownian motion. Burdzy and Khosnevisan [12] showed that
IBM can be used to model diffusion in a crack. Local times of this process was studied
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by Burdzy and Khosnevisan [11], Csáki, Csörgö, Földes, and Révész [13], Shi and Yor
[32], Xiao [34], and Hu [16]. Bañuelos and DeBlassie [6] studied the distribution
of exit place for iterated Brownian motion in cones. DeBlassie [14] studied the
lifetime asymptotics of iterated Brownian motion in cones and Bounded domains.
Nane [24, 25, 28, 29] extended some of the results of DeBlassie.

1.2. PDE connection. In addition to the above properties of IBM, there is an inter-
esting connection between iterated Brownian motion and the biharmonic operator
∆2. Allouba and Zheng [2] show that if we replace the outer process X(t) in the
definition of iterated Brownian motion with a continuous Markov process with Lx

as the semigroup generator, then u(t, x) = Ex[f(Zt)] := E[f(Zt)|Z0 = x] solves the
Cauchy initial value problem

(1.1)
∂

∂t
u(t, x) =

Lxf(x)√
πt

+ Lx
2u(t, x); u(0, x) = f(x), t > 0, x ∈ R

d.

When Zt is an iterated Brownian motion, this was also obtained by DeBlassie [14] by
a different method. Let Z1

t = X(|Yt|), then Allouba and Zheng [1] shows Ex[f(Zt)] =
Ex[f(Z

1
t )].

1.3. Fractional Cauchy problems. Nigmatullin [30] gave a physical derivation of
the fractional kinetic equation for some special β

(1.2)
∂β

∂tβ
u(t, x) = Lxu(t, x); u(0, x) = f(x)

where 0 < β < 1 and Lx is the generator of some continuous Markov process X0(t)
started at x = 0. Here ∂βg(t)/∂tβ is the Caputo fractional derivative in time, which
can be defined as the inverse Laplace transform of sβ g̃(s) − sβ−1g(0), with g̃(s) =
∫∞

0
e−stg(t)dt the usual Laplace transform.

Mathematical study of equation (1.2) was initiated by [33, 20, 21]. The existence
and uniqueness of solutions to equation (1.2) was proved in [20, 21]. This equation
was also used by Zaslavsky [35] for Hamiltonian chaos.
Baeumer and Meerschaert [4] and Meerschaert and Scheffler [23] show that the frac-

tional Cauchy problem (1.2) is related to a certain class of subordinated stochastic
processes; take Dt to be the stable subordinator, a Lévy process with strictly increas-
ing sample paths such that E[e−sDt ] = e−tsβ , see for example Bertoin [8]. Define the
inverse or hitting time or first passage time process

(1.3) Et = inf{x > 0 : D(x) > t}.
The subordinated process Zt = X0(Et) occurs as the scaling limit of a continuous time
random walk (also called a renewal reward process), in which iid random jumps are
separated by iid positive waiting times (Meerschaert and Scheffler (2004)[23]). The-
orem 3.1 in Baeumer and Meerschaert [4] shows that, in the case p(t, x) = T (t)f(x)



is a bounded continuous semigroup on a Banach space, the formula

u(t, x) =

∫ ∞

0

p((t/s)β, x)gβ(s) ds =
t

β

∫ ∞

0

p(x, s)gβ(
t

s1/β
)s−1/β−1ds

yields a solution to the fractional Cauchy problem (1.2). Here, gβ(t) is the smooth

density of the stable subordinator, with g̃β(s) =
∫∞

0
e−stgβ(t) dt = e−sβ .

2. Brownian subordiantors and fractional Cauchy problems

We give a probabilistic proof of the following theorem. A variation of this result
was realized by Orsingher and Benghin [31] for a version of iterated Brownian motion.

Theorem 2.1 (Baeumer, Meerschaert and Nane (2007)[5]). Let Lx be the generator
of a Markov semigroup T (t)f(x) = Ex[f(Xt)], and take f ∈ D(Lx) the domain of
the generator. Then, both the higher order Cauchy problem (1.1) and the fractional
Cauchy problem (1.2) with β = 1/2, have the same solution

u(t, x) = Ex[f(Zt)] =
2√
4πt

∫ ∞

0

T (s)f(x) exp

(

−s2

4t

)

ds.(2.1)

Proof. Et is the inverse of a 1 − 1/α stable subordinator. Et then is the local time
of symmetric stable process of index α. In the case α = 2, local time of Brownian
motion is the same as sup0<s<tBs. On the other hand, sup0<s<tBs and |Bt| are
same in distribution by the reflection principle. Hence, Et and |Bt| have the same
one-dimensional distributions, implying the result of the theorem. �

We obtain the following corollary of our theorem

Corollary 2.2 (Baeumer, Meerschaert and Nane (2007)[5]). For any continuous
Markov process X(t), both the Brownian-time subordinated process X(|Yt|) and the
process X(Et) subordinated to the inverse 1/2-stable subordinator have the same one-
dimensional distributions. Hence they are both stochastic solutions to the fractional
Cauchy problem (1.2), or equivalently, to the higher order Cauchy problem (1.1).

