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On the second Paneitz-Branson invariant

Mohammed Benalili and Hichem Boughazi

Abstract. We define the second Paneitz-Branson operator on a com-
pact Einsteinian manifold of dimension n ≥ 5 and we give sufficient
conditions that make it attained.

1. Introduction

In 1983, Paneitz [11] discovered a conformally invariant fourth order
operator on 4-dimensional Riemannian manifolds. Branson[2] extended the
notion to Riemannian manifolds of dimension n ≥ 5. This operator has
geometrical roots, it is associated to the notion of the Q-curvature which can
be seen as the analogue of the scalar curvature for the conformal Laplacian.
Let (M,g) be a Riemannian manifold; the Paneitz-Branson operator reads
as

Pg(u) = ∆2u− div

(
(n − 2)2 + 4

2(n− 1)(n − 2)
Sg −

4

n− 2
Ricg

)
du+

n− 4

2
Qgu

where Ricg and Sg denote respectively the Ricci curvature and the scalar
curvature of g and where

Qg =
1

2(n − 1)
∆Sg +

n3 − 4n2 + 16(n − 1)

8(n − 1)2(n− 2)2
S2
g −

2

(n− 2)2
|Ricg|

2 .

The conformal property of the Paneitz-Branson expresses as: let g̃ = ϕ
4

n−4 g
be a conformal metric to g, where ϕ > 0 is smooth function on M . Then

Pg(uϕ) = ϕN−1Pg(u)

where N = 2n
n−4 .

Observe that when (M,g) is Einstein, the Paneitz-Branson operator is
reduced to

Pg(u) = ∆2u+ α∆u+ αu

where
∆ = −div∇
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and

α =
n2 − 2n− 4

2n(n− 1)
Sg , α =

(n− 4)(n2 − 4)

16n(n − 1)2
S2
g .

Notice that

(1.1)
α2

4
− α =

S2
g

n2(n− 1)2
.

Let H2
2 (M) be the standard Sobolev space, which is the completion of the

space

C2
2 (M) =

{
ϕ ∈ C∞(M), ‖ϕ‖2,2 < ∞

}

with respect to the norm

‖ϕ‖2,2 =
(
‖∆ϕ‖22 + ‖∇ϕ‖22 + ‖u‖22

) 1
3
.

Let Grk(H
2
2 ) be the k-dimensional Grassmannian manifold in H2

2 (M) i.e.
the set of all subspaces of H2

2 (M) of dimension k ≥ 1.
Denote by [g] the conformal class of the metric g i.e. g̃ ∈ [g], g̃ = ug

with u > 0 a smooth function on M. The minimax characterization of the
eigenvalue of order k ≥ 1 of the Paneitz-Branson operator Pg is given by

λk(g) = inf
V ∈Gr(H2

2 )
sup

v∈V−{0}

∫
M

vPg(v)dvg∫
M

v2dvg
.

Similarly to the Yamabe invariant of higher order introduced by Amman
and Humbert([1]), we define the Paneitz-Branson invariant.

Definition 1. Let k ∈ N∗. The kth Paneitz-Branson invariant is defined
by

µk(M,g) = inf
eg∈[g]

λk(g̃)V ol(M, g̃)
4
n .

In a recent paper [1] Amman and Humbert introduced the Yamabe
invariant of high order µk(M,g), k ≥ 1 and studied µ2(M,g), mainly they
showed that contrary to the standard Yamabe invariant µ1(M,g) the second
invariant µ2(M,g) cannot be attained by a metric if the manifold (M,g) is
connected. To find a minimizer to µ2(M,g), they enlarge the class [g] of
conformal metric to what they called the generalized conformal metric to g
i.e. g̃ ∈ [g] if g̃ = u2

∗−2g where u ∈ L2∗(M) and u ≥ 0 not indentically null
and where 2∗ = 2n

n−2 .
The goal of this paper is to study the second Paneitz-Branson invariant

on Einsteinian manifolds we seek for situations where this latter is attained.
Observe that to have positive solutions in case of the Yamabe invariant it
suffices to remark that for any u ∈ H2

1 (M), |u| ∈ H2
1 (M) and |∇ |u|| = |∇u|

which is no longer true in the case of the Branson-Paneitz operator because
of the term

∫
M

(∆u)2 dvg and also if u ∈ H2
2 (M), |u| is not necessary in
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H2
2 (M). The condition(1.1) implies by ([10] Theorem1.1) that Paneitz-

Branson operator is coercive i.e.
∫

M

uPg(u)dvg ≥ Λ ‖u‖2,2

where the left hand side of this inequality has to be understood in the
distribution sense and where Λ > 0 is a constant.

