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Abstract

In recent work, we have proven uniform decay bounds for solutions

of the wave equation ✷gφ = 0 on a Schwarzschild exterior, in particular,

the uniform pointwise estimate |φ| ≤ Cv−1

+ which holds throughout the

domain of outer communications, where v is an advanced Eddington-

Finkelstein coordinate, v+
.
= max{v, 1}, and C is a constant depending

on a Sobolev norm of initial data. A crucial estimate in the proof required

a decomposition into spherical harmonics. We here give an alternative

proof of this estimate not requiring such a decomposition.

In [3], we studied the problem of decay for general solutions φ of the equation

✷gφ = 0 (1)

on a Schwarzschild background. The estimates of [3] were obtained by exploit-
ing compatible currents associated with vector field mutipliers applied to the
energy momentum tensor. (See [2] for a general discussion of such currents.)
Understanding the decay properties of solutions of (1) in terms of such energy
estimates appears to be a fundamental first step, if one is ever to address the
problem of non-linear stability of black hole solutions of the Einstein equations
of general relativity.

A crucial role in the results of [3] is played by an energy current Jµ related to
vector fields of the form f(r∗)∂r∗ , where r

∗ is a Regge-Wheeler coordinate. For
the current Jµ constructed in [3], the divergence K = ∇µJµ was shown to be
nonnegative upon integration over spheres of symmetry. (The integral of this
current over an arbitrary spacetime region R was denoted in [3] by IX(R).)
The construction of Jµ was quite elaborate. In particular, a decomposition
into spherical harmonics was required, and a separate definition of fℓ was made
for each spherical harmonic, characterized by a non-negative integer ℓ. These
currents were then summed to obtain a total current. As ℓ → ∞, the unique
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vanishing point of fℓ approached the photon sphere r = 3M . In this sense, the
degeneration of the current was seen to be connected to the presence of trapped
null geodesics. This degeneration is known to be an essential feature in view of
well-known arguments from geometric optics.

With an eye towards possible future applications to problems involving per-
turbed spacetimes, it is desirable for methods which avoid altogether the use of
spherical harmonics. In this short paper, we indeed construct a current Jµ with
the required non-negativity properties for its divergence K = ∇µJµ, without
recourse to spherical harmonics. See Propositions 3.1, 4.1 and 4.2. The current
and its divergence both depend on the 2-jet of the solution φ. This current
can be substituted in the arguments of [3], completely removing references to
spherical harmonics from the proof. See Theorem 6.1 of Section 6 for the basic
estimate.

Numerical evidence for the existence of currents with the nonnegativity prop-
erty achieved here has been presented recently in [1].

One should note finally that an easy perturbation argument shows that the
current Jµ defined above can also be applied to the study of (1) on Schwarzschild-

de Sitter, at least for small M
√
Λ, thus removing references to spherical har-

monics from the proof of Theorem 1.1 of [4] for this case. See Section 7.

1 Energy current templates from vector fields

Our notation follows closely that of our [4]. Recall that in the domain of outer
communications D the Schwarzschild metric can be written explicitly in a co-
ordinate system (t, r):

g = −
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2 + r2dσS2 ,

with coordinate range (∞,∞)× (2M,∞). In what follows we set

µ =
2M

r
, r∗ = r + 2M ln(r − 2M)− 3M − 2M lnM,

and we let ′ denote the derivative with respect to r∗. Recall that (in our con-
ventions) Regge-Wheeler coordinates (t, r∗) are related to Eddington-Finkelstein
coordinates (u, v) by the formulas

t = v + u, r∗ = v − u.

In this paper, φ will always denote a solution to the wave equation (1) on
maximally extended Schwarzschild (M, g) which is H2 on spheres of symmetry
and such that ∇φ is in L2 on spheres of symmetry.1 Given φ, let Tµν(φ) denote

1We require this regularity for we shall give integral bounds on spheres of symmetry. By
integrating these bounds in spacetime regions, one can apply these results to solutions of (1)
with locally H2 initial data.
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the energy momentum tensor

Tµν(φ) = ∂µφ∂νφ− 1

2
gµνg

αβ∂αφ∂βφ.

