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Abstract

Let (X, d) be a metric space and m ∈ X. Suppose that φ : X×X → R

is a nonnegative symmetric function. We define a metric dφ,m on X which
is equivalent to d. If dφ,m is totally bounded, its completion is a compact-
ification of (X, d). As examples, we construct two compactifications of
(Rs, dE), where dE is the Euclidean metric and s ≥ 2.
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1 The metric dφ,m

Let (X, d) be a metric space and m ∈ X . Suppose that φ : X × X → R is a
nonnegative symmetric function. As usual, two metrics d1 and d2 on a set X
are called equivalent if (X, d1) and (X, d2) are homeomorphic. In this section,
we will define a metric dφ,m on X which is equivalent to d.

For each x, y ∈ X , let

δφ,m(x, y) = min

{

d(x, y),
1

1 + d(m,x)
+ φ(x, y) +

1

1 + d(m, y)

}

.

And for each x, y ∈ X and n ∈ N, let

Γnx,y = { (x0, · · · , xn) | x0 = x, xn = y and xi ∈ X for all i }

and
Γx,y =

⋃

n∈N

Γnx,y.

Notice that Γx,y 6= ∅ for all x, y ∈ X . In the following definition, the infimum
runs over all elements of Γx,y.
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Definition 1.1 Suppose that x, y ∈ X. Let

dφ,m(x, y) = inf
Γx,y

n
∑

i=1

δφ,m(xi−1, xi). (1)

For the sake of simplicity, we will simply write dφ, δφ to denote dφ,m, δφ,m

respectively. In particular, we write eq. (1) as

dφ(x, y) = inf
Γx,y

n
∑

i=1

δφ(xi−1, xi).

Notice that (x, y) ∈ Γx,y, and therefore

dφ(x, y) = inf
Γx,y

n
∑

i=1

δφ(xi−1, xi) ≤ δφ(x, y) ≤ d(x, y). (2)

Notice also that dφ is nonnegative. Therefore from eq. (2), we have

dφ(x, x) = 0 for all x ∈ X. (3)

The following subset ∆x,y of Γx,y is useful in the proof of Lemma 1.1.

∆x,y = { (x0, · · · , xn) ∈ Γx,y | δφ(xi−1, xi) 6= d(xi−1, xi) for some 1 ≤ i ≤ n }.

Lemma 1.1 Suppose that dφ(x, y) 6= d(x, y). Then

dφ(x, y) ≥ 1

2(1 + d(m,x))
.

Proof. Suppose that dφ(x, y) 6= d(x, y). By eq. (3) we have x 6= y, and by eq.
(2) we have

dφ(x, y) < d(x, y). (4)

If (x0, · · · , xn) ∈ Γx,y −∆x,y, then

n
∑

i=1

δφ(xi−1, xi) =
n
∑

i=1

d(xi−1, xi) ≥ d(x, y).

Therefore from eq. (4), we have ∆x,y 6= ∅ and

dφ(x, y) = inf
∆x,y

n
∑

i=1

δφ(xi−1, xi). (5)

Suppose that (x0, · · · , xn) ∈ ∆x,y. Let k be the smallest integer such that
δφ(xk, xk+1) 6= d(xk, xk+1). Notice that if k ≥ 1 then

δφ(xi−1, xi) = d(xi−1, xi) for all 1 ≤ i ≤ k.
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If d(x0, xk) ≥ 1 + d(m,x0) then we have k ≥ 1, and therefore

n
∑

i=1

δφ(xi−1, xi) ≥
k

∑

i=1

δφ(xi−1, xi)

=

k
∑

i=1

d(xi−1, xi)

≥ d(x0, xk)

≥ 1 + d(m,x0)

= 1 + d(m,x). (6)

If d(x0, xk) < 1 + d(m,x0) then

1 + d(m,xk) ≤ 1 + d(m,x0) + d(x0, xk) < 2 + 2d(m,x0).

Therefore
n
∑

i=1

δφ(xi−1, xi) ≥ δφ(xk, xk+1)

=
1

1 + d(m,xk)
+ φ(xk, xk+1) +

1

1 + d(m,xk+1)

>
1

1 + d(m,xk)

>
1

2(1 + d(m,x0))

=
1

2(1 + d(m,x))
. (7)

Hence from eq. (5), (6) and (7), we have

dφ(x, y) ≥ min

{

1 + d(m,x),
1

2(1 + d(m,x))

}

=
1

2(1 + d(m,x))
.