Hereafter, the space H2
2 (M) will be endowed with the norm

‖u‖ =

(∫

M

uPg(u)dvg

)1
2

which is equivalent to the norm ‖.‖2,2.

‖, ‖p will denote the Lp-norm with respect to the Riemannian measure
dvg.

The main results we obtain are

Theorem 1. If the compact manifold (M,g) is Einstein and of dimension
n ≥ 12 then µ2(M,g) is attained by a generalized metric.

Theorem 2. Let (M,g) be a compact Einstein manifold of positive scalar
curvature and of dimension n ≥ 5. Assume that µ2(M,g) is attained by a
generalized metric uN−2g with u ∈ LN (M) and u ≥ 0 not identically null.

Then there exist a nodal solution w ∈ C4,α(M) (α < N − 2) to the
equation Pg(w) = µ2(M,g)uN−2w such that |w| = u.

Our paper is organized as follows
In the first section we give some properties of the first and second eigen-

values of the Branson-Paneitz operator. In the second one we establish a
Sobolev inequality related to the second Branson-Paneitz invariant µ2(M,g).
The third section is devoted to the existence of a minimizer to µ2(M,g). In
the fourth section an estimation of µ2(M,g) is given in terms of µ1(M,g)
and of the best constant K2 in the Sobolev embedding ofH2

2 (R
n) in LN (Rn).

In the fifth section we give a sufficient condition which assures the strong
convergence of a sequence of solutions. In the last section, we analyze situ-
ations where nodal solutions exist and by the way we deduce that µ2(M,g)
is not attained by a classical conformal metric.

Now, we quote some facts which will be of use in the sequel of this paper.

Lemma 1. ([4]) Let (M,g) be a compact Riemannian manifold of dimension
n ≥ 5, for any ǫ > 0 there exists a constant A(ǫ) such that every u ∈ H2

2 (M)
fulfills

‖u‖2N ≤ (K2
2 + ǫ) ‖∆u‖22 +A(ǫ) ‖u‖22

with N = 2n
n−4 and K−2

2 = π2n(n− 1)(n2 − 4)
Γ(n

2
)

Γ(n)

where Γ denotes the Euler function.
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Lemma 2. ( [7])Let (Sn, h) be the standard unit sphere of Rn+1, n ≥ 5,
and let P be the Paneitz-Branson operator on (Sn, h), then

K−2
2 = inf

u∈C∞(Sn)−{0}

∫
Sn uP (u)dvh

(∫
Sn |u|

N dvh

) 2
N

.

Lemma 3. ( [7])Let (M,g) be a smooth compact n-dimensional (n ≥ 5)
Riemannian manifold, α a positive real number, let b be a real valued func-
tions defined on M and u ∈ H2

2 (M) be a weak solution of

∆2u+ α∆u+
α2

4
u = bu.

If b ∈ L
n
4 (M), then u ∈ Ls(M) for all s ≥ 1.

2. First and second eigenvalues for a generalized metric

Let LN
+ (M) be the space of LN -integrable non negative functions which

are not identically 0. Denote by Gruk (H
2
2 ) the set of all k-dimensional sub-

spaces (k ≥ 1) of H2
2 (M) which are the span of the functions u1, ..., uk if

and only if u1|
M−u

−1
1 (0)

,..., uk|
M−u

−1
k

(0)
are linearly independent.

Definition 2. A generalized metric conform to a metric g is of the form
g̃ = ug with u ∈ LN

+ (M).

Definition 3. For any generalized metric g̃ = u
N−2

2 g of a Riemannian
metric g we define the eigenvalue of order k ≥ 1 to the Branson-Paneitz
operator Pg by

λk(g̃) = inf
V ∈Gru

k
(H2

2 (M))
sup

v∈V −{0}

∫
M

vPg(v)dvg∫
M

uN−2v2dvg
.

We need the following lemma which is first given in ([1]) for sequences in
H2

1 (M) but its proof remains inchanged and we reproduce it here for reason
of completness.

Lemma 4. If u ∈ LN
+ (M) and (vn) is a sequence in H2

2 (M) which converges
weakly to v, then

(2.1)

∫

M

uN−2
∣∣v2m − v2

∣∣ dvg → 0.