Let f be a function of r∗ and consider a vector field of the form

V = f(r∗)
∂

∂r∗
, (2)

for an arbitrary function f .
Let the function β be defined by

β =
1− µ

r
− x

α2 + x2
,

where
x = r∗ − α− α

1

2

for a (sufficiently large) constant α to be determined later. Define the currents

JV,0
µ (φ) = Tµν(φ)V

ν ,

JV,1
µ (φ) = Tµν(φ)V

ν +
1

4

(

f ′ + 2
1− µ

r
f

)

∂µ(φ)
2 − 1

4
∂µ

(

f ′ + 2
1− µ

r
f

)

φ2,

JV,2
µ (φ) = Tµν(φ)V

ν +
1

4

(

f ′ + 2
1− µ

r
f

)

∂µ(φ)
2 − 1

4
∂µ

(

f ′ + 2
1− µ

r
f

)

φ2

− 1

2

f ′

f(1− µ)
βVµφ

2,

and the divergences
KV,i = ∇µJV,i

µ .

We compute

KV,0(φ) =
f ′(∂r∗φ)

2

1− µ
+ |∇/φ|2

(

µ′

2(1− µ)
+

1− µ

r

)

f

− 1

4

(

2f ′ + 4
1− µ

r
f

)

φαφα, (3)

KV,1(φ) =
f ′

1− µ
(∂r∗φ)

2 + |∇/φ|2
(

µ′

2(1− µ)
+

1− µ

r

)

f

− 1

4

(

✷

(

f ′ + 2
1− µ

r
f

))

φ2

=
f ′

1− µ
(∂r∗φ)

2 + |∇/φ|2
(

µ′

2(1− µ)
+

1− µ

r

)

f

− 1

4

(

1

1− µ
f ′′′ +

4

r
f ′′ − 4µ′

r(1 − µ)
f ′ +

2

(1− µ)r

(

µ′(1− µ)

r
− µ′′

)

f

)

φ2,
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KV,2(φ) =
f ′

(1 − µ)
(∂r∗φ+ βφ)

2
+

r − 3M

r2
f |∇/φ|2

−1

4

1

1− µ

(

f ′′′ +
4f ′′x

α2 + x2
+

4α2f ′

(α2 + x2)2

)

φ2 − µf

2r3
(4µ− 3)φ2.

2 Definition of the current Jµ

Let Ωi, i = 1, . . . , 3 denote a basis of angular momentum operators.
Define

fa = − C∗

α2r2

for a constant C∗, dependent on α, both of which to be determined in what
follows,

f b =
1

α

(

tan−1 x

α
− tan−1(−1− α−

1

2 )
)

, (f b)′ =
1

α2 + x2

Xa = fa∂r∗

Xb = f b∂r∗

and let

J = JXa,0(φ) +

3
∑

i=1

JXb,1(Ωiφ),

K = ∇µJµ.

Note that J and K both depend on the 2-jet of φ.

3 Nonnegativity

Proposition 3.1. For the K defined above with α, C∗ suitably chosen,

∫

S2

K r2dAS2 ≥ 0.

Proof. Note that (fa)′ ≥ 0, (f b)′ ≥ 0 and 2(fa)′ + 4 1−µ
r

fa = 0. We then
conclude that

K ≥
3
∑

i=1

(

f b r − 3M

r2
|∇/Ωiφ|2 +

(

f bµ(3 − 4µ)

2r3
+ F

)

(Ωiφ)
2

)

−2C∗

r − 3M

α2r4
|∇/φ|2

(4)
where

F := −1

4

1

1− µ

(

(f b)′′′ +
4(f b)′′x

α2 + x2
+

4α2(f b)′

(α2 + x2)2

)

=
1

2(1− µ)

x2 − α2

(x2 + α2)3
.
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Note that
∑3

i=1
(Ωiφ)