Now we show that dφ is a metric on X .

Theorem 1.1 dφ is a metric on X.

Proof. From eq. (1) and (3), recall that dφ is nonnegative and dφ(x, x) = 0
for all x ∈ X . Suppose that dφ(x, y) = 0. By Lemma 1.1, we have d(x, y) =
dφ(x, y) = 0. Thus x = y.

Suppose that x, y ∈ X . Notice that (x0, x1, · · · , xn) ∈ Γx,y if and only if
(xn, xn−1, · · · , x0) ∈ Γy,x. Since φ is symmetric, so is δφ. Therefore

n
∑

i=1

δφ(xi−1, xi) =
n
∑

i=1

δφ(xn+1−i, xn−i) for all (x0, x1, · · · , xn) ∈ Γx,y.
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Hence dφ(x, y) = dφ(y, x).
Suppose that x, y, z ∈ X and ǫ > 0. There exist (x0, x1, · · · , xn) ∈ Γx,y and

(y0, y1, · · · , ym) ∈ Γy,z such that

n
∑

i=1

δφ(xi−1, xi) < dφ(x, y) +
ǫ

2
and

m
∑

j=1

δφ(yj−1, yj) < dφ(y, z) +
ǫ

2
.

Notice that (x0, · · · , xn = y = y0, · · · , ym) ∈ Γx,z. Therefore

dφ(x, z) ≤
n
∑

i=1

δφ(xi−1, xi) +

m
∑

j=1

δφ(yj−1, yj)

< dφ(x, y) +
ǫ

2
+ dφ(y, z) +

ǫ

2

= dφ(x, y) + dφ(y, z) + ǫ.

Since ǫ is arbitrary, we have dφ(x, z) ≤ dφ(x, y) + dφ(y, z).

By the following lemma, the identity map from (X, dφ) to (X, d) is continu-
ous.

Lemma 1.2 For all x ∈ X, there exists an open ball Bx in (X, dφ), with center

x, such that dφ(y, z) = d(y, z) for all y, z ∈ Bx.

Proof. For each x ∈ X , let

Bx =

{

y ∈ X | dφ(y, x) < 1

8(1 + d(m,x))

}

.

Suppose that y ∈ Bx. By Lemma 1.1, we have dφ(x, y) = d(x, y), and therefore

d(m, y) ≤ d(m,x) + d(x, y)

= d(m,x) + dφ(x, y)

< d(m,x) +
1

8(1 + d(m,x))

< d(m,x) + 1 + d(m,x)

= 1 + 2d(m,x). (8)

Suppose that y, z ∈ Bx. From eq. (8), we have 1 + d(m, y) < 2 + 2d(m,x).
Therefore

dφ(y, z) ≤ dφ(y, x) + dφ(x, z)

<
1

8(1 + d(m,x))
+

1

8(1 + d(m,x))

=
1

4(1 + d(m,x))

<
1

2(1 + d(m, y))
.
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Hence by Lemma 1.1, we have dφ(y, z) = d(y, z).

By the following corollary, dφ is equivalent to d for all φ and m.

Corollary 1.1 The identity map from (X, dφ) to (X, d) is a homeomorphism.

Proof. By eq. (2) and Lemma 1.2, it is trivial.

2 The compactification

A compactification of a topological space X is a compact Hausdorff space Y
containing X as a subspace such that X = Y . It is known that every metric
space has a compactification (see [6], §38). With the equivalent metric in the
previous section, we are able to construct various compactifications of a metric
space.

Let (X, d) be a metric space. Suppose that m ∈ X and φ : X ×X → R is a
nonnegative symmetric function. To get a compactification, we assume that

(X, dφ) = (X, dφ,m) is totally bounded,

ie. there is a finite covering by ǫ balls for every ǫ > 0. Then our compactification
of (X, d) is the completion (X, ρ) of the totally bounded metric space (X, dφ).

Notice that X is a dense subset of X and (X, ρ) is a compact metric space
(see [6], §45 and [3], §XIV.3 for details). X can be considered as the set of equiv-
alence classes of all Cauchy sequences in (X, dφ) with the equivalence relation
(see [4], §V.7)

xi ∼ yi if and only if lim
i→∞

dφ(xi, yi) = 0,

where a point x in X is identified to the equivalence class of constant Cauchy
sequence {x}.

