Equivalent metrics and compactifications

Young Deuk Kim School of Mathematical Sciences Seoul National University Seoul, 151-747, Korea (ydkimus@yahoo.com)

November 20, 2018

Abstract

Let (X, d) be a metric space and $m \in X$. Suppose that $\phi : X \times X \to \mathbf{R}$ is a nonnegative symmetric function. We define a metric $d^{\phi,m}$ on X which is equivalent to d. If $d^{\phi,m}$ is totally bounded, its completion is a compactification of (X, d). As examples, we construct two compactifications of (\mathbf{R}^s, d_E) , where d_E is the Euclidean metric and $s \geq 2$.

key words. equivalent metric; completion; compactification Mathematics Subject Classifications (2000). 54E35, 54D35

1 The metric $d^{\phi,m}$

Let (X, d) be a metric space and $m \in X$. Suppose that $\phi : X \times X \to \mathbf{R}$ is a nonnegative symmetric function. As usual, two metrics d_1 and d_2 on a set X are called equivalent if (X, d_1) and (X, d_2) are homeomorphic. In this section, we will define a metric $d^{\phi,m}$ on X which is equivalent to d.

For each $x, y \in X$, let

$$\delta^{\phi,m}(x,y) = \min\left\{ d(x,y), \ \frac{1}{1+d(m,x)} + \phi(x,y) + \frac{1}{1+d(m,y)} \right\}$$

And for each $x, y \in X$ and $n \in \mathbf{N}$, let

$$\Gamma_{x,y}^{n} = \{ (x_0, \dots, x_n) \mid x_0 = x, x_n = y \text{ and } x_i \in X \text{ for all } i \}$$

and

$$\Gamma_{x,y} = \bigcup_{n \in \mathbf{N}} \Gamma_{x,y}^n.$$

Notice that $\Gamma_{x,y} \neq \emptyset$ for all $x, y \in X$. In the following definition, the infimum runs over all elements of $\Gamma_{x,y}$.

Definition 1.1 Suppose that $x, y \in X$. Let

$$d^{\phi,m}(x,y) = \inf_{\Gamma_{x,y}} \sum_{i=1}^{n} \delta^{\phi,m}(x_{i-1},x_i).$$
(1)

For the sake of simplicity, we will simply write d^{ϕ} , δ^{ϕ} to denote $d^{\phi,m}$, $\delta^{\phi,m}$ respectively. In particular, we write eq. (1) as

$$d^{\phi}(x,y) = \inf_{\Gamma_{x,y}} \sum_{i=1}^{n} \delta^{\phi}(x_{i-1},x_i).$$

Notice that $(x, y) \in \Gamma_{x,y}$, and therefore

$$d^{\phi}(x,y) = \inf_{\Gamma_{x,y}} \sum_{i=1}^{n} \delta^{\phi}(x_{i-1},x_i) \le \delta^{\phi}(x,y) \le d(x,y).$$
(2)

Notice also that d^{ϕ} is nonnegative. Therefore from eq. (2), we have

$$d^{\phi}(x,x) = 0 \quad \text{for all } x \in X. \tag{3}$$

The following subset $\Delta_{x,y}$ of $\Gamma_{x,y}$ is useful in the proof of Lemma 1.1.

$$\Delta_{x,y} = \{ (x_0, \cdots, x_n) \in \Gamma_{x,y} \mid \delta^{\phi}(x_{i-1}, x_i) \neq d(x_{i-1}, x_i) \text{ for some } 1 \le i \le n \}.$$

Lemma 1.1 Suppose that $d^{\phi}(x, y) \neq d(x, y)$. Then

$$d^{\phi}(x,y) \geq \frac{1}{2(1+d(m,x))}.$$

Proof. Suppose that $d^{\phi}(x, y) \neq d(x, y)$. By eq. (3) we have $x \neq y$, and by eq. (2) we have

$$d^{\phi}(x,y) < d(x,y). \tag{4}$$

If $(x_0, \dots, x_n) \in \Gamma_{x,y} - \Delta_{x,y}$, then

$$\sum_{i=1}^{n} \delta^{\phi}(x_{i-1}, x_i) = \sum_{i=1}^{n} d(x_{i-1}, x_i) \ge d(x, y).$$

Therefore from eq. (4), we have $\Delta_{x,y} \neq \emptyset$ and

$$d^{\phi}(x,y) = \inf_{\Delta_{x,y}} \sum_{i=1}^{n} \delta^{\phi}(x_{i-1},x_i).$$
 (5)

Suppose that $(x_0, \dots, x_n) \in \Delta_{x,y}$. Let k be the smallest integer such that $\delta^{\phi}(x_k, x_{k+1}) \neq d(x_k, x_{k+1})$. Notice that if $k \geq 1$ then

$$\delta^{\phi}(x_{i-1}, x_i) = d(x_{i-1}, x_i) \quad \text{for all } 1 \le i \le k.$$

If $d(x_0, x_k) \ge 1 + d(m, x_0)$ then we have $k \ge 1$, and therefore

$$\sum_{i=1}^{n} \delta^{\phi}(x_{i-1}, x_{i}) \geq \sum_{i=1}^{k} \delta^{\phi}(x_{i-1}, x_{i})$$

$$= \sum_{i=1}^{k} d(x_{i-1}, x_{i})$$

$$\geq d(x_{0}, x_{k})$$

$$\geq 1 + d(m, x_{0})$$

$$= 1 + d(m, x).$$
(6)

If $d(x_0, x_k) < 1 + d(m, x_0)$ then

$$1 + d(m, x_k) \le 1 + d(m, x_0) + d(x_0, x_k) < 2 + 2d(m, x_0)$$

Therefore

$$\sum_{i=1}^{n} \delta^{\phi}(x_{i-1}, x_{i}) \geq \delta^{\phi}(x_{k}, x_{k+1})$$

$$= \frac{1}{1+d(m, x_{k})} + \phi(x_{k}, x_{k+1}) + \frac{1}{1+d(m, x_{k+1})}$$

$$> \frac{1}{1+d(m, x_{k})}$$

$$> \frac{1}{2(1+d(m, x_{0}))}$$

$$= \frac{1}{2(1+d(m, x))}.$$
(7)

Hence from eq. (5), (6) and (7), we have

$$d^{\phi}(x,y) \ge \min\left\{1 + d(m,x), \frac{1}{2(1+d(m,x))}\right\} = \frac{1}{2(1+d(m,x))}.$$

Now we show that d^{ϕ} is a metric on X.

