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Abstract

Let (X, d) be a metric space and m € X. Suppose that ¢ : X x X — R
is a nonnegative symmetric function. We define a metric d*™ on X which
is equivalent to d. If d>™ is totally bounded, its completion is a compact-
ification of (X,d). As examples, we construct two compactifications of
(R®,dE), where dg is the Euclidean metric and s > 2.
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1 The metric d*™

Let (X,d) be a metric space and m € X. Suppose that ¢ : X x X - R is a
nonnegative symmetric function. As usual, two metrics d; and do on a set X
are called equivalent if (X, d;) and (X, ds) are homeomorphic. In this section,
we will define a metric d®™ on X which is equivalent to d.

For each z,y € X, let

1 1
o — mindd - .
(z.0) = min {dlo.), o+ o) + 1 |
And for each z,y € X and n € N, let
Ly, ={(xo, - +,2n) |20 = 2,2, =y and x; € X for all i }
and
L.y=J T2,
neN

Notice that 'y, # 0 for all z,y € X. In the following definition, the infimum
runs over all elements of 'y ,,.
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Definition 1.1 Suppose that x,y € X. Let
¢,m _ $om . .
d (:Euy) %35216 (:Ez—laxz)- (1)

For the sake of simplicity, we will simply write d®, §% to denote d®™, §%™
respectively. In particular, we write eq. () as

d?(z,y) = inf Zé‘i’(;vi_l,xi).
=1
Notice that (z,y) € I'y,y, and therefore

d¢($,y) = %Imlfy Z(S(b(xi—lvxi) < 6¢($7y) < d($,y) (2)

Notice also that d? is nonnegative. Therefore from eq. (), we have
d?(z,z) =0 forall 2 € X. (3)
The following subset A, of I'y , is useful in the proof of Lemma [[1]
Apy=1{ (20, 2n) €Tsy | 0% (i1, 2;) # d(wi_1,2;) for some 1 <i <n}.

Lemma 1.1 Suppose that d*(x,y) # d(z,y). Then

d?(z,y) > 2(1 +d(m,x))’

Proof. Suppose that d®(z,y) # d(z,y). By eq. @) we have x # y, and by eq.
@) we have

d®(x,y) < d(z,y). (4)
If (o, -, 2n) € I'gy — Agy, then

n n

Z(qu(Ii,l,.Ii) = Zd(Ii,1,$i) Z d(I,y)

i=1 =1

Therefore from eq. @), we have A, , #  and
¢ = i (. .
d?(z,y) = gg;a (@im1, ). (5)

Suppose that (zo,---,zn) € Agy. Let k be the smallest integer such that
8% (xk, Trr1) # d(xk, T4 1). Notice that if & > 1 then

5¢($i717$i) = d(Ii,1,$i) for all 1 S 7 S k.



If d(zo, zk) > 14 d(m,zo) then we have k > 1, and therefore

n

k
Z 6P (i1, i) > Z 6% (wi—1, ;)
i=1

=1
k

> d(wioy, )
i=1

d(xo, k)
1+ d(m, xo)
= 1+d(m,x). (6)

(AVARY}

If d(xo, zx) < 1+ d(m,zg) then
1+d(m,zr) <14+ d(m,xo) + d(xo, xx) < 2+ 2d(m, xp).
Therefore

Z §P(wioy, i) > 0%k, Trer)
i—1

1 1
- 1+d(m,$k) + ¢($[g,fl]k+1) + 1+d(m,$k+1)
1
~ 1 +d(m,xy)
S
2(1 + d(m, x0))
1
= T+ dma) ™
Hence from eq. (@), @) and (@), we have
1 1
¢ > mi =
) 2 min{1 o). 5 b= ey
i

Now we show that d? is a metric on X.

Theorem 1.1 d?¢ is a metric on X.

Proof. From eq. () and (3], recall that d® is nonnegative and d®(z,z) = 0
for all z € X. Suppose that d?(x,y) = 0. By Lemma [T, we have d(z,y) =
d?®(z,y) = 0. Thus z = y.