2 = r2|∇/ φ|2. Note also the Poincaré inequality for Ωiφ

2

∫

S2

(Ωiφ)
2 r2dAS2 ≤ r2

∫

S2

|∇/Ωiφ|2r2dAS2 . (5)

Thus, to prove the proposition, in view of (4), it suffices to show

2f b r − 3M

r4
+

(

f bµ(3− 4µ)

2r3
+ F

)

− 2C∗

r − 3M

α2r6
≥ 0. (6)

or alternatively,
2f b(r − 3M)r2 +H(r) + Fr6 ≥ 0 (7)

where

H(r) := f bµ(3− 4µ)

2
r3 − 2C∗

r − 3M

α2
= r4

(

f bµ(3− 4µ)

2r3
r2 − 2C∗

r − 3M

α2r4

)

.

Note that the first term on the right hand side of (7) is manifestly nonneg-
ative.

We first establish that the function H satisfies H(r) ≥ 0. Observe that
H > 0 in the region r ≤ 8M/3 and that H(3M) = 0. With the constant C∗

chosen such that dH
dr

|r=3M = 0, in order to show that H ≥ 0 in the range
8M/3 ≤ r < ∞, it suffices to show that there exists an R such that H ≥ 0 for

r ≥ R, and d2H
dr2

≥ 0 in 8M/3 ≤ r ≤ R.
We compute

dH

dr
= M(f b)′

3r2 − 8Mr

1− µ
+ 2Mf b(3r − 4M)− 2C∗α

−2.

Setting dH
dr

|r=3M = 0 implies

C∗ = α2M(f b)′
3r2 − 8Mr

2(1− µ)
|r=3M =

9α2M3

2((α+ α
1

2 )2 + α2)
.

Given α, let this then be our choice of C∗. It is clear that as α → ∞,

C∗ → 9M3

4
.

Note that from the definition of f b we have that there exist constants c, R,
independent of α, such that for all values r ≥ R

f b ≥ c

α
min

{ r

α
, 1
}

. (8)

As a consequence, taking into account the value of the constant C∗, we see that
for r ≥ R,

H(r) ≥ cM

α
(3r2 − 8Mr)min

{ r

α
, 1
}

− 2C∗

r − 3M

α2
> 0,

5



To show H ≥ 0, it remains to check that d2H
dr2

≥ 0 for all r ∈ [ 8M
3
, R].

We compute

d2H

dr2
= M(f b)′′

3r2 − 8Mr

(1− µ)2
+4M(f b)′

3r − 4M

1− µ
− 2M2(f b)′

3r2 − 8Mr

r2(1 − µ)2
+6Mf b.

First, we easily see that for r ∈ [ 8M
3
, R],

M(f b)′′
3r2 − 8Mr

(1 − µ)2
≤ Cα−3,

for a C independent of α. As a consequence, this term will be dominated (for

sufficiently large α by the other terms in the expression for d2H
dr2

, which are of
the order of α−2.

We combine the terms containing (f b)′, taking into account that for r ∈
[ 8M

3
, R] we have (1 − µ) ≥ 1

4
, to obtain

4M(f b)′
3r − 4M

1− µ
− 2M2(f b)′

3r − 8M

r(1 − µ)2
=

2M(f b)′

r(1 − µ)

(

6r2 − 4Mr −M
3r − 8M

1− µ

)

≥ 2M(f b)′

r(1 − µ)

(

6r2 − 16Mr + 32M2
)

≥ cα−2.

Moreover, in the region r ∈ [3M,R] the last term 6Mf b is non-negative, which

immediately implies desired conclusion that d2H
dr2

> 0. On the other hand, for

r ∈ [ 8M
3
, 3M ] we have

f b =

∫ 3M

r

(f b)′

1− µ
dr ≥ (f b)′|r=3M

1− µ
(r − 3M).

From the expression for (f b)′ = (α2 + x2)−1 with x = r∗ −α−α
1

2 we easily see
that for all r ∈ [ 8M

3
, 3M ]

(f b)′|r=3M = (f b)′(r) +O(α−3).