Theorem 1.1 d^{ϕ} is a metric on X.

Proof. From eq. (1) and (3), recall that d^{ϕ} is nonnegative and $d^{\phi}(x, x) = 0$ for all $x \in X$. Suppose that $d^{\phi}(x, y) = 0$. By Lemma 1.1, we have $d(x, y) = d^{\phi}(x, y) = 0$. Thus x = y.

Suppose that $x, y \in X$. Notice that $(x_0, x_1, \dots, x_n) \in \Gamma_{x,y}$ if and only if $(x_n, x_{n-1}, \dots, x_0) \in \Gamma_{y,x}$. Since ϕ is symmetric, so is δ^{ϕ} . Therefore

$$\sum_{i=1}^{n} \delta^{\phi}(x_{i-1}, x_i) = \sum_{i=1}^{n} \delta^{\phi}(x_{n+1-i}, x_{n-i}) \quad \text{for all } (x_0, x_1, \cdots, x_n) \in \Gamma_{x,y}.$$

Hence $d^{\phi}(x, y) = d^{\phi}(y, x)$.

Suppose that $x, y, z \in X$ and $\epsilon > 0$. There exist $(x_0, x_1, \dots, x_n) \in \Gamma_{x,y}$ and $(y_0, y_1, \dots, y_m) \in \Gamma_{y,z}$ such that

$$\sum_{i=1}^{n} \delta^{\phi}(x_{i-1}, x_i) < d^{\phi}(x, y) + \frac{\epsilon}{2} \quad \text{and} \quad \sum_{j=1}^{m} \delta^{\phi}(y_{j-1}, y_j) < d^{\phi}(y, z) + \frac{\epsilon}{2}.$$

Notice that $(x_0, \dots, x_n = y = y_0, \dots, y_m) \in \Gamma_{x,z}$. Therefore

$$d^{\phi}(x,z) \leq \sum_{i=1}^{n} \delta^{\phi}(x_{i-1},x_i) + \sum_{j=1}^{m} \delta^{\phi}(y_{j-1},y_j)$$
$$< d^{\phi}(x,y) + \frac{\epsilon}{2} + d^{\phi}(y,z) + \frac{\epsilon}{2}$$
$$= d^{\phi}(x,y) + d^{\phi}(y,z) + \epsilon.$$

Since ϵ is arbitrary, we have $d^{\phi}(x, z) \leq d^{\phi}(x, y) + d^{\phi}(y, z)$.

By the following lemma, the identity map from (X, d^{ϕ}) to (X, d) is continuous.

Lemma 1.2 For all $x \in X$, there exists an open ball B_x in (X, d^{ϕ}) , with center x, such that $d^{\phi}(y, z) = d(y, z)$ for all $y, z \in B_x$.

Proof. For each $x \in X$, let

$$B_x = \left\{ y \in X \mid d^{\phi}(y, x) < \frac{1}{8(1 + d(m, x))} \right\}.$$

Suppose that $y \in B_x$. By Lemma 1.1, we have $d^{\phi}(x, y) = d(x, y)$, and therefore

$$d(m,y) \leq d(m,x) + d(x,y) = d(m,x) + d^{\phi}(x,y) < d(m,x) + \frac{1}{8(1+d(m,x))} < d(m,x) + 1 + d(m,x) = 1 + 2d(m,x).$$
(8)

Suppose that $y, z \in B_x$. From eq. (8), we have 1 + d(m, y) < 2 + 2d(m, x). Therefore

$$\begin{array}{rcl} d^{\phi}(y,z) & \leq & d^{\phi}(y,x) + d^{\phi}(x,z) \\ & < & \displaystyle \frac{1}{8(1+d(m,x))} + \displaystyle \frac{1}{8(1+d(m,x))} \\ & = & \displaystyle \frac{1}{4(1+d(m,x))} \\ & < & \displaystyle \frac{1}{2(1+d(m,y))}. \end{array}$$

Hence by Lemma 1.1, we have $d^{\phi}(y, z) = d(y, z)$.

By the following corollary, d^{ϕ} is equivalent to d for all ϕ and m.

Corollary 1.1 The identity map from (X, d^{ϕ}) to (X, d) is a homeomorphism.

Proof. By eq. (2) and Lemma 1.2, it is trivial.

2 The compactification

A compactification of a topological space X is a compact Hausdorff space Y containing X as a subspace such that $\overline{X} = Y$. It is known that every metric space has a compactification (see [6], §38). With the equivalent metric in the previous section, we are able to construct various compactifications of a metric space.

Let (X, d) be a metric space. Suppose that $m \in X$ and $\phi : X \times X \to \mathbf{R}$ is a nonnegative symmetric function. To get a compactification, we assume that

 $(X, d^{\phi}) = (X, d^{\phi, m})$ is totally bounded,

ie. there is a finite covering by ϵ balls for every $\epsilon > 0$. Then our compactification of (X, d) is the completion (\overline{X}, ρ) of the totally bounded metric space (X, d^{ϕ}) .

Notice that X is a dense subset of \overline{X} and (\overline{X}, ρ) is a compact metric space (see [6], §45 and [3], §XIV.3 for details). \overline{X} can be considered as the set of equivalence classes of all Cauchy sequences in (X, d^{ϕ}) with the equivalence relation (see [4], §V.7)

$$x_i \sim y_i$$
 if and only if $\lim_{i \to \infty} d^{\phi}(x_i, y_i) = 0$,

where a point x in X is identified to the equivalence class of constant Cauchy sequence $\{x\}$.

Suppose that $\{x_i\}, \{y_i\} \in \overline{X}$. The metric ρ is given by

$$\rho(\{x_i\},\{y_i\}) = \lim_{i \to \infty} d^{\phi}(x_i,y_i).$$

In particular, we have

$$\rho(\{x\},\{y\})=d^{\phi}(x,y) \quad \text{for all } x,y\in X.$$

In 2002, the author had tried to apply this compactification to the research on the tameness conjecture of Marden([5]) which was proved by Agol([1]) and Calegari-Gabai([2]) in 2004, independently. The author think that the compactification could be useful in the study of Teichmüller space. In the next two sections, we apply the compactification to the Euclidean metric space \mathbf{R}^s with $s \geq 2$.