Suppose that z,y € X. Notice that (xo,z1,---,2n) € I'y, if and only if
(Tn, Tp—1,++,20) € ['y 4. Since ¢ is symmetric, so is §%. Therefore

Zé‘i’(xi_l,xi) = Z 5¢(xn+1_i, Tp—i) forall (zo,x1, -, 2n) € Ty y.
i=1 i=1



Hence d®(z,y) = d*(y, z).
Suppose that x,y,z € X and € > 0. There exist (zo, 21, -+, 2,) € I'zy and
(Yo, Y1, "+, Ym) € T'y - such that

n

€ - €
25(;5(331'71,%) < d?(z,y) + 3 and Z5¢(yj,1,yj) <d®(y,z) + 3
i=1 j=1
Notice that (zo, -+, &n =Yy = Yo, **,Ym) € 'y .. Therefore

n m

d“b(x,z) S Z(W(a:i,l,xi)—I—Z(s“b(yj,l,yj)

i=1 j=1
< d“b(a:,y) + g + d“b(y,z) + %
= d®(x,y) +d°(y, 2) + €.

Since e is arbitrary, we have d®(z,z) < d®(z,y) + d*(y, 2). i

By the following lemma, the identity map from (X, d?) to (X,d) is continu-
ous.

Lemma 1.2 For all v € X, there exists an open ball B, in (X,d?), with center
x, such that d®(y, z) = d(y, z) for all y,z € B,.

Proof. For each z € X, let

Suppose that y € B,. By Lemma[[Il we have d?(z,y) = d(z,y), and therefore
dm,y) < d(m,z)+d(z,y)

_ d(m,x) + d®(z,y)

1
8(1+ d(m,x))
< dm,z)+1+d(m,z)

= 1+4+2d(m,x). (8)

< d(m,z) +

Suppose that y, z € B,. From eq. ([{), we have 1+ d(m,y) < 2+ 2d(m, x).
Therefore

d(y,z) < d®(y,z) +d%(z,2)
1 1

8+ dim,a) 81 +dma)
1

4(1 + d(m, x))
1

2(1 4 d(m,y))




Hence by Lemma [} we have d®(y, z) = d(y, ). i

By the following corollary, d® is equivalent to d for all ¢ and m.

Corollary 1.1 The identity map from (X,d?®) to (X,d) is a homeomorphism.

Proof. By eq. [@) and Lemma [[2] it is trivial. |

2 The compactification

A compactification of a topological space X is a compact Hausdorff space Y
containing X as a subspace such that X = Y. It is known that every metric
space has a compactification (see [6], §38). With the equivalent metric in the
previous section, we are able to construct various compactifications of a metric
space.

Let (X, d) be a metric space. Suppose that m € X and ¢: X x X - R isa
nonnegative symmetric function. To get a compactification, we assume that

(X,d®) = (X,d*™) is totally bounded,

ie. there is a finite covering by € balls for every € > 0. Then our compactification
of (X, d) is the completion (X, p) of the totally bounded metric space (X, d?).

Notice that X is a dense subset of X and (X, p) is a compact metric space
(see [6], §45 and [3], §XIV.3 for details). X can be considered as the set of equiv-
alence classes of all Cauchy sequences in (X,d?) with the equivalence relation
(see [], §V.7)

x; ~y; if and only if  lim d¢(xi, yi) =0,
1— 00
where a point x in X is identified to the equivalence class of constant Cauchy
sequence {z}. o
Suppose that {z;}, {y;} € X. The metric p is given by

p({ai} i) = lim d* (i, y2)
In particular, we have

p({z}, {y}) = d®(z,y) forall z,y € X.

In 2002, the author had tried to apply this compactification to the research
on the tameness conjecture of Marden([5]) which was proved by Agol([I]) and
Calegari-Gabai([2]) in 2004, independently. The author think that the com-
pactification could be useful in the study of Teichmiiller space. In the next two
sections, we apply the compactification to the Euclidean metric space R® with
s> 2.



3 The standard compactification of (R*, dg)

Let O = (0,---,0) € R®. We write dg to denote the Euclidean metric on R®. In
this section, as an example of the compactification in Section 2] we construct a
compactification of (R*,dg), which will be called the standard compactification,
which is homeomorphic to the Euclidean closed unit ball

B*={z e R’ |dg(0,z) <1}.

