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Abstract

A one-relator surface group is the quotient of an orientable surface

group by the normal closure of a single relator. A Magnus subgroup

is the fundamental group of a suitable incompressible sub-surface. A

number of results are proved about the intersections of such subgroups

and their conjugates, analogous to results of Bagherzadeh, Brodskĭı

and Collins in classical one-relator group theory.

1 Introduction

Recall the Freiheitssatz of Magnus [10, 11] for one-relator groups:

Theorem 1.1 [The Freiheitssatz] Let G = 〈X : R〉 be a one-relator group
where R is cyclically reduced. If Y is a subset of X which omits a generator
occurring in R, then the subgroup MY generated by Y is freely generated by
Y .

Subgroups of a one-relator group of the form MY as in the Freiheitssatz
are called Magnus subgroups. In [12], Newman proved that the Magnus
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subgroups of a one-relator group with torsion are malnormal, that is, if M
is a Magnus subgroup and g /∈ M , then M ∩ gMg−1 is trivial. Bagherzadeh
[1] generalized Newman’s result in 1976 to ordinary one-relator groups and
proved that Magnus subgroups of one-relator groups are cyclonormal. He
proved the following

Theorem 1.2 Let M be a Magnus subgroup of a one-relator group G = 〈X :
R〉. Then M is cyclonormal in G, that is, if g /∈ M , then M ∩ gMg−1 is
cyclic.

Collins [5, 6] proved the following results about the intersection of Magnus
subgroups of a one-relator group G.

Theorem 1.3 Let MY and MZ be Magnus subgroups of a one-relator group
G = 〈X : R〉 generated by subsets Y, Z ⊂ X. Then

MY ∩G MZ = MY ∩Z ∗ I,

where I is a free group of rank 0 or 1.

Theorem 1.4 Let MY and MZ be Magnus subgroups of a one-relator group
G as in Theorem 1.3. For any g ∈ G, either MY ∩GgMZg

−1 is cyclic (possibly
trivial) or g ∈ MYMZ .

Here we use the notation A ∩G B to denote the intersection of two sub-
groups A,B in the group G, to distinguish it from the intersection in any
other group containing them both. For example, in Theorem 1.3, if F is the
free group on X , then MY ∩F MZ = MY ∩Z ; the Theorem tells us that this
may differ from MY ∩G MZ .

When these two intersections do differ, in other words when I has rank
1 in Theorem 1.3, we say that the two Magnus subgroups involved have
exceptional intersection. The first author [9, Theorem E] has shown that it
is algorithmically decidable whether a given pair of Magnus subgroups in a
given one-relator group has exceptional intersection.

A one-relator surface group is the quotient of the fundamental group of an
orientable surface (possibly noncompact, or with boundary) by the normal
closure of a single element. These groups were introduced in 1990 by Hempel
[7], and have subsequently been studied by Bogopolski and Sviridov [3, 4] and
by the first author [8].
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In this paper we generalize Theorems 1.2, 1.3 and 1.4, as well as [9,
Theorem E] from one-relator groups to one-relator surface groups. With an
appropriate definition of Magnus subgroup, we prove the following.

Theorem 3.1 Let G be a one-relator surface group, and let M be a Magnus
subgroup of G. Then M is cyclonormal, that is, for any g ∈ G rM , M ∩
gMg−1 is cyclic.

Theorem 4.1 The intersection M1 ∩G M2 of two compatible Magnus sub-
groups M1 and M2 of the one-relator surface group G is the free product of
(M1 ∩Σ M2) with a cyclic group. That is, M1 ∩G M2 = (M1 ∩Σ M2) ∗ C.

(See §2 for the definition of compatible Magnus subgroups.)

Theorem 4.2 There is an algorithm which will decide, given a one-relator
surface group and a pair of compatible Magnus subgroups, whether or not the
intersection is exceptional (that is, C 6= {1} in Theorem 4.1) and if so will
give a generator for C.

Theorem 5.1 Let G be a one-relator surface group and let M1 and M2 be
two Magnus subgroups of G. Let g ∈ G, then M1 ∩G gM2g

−1 is cyclic unless
g ∈ M1M2.

Theorems 3.1, 4.1 and 5.1 appeared in the second author’s thesis [13].
We are grateful to the thesis exmainers, Andrew Duncan and Nick Gilbert,
for useful comments.