Therefore,

d2H

dr2
≥ 2M(f b)′

r(1 − µ)

(

9r2 − 25Mr+ 32M2
)

+O(α−3) ≥ cα−2

for r ∈ [ 8M
3
, 3M ].

To prove (7), and thus Proposition 3.1 it now suffices to establish the in-
equality

2f b r − 3M

r4
+ F ≥ 0.

We note that the function F is non-negative outside the region −α < x < α.
Thus, in view of the nonnegativity of the first term above, it follows that (7)
holds for x 6∈ [−α, α].
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For x ∈ [−α, α] on the other hand, we have that r∗ ∈ [α
1

2 , 2α + α
1

2 ], which
implies that, for α sufficiently large,

r ≥ cα
1

2 , r =
(

1 +O(α−
1

2 )
)

(x+ α+ α
1

2 ), µ = O(α−
1

2 ).

We may approximate functions F and 2f b r−3M
r4

by the expressions

F ∼ 1

2

x2 − α2

(x2 + α2)3
, 2f b r − 3M

r4
∼ 2(x+ α)

(x2 + α2)(x + α+ α
1

2 )3
.

It suffices then to establish the bound

(α− x)(x + α+ α
1

2 )3

4(x2 + α2)2
<

9

10
, ∀x ∈ [−α, α].

For −α ≤ x ≤ 0 we have

(α− x) ≤ 2α, (x+ α+ α
1

2 )3 <
3

2
α3, (x2 + α2) ≥ α2,

where the middle inequality follows if the constant α is chosen to be sufficiently
large. Therefore,

(α− x)(x + α+ α
1

2 )3

4(x2 + α2)2
<

3

4
.

On the other hand, for 0 ≤ x ≤ α we have

(x+ α+ α
1

2 )3 < 2
3

2

8

7
(x2 + α2)

3

2 , α− x ≤ α.

Thus,

(α − x)(x+ α+ α
1

2 )3

4(x2 + α2)2
<

2

7
2

3

2 <
9

10
.

4 Quantities controlled

Proposition 4.1. There exists a constant C depending only on M such that

C

∫

S2

K r2dAS2 ≥
∫

S2

(

1

r3
(∂r∗φ)

2
+

(r − 3M)2

r
|∇/ 2

φ|2 + r3

(1 − µ)(|r∗|+ 1)4
|∇/ φ|2

)

r2dAS2 .

Proof. Revisit the proof of Proposition 3.1 and recall the nonnegative quantities
that were dropped.

Now define Xaux = r−3∂r∗ and define Jaux
µ = JXaux,0

µ , Kaux = ∇µJaux
µ . We

easily see (cf. Section 7.4 of [4])

Proposition 4.2. There exists a constant C depending only on M such that

C

∫

S2

(Kaux +K)r2dA2
S

≥
∫

S2

(

1

r3
(∂r∗φ)

2 +
(r − 3M)2

r
|∇/ 2φ|2 + r3

(1− µ)(|r∗|+ 1)4
|∇/ φ|2 + 1

r4
(∂tφ)

2

)

r2dAS2 .
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5 Boundary terms

To turn Propositions 4.1, 4.2 into estimates with the help of the divergence
theorem, we need to understand the boundary terms arising from the integration
of the currents K, Kaux.

Proposition 5.1. Let S be an achronal subset of clos(D) such that clos(S) ∩
H− = ∅. There exist constants ǫ, C > 0, depending only on S such that

∣

∣

∣

∣

∫

S

Jaux
µ nµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

S

Jµn
µ

∣

∣

∣

∣

≤
∫

S

(

CJT
µ (φ) + ǫJY

µ (φ) + C
∑

i

JT
µ (Ωiφ)

)

nµ

where JT
µ = T νTµν , J

Y
µ = Y νTµν where T denotes the Killing field ∂

∂t
and Y

denotes the local observer vector field of [3]. In the case where S is spacelike,
nµ denotes the future pointing unit normal and the measure is the volume form.
In the case where S is null, nµ and the measure are defined appropriately.