Notice that we need to define a nonnegative symmetric function ¢ : R*xR®* -+ R
such that
,O
(R®,d%) = (R®,d%°)

is totally bounded, where we wrote d® to denote d%o for the sake of simplicity.
For all m € N, let
1 1
Om=14+—=-4+ -+ =
2 m
and
Sm={z € R’ |dg(O,z) = an}.
Note that a,, is an increasing sequence and lim,,— oo G = 0.
For all p,q € N, let hy 4 : S, — Sy be the homeomorphism defined by
hpo(z) =2z forallz €S,

ap

Notice that if hp 4(z) = y then hg,(y) = . We define the nonnegative sym-
metric function ¢ as follows.

Definition 3.1

0 if hpq(x) =y for some p,qg e N
d(x,y) = ﬁdE(a:,y):dE (%,%) if x,y € Sy, for some m € N
dr(x,y) otherwise

Suppose that x € R® and r > 0. We write B,(z) to denote the Euclidean
open ball with center z and radius r, and B?(z) to denote the open ball in
(R*,d?). Now we show that (R*,d?) is totally bounded.

Lemma 3.1 (R*,d?) is totally bounded.

Proof. Let ¢ > 0. We may assume that ¢ < 1. Choose k € N such that

1 € 1 €
L f € 9
1k -1 ™ 154,71 (9)

and let
Biy1 ={z € R’ [ dp(0,7) < ar41}.



Since By 1 is compact in (R®,dg), so is in (R*,d?) by Corollary [T Therefore
we can cover By with finite number of e-balls in (R?,d?). Notice that Sj, C
By4+1. Since Sy, is also compact in (R?,dg), we can cover Sy, with finite number
of Euclidean §-balls with centers 1,22, --,2n € Sk. From eq. (2)), we have

N

N N
Sk € | Bz (@) € U Be(w;) € | J B ().

=1 i=1

Note that if z € Sy, then there exists x; € {21, x2, -+, 25} C S such that

dE(Z,JJl) < i

To show that (R*,d?) is totally bounded, it is enough to show that if 2 ¢
By 1 then there exists x; € {x1, 22, -+, 2zx} such that d®(z,z;) < e. Suppose
that © ¢ Byy1. There exists m € N such that

am < dp(0,2) < amy1.

Since = ¢ Bjy1, we have k < m. Let

am

=———2 €5,
From eq. (@), we have
1 1 €
d —_—< - 1
e e By (10)

Let z be the point in Sy such that hy ., (2) = y. Choose z; € {x1,22, -+, 2N}
such that .
dE(Z,JJl) <

From eq. @), @), (I0) and (), we have

|
—
—
—
N

d¢(:17, x;) < d¢(:17, y)+ d¢(y, z)+ d‘b(z,xz)
< dp(z,y)+ 6%y, 2) + dp(z, x;)
€ 1 1 €
< Z+1+am 1+ak+1
< €

Since (R#,d?) is totally bounded, its completion (R®,p) = (R®,py) is a
compactification of (R, dg), where we wrote simply p to denote p, for the sake
of simplicity. Recall that an element of (R#, p) is an equivalence class of Cauchy
sequence in (R?,d?), where two Cauchy sequences {x;} and {y;} are equivalent
if and only if

lim d?(z;,y;) = 0.

71— 00



Notice that if {z;} is a Cauchy sequence in (R*,d?) which converges to x, then

{z;} and the constant Cauchy sequence {z} are equivalent. Notice also that if

{yi} is a subsequence of a Cauchy sequence {z;}, then they are equivalent.
Since for all z € S7, we have

1 n 1
1+a; 1—|—aj’

d®(a;x,a;x) < §%(a;r,a;x) <

it is clear that {a;z} is a Cauchy sequence in (R*,d?). By Lemma [[.I we can
show that {a;x} is not equivalent to any constant Cauchy sequence (see the
proof of Lemma [B4]). Furthermore, we have

Lemma 3.2 If {x;} is a Cauchy sequence in (R®,d®) which is not equivalent
to a constant Cauchy sequence, then it is equivalent to {a;x} for some x € Sy.