5

3 The standard compactification of (\mathbf{R}^s, d_E)

Let $O = (0, \dots, 0) \in \mathbf{R}^s$. We write d_E to denote the Euclidean metric on \mathbf{R}^s . In this section, as an example of the compactification in Section 2, we construct a compactification of (\mathbf{R}^s, d_E) , which will be called *the standard compactification*, which is homeomorphic to the Euclidean closed unit ball

$$B^{s} = \{ x \in \mathbf{R}^{s} \mid d_{E}(O, x) \le 1 \}.$$

Notice that we need to define a nonnegative symmetric function $\phi : \mathbf{R}^s \times \mathbf{R}^s \to \mathbf{R}$ such that

$$(\mathbf{R}^s, d^\phi) = (\mathbf{R}^s, d_E^{\phi, O})$$

is totally bounded, where we wrote d^{ϕ} to denote $d_E^{\phi,O}$ for the sake of simplicity.

For all $m \in \mathbf{N}$, let

$$a_m = 1 + \frac{1}{2} + \dots + \frac{1}{m}$$

and

$$S_m = \{ x \in \mathbf{R}^s \mid d_E(O, x) = a_m \}.$$

Note that a_m is an increasing sequence and $\lim_{m\to\infty} a_m = \infty$.

For all $p, q \in \mathbf{N}$, let $h_{p,q}: S_p \to S_q$ be the homeomorphism defined by

$$h_{p,q}(x) = \frac{a_q}{a_p} x$$
 for all $x \in S_p$.

Notice that if $h_{p,q}(x) = y$ then $h_{q,p}(y) = x$. We define the nonnegative symmetric function ϕ as follows.

Definition 3.1

$$\phi(x,y) = \begin{cases} 0 & \text{if } h_{p,q}(x) = y \text{ for some } p, q \in \mathbf{N} \\ \frac{1}{a_m} d_E(x,y) = d_E\left(\frac{x}{a_m}, \frac{y}{a_m}\right) & \text{if } x, y \in S_m \text{ for some } m \in \mathbf{N} \\ d_E(x,y) & \text{otherwise} \end{cases}$$

Suppose that $x \in \mathbf{R}^s$ and r > 0. We write $B_r(x)$ to denote the Euclidean open ball with center x and radius r, and $B_r^{\phi}(x)$ to denote the open ball in (\mathbf{R}^s, d^{ϕ}) . Now we show that (\mathbf{R}^s, d^{ϕ}) is totally bounded.

Lemma 3.1 (\mathbf{R}^s, d^{ϕ}) is totally bounded.

Proof. Let $\epsilon > 0$. We may assume that $\epsilon < 1$. Choose $k \in \mathbb{N}$ such that

$$\frac{1}{1+k} < \frac{\epsilon}{4} \quad \text{and} \quad \frac{1}{1+a_k} < \frac{\epsilon}{4},\tag{9}$$

and let

$$B_{k+1} = \{ x \in \mathbf{R}^s \mid d_E(O, x) \le a_{k+1} \}$$

Since B_{k+1} is compact in (\mathbf{R}^s, d_E) , so is in (\mathbf{R}^s, d^{ϕ}) by Corollary 1.1. Therefore we can cover B_{k+1} with finite number of ϵ -balls in (\mathbf{R}^s, d^{ϕ}) . Notice that $S_k \subset B_{k+1}$. Since S_k is also compact in (\mathbf{R}^s, d_E) , we can cover S_k with finite number of Euclidean $\frac{\epsilon}{4}$ -balls with centers $x_1, x_2, \dots, x_N \in S_k$. From eq. (2), we have

$$S_k \subset \bigcup_{i=1}^N B_{\frac{\epsilon}{4}}(x_i) \subset \bigcup_{i=1}^N B_{\epsilon}(x_i) \subset \bigcup_{i=1}^N B_{\epsilon}^{\phi}(x_i).$$

Note that if $z \in S_k$ then there exists $x_i \in \{x_1, x_2, \dots, x_N\} \subset S_k$ such that

$$d_E(z,x_i) < \frac{\epsilon}{4}.$$

To show that (\mathbf{R}^s, d^{ϕ}) is totally bounded, it is enough to show that if $x \notin B_{k+1}$ then there exists $x_i \in \{x_1, x_2, \dots, x_N\}$ such that $d^{\phi}(x, x_i) < \epsilon$. Suppose that $x \notin B_{k+1}$. There exists $m \in \mathbf{N}$ such that

$$a_m \le d_E(O, x) < a_{m+1}.$$

Since $x \notin B_{k+1}$, we have k < m. Let

$$y = \frac{a_m}{d_E(O, x)} \, x \in S_m$$

From eq. (9), we have

$$d_E(x,y) < \frac{1}{1+m} < \frac{1}{1+k} < \frac{\epsilon}{4}.$$
 (10)

Let z be the point in S_k such that $h_{k,m}(z) = y$. Choose $x_i \in \{x_1, x_2, \dots, x_N\}$ such that

$$d_E(z, x_i) < \frac{\epsilon}{4}.\tag{11}$$

From eq. (2), (9), (10) and (11), we have

$$d^{\phi}(x, x_i) \leq d^{\phi}(x, y) + d^{\phi}(y, z) + d^{\phi}(z, x_i)$$

$$\leq d_E(x, y) + \delta^{\phi}(y, z) + d_E(z, x_i)$$

$$< \frac{\epsilon}{4} + \frac{1}{1 + a_m} + \frac{1}{1 + a_k} + \frac{\epsilon}{4}$$

$$< \epsilon.$$

Since (\mathbf{R}^s, d^{ϕ}) is totally bounded, its completion $(\overline{\mathbf{R}^s}, \rho) = (\overline{\mathbf{R}^s}, \rho_{\phi})$ is a compactification of (\mathbf{R}^s, d_E) , where we wrote simply ρ to denote ρ_{ϕ} for the sake of simplicity. Recall that an element of $(\overline{\mathbf{R}^s}, \rho)$ is an equivalence class of Cauchy sequence in (\mathbf{R}^s, d^{ϕ}) , where two Cauchy sequences $\{x_i\}$ and $\{y_i\}$ are equivalent if and only if

$$\lim_{i \to \infty} d^{\phi}(x_i, y_i) = 0.$$

Notice that if $\{x_i\}$ is a Cauchy sequence in (\mathbf{R}^s, d^{ϕ}) which converges to x, then $\{x_i\}$ and the constant Cauchy sequence $\{x\}$ are equivalent. Notice also that if $\{y_i\}$ is a subsequence of a Cauchy sequence $\{x_i\}$, then they are equivalent.