In §2 below we define our notion of Magnus subgroup for one-relator
surface groups and present some useful preliminary results. Theorem 3.1 is
proved in §3, Theorems 4.1 and 4.2 in §4, and finally Theorem 5.1 in §5.

2 Preliminaries

In order to formulate appropriate generalizations of theorems about Magnus
subgroups of one-relator groups, we first need to choose a suitable definition
of Magnus subgroup for a one-relator surface group. A minimum requirement
for a Magnus subgroup is that it should satisfy an appropriate version of
the Freiheitssatz for one-relator surface groups - which turns out to be a
somewhat delicate question (see [8]). For the purposes of exposition in the
present paper we shall restrict our definition of Magnus subgroup to a case
where we know that a Freiheitssatz holds.
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Suppose that S is a surface and α is an essential separating simple closed
curve on S. Then the surface group Σ = π1(S) splits along α as a free
product with amalgamation:

Σ = π1(S) ∼= π1(S1) ∗A π1(S2),

where S1 and S2 are the two components of S cut along α, and A is the cyclic
subgroup generated by α.

Provided that R ∈ π1(S) is not conjugate into one of the factors π1(Si),
we say that π1(S1) and π1(S2) areMagnus subgroups in the one-relator surface
group π1(S)/〈〈R〉〉. Note that a Magnus subgroup is generated by a subset of
some standard generating set for the surface group Σ = π1(S) – for example

〈a1, b1, . . . , aℓ, bℓ〉 ⊂ Σ = 〈a1, b1, . . . , ak, bk : [a1, b1] · · · [ak, bk] = 1〉.

Theorem 2.1 (Freiheitssatz for one-relator surface groups [8, Proposition
3.10]) If M = π1(S1) is a Magnus subgroup in a one-relator surface group G,
then the inclusion map M → G is injective,

The separating curve α in the definition is determined by the Magnus
subgroup only up to isotopy. We shall also refer to a pair of Magnus sub-
groups M1 and M2 as compatible if the corresponding separating curves on S
can be chosen to be disjoint. In terms of generators, there exists a standard
generating set such that both M1,M2 are generated by subsets of the chosen
generating set for Σ = π1(S).

Remark Let

G = Σ/〈〈R〉〉 = 〈a1, b1, . . . , ak, bk : [a1, b1] · · · [ak, bk] = R = 1〉

be a one-relator surface group, and L = {a1, b1, . . . , ak−1, bk−1, bk} a proper
subset of the generating set of G. Then L generates a subgroup M of Σ =
π1(S) corresponding to the complement of a nonseparating simple closed
curve in S. In [8] it is shown that the Freiheitssatz does not in general hold
for such subgroups: the natural map M → G is not always injective. For
this reason, we have excluded such subgroups from our definition of Magnus
subgroup.

Moreover, it turns out that the results of this paper do not necessarily
extend to groups of this form, even in situations where M → G is injective.
We shall give an example in §3 to illustrate this.
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In §3 below we will employ an idea first used by Hempel [7, Lemma 2.1,
Theorem 2.2] (see also [8, Proposition 2.1]) to express a one-relator surface
group as an HNN extension of a one-relator group. Here the notation 〈α, β〉
denotes the algebraic intersection number of a pair of curves α, β on the
surface S.

Proposition 2.2 Let S be a closed, connected, oriented surface of genus at
least 2, and let α be a closed curve in S. Then

1. There is a non-separating simple closed curve β in S such that 〈α, β〉 =
0.

2. For any such β, there are connected surfaces F, F0, F1 and a closed
curve α′ in F , such that

(a) F0
∼= F1, F0 ⊂ F and F1 ⊂ F ;

(b) π1(F0) → π1(F )/〈〈α′〉〉 and π1(F1) → π1(F )/〈〈α′〉〉 are injective;

(c) π1(S) (resp. π1(S)/〈〈α〉〉) is an HNN-extension of π1(F ) (resp.
π1(F )/〈〈α′〉〉) with associated subgroups π1(F0) and π1(F1);

(d) Each of ∂F , ∂F0 and ∂F1 consists of two circles, each of which
represents (a conjugate of) β ∈ π1(S).

In §4 and §5 we will use a slight variation of this idea, which we will
describe in the course of the proof of Theorem 4.1.