Proof. Suppose that {z;} is a Cauchy sequence in (R?®, d?) which is not equiv-
alent to a constant Cauchy sequence. If {z;} is bounded in (R®, dg), then it
has a convergent subsequence {y;}, which converges to a point y in (R*,dg).
Notice that {y;} converges to y in (R*,d?), too. Therefore {z;} is equivalent to
{yi}, and hence to the constant Cauchy sequence {y}. This is a contradiction.

Since {z;} is unbounded in (R*,dg), we can choose a subsequence of z;,
which we will call z; again, such that

0< dE(O,LL'l) < dE(O,LL'H_l) for alli e N
and there exists at most one x; such that
am < dp(0,x;) < ami1

for each m € IN. Notice that m — oo as i — co. Since

1

-z eS
dE(OwTi)x e

for all ¢ € N and (S7,dg) is compact, x; has a subsequence, which we will call
x; again, such that

i to z fi es
———— converges to x for some z 1.
dp(0, ;)
Suppose that a,, < dg(O, ;) < amt1. Let y; = apmx. Notice that {y;} is a

subsequence of {a;x}. Let
am

- dE(OafEi)xi'

Zq

Since dg(x;, ;) < we have

1
m—+17
lim d?(z;,ys)
11— 00

< lim (d¢($i,2i) + d¢(zi7yi))

T i—oo



IN

lim (dE(xi, zi) + 5¢(2i7yi))

i—00
1

lim (—— + +d Ti )4t
ismoo\14+m 1+ay,, B dg (0, z;)’ 1+ am
= 0.

IN

Therefore {z;} and {y;} are equivalent, and thus {z;} is equivalent to {a;z}.

To show that (R#, p) is homeomorphic to (B*,dg), we define a function
h:(B* dg) — (R, p)

as follows.

h() = #(O_z) x (the constant Cauchy sequence) if dg(0,z) <1
= {aiz) if dp(0,z) =1

NOllce tha.t

for all y € R®. Therefore from Lemma B2 it is clear that h is surjective. We
will need the following lemma to show that h is injective.

Lemma 3.3 Suppose that dg(O,z) > 1 and dg(O,y) > 1. Let (xo,x1, ,Tm) €
Ty with dg(O,xz;) <1 for all1 <i<m—1. Then

m " . o x Y
25 (zi—1,2:) = dp (dE(O,;C)7 dE(an)>.

=1

Proof. Notice that we may assume

If m =1 then
> 6% (@i, @)
=1
= §%(x,y)
'{d() L )+t }
= min i -_— X -_—
P T R (0, ) T4 de(0,y)
. T Y 1
> d —— +d
- “““{ ) T o T (dE<o,x>’ dE<o,y>> " 1+dE<o,y>}
>

i (dE(g,a:)’ dEé/),y)) |



Suppose that m # 1. Notice that
5¢(xi_1,xi) =dg(xi—1,z;) foralll <i<m

and therefore

m

m x Yy
> .
Z fL'?, 17«/1:7, g xz 17:'[:1 dE(‘T y) dE (dE(O7$)7dE(O,y))

Now we show that h is injective.

Lemma 3.4 h is injective.

Proof. Suppose that h(z) = h(y). We will show that © = y. If dg(O,z) < 1
and dg(0,y) < 1, then

1 1
1—dp(0,2) " 1-dp(0,y)”

(12)

and therefore

1 1

l—dE(O,:E) dE(Ov‘T) = 1—dE(O,y) dE(Ovy)

Hence dg(O,z) = dg(O,y). Thus from eq. ([I2)), we have x = y.
If dg(O,z) = 1 and dg(O,y) = 1, then the Cauchy sequences {a;z} and
{a;y} are equivalent. Suppose that x # y. We will get a contradiction. Let

(IO; Ty, 7-rm) S Faim,aiy-
Using Lemma B3] we can show that

m

Z5¢($i—17$i) > dg(z,y).

i=1

and therefore
d?(a;z,ay) > dp(x,y) >0 for all 4. (13)