If φt denotes the one-parameter group of transformations generated by T ,
then one can take C(S, ǫ) = C(φt(S), ǫ), and ǫ(S, C) = ǫ(φt(S), C). If S is
a constant t-surface or if clos(S) ∩ (H+ ∪ H−) = ∅, then the JY term can be
omitted from the right hand side, i.e. one can take ǫ = 0. If S is a constant
u-surface such that r∗ ≤ r∗0 , t ≥ t0 in S, then as r∗0 → −∞ with t0 fixed one
can take C uniformly bounded and ǫ → 0.

6 The estimates

Consider a “trapezoidal” region R defined by the inequalities t1 ≤ t ≤ t2,
r∗1 − (t2 − t) ≤ r∗ ≤ r∗2 + (t2 − t). Let S1 denote the timelike past boundary
{t1} × [r∗1 − (t2 − t1), r

∗
2 + (t2 − t1)], and let F1 denote the constant-t − r∗

boundary. Propositions 5.1, 4.1, 4.2, the divergence theorem and the fact that
KT = 0 give

Theorem 6.1. There exists a C depending only on M and an ǫ depending only
on r∗1 with ǫ → 0 as r∗1 → −∞ such that
∫

R

(

1

r3
(∂r∗φ)

2
+

(r − 3M)2

r
|∇/ 2

φ|2 + r3

(1− µ)(|r∗|+ 1)4
|∇/ φ|2 + 1

r4
(∂tφ)

2

)

≤ C

∫

S1

(

JT
µ (φ) +

∑

i

JT
µ (Ωiφ)

)

nµ + ǫ

∫

F1

JY
µ (φ)nµ.

Let D denote the domain of outer communications. Note that taking r∗1 →
−∞, t2 → ∞, an immediate corollary of the above is

Corollary 6.1. There exists a constant C depending only on M such that
∫

D

(

1

r3
(∂r∗φ)

2
+

(r − 3M)2

r
|∇/ 2

φ|2 + r3

(1− µ)(|r∗|+ 1)4
|∇/ φ|2 + 1

r4
(∂tφ)

2

)

≤ C

∫

t=0

(

JT
µ (φ) +

∑

i

JT
µ (Ωiφ)

)

nµ.
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On the other hand, using the Y estimate of [3] one obtains

Theorem 6.2. There exists a constant C depending only on M such that

∫

R

(

1

r3
(∂r∗φ)

2
+

(r − 3M)2

r
|∇/ 2

φ|2 + r3

(1− µ)(|r∗|+ 1)4
|∇/ φ|2 + 1

r4
(∂tφ)

2

)

≤ C

∫

S1

(

JT+Y
µ (φ) +

∑

i

JT
µ (Ωiφ)

)

nµ.

The above Theorem can be used in conjunction with the Y estimates and
the Morawetz vector field u2∂u + v2∂v to obtain the results of [3]. Note that,
in contrast to the scheme of [3], the vector field u2∂u + v2∂v is not necessary to
control the boundary terms arising from Jµ.

7 Comments

As noted in the introduction, by a simple perturbation argument, our results
also apply to remove reference to spherical harmonics from the arguments of [4]
in the case of small M

√
Λ. This relies on the fact that error terms in the

immediate vicinity of the horizons can be absorbed via the use of the Y and Y
estimates.

It is also interesting to note that the currents based on the vector fields
fℓ∂r∗ of [3] were also essential even to obtain just the uniform boundedness
statement |φ| ≤ C, where C is a constant depending only on a norm of initial
data. Recall that this statement was originally proven by Kay and Wald [5],2

with methods that relied heavily on the staticity of exterior Schwarzschild and
a certain discrete isometry of the maximally extended solution. In view of the
results of the present paper, uniform boundedness can now be shown without
the Kay-Wald trick, without the vector field u2∂u + v2∂v and without recourse
to spherical harmonics.
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