Since for all $x \in S_1$, we have

$$d^{\phi}(a_{i}x, a_{j}x) \leq \delta^{\phi}(a_{i}x, a_{j}x) \leq \frac{1}{1+a_{i}} + \frac{1}{1+a_{j}},$$

it is clear that $\{a_ix\}$ is a Cauchy sequence in (\mathbf{R}^s, d^{ϕ}) . By Lemma 1.1, we can show that $\{a_ix\}$ is not equivalent to any constant Cauchy sequence (see the proof of Lemma 3.4). Furthermore, we have

Lemma 3.2 If $\{x_i\}$ is a Cauchy sequence in (\mathbf{R}^s, d^{ϕ}) which is not equivalent to a constant Cauchy sequence, then it is equivalent to $\{a_ix\}$ for some $x \in S_1$.

Proof. Suppose that $\{x_i\}$ is a Cauchy sequence in (\mathbf{R}^s, d^{ϕ}) which is not equivalent to a constant Cauchy sequence. If $\{x_i\}$ is bounded in (\mathbf{R}^s, d_E) , then it has a convergent subsequence $\{y_i\}$, which converges to a point y in (\mathbf{R}^s, d_E) . Notice that $\{y_i\}$ converges to y in (\mathbf{R}^s, d^{ϕ}) , too. Therefore $\{x_i\}$ is equivalent to $\{y_i\}$, and hence to the constant Cauchy sequence $\{y\}$. This is a contradiction.

Since $\{x_i\}$ is unbounded in (\mathbf{R}^s, d_E) , we can choose a subsequence of x_i , which we will call x_i again, such that

$$0 < d_E(O, x_i) < d_E(O, x_{i+1})$$
 for all $i \in \mathbf{N}$

and there exists at most one x_i such that

$$a_m \le d_E(O, x_i) < a_{m+1}$$

for each $m \in \mathbf{N}$. Notice that $m \to \infty$ as $i \to \infty$. Since

$$\frac{1}{d_E(O,x_i)}x_i \in S_1$$

for all $i \in \mathbf{N}$ and (S_1, d_E) is compact, x_i has a subsequence, which we will call x_i again, such that

$$\frac{x_i}{d_E(O, x_i)} \text{ converges to } x \text{ for some } x \in S_1.$$

Suppose that $a_m \leq d_E(O, x_i) < a_{m+1}$. Let $y_i = a_m x$. Notice that $\{y_i\}$ is a subsequence of $\{a_i x\}$. Let

$$z_i = \frac{a_m}{d_E(O, x_i)} x_i.$$

Since $d_E(x_i, z_i) \leq \frac{1}{m+1}$, we have

$$\lim_{i \to \infty} d^{\phi}(x_i, y_i)$$

$$\leq \lim_{i \to \infty} \left(d^{\phi}(x_i, z_i) + d^{\phi}(z_i, y_i) \right)$$

$$\leq \lim_{i \to \infty} \left(d_E(x_i, z_i) + \delta^{\phi}(z_i, y_i) \right)$$

$$\leq \lim_{i \to \infty} \left(\frac{1}{1+m} + \frac{1}{1+a_m} + d_E\left(\frac{x_i}{d_E(O, x_i)}, x\right) + \frac{1}{1+a_m} \right)$$

$$= 0.$$

Therefore $\{x_i\}$ and $\{y_i\}$ are equivalent, and thus $\{x_i\}$ is equivalent to $\{a_ix\}$.

To show that $(\overline{\mathbf{R}^s}, \rho)$ is homeomorphic to (B^s, d_E) , we define a function

$$h: (B^s, d_E) \to (\overline{\mathbf{R}^s}, \rho)$$

as follows.

$$h(x) = \begin{cases} \frac{1}{1 - d_E(O, x)} x \text{ (the constant Cauchy sequence)} & \text{if } d_E(O, x) < 1 \\ \{a_i x\} & \text{if } d_E(O, x) = 1 \end{cases}$$

Notice that

$$h\left(\frac{1}{1+d_E(O,y)}y\right) = y$$

for all $y \in \mathbf{R}^s$. Therefore from Lemma 3.2, it is clear that h is surjective. We will need the following lemma to show that h is injective.

Lemma 3.3 Suppose that $d_E(O, x) \ge 1$ and $d_E(O, y) \ge 1$. Let $(x_0, x_1, \dots, x_m) \in \Gamma_{x,y}$ with $d_E(O, x_i) < 1$ for all $1 \le i \le m - 1$. Then

$$\sum_{i=1}^m \delta^{\phi}(x_{i-1}, x_i) \ge d_E\left(\frac{x}{d_E(O, x)}, \frac{y}{d_E(O, y)}\right).$$

Proof. Notice that we may assume

$$\frac{x}{d_E(O,x)} \neq \frac{y}{d_E(O,y)}.$$

If m = 1 then

$$\sum_{i=1}^{m} \delta^{\phi}(x_{i-1}, x_{i})$$

$$= \delta^{\phi}(x, y)$$

$$= \min\left\{ d_{E}(x, y), \frac{1}{1 + d_{E}(O, x)} + \phi(x, y) + \frac{1}{1 + d_{E}(O, y)} \right\}$$

$$\geq \min\left\{ d_{E}(x, y), \frac{1}{1 + d_{E}(O, x)} + d_{E}\left(\frac{x}{d_{E}(O, x)}, \frac{y}{d_{E}(O, y)}\right) + \frac{1}{1 + d_{E}(O, y)} \right\}$$

$$\geq d_{E}\left(\frac{x}{d_{E}(O, x)}, \frac{y}{d_{E}(O, y)}\right).$$

Suppose that $m \neq 1$. Notice that

$$\delta^{\phi}(x_{i-1}, x_i) = d_E(x_{i-1}, x_i) \quad \text{for all } 1 \le i \le m$$

and therefore

$$\sum_{i=1}^{m} \delta^{\phi}(x_{i-1}, x_i) \ge \sum_{i=1}^{m} d_E(x_{i-1}, x_i) \ge d_E(x, y) \ge d_E\left(\frac{x}{d_E(O, x)}, \frac{y}{d_E(O, y)}\right).$$

Now we show that h is injective.