Proof. Letting A be any real positive number, we put uA = inf(u,A).
Then (uA)A is a monotone sequences which converges pointwisely almost
everywhere to v, so by Lebesgue monotone convergence theorem, we get∫

M

(uN−2 − uN−2
A )

N
N−2 dvg → 0.

On the other hand, we have∫

M

uN−2
∣∣v2m − v2

∣∣ dvg ≤

∫

M

uN−2
A

∣∣v2m − v2
∣∣ dvg
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+

∫

M

(
uN−2 − uN−2

A

)
(|vm|+ |v|)2dvg.

Using the Hölder inequality, we obtain
∫

M

uN−2
∣∣v2m − v2

∣∣ dvg ≤ AN−2

∫

M

∣∣v2m − v2
∣∣ dvg

+

(∫

M

∣∣∣uN−2 − uN−2
A

∣∣∣
N

N−2
dvg

)N−2
N
(∫

M

(|vm|+ |v|)Ndvg

) 2
N

.

Taking account of the boundedness and the strong convergence of (vm) to v
in L2(M) we get the result. �

Proposition 1. Let g̃ = u
N−2

2 g be any generalized conformal metric to a
metric g. The equation

(2.2) Pgv = λ1u
N−2v

has a solution of class C4,α(M) ( 0 < α < N − 2) with the constraint

∫

M

uN−2v2dvg = 1.

Proof. Let (vm) be a minimizer sequence of λ1(g̃ ) with the constraint∫
M

uN−2v2mdvg = 1. The sequence (vm) is bounded inH2
2 (M) and by passing

to a subsequences also labelled (vm), there exists v ∈ H2
2 (M) such that

(i) vm → v weakly in H2
2 (M)

(ii) vm → v strongly in L2(M)
From (i), we obtain

‖v‖ ≤ lim inf ‖vm‖

and by Lemma4 we get
∫

M

uN−2v2dvg = lim
m→∞

∫

M

uN−2v2mdvg = 1

and we derive that ‖v‖2 = λ1(g̃).
Consequently v is a non trivial weak solution of the equation(2.2).
By Lemma3, v ∈ Ls(M) for any s ≥ 1 and it follows that v ∈ C4,α(M),

with α < N − 2. �

2.1. Positivity of solutions. Now we are going to show that the equa-
tion (2.2) admits a positive solution.

Proposition 2. If the scalar curvature Sg of the Einsteinian manifold
(M,g) is positive, the equation

(2.3) Pgf = λ1u
N−2v

has a positive solution with the constraint

(2.4)

∫

M

uN−2v2dvg = 1.
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Proof. Let v be a solution to the equation(2.3) and let f be the solu-
tion of the equation

∆f +
α

2
f =

∣∣∣∆v +
α

2
v
∣∣∣

with α > 0. Clearly f ∈ C2,α(M) (α < N − 2).
If ∆v + α

2 v ≥ 0 ( resp. ∆v + α
2 v ≤ 0) we have f = v ( resp. f = −v).

If it is not the case, putting w = f ± v, we get

(2.5) ∆w ±
α

2
w =

∣∣∣∆f +
α

2
f
∣∣∣±
(
∆v +

α

2
v
)
≥ 0

so ∆(−w)± α
2 (−w) ≤ 0. The maximum principle asserts that −w = v ± f

attains a maximum M ≥ 0 then w is a constant function but this is excluded
since −α M ≤ 0 implies that M = 0. Consequently f > |v| ≥ 0.

Let k ≥ 0 be a real number such that
∫
M

uN−2(kf)2dvg = 1, then

0 < k < 1. Now letting f̂ = kf and taking account of the equation(2.3) we
get ∫

M

((
∆f̂
)2

+ α
∣∣∣∇f̂

∣∣∣
2
+ αf̂2

)
dvg − λ1(g̃) =

k2
∫

M

(
(∆f)2 + α |∇f |2 + αf2

)
dvg − λ1(g̃) =

k2
∫

M

((
∆f +

α

2
f
)2

−
α2

4
f2 + αf2

)
dvg − λ1(g̃) =

k2
∫

M

((
∆v +

α

2
v
)2

−
α2

4
f2 + αf2

)
dvg − λ1(g̃) =

(k2 − 1)λ1(g̃) +

(
α−

α2

4

)∫

M

(
f2 − v2

)
dvg ≤ 0.

Consequently

(2.6)

∫

M

((
∆f̂
)2

+ α
∣∣∣∇f̂

∣∣∣
2
+ αf̂2

)
dvg = λ1(g̃).