Suppose that {xi}, {yi} ∈ X. The metric ρ is given by

ρ({xi}, {yi}) = lim
i→∞

dφ(xi, yi).

In particular, we have

ρ({x}, {y}) = dφ(x, y) for all x, y ∈ X.

In 2002, the author had tried to apply this compactification to the research
on the tameness conjecture of Marden([5]) which was proved by Agol([1]) and
Calegari-Gabai([2]) in 2004, independently. The author think that the com-
pactification could be useful in the study of Teichmüller space. In the next two
sections, we apply the compactification to the Euclidean metric space Rs with
s ≥ 2.
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3 The standard compactification of (Rs, dE)

Let O = (0, · · · , 0) ∈ Rs. We write dE to denote the Euclidean metric on Rs. In
this section, as an example of the compactification in Section 2, we construct a
compactification of (Rs, dE), which will be called the standard compactification,
which is homeomorphic to the Euclidean closed unit ball

Bs = {x ∈ Rs | dE(O, x) ≤ 1}.

Notice that we need to define a nonnegative symmetric function φ : Rs×Rs → R

such that
(Rs, dφ) = (Rs, dφ,OE )

is totally bounded, where we wrote dφ to denote dφ,OE for the sake of simplicity.
For all m ∈ N, let

am = 1 +
1

2
+ · · ·+ 1

m

and
Sm = {x ∈ Rs | dE(O, x) = am}.

Note that am is an increasing sequence and limm→∞ am = ∞.
For all p, q ∈ N, let hp,q : Sp → Sq be the homeomorphism defined by

hp,q(x) =
aq
ap
x for all x ∈ Sp.

Notice that if hp,q(x) = y then hq,p(y) = x. We define the nonnegative sym-
metric function φ as follows.

Definition 3.1

φ(x, y) =











0 if hp,q(x) = y for some p, q ∈ N
1
am

dE(x, y) = dE

(

x
am
, y
am

)

if x, y ∈ Sm for some m ∈ N

dE(x, y) otherwise

Suppose that x ∈ Rs and r > 0. We write Br(x) to denote the Euclidean
open ball with center x and radius r, and Bφr (x) to denote the open ball in
(Rs, dφ). Now we show that (Rs, dφ) is totally bounded.

Lemma 3.1 (Rs, dφ) is totally bounded.

Proof. Let ǫ > 0. We may assume that ǫ < 1. Choose k ∈ N such that

1

1 + k
<
ǫ

4
and

1

1 + ak
<
ǫ

4
, (9)

and let
Bk+1 = {x ∈ Rs | dE(O, x) ≤ ak+1} .
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Since Bk+1 is compact in (Rs, dE), so is in (Rs, dφ) by Corollary 1.1. Therefore
we can cover Bk+1 with finite number of ǫ-balls in (Rs, dφ). Notice that Sk ⊂
Bk+1. Since Sk is also compact in (Rs, dE), we can cover Sk with finite number
of Euclidean ǫ

4 -balls with centers x1, x2, · · · , xN ∈ Sk. From eq. (2), we have

Sk ⊂
N
⋃

i=1

B ǫ
4
(xi) ⊂

N
⋃

i=1

Bǫ(xi) ⊂
N
⋃

i=1

Bφǫ (xi).

Note that if z ∈ Sk then there exists xi ∈ {x1, x2, · · · , xN} ⊂ Sk such that

dE(z, xi) <
ǫ

4
.

To show that (Rs, dφ) is totally bounded, it is enough to show that if x /∈
Bk+1 then there exists xi ∈ {x1, x2, · · · , xN} such that dφ(x, xi) < ǫ. Suppose
that x /∈ Bk+1. There exists m ∈ N such that

am ≤ dE(O, x) < am+1.

Since x /∈ Bk+1, we have k < m. Let

y =
am

dE(O, x)
x ∈ Sm.

From eq. (9), we have

dE(x, y) <
1

1 +m
<

1

1 + k
<
ǫ

4
. (10)

Let z be the point in Sk such that hk,m(z) = y. Choose xi ∈ {x1, x2, · · · , xN}
such that

dE(z, xi) <
ǫ

4
. (11)

From eq. (2), (9), (10) and (11), we have

dφ(x, xi) ≤ dφ(x, y) + dφ(y, z) + dφ(z, xi)

≤ dE(x, y) + δφ(y, z) + dE(z, xi)

<
ǫ

4
+

1

1 + am
+

1

1 + ak
+
ǫ

4
< ǫ.