Lemma 3.4 h is injective.

Proof. Suppose that h(x) = h(y). We will show that x = y. If $d_E(O, x) < 1$ and $d_E(O, y) < 1$, then

$$\frac{1}{1 - d_E(O, x)} x = \frac{1}{1 - d_E(O, y)} y$$
(12)

and therefore

$$\frac{1}{1 - d_E(O, x)} d_E(O, x) = \frac{1}{1 - d_E(O, y)} d_E(O, y).$$

Hence $d_E(O, x) = d_E(O, y)$. Thus from eq. (12), we have x = y.

If $d_E(O, x) = 1$ and $d_E(O, y) = 1$, then the Cauchy sequences $\{a_i x\}$ and $\{a_i y\}$ are equivalent. Suppose that $x \neq y$. We will get a contradiction. Let

$$(x_0, x_1, \cdots, x_m) \in \Gamma_{a_i x, a_i y}.$$

Using Lemma 3.3, we can show that

$$\sum_{i=1}^{m} \delta^{\phi}(x_{i-1}, x_i) \ge d_E(x, y)$$

and therefore

$$d^{\phi}(a_i x, a_i y) \ge d_E(x, y) > 0 \quad \text{for all } i.$$
(13)

Hence $\lim_{i\to\infty} d^{\phi}(a_i x, a_i y) \neq 0$. This is a contradiction. Suppose that $d_E(O, x) < 1$, $d_E(O, y) = 1$ and

$$\lim_{i \to \infty} d^{\phi} \left(\frac{1}{1 - d_E(O, x)} x, a_i y \right) = 0.$$

We will get a contradiction. Notice that if i is large enough, then

$$d^{\phi}\left(\frac{1}{1-d_{E}(O,x)}x, a_{i}y\right) \neq d_{E}\left(\frac{1}{1-d_{E}(O,x)}x, a_{i}y\right).$$

Therefore by Lemma 1.1, for large enough i, we have

$$d^{\phi}\left(\frac{1}{1 - d_{E}(O, x)} x, a_{i}y\right) \geq \frac{1}{2\left(1 + d_{E}\left(O, \frac{1}{1 - d_{E}(O, x)}x\right)\right)} > 0.$$

Hence

$$\lim_{i \to \infty} d^{\phi} \left(\frac{1}{1 - d_E(O, x)} x, a_i y \right) \neq 0.$$

This is a contradiction.

Since h is bijective, we can consider its inverse function. Recall Lemma 3.2 and let

$$k: (\overline{\mathbf{R}^s}, \rho) \to (B^s, d_E)$$

be the function defined by

$$k(\{x_i\}) = \begin{cases} \frac{1}{1+d_E(O,x)}x & \text{if } \{x_i\} = \{x\} \text{ is a constant Cauchy sequence} \\ x & \text{if } x_i = a_ix \text{ for some } x \in S_1. \end{cases}$$

It is easy to show that k is the inverse function of h. In the following two lemmas, we will show that h and k are continuous. Therefore $(\overline{\mathbf{R}^s}, \rho)$ is homeomorphic to (B^s, d_E) .

Lemma 3.5 h is continuous.

Proof. Suppose that $x_n \to x$ in (B^s, d_E) . We will show that $h(x_n) \to h(x)$ in $(\overline{\mathbf{R}^s}, \rho)$. If $d_E(O, x) < 1$, then it is trivial to show that $h(x_n) \to h(x)$ in (\mathbf{R}^s, d_E) . Therefore from eq. (2), we have $h(x_n) \to h(x)$ in (\mathbf{R}^s, d^{ϕ}) , and hence in $(\overline{\mathbf{R}^s}, \rho)$.

Suppose that $d_E(O, x) = 1$. Notice that it is enough to consider only the following two cases,

- (a) $d_E(O, x_n) = 1$ for all n
- (b) $d_E(O, x_n) < 1$ for all n.

For the case (a), we have

$$\rho(h(x_n), h(x)) = \lim_{i \to \infty} d^{\phi}(a_i x_n, a_i x)$$

$$\leq \lim_{i \to \infty} \left(\frac{1}{1 + a_i} + d_E(x_n, x) + \frac{1}{1 + a_i} \right)$$

$$= d_E(x_n, x).$$

Therefore if $x_n \to x$ in (B^s, d_E) , then $h(x_n) \to h(x)$ in $(\overline{\mathbf{R}^s}, \rho)$. For the case (b), if

$$a_m \le d_E(O, h(x_n)) = d_E\left(O, \frac{1}{1 - d_E(O, x_n)}x_n\right) < a_{m+1},$$

$$z_n = \frac{a_m}{d_E(O, h(x_n))} h(x_n) = \frac{a_m}{d_E(O, x_n)} x_n.$$

Notice that $z_n \in S_m$, and $m \to \infty$ as $n \to \infty$. Therefore from eq. (2), we have

$$\begin{split} &\lim_{n \to \infty} \rho(h(x_n), h(x)) \\ &= \lim_{n \to \infty} \lim_{i \to \infty} d^{\phi}(h(x_n), a_i x) \\ &\leq \lim_{n \to \infty} \lim_{i \to \infty} \left(d^{\phi}(h(x_n), z_n) + d^{\phi}(z_n, a_m x) + d^{\phi}(a_m x, a_i x) \right) \\ &\leq \lim_{n \to \infty} \lim_{i \to \infty} \left(d_E(h(x_n), z_n) + \delta^{\phi}(z_n, a_m x) + \delta^{\phi}(a_m x, a_i x) \right) \\ &\leq \lim_{n \to \infty} \lim_{i \to \infty} \left(\frac{1}{1+m} + \frac{1}{1+a_m} + d_E\left(\frac{h(x_n)}{d_E(O, h(x_n))}, x\right) + \frac{1}{1+a_m} + \frac{1}{1+a_m} + \frac{1}{1+a_m} + \frac{1}{1+a_m} \right) \\ &\leq \lim_{n \to \infty} d_E\left(\frac{x_n}{d_E(O, x_n)}, x\right) \\ &= 0. \end{split}$$

Therefore $h(x_n) \to h(x)$ as $n \to \infty$.

Lemma 3.6 k is continuous.