Hence lim; o, d®(a;z,a;y) # 0. This is a contradiction.
Suppose that dg(0,z) < 1, dg(0,y) =1 and

1
lim d* (————— 2, aiy | =0.
im0 (1 —dp(0,2) y) 0

We will get a contradiction. Notice that if 4 is large enough, then

1 1
o - . - - )
d (1—dE(O,$) xz, a1y> 75dE(1—dE(O,$) xz, a1y>'

10



Therefore by Lemma [[1], for large enough 7, we have

1 1
(i) )

Hence
lim d* _ x, a;y ) #0
inet \1T=dp(0,2) ") 7
This is a contradiction. |

Since h is bijective, we can consider its inverse function. Recall Lemma
and let L
k:(Rs,p)— (B°,dg)

be the function defined by

if {x;} = {x} is a constant Cauchy sequence

ko = { O

T if ; = a;x for some x € S;.

It is easy to show that k is the inverse function of h. In the following
two lemmas, we will show that h and k are continuous. Therefore (RS, p) is
homeomorphic to (B, dg).

Lemma 3.5 h is continuous.

Proof. Suppose that z,, —  in (B*,dg). We will show that h(x,) — h(x)
in (R%,p). If dg(O,x) < 1, then it is trivial to show that h(z,) — h(z) in
(R*,dp). Therefore from eq. (@), we have h(z,) — h(z) in (R*,d?), and hence
in (R, p).
Suppose that dg(O,z) = 1. Notice that it is enough to consider only the

following two cases,

(a) dg(0O,x,) =1 for all n

(b) dg(0O,z,) < 1 for all n.

For the case (a), we have

p(h(z,),h(z)) = lim d®(a;z,,ax)

i—00

1 1
< lim dp(Tn,
< ii>oo<1+ai+ e w)+1+ai)

= dg(zp,x

).
Therefore if x, — = in (B*,dg), then h(x,) — h(z) in (R, p).
For the case (b), if

1
< = I
am < dp(0,h(z,)) =dg ((), 1= dp(0.20) xn> < U1,

11



let a a
2y = e h(T) = e T

= d5(0, h(zn)) = dp(0, )

Notice that z, € Sp,, and m — oo as n — co. Therefore from eq. (), we have

lim p(h(zy), h(z))

n—00

lim lim d?(h(z,),a;r)

MN—00 1—00

< lim lm (d®(h(zn), 2n) + d°(2n, amz) + d°(ama, a;r))
n—0o0 1— 00

< lim lim (dE(h(xn), Zn) + 5¢(zn, amx) + 5¢(amx, aix))
n—0o0 1—00

< lim lim <L+ ! +dE( h(@n) )),x>+ !

1+m  14ap 1+ am

n—00 1—00

1 n 1
1+a, 1+a;

T,
< lim d -
= B0 (dE(van)VT)
= 0.

Therefore h(z,) — h(z) as n — . i

Lemma 3.6 £ is continuous.

Proof. Suppose that x,, = {z,;} converges to x = {x;} in (R*,p). We will
show that k(x,) converges to k(x) in (B*,dg).

Suppose that x is equivalent to a constant Cauchy sequence {z} in (R*, d?).
If x,, is equivalent to {a;z,} with x, € Sy for infinitely many n, then choose
a subsequence of x,,, which we will call x,, again, such that x,, = {a;z,,} with
Ty € S1. Notice that there exists I > 0, which does not depend on n, such that

1

gla;z,, ) 30+ dn(0.7)) or all i >

Therefore by Lemma [T, we have

1
b, 5 1 .
d®(a;xn, ) > 20+ dp(0.2)) for all i > I.

Hence x,, does not converges to x in (R#, p). This is a contradiction. Therefore
x, = {z,} is a constant Cauchy sequence in (R?,d?) for large enough n. Since
x, converges to x in (R*,d?), by Corollary [T, z,, converges to x in (R*,dg).
Therefore

1 1

k(xp) = ————F——— 1, k(x)= ——— 1.
(xn) T dn (0.7 x, converges to k(x) T dn(0.7) x

12



If x = {x;} is not equivalent to a constant Cauchy sequence in (R*,d?),
then by Lemma [3.2] we may assume x; = a;x for some x € S;. Notice that we
may consider only the following two cases.