Since (Rs, dφ) is totally bounded, its completion (Rs, ρ) = (Rs, ρφ) is a
compactification of (Rs, dE), where we wrote simply ρ to denote ρφ for the sake
of simplicity. Recall that an element of (Rs, ρ) is an equivalence class of Cauchy
sequence in (Rs, dφ), where two Cauchy sequences {xi} and {yi} are equivalent
if and only if

lim
i→∞

dφ(xi, yi) = 0.
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Notice that if {xi} is a Cauchy sequence in (Rs, dφ) which converges to x, then
{xi} and the constant Cauchy sequence {x} are equivalent. Notice also that if
{yi} is a subsequence of a Cauchy sequence {xi}, then they are equivalent.

Since for all x ∈ S1, we have

dφ(aix, ajx) ≤ δφ(aix, ajx) ≤
1

1 + ai
+

1

1 + aj
,

it is clear that {aix} is a Cauchy sequence in (Rs, dφ). By Lemma 1.1, we can
show that {aix} is not equivalent to any constant Cauchy sequence (see the
proof of Lemma 3.4). Furthermore, we have

Lemma 3.2 If {xi} is a Cauchy sequence in (Rs, dφ) which is not equivalent

to a constant Cauchy sequence, then it is equivalent to {aix} for some x ∈ S1.

Proof. Suppose that {xi} is a Cauchy sequence in (Rs, dφ) which is not equiv-
alent to a constant Cauchy sequence. If {xi} is bounded in (Rs, dE), then it
has a convergent subsequence {yi}, which converges to a point y in (Rs, dE).
Notice that {yi} converges to y in (Rs, dφ), too. Therefore {xi} is equivalent to
{yi}, and hence to the constant Cauchy sequence {y}. This is a contradiction.

Since {xi} is unbounded in (Rs, dE), we can choose a subsequence of xi,
which we will call xi again, such that

0 < dE(O, xi) < dE(O, xi+1) for all i ∈ N

and there exists at most one xi such that

am ≤ dE(O, xi) < am+1

for each m ∈ N. Notice that m→ ∞ as i→ ∞. Since

1

dE(O, xi)
xi ∈ S1

for all i ∈ N and (S1, dE) is compact, xi has a subsequence, which we will call
xi again, such that

xi
dE(O, xi)

converges to x for some x ∈ S1.

Suppose that am ≤ dE(O, xi) < am+1. Let yi = amx. Notice that {yi} is a
subsequence of {aix}. Let

zi =
am

dE(O, xi)
xi.

Since dE(xi, zi) ≤ 1
m+1 , we have

lim
i→∞

dφ(xi, yi)

≤ lim
i→∞

(

dφ(xi, zi) + dφ(zi, yi)
)

8



≤ lim
i→∞

(

dE(xi, zi) + δφ(zi, yi)
)

≤ lim
i→∞

(

1

1 +m
+

1

1 + am
+ dE

(

xi
dE(O, xi)

, x

)

+
1

1 + am

)

= 0.

Therefore {xi} and {yi} are equivalent, and thus {xi} is equivalent to {aix}.

To show that (Rs, ρ) is homeomorphic to (Bs, dE), we define a function

h : (Bs, dE) → (Rs, ρ)

as follows.

h(x) =

{ 1
1−dE(O,x) x (the constant Cauchy sequence) if dE(O, x) < 1

{aix} if dE(O, x) = 1

Notice that

h

(

1

1 + dE(O, y)
y

)

= y

for all y ∈ Rs. Therefore from Lemma 3.2, it is clear that h is surjective. We
will need the following lemma to show that h is injective.

Lemma 3.3 Suppose that dE(O, x) ≥ 1 and dE(O, y) ≥ 1. Let (x0, x1, · · · , xm) ∈
Γx,y with dE(O, xi) < 1 for all 1 ≤ i ≤ m− 1. Then

m
∑

i=1

δφ(xi−1, xi) ≥ dE

(

x

dE(O, x)
,

y

dE(O, y)

)

.

Proof. Notice that we may assume

x

dE(O, x)
6= y

dE(O, y)
.