Proof. Suppose that $\mathbf{x}_n = \{x_{n,i}\}$ converges to $\mathbf{x} = \{x_i\}$ in $(\overline{\mathbf{R}^s}, \rho)$. We will show that $k(\mathbf{x}_n)$ converges to $k(\mathbf{x})$ in (\mathbf{B}^s, d_E) .

Suppose that \mathbf{x} is equivalent to a constant Cauchy sequence $\{x\}$ in (\mathbf{R}^s, d^{ϕ}) . If \mathbf{x}_n is equivalent to $\{a_i x_n\}$ with $x_n \in S_1$ for infinitely many n, then choose a subsequence of \mathbf{x}_n , which we will call \mathbf{x}_n again, such that $\mathbf{x}_n = \{a_i x_n\}$ with $x_n \in S_1$. Notice that there exists I > 0, which does not depend on n, such that

$$d_E(a_i x_n, x) \ge \frac{1}{2(1 + d_E(O, x))}$$
 for all $i > I$.

Therefore by Lemma 1.1, we have

$$d^{\phi}(a_i x_n, x) \ge \frac{1}{2(1 + d_E(O, x))}$$
 for all $i > I$.

Hence \mathbf{x}_n does not converges to \mathbf{x} in $(\overline{\mathbf{R}^s}, \rho)$. This is a contradiction. Therefore $\mathbf{x}_n = \{x_n\}$ is a constant Cauchy sequence in (\mathbf{R}^s, d^{ϕ}) for large enough n. Since x_n converges to x in (\mathbf{R}^s, d^{ϕ}) , by Corollary 1.1, x_n converges to x in (\mathbf{R}^s, d_E) . Therefore

$$k(\mathbf{x}_n) = \frac{1}{1 + d_E(O, x_n)} x_n \quad \text{converges to} \quad k(\mathbf{x}) = \frac{1}{1 + d_E(O, x)} x.$$

let

If $\mathbf{x} = \{x_i\}$ is not equivalent to a constant Cauchy sequence in (\mathbf{R}^s, d^{ϕ}) , then by Lemma 3.2, we may assume $x_i = a_i x$ for some $x \in S_1$. Notice that we may consider only the following two cases.

- (a) For all $n, x_{n,i} = a_i x_n$ for some $x_n \in S_1$.
- (b) For all $n, \mathbf{x}_n = \{x_n\}$ is a constant Cauchy sequence.

For the case (a), from eq. (13) we have

$$0 = \lim_{n \to \infty} \rho(\mathbf{x}_n, \mathbf{x})$$

=
$$\lim_{n \to \infty} \lim_{i \to \infty} d^{\phi}(a_i x_n, a_i x)$$

$$\geq \lim_{n \to \infty} d_E(x_n, x)$$

=
$$\lim_{n \to \infty} d_E(k(\mathbf{x}_n), k(\mathbf{x})).$$

For the case (b), suppose that

$$\lim_{n \to \infty} d_E\left(\frac{1}{1 + d_E(O, x_n)} x_n, x\right) \neq 0.$$

We will get a contradiction. Choose a subsequence $\{y_n\}$ of $\{x_n\}$ such that

$$\frac{1}{1+d_E(O,y_n)}y_n \to y \neq x \quad \text{in} \quad (B^s,d_E).$$

Since h is continuous and injective, we have

$$y_n = h\left(\frac{1}{1 + d_E(O, y_n)} y_n\right) \to h(y) \neq h(x) = \mathbf{x} \quad \text{in} \quad (\overline{\mathbf{R}^s}, \rho).$$

Therefore $\lim_{n\to\infty} \rho(\mathbf{y}_n, \mathbf{x}) \neq 0$. This is a contradiction.

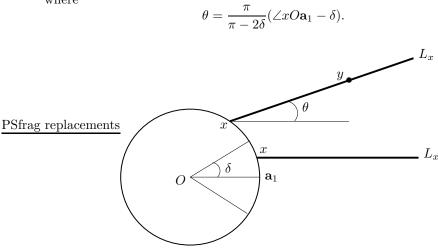
4 A compactification of (\mathbf{R}^s, d_E) which is not equivalent to the standard compactification

Two compactifications Y_1 and Y_2 of a topological space X are called equivalent if there exists a homeomorphism $h: Y_1 \to Y_2$ such that h(x) = x for all $x \in X$. Recall that $s \ge 2$. In this section, we construct a compactification of (\mathbf{R}^s, d_E) which is homeomorphic to the closed unit ball (B^s, d_E) , but not equivalent to the standard compactification $(\overline{\mathbf{R}^s}, \rho_{\phi})$ in Section 3. We define a nonnegative symmetric function $\psi: \mathbf{R}^s \times \mathbf{R}^s \to \mathbf{R}$ as follows. Choose $0 < \delta < \frac{\pi}{4}$ and let

$$A^+ = \{ x \in S_1 \mid \angle x O \mathbf{a}_1 \le \delta \}, \quad A^- = \{ x \in S_1 \mid \angle x O(-\mathbf{a}_1) \le \delta \},$$

where $\mathbf{a}_1 = (1, 0, \dots, 0)$ and $-\mathbf{a}_1 = (-1, 0, \dots, 0) \in \mathbf{R}^s$. For each $x \in S_1$, let

$$P_x = \{ t\mathbf{a}_1 + t'x \in \mathbf{R}^s \mid t, t' \in \mathbf{R} \}.$$



We define an infinite ray $L_x \subset P_x$ starting from x as follows. See Figure 1, where

Figure 1: L_x

$$L_x = \begin{cases} \{x + t\mathbf{a}_1 \mid t \ge 0\} & \text{if } x \in A^+ \\ \{x + t\mathbf{a}_1 \mid t \le 0\} & \text{if } x \in A^- \\ \{x, y \in P_x \mid \angle (y - x)O\mathbf{a}_1 = \frac{\pi}{\pi - 2\delta}(\angle xO\mathbf{a}_1 - \delta)\} & \text{if } x \in S_1 \setminus (A^+ \cup A^-) \end{cases}$$

and let $L = \{L_x \mid x \in S_1\}$. Notice that

- (i) If $\angle xO\mathbf{a}_1 = \frac{\pi}{2}$, then $L_x = \{tx \mid t \ge 1\}$.
- (ii) For all $x \in S_1$, the angle between two rays L_x and $\{tx \mid t \ge 1\}$ is not greater than δ .
- (iii) For all $y \in \mathbf{R}^s$ with $d_E(O, y) \ge 1$, there exists unique ray in L which is through y.