In contrast to the previous corollary, we have

Theorem 2.3. Let Y be a symmetric stable process of index 1 < α < 2, and Et is the
inverse of a stable subordinator of index 1 − 1/α. The processes X(Et) and X(|Yt|)
do not have same one-dimensional distribution.

Proof. Let L0
1 be the local time at x = 0. L0

1 has the same one-dimenional distributions
as Et. Lemma 1 in Hawkes [15] implies that

(2.2) P [L0
1 > λ] ∼ C1λ

−α/2 exp(−Cαhλ
α).

Proposition 4 in Bertoin [8] shows

(2.3) P [Y1 > u] ∼ P [ sup
0≤s≤1

Ys > u] ∼ cu−α.



The results in equations (2.2) and (2.3)establish that in the case Yt is a symmetric
stable process of index α < 2, |Yt| and Et do not have the same one-dimensional
distributions. �

When the outer proces is Lévy process we have uniqueness of the solutions in
Theorem 2.1. The proof relies on a Laplace-Fourier transform argument.

Theorem 2.4 (Baeumer, Meerschaert and Nane (2007)[5]). Suppose that X(t) =
x + X0(t) where X0(t) is a Lévy process starting at zero. If Lx is the generator of
the semigroup T (t)f(x) = Ex[(f(Xt))] on L1(Rd), then for any f ∈ D(Lx), both the
initial value problem (1.1), and the fractional Cauchy problem (1.2) with β = 1/2,
have the same unique solution given by (2.1).

An easy extension of the argument for Theorem 2.4 shows that, under the same
conditions, for any n = 2, 3, 4, . . . both the Cauchy problem

∂u(t, x)

∂t
=

n−1
∑

j=1

t1−j/n

Γ(j/n)
Lj
xf(x) + Ln

xu(t, x); u(0, x) = f(x)(2.4)

and the fractional Cauchy problem (1.2) with β = 1/n have the same unique solution
given by u(t, x) =

∫∞

0
p((t/s)β, x)gβ(s) ds with β = 1/n. Hence the process Zt =

X(Et) is also the stochastic solution to this higher order Cauchy problem.

3. Other subordinators

An α-time process is a Markov process subordinated to the absolute value of an
independent one-dimensional symmetric α-stable process: Zt = B(|St|), where Bt is
a Markov process and St is an independent symmetric α-stable process both started
at 0. Let Zx

t = x+ Zt the process started at x.
This process is self similar with index 1/2α when the outer process X is a Brownian

motion. In this case, Nane [27] defined the local time of this process and obtained
laws of the iterated logarithm for the local time for large time.

3.1. PDE-connection:

Theorem 3.1 (Nane (2005) [26]). Let T (s)f(x) = E[f(Xx(s))] be the semigroup of
the continuous Markov process Xx(t) and let Lx be its generator. Let α = 1. Let f be
a bounded measurable function in the domain of Lx, with Dijf bounded and Hölder
continuous for all 1 ≤ i, j ≤ n. Then u(t, x) = E[f(Zx

t )] solves

∂2

∂t2
u(t, x) = −2Lxf(x)

πt
− L2

xu(t, x); u(0, x) = f(x).

For α = l/m 6= 1 rational: the PDE is more complicated since kernels of symmetric
α-stable processes satisfy a higher order PDE:

(
∂2

∂s2
)l + (−1)l+1 ∂

2m

∂t2m
)pαt (0, s) = 0.



We also have to assume that we can take the operator out of the integral. This is
valid for α = 1/m, m = 2, 3, · · · , by a Lemma in Nane [26].

Theorem 3.2 (Nane (2005)[26]). Let α ∈ (0, 2) be a rational with α = l/m, where
l and m are relatively prime. Let T (s)f(x) = E[f(Xx(s))] be the semigroup of the
continuous Markov process Xx(t) and let Lx be its generator. Let f be a bounded
measurable function in the domain of Lx, with Dγf bounded and Hölder continuous
for all multi index γ such that |γ| = 2l. Then u(t, x) = E[f(Zx

t )] solves

(−1)l+1 ∂
2m

∂t2m
u(t, x) = −2

l
∑

i=1

(

∂2l−2i

∂s2l−2i
pαt (0, s)|s=0

)

L2i−1
x f(x) − L2l

x u(t, x);

u(0, x) = f(x).

For some other connections of PDE’s and iterated processes, see papers by Nane
[26] and Allouba and Zheng [2], Allouba [1], Baeumer et al. [5] and references therein.

4. Open Problems

Question 1. Looking at the governing PDE for subordinators other than Brownian
motion, are there any fractional in time PDE which has the same solution as the
higher order PDE?
Question 2. Are there PDE connections of the iterated processes in bounded domain
as the PDE connection of Brownian motion in bounded domains?
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