(a) For all n, x,,; = a;z, for some z, € 5.
(b) For all n, x, = {x,} is a constant Cauchy sequence.

For the case (a), from eq. (I3) we have

0 = Jmelxx)

lim lim d¢(aixn,aix)
n—o0 1— 00

32, 45 ()

= lim dp(k(xn), k(x)).

Y

For the case (b), suppose that

1
lim dp ( ———— 2, .
i E(HdE(o,xn)“’ x)ﬂ

We will get a contradiction. Choose a subsequence {y,} of {z,} such that

1
- in (B*,dg).
T+ 0" —y#x in ( B)

Since h is continuous and injective, we have

yn = h (mﬁ S h(y) £ h(z) =x i (BF,p).

Therefore lim,, o, p(¥n, %) # 0. This is a contradiction. |

4 A compactification of (R?, dg) which is not equiv-
alent to the standard compactification

Two compactifications Y7 and Y5 of a topological space X are called equivalent
if there exists a homeomorphism h : Y7 — Y3 such that h(z) = z for all z € X.
Recall that s > 2. In this section, we construct a compactification of (R*,dg)
which is homeomorphic to the closed unit ball (B*,dg), but not equivalent to
the standard compactification (R*, py) in Section Bl We define a nonnegative
symmetric function ¢ : R® x R* — R as follows. Choose 0 < 0 < 7 and let

At = {:c €5 | ZxOa; < 5}, A = {ZZT €51 | AxO(—al) < 5},
where a; = (1,0,---,0) and —a; = (—1,0,---,0) € R*. For each z € Sy, let

P, = {tay +t'z € R® | t,t' € R}.

13



We define an infinite ray L, C P, starting from z as follows. See Figure[I]

where
T

0= (LzOa; —§).

T —29

Figure 1: L,
{z+ta; |t >0} ifze At
L,= {z+ta; |t <0} ifre A”

{z,y e Pp | Ly — x)0a; = T (Lx0a; — )} ifze S1\(ATUAT)
and let L ={L, | z € S1}. Notice that
(i) If ZzOa; = §, then L, = {tx |t > 1}.

(ii) For all € Sy, the angle between two rays L, and {¢tx | ¢ > 1} is not
greater than §.

(iii) For all y € R® with dg(O,y) > 1, there exists unique ray in L which is
through y.

For all p,q € N, let hy, 4 : Sp — Sq be the homeomorphism defined by
hp.q(x) = the intersection of S, and the ray in L which is through z.

In particular, we have h, ,(z) = x, and if h, 4(x) = y then hy,(y) = z. The
nonnegative symmetric function 1 is defined as follows.

Definition 4.1

0 if hpq(x) =1y for somep,q e N
Y(z,y) =< dig (hm1(®),hm1(y)) if x,y € Sy for some m € N
dr(x,y) otherwise.

14



Similarly as in Section [ we can show that (R*,d¥) = (Rs,dﬁ’o) is to-
tally bounded, and its completion (R#, py) is homeomorphic to (B®,dg) by the
following homeomorphism h : (B®,dg) — (R, py),

- dE( 5 if dg(0,2) < 3
Yy € = such that

h(z) = dE(O ° dp(0,2)—
)

=0 = Ta 05 % if £ <dg(0,z) <1
{h1i(x) if dg(O,x) = 1.

Suppose that A, B C R*. Let
dg(A,B) =inf{dg(z,y) | x € A, y € B}.

In spherical coordinate system the distance between (p1, ¢1,61) and (p2, P2, 62)
is

\/P% + p3 — 2p1p2{sin ¢1 sin ¢g cos(f1 — 2) + cos dy cos o} (14)
The following two Lemmas are useful to show that h is a homeomorphism.

Lemma 4.1 Suppose that x,y € S1. Then

1
dg(Lz, Ly) > —=

di(z,y).

Proof.