For all $p,q \in \mathbf{N}$, let $h_{p,q}: S_p \to S_q$ be the homeomorphism defined by

 $h_{p,q}(x) =$ the intersection of S_q and the ray in L which is through x.

In particular, we have $h_{p,p}(x) = x$, and if $h_{p,q}(x) = y$ then $h_{q,p}(y) = x$. The nonnegative symmetric function ψ is defined as follows.

Definition 4.1

$$\psi(x,y) = \begin{cases} 0 & \text{if } h_{p,q}(x) = y \text{ for some } p, q \in \mathbf{N} \\ d_E(h_{m,1}(x), h_{m,1}(y)) & \text{if } x, y \in S_m \text{ for some } m \in \mathbf{N} \\ d_E(x, y) & \text{otherwise.} \end{cases}$$

Similarly as in Section 3, we can show that $(\mathbf{R}^s, d^{\psi}) = (\mathbf{R}^s, d_E^{\psi,O})$ is totally bounded, and its completion $(\overline{\mathbf{R}^s}, \rho_{\psi})$ is homeomorphic to (B^s, d_E) by the following homeomorphism $h: (B^s, d_E) \to (\overline{\mathbf{R}^s}, \rho_{\psi})$,

$$h(x) = \begin{cases} \frac{1}{1 - d_E(O, x)} x & \text{if } d_E(O, x) < \frac{1}{2} \\ y \in L_{\frac{x}{d_E(O, x)}} \text{ such that} \\ d_E\left(\frac{x}{d_E(O, x)}, y\right) = \frac{d_E(O, x) - \frac{1}{2}}{1 - d_E(O, x)} & \text{if } \frac{1}{2} \le d_E(O, x) < 1 \\ \{h_{1,i}(x)\} & \text{if } d_E(O, x) = 1. \end{cases}$$

Suppose that $A, B \subset \mathbf{R}^s$. Let

$$d_E(A,B) = \inf\{d_E(x,y) \mid x \in A, y \in B\}.$$

In spherical coordinate system the distance between $(\rho_1, \phi_1, \theta_1)$ and $(\rho_2, \phi_2, \theta_2)$ is

$$\sqrt{\rho_1^2 + \rho_2^2 - 2\rho_1\rho_2\{\sin\phi_1\sin\phi_2\cos(\theta_1 - \theta_2) + \cos\phi_1\cos\phi_2\}}.$$
 (14)

The following two Lemmas are useful to show that h is a homeomorphism.

Lemma 4.1 Suppose that $x, y \in S_1$. Then

$$d_E(L_x, L_y) \ge \frac{1}{2\sqrt{2}} d_E(x, y).$$

Proof.

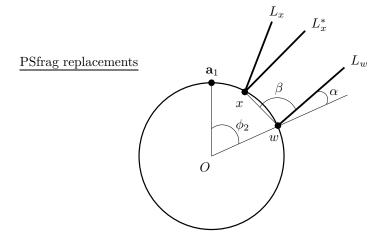


Figure 2: Since $0 \le \alpha \le \delta < \frac{\pi}{4}$, we have $\frac{\pi}{4} < \beta \le \frac{3\pi}{4}$.

We may assume that $x \neq y$. Since there exists a 3-dimensional subspace which contains O, \mathbf{a}_1 , $-\mathbf{a}_1$, x and y, we may assume that $\mathbf{R}^s = \mathbf{R}^3$. In spherical coordinates (ρ, ϕ, θ) , let O = (0, 0, 0), $\mathbf{a}_1 = (1, 0, 0)$, $-\mathbf{a}_1 = (1, \pi, 0)$, $x = (1, \phi_1, \theta_1)$

and $y = (1, \phi_2, \theta_2)$. By exchanging x and y if necessary, we may assume that

$$0 \le \phi_1 \le \frac{\pi}{2}$$
 and $\phi_1 \le \phi_2$

Suppose that $\phi_2 \leq \frac{\pi}{2}$. Let $z = (1, \phi_1, \theta_2)$ and $w = (1, \phi_2, \theta_1)$. Since $d_E(x, y) \leq d_E(x, z) + d_E(z, y)$ and $d_E(x, w) = d_E(z, y)$, we have

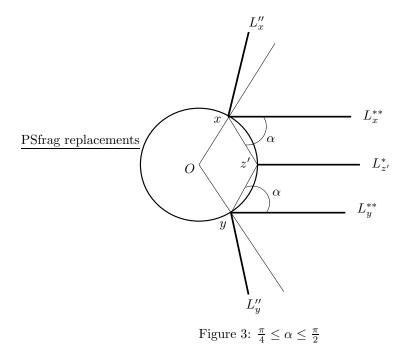
$$d_E(x,z) \ge \frac{1}{2} d_E(x,y)$$
 or $d_E(x,w) \ge \frac{1}{2} d_E(x,y).$

If $d_E(x,z) \geq \frac{1}{2}d_E(x,y)$, let P be the plane containing x and z which is perpendicular to \mathbf{a}_1 . Let L'_x be the projection of L_x to the plane P and so is L'_y . Notice that we have

$$d_E(L_x, L_y) \ge d_E(L'_x, L'_y) \ge d_E(x, z) \ge \frac{1}{2} d_E(x, y).$$

Suppose that $d_E(x, w) \ge \frac{1}{2} d_E(x, y)$. Let L_x^* be the ray starting from x with the same direction as L_w . Since $L_w = \{(\rho, \phi, \theta_1) \mid (\rho, \phi, \theta_2) \in L_y\}$, from eq. (14) and Figure 2, we have

$$d_E(L_x, L_y) \ge d_E(L_x, L_w) \ge d_E(L_x^*, L_w) \ge \frac{1}{\sqrt{2}} d_E(x, w) \ge \frac{1}{2\sqrt{2}} d_E(x, y).$$