If m = 1 then

m
∑

i=1

δφ(xi−1, xi)

= δφ(x, y)

= min

{

dE(x, y),
1

1 + dE(O, x)
+ φ(x, y) +

1

1 + dE(O, y)

}

≥ min

{

dE(x, y),
1

1 + dE(O, x)
+ dE

(

x

dE(O, x)
,

y

dE(O, y)

)

+
1

1 + dE(O, y)

}

≥ dE

(

x

dE(O, x)
,

y

dE(O, y)

)

.
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Suppose that m 6= 1. Notice that

δφ(xi−1, xi) = dE(xi−1, xi) for all 1 ≤ i ≤ m

and therefore

m
∑

i=1

δφ(xi−1, xi) ≥
m
∑

i=1

dE(xi−1, xi) ≥ dE(x, y) ≥ dE

(

x

dE(O, x)
,

y

dE(O, y)

)

.

Now we show that h is injective.

Lemma 3.4 h is injective.

Proof. Suppose that h(x) = h(y). We will show that x = y. If dE(O, x) < 1
and dE(O, y) < 1, then

1

1− dE(O, x)
x =

1

1− dE(O, y)
y (12)

and therefore

1

1− dE(O, x)
dE(O, x) =

1

1− dE(O, y)
dE(O, y).

Hence dE(O, x) = dE(O, y). Thus from eq. (12), we have x = y.
If dE(O, x) = 1 and dE(O, y) = 1, then the Cauchy sequences {aix} and

{aiy} are equivalent. Suppose that x 6= y. We will get a contradiction. Let

(x0, x1, · · · , xm) ∈ Γaix,aiy.

Using Lemma 3.3, we can show that

m
∑

i=1

δφ(xi−1, xi) ≥ dE(x, y).

and therefore
dφ(aix, aiy) ≥ dE(x, y) > 0 for all i. (13)

Hence limi→∞ dφ(aix, aiy) 6= 0. This is a contradiction.
Suppose that dE(O, x) < 1, dE(O, y) = 1 and

lim
i→∞

dφ
(

1

1− dE(O, x)
x, aiy

)

= 0.

We will get a contradiction. Notice that if i is large enough, then

dφ
(

1

1− dE(O, x)
x, aiy

)

6= dE

(

1

1− dE(O, x)
x, aiy

)

.
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Therefore by Lemma 1.1, for large enough i, we have

dφ
(

1

1− dE(O, x)
x, aiy

)

≥ 1

2
(

1 + dE

(

O, 1
1−dE(O,x)x

)) > 0.

Hence

lim
i→∞

dφ
(

1

1− dE(O, x)
x, aiy

)

6= 0.

This is a contradiction.

Since h is bijective, we can consider its inverse function. Recall Lemma 3.2
and let

k : (Rs, ρ) → (Bs, dE)

be the function defined by

k({xi}) =
{ 1

1+dE(O,x) x if {xi} = {x} is a constant Cauchy sequence

x if xi = aix for some x ∈ S1.

It is easy to show that k is the inverse function of h. In the following
two lemmas, we will show that h and k are continuous. Therefore (Rs, ρ) is
homeomorphic to (Bs, dE).

Lemma 3.5 h is continuous.

Proof. Suppose that xn → x in (Bs, dE). We will show that h(xn) → h(x)
in (Rs, ρ). If dE(O, x) < 1, then it is trivial to show that h(xn) → h(x) in
(Rs, dE). Therefore from eq. (2), we have h(xn) → h(x) in (Rs, dφ), and hence
in (Rs, ρ).

Suppose that dE(O, x) = 1. Notice that it is enough to consider only the
following two cases,

(a) dE(O, xn) = 1 for all n

(b) dE(O, xn) < 1 for all n.

For the case (a), we have

ρ(h(xn), h(x)) = lim
i→∞

dφ(aixn, aix)

≤ lim
i→∞

(

1

1 + ai
+ dE(xn, x) +

1

1 + ai

)

= dE(xn, x).

Therefore if xn → x in (Bs, dE), then h(xn) → h(x) in (Rs, ρ).
For the case (b), if

am ≤ dE(O, h(xn)) = dE

(

O,
1

1− dE(O, xn)
xn

)

< am+1,

11



let
zn =

am
dE(O, h(xn))

h(xn) =
am

dE(O, xn)
xn.