�

Proposition 3. Let u ∈ LN
+ (M), if v ∈ H2

2 (M) is a weak solution of the
equation

(2.7) Pgv = λ1(g̃)u
N−2v

with

(2.8)

∫

M

uN−2v2dvg = 1

then there is a weak solution w ∈ H2
2 (M) of the equation

(2.9) Pgw = λ′
2(g̃)u

N−2w

with the constraints∫

M

uN−2w2dvg = 1,

∫

M

uN−2vwdvg = 0
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where

λ′
2(g̃) = inf

E

∫
M

wPgwdvg∫
M

uN−2w2dvg

and

E =

{
u

N−2
2 w : w ∈ H2

2 (M)/ u
N−2

2 w ≇ 0,

∫

M

uN−2vwdvg = 0 and

∫

M

uN−2w2dvg = 1

}
.

Proof. First, we show that the set E is non empty. Let v , s ∈ H2
2 (M)

noncolinear such that
∫
M

uN−2v2dvg = 1,
∫
M

uN−2s2dvg = 1. Necessarily

u
N−2

2 v ≇ 0 and u
N−2

2 s ≇ 0. Observe that
∫
M

uN−2vsdvg 6= 1, since if it is
not the case the equality is attained in the the Hölder inequality and this
possible if and only if there a real constant c such that v = cs.

Putting w = αv + βs with α, β ∈ R, we obtain

uN−2w = αuN−2v + βuN−2s

so to get
∫

M

uN−2vwdvg = α+ β

∫

M

uN−2vsdvg = 0

and ∫

M

uN−2w2dvg = 1

we let

β = −
α∫

M
uN−2vsdvg

and

1 =

∫

M

uN−2 (αv + βs)2 dvg

= α2 + β2 + 2αβ

∫

M

uN−2vsdvg.

We obtain

α = ±

( ∫
M

uN−2vsdvg

1−
∫
M

uN−2vsdvg

) 1
2

and

β = ±
1

((
1−

∫
M

uN−2vsdvg
) ∫

M
uN−2vsdvg

) 1
2

.

Now we will show that w is a weak non trivial solution of the equation(2.9).
Let (wn) be a minimizer sequence of λ′

2(g̃) such that
∫

M

uN−2w2
mdvg = 1

and ∫

M

uN−2wmvdvg = 0.
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Then the sequences (wm) is bounded in H2
2 (M) and there is w ∈ H2

2 (M) a
weak solution of the equation(2.9). It remains to verify that

∫
M

uN−2w2 = 1

and also
∫
M

uN−2wvdvg = 0. The first equality follows from Lemma4 the

second one is true since the function ϕ = uN−2v ∈ L
N

N−1 (M). �

Proposition 4. Suppose that the solutions v and w of the equations (2.7)
and (2.9) are as in proposition6, then λ2(g̃) = λ′

2(g̃).

Proof. The weak solution w ∈ H2
2 (M) of the equation

Pgw = λ′
2(g̃)u

N−2w

is a minimizer of

λ′
2(g̃) = inf

w∈E

∫
M

wPgwdvg∫
M

uN−2w2dvg

where

E =

{
u

N−2
2 w : w ∈ H2

2 (M) s. t. u
N−2

2 w ≇ 0 ,

∫

M

uN−2vwdvg = 0 and

∫

M

uN−2w2dvg = 1

}
.

Since u
N−2

2 v and u
N−2

2 w are linearly independent it follows that Vo =span(v,w) ∈
Gru2 (H

2
2 (M)).

Putting

f = λv + µw with (λ, µ) ∈ R2 − {(0, 0)}

we evaluate

s =

∫
M

fPgfdvg∫
M

uN−2f2dvg

on the plane Vo.
We obtain

s =
λ2
∫
M

vPg (v) dvg + µ2
∫
M

wPg (w) dvg

λ2 + µ2

=
λ2

λ2 + µ2
λ1(g̃) +

µ2

λ2 + µ2
λ′
2(g̃)

= λ1(g̃) cos
2 θ + λ′

2(g̃) sin
2 θ

with θ ∈ R.
On the other hand, we have

ds

dθ
= (λ′

2(g̃)− λ1(g̃)) sin 2θ

and noting that

λ1(g̃) ≤ λ′
2(g̃)

we get easily

min s(θ) = λ1(g̃) and max s(θ) = λ′
2(g̃).
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Consequently

λ′
2(g̃) = sup

w∈Vo

∫
M

wPg(w)dvg∫
M

uN−2w2dvg
.