We shall also make extensive use of the fact that there is a lot of freedom
in the choice of the curve β. In particular, if S0 ⊂ S is a punctured torus,
then the restriction of the algebraic intersection map 〈α,−〉 to S0 gives a
homomorphism Z

2 ∼= H1(S0) → Z with nonzero kernel; we may choose a
simple closed curve β ⊂ S0 to represent a nonzero element of the kernel, and
such a curve is automatically nonseparating.

Lemma 2.3 below is an algebraic translation of this observation, applied
to the case of the closed orientable surface S of genus g, with a standard
generating set {a1, b1, . . . , ak, bk} for π1(S), where π1(S0) is generated by
{ak, bk}.

If R is an element of a free group F with basis X , and x ∈ X , we denote
by σ(R, x) the exponent-sum of x in R, in other words the image of R under
the homomorphism F → Z defined by x 7→ 1, X r {x} 7→ 0.
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Lemma 2.3 Let R be an element of the free group 〈a1, b1, . . . , ak, bk〉. Then
there exists a basis {a′k, b

′

k} of the free group 〈ak, bk〉, such that

(i) [a′k, b
′

k] = [ak, bk]; and

(ii) as a reduced word in {a1, b1, . . . , ak−1, bk−1, a
′

k, b
′

k}, R has exponent sum
zero in a′k.

3 Magnus subgroups are cyclonormal

Theorem 3.1 Let G be a one-relator surface group, and let M be a Magnus
subgroup of G. Then M is cyclonormal, that is, for any g ∈ G rM , M ∩
gMg−1 is cyclic.

Proof. Without loss of generality, we may assume that

G = 〈a1, b1, . . . , ak, bk : [a1, b1] · · · [ak, bk] = R = 1〉

and that
M = 〈a1, b1, . . . , ak−1, bk−1〉.

Let g /∈ M be an element of G.
By Lemma 2.3, we may assume that

σ(R, ak) = 0,

that is, the exponent sum of ak in R is zero.
Let β denote the simple-closed curve on S representing bk, such that

σ(−, ak) = 〈−, β〉 : π1(S) → Z. Then Hempel’s trick (Proposition 2.2) with
this choice of β expresses G as an HNN-extension

G = 〈H, ak | akXa−1

k = Y 〉

of a one-relator group H , in such a way that X and Y are isomorphic Magnus
subgroups of H , with M a free factor of X and such that, in fact, H is a
one-relator product of M and Y .

The Bass-Serre tree for this HNN-extension has vertex-stabilizers the con-
jugates ofH and edge-stabilizers the conjugates ofX (or the conjugates of Y ).
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Let T be the Bass-Serre tree for this HNN-extension and suppose g ∈ GrH .
Then G acts on T and there exists a vertex v such that

H = Stab(v)

gHg−1 = Stab(g(v)).

Moreover, X and Y are the stabilisers of two edges of T , which have v as
source and target respectively.

g(v)

v

Figure 1:

Now M ⊂ H stabilizes v and gMg−1 ⊂ gHg−1 stabilizes g(v) so that
M ∩ gMg−1 stabilizes both v and g(v) and hence stabilizes the path P in T
from v to g(v). Here three different cases arise.

Case 1. If g(v) = v, then g ∈ Stab(v) = H and the result follows from
Bagherzadeh’s Theorem 1.2.

Case 2. If the path P is not coherently oriented, then there is an interme-
diate vertex u = g′(v) of P that is either the source of each incident edge of
P or the target of each incident edge of P . We treat the latter case (Figure
2); the former is entirely analogous.

/

ev

u

g(v)e

Figure 2:

If e, e′ are the edges of P incident at u, then

Stab(e) = g′Xg′−1
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Stab(e′) = (g′h)X(g′h)−1

for some h ∈ H . Now

M ∩ gMg−1 ⊆ Stab(v) ∩ Stab(g(v)) ⊆ Stab(e) ∩ Stab(e′).

But

Stab(e) ∩ Stab(e′) = g′Xg′−1 ∩ g′hXh−1g′−1 = g′(X ∩ hXh−1)g′−1.

Therefore
M ∩ gMg−1 ⊆ g′(X ∩ hXh−1)g′−1

is cyclic by Bagherzadeh’s Theorem 1.2.