Notice that zn ∈ Sm, and m→ ∞ as n→ ∞. Therefore from eq. (2), we have

lim
n→∞

ρ(h(xn), h(x))

= lim
n→∞

lim
i→∞

dφ(h(xn), aix)

≤ lim
n→∞

lim
i→∞

(

dφ(h(xn), zn) + dφ(zn, amx) + dφ(amx, aix)
)

≤ lim
n→∞

lim
i→∞

(

dE(h(xn), zn) + δφ(zn, amx) + δφ(amx, aix)
)

≤ lim
n→∞

lim
i→∞

(

1

1 +m
+

1

1 + am
+ dE

(

h(xn)

dE(O, h(xn))
, x

)

+
1

1 + am

+
1

1 + am
+

1

1 + ai

)

≤ lim
n→∞

dE

(

xn
dE(O, xn)

, x

)

= 0.

Therefore h(xn) → h(x) as n→ ∞.

Lemma 3.6 k is continuous.

Proof. Suppose that xn = {xn,i} converges to x = {xi} in (Rs, ρ). We will
show that k(xn) converges to k(x) in (Bs, dE).

Suppose that x is equivalent to a constant Cauchy sequence {x} in (Rs, dφ).
If xn is equivalent to {aixn} with xn ∈ S1 for infinitely many n, then choose
a subsequence of xn, which we will call xn again, such that xn = {aixn} with
xn ∈ S1. Notice that there exists I > 0, which does not depend on n, such that

dE(aixn, x) ≥
1

2(1 + dE(O, x))
for all i > I.

Therefore by Lemma 1.1, we have

dφ(aixn, x) ≥
1

2(1 + dE(O, x))
for all i > I.

Hence xn does not converges to x in (Rs, ρ). This is a contradiction. Therefore
xn = {xn} is a constant Cauchy sequence in (Rs, dφ) for large enough n. Since
xn converges to x in (Rs, dφ), by Corollary 1.1, xn converges to x in (Rs, dE).
Therefore

k(xn) =
1

1 + dE(O, xn)
xn converges to k(x) =

1

1 + dE(O, x)
x.
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If x = {xi} is not equivalent to a constant Cauchy sequence in (Rs, dφ),
then by Lemma 3.2, we may assume xi = aix for some x ∈ S1. Notice that we
may consider only the following two cases.

(a) For all n, xn,i = aixn for some xn ∈ S1.

(b) For all n, xn = {xn} is a constant Cauchy sequence.

For the case (a), from eq. (13) we have

0 = lim
n→∞

ρ(xn,x)

= lim
n→∞

lim
i→∞

dφ(aixn, aix)

≥ lim
n→∞

dE(xn, x)

= lim
n→∞

dE(k(xn), k(x)).

For the case (b), suppose that

lim
n→∞

dE

(

1

1 + dE(O, xn)
xn, x

)

6= 0.

We will get a contradiction. Choose a subsequence {yn} of {xn} such that

1

1 + dE(O, yn)
yn → y 6= x in (Bs, dE).

Since h is continuous and injective, we have

yn = h

(

1

1 + dE(O, yn)
yn

)

→ h(y) 6= h(x) = x in (Rs, ρ).

Therefore limn→∞ ρ(yn,x) 6= 0. This is a contradiction.

4 A compactification of (Rs, dE) which is not equiv-

alent to the standard compactification

Two compactifications Y1 and Y2 of a topological space X are called equivalent
if there exists a homeomorphism h : Y1 → Y2 such that h(x) = x for all x ∈ X .
Recall that s ≥ 2. In this section, we construct a compactification of (Rs, dE)
which is homeomorphic to the closed unit ball (Bs, dE), but not equivalent to
the standard compactification (Rs, ρφ) in Section 3. We define a nonnegative
symmetric function ψ : Rs ×Rs → R as follows. Choose 0 < δ < π

4 and let

A+ = {x ∈ S1 | ∠xOa1 ≤ δ}, A− = {x ∈ S1 | ∠xO(−a1) ≤ δ},

where a1 = (1, 0, · · · , 0) and −a1 = (−1, 0, · · · , 0) ∈ Rs. For each x ∈ S1, let

Px = {ta1 + t′x ∈ Rs | t, t′ ∈ R}.