Suppose that $\phi_2 > \frac{\pi}{2}$. Let P' be the plane which contains the greatest circle in S_1 through the points x and y. Let z' be the point on the greatest circle such

that

$$\angle xOz' = \angle yOz' \le \frac{\pi}{2}.$$

Let L''_x be the projection of L_x to the plane P' and so is L''_y . Let

 $L_{z'}^* = \{ tz' \mid t \ge 1 \}.$

Let $L_x^{\ast\ast}$ be the ray from x to the direction of $L_{z'}^\ast$ and so is $L_y^{\ast\ast}.$ From Figure 3, we have

$$d_E(L_x, L_y) \geq d_E(L''_x, L''_y) \\\geq d_E(L^{**}, L_y^{**}) \\= d_E(L^{**}_x, L_{z'}^{**}) + d_E(L_{z'}^{*}, L_y^{**}) \\\geq \frac{1}{\sqrt{2}} d_E(x, z') + \frac{1}{\sqrt{2}} d_E(z', y) \\\geq \frac{1}{\sqrt{2}} d_E(x, y).$$

Lemma 4.2 Suppose that $a_m \leq d_E(O, x) < a_{m+1}$. Let y be the intersection of S_m and the ray in L which is through x. Then we have

$$d_E(y,x) \le \frac{1}{\cos\delta} \frac{1}{m+1} \le \frac{\sqrt{2}}{m+1}.$$

Proof. Recall that $0 < \delta < \frac{\pi}{4}$. From Figure 4, the proof is trivial.

PSfrag replacements

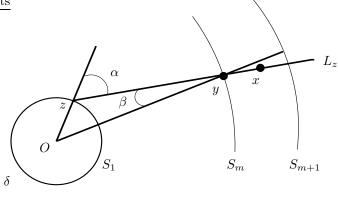


Figure 4: $\beta < \alpha \leq \delta < \frac{\pi}{4}$

The following Lemma is also useful to show that h is a homeomorphism. Similarly as Lemma 3.3, we can prove this lemma. **Lemma 4.3** Suppose that $d_E(O, x) \geq 1$ and $d_E(O, y) \geq 1$. Suppose also that $x \in L_{x'}$ and $y \in L_{y'}$ with $x', y' \in S_1$. Let $(x_0, x_1, \dots, x_m) \in \Gamma_{x,y}$ with $d_E(O, x_i) < 1$ for all $1 \leq i \leq m - 1$. Then

$$\sum_{i=1}^{m} \delta^{\psi}(x_{i-1}, x_i) \ge d_E(L_{x'}, L_{y'}).$$

Now we show that the compactification $(\overline{\mathbf{R}^s}, \rho_{\psi})$ of (\mathbf{R}^s, d_E) is not equivalent to the standard compactification $(\overline{\mathbf{R}^s}, \rho_{\phi})$ in Section 3.

Proposition 4.1 $(\overline{\mathbf{R}^s}, \rho_{\psi})$ and $(\overline{\mathbf{R}^s}, \rho_{\phi})$ are not equivalent compactifications.

Proof. Suppose that they are equivalent. There exists a homeomorphism

$$h: (\overline{\mathbf{R}^s}, \rho_{\psi}) \to (\overline{\mathbf{R}^s}, \rho_{\phi})$$

such that h(x) = x for all $x \in \mathbf{R}^s$. Choose a point $\mathbf{b}_1 \in S_1$ such that

$$\angle \mathbf{b}_1 O \mathbf{a}_1 = \frac{\delta}{2}.$$

Let $\mathbf{a} = {\mathbf{a}_i}$ and $\mathbf{b} = {\mathbf{b}_i}$, where

$$\mathbf{a}_i = h_{1,i}(\mathbf{a}_1) = (a_i, 0, \cdots, 0)$$
 and $\mathbf{b}_i = h_{1,i}(\mathbf{b}_1)$

for all $i \in \mathbf{N}$. Notice that

$$\sin\frac{\delta}{2} \le d_E(\mathbf{a}_i, \mathbf{b}_i) \le \frac{\delta}{2}$$
 for all i .

Suppose that $(x_0, x_1, \dots, x_m) \in \Gamma_{\mathbf{a}_i, \mathbf{b}_i}$. Using Lemma 4.1 and 4.3, we can show that

$$\sum_{i=1}^{m} \delta^{\psi}(x_{i-1}, x_i) \ge \frac{1}{2\sqrt{2}} d_E(\mathbf{a}_1, \mathbf{b}_1) \ge \frac{1}{2\sqrt{2}} \sin \frac{\delta}{2} > 0.$$

Therefore

$$d^{\psi}(\mathbf{a}_i, \mathbf{b}_i) \ge \frac{1}{2\sqrt{2}} \sin \frac{\delta}{2}$$
 for all i ,

and hence $\rho_{\psi}(\mathbf{a}, \mathbf{b}) \neq 0$. Thus $\mathbf{a} \neq \mathbf{b}$ in $(\overline{\mathbf{R}^s}, \rho_{\psi})$. But we have

$$\begin{aligned} \rho_{\phi}(h(\mathbf{a}), h(\mathbf{b})) &= \lim_{i \to \infty} \rho_{\phi}(h(\mathbf{a}_i), h(\mathbf{b}_i)) \\ &= \lim_{i \to \infty} \rho_{\phi}(\mathbf{a}_i, \mathbf{b}_i) \\ &= \lim_{i \to \infty} d^{\phi}(\mathbf{a}_i, \mathbf{b}_i) \\ &\leq \lim_{i \to \infty} \delta^{\phi}(\mathbf{a}_i, \mathbf{b}_i) \\ &\leq \lim_{i \to \infty} \left(\frac{1}{1+a_i} + \frac{1}{a_i} d_E(\mathbf{a}_i, \mathbf{b}_i) + \frac{1}{1+a_i} \right) \\ &\leq \lim_{i \to \infty} \left(\frac{2}{1+a_i} + \frac{\delta}{2a_i} \right) \\ &= 0. \end{aligned}$$

Therefore $h(\mathbf{a}) = h(\mathbf{b})$ in $(\overline{\mathbf{R}^s}, \rho_{\phi})$. This is a contradiction.

References

[1] I. Agol, *Tameness of hyperbolic 3-manifolds*, preprint, arXiv:math. GT/0405568.

- [2] D. Calegari and D. Gabai, Shrinkwrapping and taming of hyperbolic 3manifolds, J. Amer. Math. Soc. 19(2006), no.2, 385-446.
- [3] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [4] S. A. Gaal, *Point set toplogy*, Academic Press, New York and London, 1964.
- [5] A. Marden, The geometry of finitely generated Kleinian groups, Ann. of Math. (2) 99(1974), 383-462.
- [6] J. R. Munkres, Topology at first course, Prentice-Hall, New Jersey, 1975.