Case 3. If the path P is coherently oriented, then we will assume that the
orientation is from g(v) to v – see Figure 3. (The argument for the opposite
orientation is analogous.)

g(v)

u

v e

e
/

Figure 3:

The edge e of P incident at v has target v and so has stabilizer hY h−1

for some h ∈ H .
Now

M ∩ gMg−1 ⊆ M ∩ hY h−1,

and H is a one-relator product of the free groups M and Y , so M ∩ hY h−1

is cyclic by a result of Brodskĭı [2, Teorema 6(b)].

In all cases we have shown that M ∩ gMg−1 is cyclic. Hence M is cy-
clonormal in G. �

Below we give an example to show that Theorem 3.1 does not extend to
a subgroup M of G generated by 2k − 1 of the 2k generators of G, even in
cases where M is free on those generators.

Example Let

G = 〈a1, b1, a2, b2 : [a1, b1][a2, b2] = b4
1
a−1

2
b3
1
a2b

2

1
a−1

2
b3
1
a2 = 1〉.
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Then the second relator R ≡ b4
1
a2b

3

1
a−1

2
b2
1
a2b

3

1
a−1

2
has exponent-sum 0 in a2, so

the Freiheitssatz for one-relator surface groups [8, Proposition 3.10] implies
that M = 〈a1, b1, b2〉 embeds in G via the natural map. On the other hand,
Collins [5] shows that R = 1 ⇒ b6

1
= a−1

2
b6
1
a2. Note also that [a1, b1][a2, b2] =

1 ⇒ a−1

2
b2a2 = b2[a1, b1], so that the nonabelian free subgroup 〈b6

1
, b2[a1, b1]〉

of M is identified in G with the subgroup 〈a−1

2
b6
1
a2, a

−1

2
b2a2〉 of a2Ma−1

2
.

Hence M ∩G a2Ma−1

2
is not cyclic, so M is not cyclonormal in G.

4 Intersections of Magnus subgroups in one-

relator surface groups

Our aim in this section is to prove the analogue of the Theorem 1.3 of Collins
for one-relator surface groups.

Theorem 4.1 The intersection M1 ∩G M2 of two compatible Magnus sub-
groups M1 and M2 of the one-relator surface group G is the free product of
(M1 ∩Σ M2) with a cyclic group. That is,

M1 ∩G M2 = (M1 ∩Σ M2) ∗ C.

Proof. Without loss of generality, we may suppose that

G = 〈a1, b1, . . . , ak, bk : [a1, b1] · · · [ak, bk] = R = 1〉,

M1 = 〈a1, b1, . . . , ak−1, bk−1〉,

M2 = 〈a2, b2, . . . , ak, bk〉.

By Lemma 2.3, we may assume that a1, ak appear in R with exponent
sum zero, that is,

σ(R, a1) = 0 = σ(R, ak).

Note that
Σ = M1 ∗M0

M2

where M0 = M1 ∩Σ M2.

By definition of Magnus subgroup, R is not conjugate to an element of
M1 or of M2. Hence we may assume that R ∈ Σ = M1 ∗M0

M2 is a cyclically

9



reduced word of length greater than 1 (with respect to the amalgamated free
product length function).

We apply an amended form of Hempel’s trick as follows. The kernel K
of σ(−, ak) : Σ → Z has an induced graph-of-groups decomposition as an
infinite amalgamated free product of M̃2 = K ∩M2 and the groups ankM1a

−n
k

for n ∈ Z, amalgamating the copy of ankM0a
−n
k in ankM1a

−n
k with that in

M̃2. Choose a conjugate R̃ of R that belongs to the subgroup K0 of K
generated by M̃2 and ankM1a

−n
k for 0 ≤ n ≤ m, and assume that all the

choices have been made to minimize m. Then G is an HNN-extension of
the one-relator group G̃ = K0/〈〈R̃〉〉, with stable letter ak and associated
subgroups K1 = K0 ∩ akK0a

−1

k , K2 = K0 ∩ a−1

k K0ak.

Clearly M1∩GM2 ⊂ M1∩G M̃2. Note also that M1 ⊂ K0. If m > 0 in the
above construction, then the join of M1 and M̃2 in K0 is a Magnus subgroup
of the one-relator group G̃, from which it follows that

M1 ∩G M2 = M1 ∩K0
M̃2 = M0.

Hence we are reduced to the situation where m = 0 in the HNN construc-
tion. Now M0 is a free factor of M̃2, so we can write M̃2 = M0 ∗ F for some
free group F , and then we also have K0 = M1 ∗ F .