13



We define an infinite ray Lx ⊂ Px starting from x as follows. See Figure 1,
where

θ =
π

π − 2δ
(∠xOa1 − δ).

PSfrag replacements

O

Lx

Lx

x

x

y

a1

θ

δ

Figure 1: Lx

Lx =







{x+ ta1 | t ≥ 0} if x ∈ A+

{x+ ta1 | t ≤ 0} if x ∈ A−

{x, y ∈ Px | ∠(y − x)Oa1 = π
π−2δ (∠xOa1 − δ)} if x ∈ S1 \ (A+ ∪ A−)

and let L = {Lx | x ∈ S1}. Notice that

(i) If ∠xOa1 = π
2 , then Lx = {tx | t ≥ 1}.

(ii) For all x ∈ S1, the angle between two rays Lx and {tx | t ≥ 1} is not
greater than δ.

(iii) For all y ∈ Rs with dE(O, y) ≥ 1, there exists unique ray in L which is
through y.

For all p, q ∈ N, let hp,q : Sp → Sq be the homeomorphism defined by

hp,q(x) = the intersection of Sq and the ray in L which is through x.

In particular, we have hp,p(x) = x, and if hp,q(x) = y then hq,p(y) = x. The
nonnegative symmetric function ψ is defined as follows.

Definition 4.1

ψ(x, y) =







0 if hp,q(x) = y for some p, q ∈ N

dE (hm,1(x), hm,1(y)) if x, y ∈ Sm for some m ∈ N

dE(x, y) otherwise.
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Similarly as in Section 3, we can show that (Rs, dψ) = (Rs, dψ,OE ) is to-
tally bounded, and its completion (Rs, ρψ) is homeomorphic to (Bs, dE) by the
following homeomorphism h : (Bs, dE) → (Rs, ρψ),

h(x) =



















1
1−dE(O,x) x if dE(O, x) <

1
2

y ∈ L x
dE(O,x)

such that

dE

(

x
dE(O,x) , y

)

=
dE(O,x)− 1

2

1−dE(O,x) if 1
2 ≤ dE(O, x) < 1

{h1,i(x)} if dE(O, x) = 1.

Suppose that A,B ⊂ Rs. Let

dE(A,B) = inf{dE(x, y) | x ∈ A, y ∈ B}.

In spherical coordinate system the distance between (ρ1, φ1, θ1) and (ρ2, φ2, θ2)
is

√

ρ21 + ρ22 − 2ρ1ρ2{sinφ1 sinφ2 cos(θ1 − θ2) + cosφ1 cosφ2}. (14)

The following two Lemmas are useful to show that h is a homeomorphism.

Lemma 4.1 Suppose that x, y ∈ S1. Then

dE(Lx, Ly) ≥
1

2
√
2
dE(x, y).

Proof.

PSfrag replacements
a1

αβ

O

Lx
L∗

x

Lw

x

w
φ2

Figure 2: Since 0 ≤ α ≤ δ < π
4 , we have π

4 < β ≤ 3π
4 .

We may assume that x 6= y. Since there exists a 3-dimensional subspace which
contains O, a1, −a1, x and y, we may assume that Rs = R3. In spherical coor-
dinates (ρ, φ, θ), let O = (0, 0, 0), a1 = (1, 0, 0), −a1 = (1, π, 0), x = (1, φ1, θ1)

15



and y = (1, φ2, θ2). By exchanging x and y if necessary, we may assume that

0 ≤ φ1 ≤ π

2
and φ1 ≤ φ2.

Suppose that φ2 ≤ π
2 . Let z = (1, φ1, θ2) and w = (1, φ2, θ1). Since

dE(x, y) ≤ dE(x, z) + dE(z, y) and dE(x,w) = dE(z, y), we have

dE(x, z) ≥
1

2
dE(x, y) or dE(x,w) ≥

1

2
dE(x, y).

If dE(x, z) ≥ 1
2dE(x, y), let P be the plane containing x and z which is per-

pendicular to a1. Let L′

x be the projection of Lx to the plane P and so is L′

y.
Notice that we have

dE(Lx, Ly) ≥ dE(L
′

x, L
′

y) ≥ dE(x, z) ≥
1

2
dE(x, y).