Figure 2: Since 0 < a <6 < Z, we have Z < 8 < 2%

We may assume that x = y. Since there exists a 3-dimensional subspace which
contains O, a;, —aj, = and y, we may assume that R® = R3. In spherical coor-
dinates (p, ¢,0), let O = (0,0,0), a; = (1,0,0), —a; = (1,7,0), x = (1, ¢1,61)
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and y = (1, ¢2,02). By exchanging  and y if necessary, we may assume that

os(msg and ¢y < ¢o.

Suppose that ¢o < §. Let z = (1,¢1,02) and w = (1,¢2,01).
dp(z,y) < dp(r,2) +de(

. Since
z,y) and dg(z,w) = dg(z,y), we have

1 1
dE(JJ,Z) > ng(:v,y) or dE((E,’lU) > ng((E,y)

If dg(z,2) > idg(z,y), let P be the plane containing = and z which is per-
pendicular to a;. Let L; be the projection of L, to the plane P and so is L}
Notice that we have

1

Suppose that dg(z,w) > Sdg(z,y). Let L} be the ray starting from z with the
same direction as L,,.

Since Lw = {(p7 (ba 91) | (p7 (ba 92) € LU}7 from €q. (IE)
and Figure 2] we have

1

dp(z,w) > 2—\/5 dg(z,y).

Sl

"
Lw

Lk
«
L
«
%k k
Ly
1
Ly
: us us
Figure 3 1<a<s 3

Suppose that ¢o > 7. Let P’ be the plane which contains the greatest circle
in S7 through the points « and y. Let z’ be the point on the greatest circle such

16



that -
207 = Zy02' < 5

Let L be the projection of L, to the plane P and so is L. Let
LY ={tz' | t > 1}.

Let L3* be the ray from x to the direction of L7, and so is L;*. From Figure[3]
we have

= dp(LY,L%) +dp(Li, LYY)
1 1

> —dg(z,?)+ —=dg(¢,

z 7 B(z,2') 7 e(z,y)

2

Lemma 4.2 Suppose that a,, < dg(O,2) < amy1. Let y be the intersection of
Sm and the ray in L which is through x. Then we have

11<\/§

cosd m+1 -~ m+1"

Proof. Recall that 0 < ¢ < §. From Figure @ the proof is trivial. |

Figure 4: f<a<d< 7§

The following Lemma is also useful to show that h is a homeomorphism.
Similarly as Lemma B.3] we can prove this lemma.

17



Lemma 4.3 Suppose that dg(O,z) > 1 and dg(O,y) > 1. Suppose also
that x € Ly and y € Ly with o',y € S1. Let (zo,21, -+, &m) € Ty, with
dr(O,z;) <1 for all1 <i<m—1. Then

Z §Y(2io1,2:) > dp (L, Ly) -
i=1

Now we show that the compactification (R, py) of (R®,dg) is not equivalent
to the standard compactification (R#, py) in Section [Bl

Proposition 4.1 (R, py) and (R, pg) are not equivalent compactifications.

Proof. Suppose that they are equivalent. There exists a homeomorphism
h: (R, py) = (R?, py)
such that h(z) = z for all z € R®. Choose a point by € S such that
)

LblOal = 5

Let a = {a;} and b = {b;}, where
a; = hl,i(al) = (ai,O, . -,0) and bl = h17i(b1)

for all i € N. Notice that

for all 3.

N

1)
sin§ S dE(ai,bi) S

Suppose that (zg,Z1,**,Tm) € Ta; b;- Using Lemma 1] and @3] we can
show that

m

1 1 )
5% (x4 ,x;) > ——=dg(a;,by) > ——=sin= > 0.
; (i1, ;) o e(ai, by) o) 5

Therefore ) 5
d¥(a;,b;) > —— sing for all 4,

22
and hence py(a,b) # 0. Thus a # b in (R?, py).
But we have

po(h(a),h(b)) = lim py(h(ai), h(bi))
b;)
b;)
lim 6%(ay, b;)

71— 00

i—00

)
= lim d%(a,,
1—00

(
= lim py(a

(a

(

IN

IN
5

1 1 1
—d ’i;b’i
(1+ai+ai B(@ )+1+ai>

. 2 n 1)
i—oo \ 1+ a; 2a;

18
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Therefore h(a) = h(b) in (R, py). This is a contradiction. i
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