We now essentially repeat the above argument, with a1 replacing ak.
Specifically, let N be the kernel of σ(−, a1) : K0 → Z. Then N is the free
product of M̃1 = M1 ∩N and the groups Fn := an

1
Fa−n

1
for n ∈ Z. Choosing

a suitable conjugate R̂ of R̃, we may assume that

R̂ ∈ M̃1 ∗ F0 ∗ F1 ∗ · · ·Fp

with all choices made to minimize p. Then G̃ is an HNN-extension of the
one-relator group Ĝ = (M̃1 ∗ F0 ∗ F1 ∗ · · ·Fp)/〈〈R̂〉〉 with stable letter a1.

Arguing as before, M1∩G M̃2 ⊂ M̃1∩G M̃2. Moreover, M̃2 ⊂ F0. If p > 0,
then the join of M̃1 and F0 in N is a Magnus subgroup of Ĝ, from which it
follows that

M̃1 ∩G M̃2 = M̃1 ∩N M̃2 = M0.

Hence we are reduced to the case where p = 0.
Now

M̃1 = M0 ∗ L

where L is a free group. Also

M̃2 = M0 ∗ F0,

10



and
Ĝ = (M0 ∗ F0 ∗ L)/〈〈R̂〉〉.

Therefore

M1 ∩G M2 = M̃1 ∩ M̃2 = (M0 ∗ F0) ∩Ĝ (M0 ∗ L).

Since Ĝ is a one-relator group, Collins’ Theorem 1.3 applies, and so

M1 ∩G M2 = M0 ∗ C

with C cyclic, as required. �

The proof of Theorem 4.1 shows that Magnus subgroups can have ex-
ceptional intersection only in very restricted circumstances - where R ∈
M0∗F0∗L in the notation of the proof. Moreover, in that case it is equivalent
to a pair of Magnus subgroups in a one-relator group having exceptional in-
tersection. We can use this to generate examples of exceptional intersections
of Magnus subgroups in one-relator surface groups.

Example Let G be the one-relator surface group

〈a1, b1, a2, b2 : [a1, b1][a2, b2] = a−2

1
b4
1
a2
1
a−2

2
b−3

2
a2
2
a−2

1
b2
1
a2
1
a−2

2
b−3

2
a2
2
= 1〉.

If x = a−2

1
b1a

2

1
and y = a−2

2
b2a2, then the second relation is x4y−3x2y−3 = 1.

Collins [5] shows that x6 = y6 is a consequence of that relation. If M1 =
〈a1, b1〉 and M2 = 〈a2, b2〉, then x6 ∈ M1 and y6 ∈ M2. Hence M1 and M2

have exceptional intersection in G.

The strong restrictions on exceptional intersection that arise in the proof
of Theorem 4.1 also give rise to a proof of Theorem 4.2, which we sketch
below

Theorem 4.2 There is an algorithm which will decide, given a one-relator
surface group G and two Magnus subgroups M1,M2, whether or not M1 and
M2 have exceptional intersection in G. If the intersection is exceptional, the
algorithm will provide a generator for the free factor C in the statement of
Theorem 4.1.

Sketch proof. The theorem is proved by noting that each step in the proof of
Theorem 4.1 can be carried out algorithmically.

11



We may assume that the one-relator surface group has the form

〈a1, b1, . . . , ak, bk : [a1, b1] · · · [ak, bk] = R = 1〉,

where R is a word in the generators.
The first step is a basis-change in the free group 〈a1, b1〉 to allow us to

assume that σ(R, a1) = 0. The euclidean algorithm transforms the vector
(σ(R, a1), σ(R, b1)) ∈ Z

2 to a vector of the form (0, ℓ) using integer elemen-
tary column operations, which can be lifted to Nielsen operations on 〈a1, b1〉
in the standard way. Thus the basis-change operation of Lemma 2.3 can be
performed algorithmically, and so we may assume without further ado that
σ(R, a1) = 0, and similarly that σ(R, ak) = 0.

The rewrites R → R̃ → R̂ in the proof of Theorem 4.1 are entirely
mechanical processes, as is the choice of a suitable cyclic conjugate in each
case. Thus the non-negative integers m, p occurring in the proof can be
algorithmically computed. Should either be strictly positive, then we can
stop, declaring the intersection to be non-exceptional.