Suppose that dE(x,w) ≥ 1
2dE(x, y). Let L

∗

x be the ray starting from x with the
same direction as Lw. Since Lw = {(ρ, φ, θ1) | (ρ, φ, θ2) ∈ Ly}, from eq. (14)
and Figure 2, we have

dE(Lx, Ly) ≥ dE(Lx, Lw) ≥ dE(L
∗

x, Lw) ≥
1√
2
dE(x,w) ≥

1

2
√
2
dE(x, y).

PSfrag replacements

α

α

O

L′′

x

L′′

y

L∗∗

x

L∗∗

y

L∗

z′

x
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z′

Figure 3: π
4 ≤ α ≤ π

2

Suppose that φ2 >
π
2 . Let P

′ be the plane which contains the greatest circle
in S1 through the points x and y. Let z′ be the point on the greatest circle such
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that
∠xOz′ = ∠yOz′ ≤ π

2
.

Let L′′

x be the projection of Lx to the plane P ′ and so is L′′

y . Let

L∗

z′ = {tz′ | t ≥ 1}.
Let L∗∗

x be the ray from x to the direction of L∗

z′ and so is L∗∗

y . From Figure 3,
we have

dE(Lx, Ly) ≥ dE(L
′′

x, L
′′

y)

≥ dE(L
∗∗, L∗∗

y )

= dE(L
∗∗

x , L
∗

z′) + dE(L
∗

z′ , L
∗∗

y )

≥ 1√
2
dE(x, z

′) +
1√
2
dE(z

′, y)

≥ 1√
2
dE(x, y).

Lemma 4.2 Suppose that am ≤ dE(O, x) < am+1. Let y be the intersection of

Sm and the ray in L which is through x. Then we have

dE(y, x) ≤
1

cos δ

1

m+ 1
≤

√
2

m+ 1
.

Proof. Recall that 0 < δ < π
4 . From Figure 4, the proof is trivial.

PSfrag replacements

α

β

O

Lz

x
y

z

S1 Sm Sm+1

δ

Figure 4: β < α ≤ δ < π
4

The following Lemma is also useful to show that h is a homeomorphism.
Similarly as Lemma 3.3, we can prove this lemma.
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Lemma 4.3 Suppose that dE(O, x) ≥ 1 and dE(O, y) ≥ 1. Suppose also

that x ∈ Lx′ and y ∈ Ly′ with x′, y′ ∈ S1. Let (x0, x1, · · · , xm) ∈ Γx,y with

dE(O, xi) < 1 for all 1 ≤ i ≤ m− 1. Then

m
∑

i=1

δψ(xi−1, xi) ≥ dE (Lx′ , Ly′) .

Now we show that the compactification (Rs, ρψ) of (R
s, dE) is not equivalent

to the standard compactification (Rs, ρφ) in Section 3.

Proposition 4.1 (Rs, ρψ) and (Rs, ρφ) are not equivalent compactifications.

Proof. Suppose that they are equivalent. There exists a homeomorphism

h : (Rs, ρψ) → (Rs, ρφ)

such that h(x) = x for all x ∈ Rs. Choose a point b1 ∈ S1 such that

∠b1Oa1 =
δ

2
.

Let a = {ai} and b = {bi}, where
ai = h1,i(a1) = (ai, 0, · · · , 0) and bi = h1,i(b1)

for all i ∈ N. Notice that

sin
δ

2
≤ dE(ai,bi) ≤

δ

2
for all i.

Suppose that (x0, x1, · · · , xm) ∈ Γai,bi
. Using Lemma 4.1 and 4.3, we can

show that
m
∑

i=1

δψ(xi−1, xi) ≥
1

2
√
2
dE(a1,b1) ≥

1

2
√
2
sin

δ

2
> 0.

Therefore

dψ(ai,bi) ≥
1

2
√
2
sin

δ

2
for all i,

and hence ρψ(a,b) 6= 0. Thus a 6= b in (Rs, ρψ).
But we have

ρφ(h(a), h(b)) = lim
i→∞

ρφ(h(ai), h(bi))

= lim
i→∞

ρφ(ai,bi)

= lim
i→∞

dφ(ai,bi)

≤ lim
i→∞

δφ(ai,bi)

≤ lim
i→∞

(

1

1 + ai
+

1

ai
dE(ai,bi) +

1

1 + ai

)

≤ lim
i→∞

(

2

1 + ai
+

δ

2ai

)

= 0.
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Therefore h(a) = h(b) in (Rs, ρφ). This is a contradiction.
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