Hence we may assume that m = p = 0, so that (up to conjugation),
R ∈ M0∗F0∗L in the notation of the proof of Theorem 4.1. Now F0 and L are
free groups of infinite rank, so in order to handle this situation algorithmically
we must replace them by appropriate finite rank free groups. In practice,
one can algorithmically generate finite sets B1, B2 that are subsets of bases
of F0, L respectively, and such that R can be expressed (up to conjugacy) as
a word in M0 ∗ 〈B1〉 ∗ 〈B2〉.

Now apply the algorithm of [9, Theorem E] to the one-relator group (M0∗
〈B1〉 ∗ 〈B2〉)/〈〈R〉〉 to decide whether or not the intersection is exceptional.
If so, the algorithm provides a generator γ for the exceptional free factor, in
terms of our chosen basis for M0 together with B1∪B2. Finally, we translate
γ into a word in the original generators a1, b1, . . . , ak, bk of G to complete the
algorithm.

5 Intersections of conjugates of Magnus sub-

groups of one-relator surface groups

In this section we prove the analogue of Theorem 1.4.

12



Theorem 5.1 Let G be a one-relator surface group and let M1 and M2 be
two compatible Magnus subgroups of G. Let g ∈ G. Then M1 ∩G gM2g

−1 is
cyclic unless g ∈ M1M2.

Proof. As in the proof of Theorem 4.1, we assume that

G = 〈a1, b1, . . . , ak, bk : [a1, b1] · · · [ak, bk] = R = 1〉,

M1 = 〈a1, b1, . . . , ak−1, bk−1〉 and M2 = 〈a2, b2, . . . , ak, bk〉. We also assume,
by virtue of Lemma 2.3, that σ(R, a1) = σ(R, ak) = 0.

Let g ∈ G. Note that for any m,n ∈ Z we may replace g by g′ = am
1
gank ,

since M1∩g′M2(g
′)−1 = M1∩gM2g

−1. Hence we may assume that σ(g, a1) =
0 = σ(g, ak).

With the same notation as in the proof of Theorem 4.1, we express G
as an HNN extension of a one-relator group G̃ = K0/〈〈R̃〉〉, with stable
letter ak and associated subgroups K1, K2, where K0 is generated by M̃2 =
M2 ∩Ker(σ(−, ak)) together with ankM1a

−n
k for 0 ≤ n ≤ m, for some m ≥ 0.

In particular M1 ⊂ K0.
Note that, since M1 ⊂ Ker(σ(−, ak)), we have

M1 ∩G gM2g
−1 = M1 ∩G gM̃2g

−1 ⊂ G̃ ∩G gG̃g−1.

Now G acts on the Bass-Serre tree T arising from this HNN description.
The stabilizers of the vertices are conjugates of G̃ and the stabilizers of the
edges are conjugates of K1 (and hence also of K2). Let u be a vertex of T
such that G̃ = Stab(u), and let e1, e2 be two edges of T incident at u such
that K1 = Stab(e1) and K2 = Stab(e2).

Now suppose that g /∈ G̃. Then M1 ∩G gM2g
−1 ⊂ G̃ ∩G gG̃g−1 sta-

bilises the (nonempty) geodesic path P in T from u to g(u). Moreover, since
σ(g, ak) = 0, this path has even length and contains the same number of
forward-pointing and backward-pointing edges. In particular, there is an in-
termediate vertex v in P which is either the source of both the incident edges
of P or the target of both the incident edges of P . We assume the latter.
(The analysis of the former case is analogous.)

If v = h(u), then the stabilisers of the edges of P incident at v have
the form hsK2s

−1h−1 and htK2t
−1h−1 for some s, t ∈ G̃ with s−1t /∈ K2.

By Bagherzadeh’s Theorem 1.2, sK2s
−1 ∩G̃ tK2t

−1 is cyclic, and hence the
stabiliser of P is cyclic, and the result follows.
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Thus we are reduced to the case where g ∈ G̃. But in that case M1 and
M̃2 are Magnus subgroups of the one-relator group G̃, and

M1 ∩G gM2g
−1 = M1 ∩G̃ gM̃2g

−1,

which is cyclic by Collins’ Theorem 1.4, unless

g ∈ M1 · M̃2 ⊆ M1 ·M2.

�
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