On the other hand the infimum of supw∈V−{0}

R

M
wPg(w)dvg

R

M
uN−2w2dvg

on all the sub-

spaces of Gru2 (H
2
2 (M)) is attained by Vo = span(v,w).

Hence

λ′
2(g̃) = λ2(g̃).

�

Proposition 5. If u ∈ C∞(M) with u ≥ 0 not identically 0. Then any
weak solution of the equation

(2.10) Pgv = µuN−2v

is of class C∞(M), µ ∈ R.

Proof. Let u ∈ C∞(M), u ≥ 0 and not identically 0 and v a weak
solution of the equation(2.10). We have

(∆ + a)(∆ + b)v = µuN−2v

with a = α−
√
α2−4α
2 and b = α+

√
α2−4α
2 .

Putting

z = (∆ + b)v

we get

(∆ + a)z = µuN−2v

and since v ∈ H2
2 (M), uN−2v ∈ H2

2 (M) so z ∈ H2
4 (M). Recurrently, for

any k ≥ 2 we obtain v ∈ H2
k . Now, classical regularity theorem allows us to

conclude that v ∈ C∞(M). �

3. A Sobolev inequality related to µ2(M,g)

The Sobolev inequality given by Lemma1 which allows to avoid concen-
tration phenomena for the minimizing sequence of the first Paneitz-Branson
invaiant µ1(M,g) is not sufficient in the case of the second Paneitz-Branson
invariant µ2(M,g), we propose the following Sobolev type inequality.

Proposition 6. Let (M,g) be a Riemannian manifold of dimension n ≥ 5.
For any ǫ > 0 there is a constant A(ǫ) such that, for any u ∈ LN

+ (M) and

any v ∈ H2
2 (M), we have

∫

M

uN−2v2dvg ≤

(
2−

4
n (K2

2 + ǫ)

∫

M

(∆v)2dvg +A(ǫ)

∫

M

v2dvg

)(∫

M

uNdvg

) 2
N

Proof. For any ǫ > 0, put

B(ǫ) = A(ǫ)K−2
2 (1 + ǫ)−1
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and let

G(u, v) =

∫
M
(∆v)2dvg +B(ǫ)

∫
M

v2dvg∫
M

uN−2v2dvg

(∫

M

uNdvg

)

where u ∈ LN
+ (M) and v ∈ H2

2 (M)− {0} such that
∫
M

uN−2v2dvg 6= 0.

Obviously G(u, v) is continuous on LN
+ (M)×H2

2 (M)−{0}. So I(u, V ) =

supv∈V −{0} G(u, v) depends continuously on u ∈ LN
+ (M) and V ∈ Gru2 (H

2
2 (M)).

We must show that
I(u, V ) ≥ 2

4
nK−2

2 (1 + ǫ)−1

for all u ∈ C∞(M), u > 0 and V ∈ Gru2 (C
∞(M)).

Without lost of generality, we suppose that
∫
M

uN−2v2dvg = 1. On the
other hand the operator

(3.1) v → Q(v) = u
2−N

2 ∆2(u
2−N

2 v) +B(ǫ)u2−Nv

is a fourth order elliptic and self adjoint with respect to the inner product
in L2(M). Q has a discrete spectrum λ1 ≤ λ2 ≤ ...

The corresponding eigenfunctions ϕ1, ϕ2, ... are smooth functions on M .

Letting vi = u
2−N

2 ϕi , we get
∫

M

(∆vi)
2dvg +B(ǫ)

∫

M

v2i dvg = λi

∫

M

uN−2v2i dvg

with ∫

M

uN−2vivjdvg = 0.

Let P̃g be the operator defined on C∞(M) by P̃gu = ∆2
gu+ B(ǫ)u and

let Ω1 and Ω2 be two non empty open disjoint sets in M and let v1 and v2
be two non trivial solutions to the equation

(3.2) P̃gvi = λ2u
N−2vi

i = 1, 2 with supports included respedtively in Ω1 and Ω2, the closer sets of
Ω1 and Ω2 r and where λ2 is the second eigenvalue of the operator Q defined
above. By multiplying if necessary v1and v2 by constants, we assume that∫
M

uN−2v21dvg =
∫
M

uN−2v22dvg = 1.
Using the Hölder inequality and the Sobolev one given in Lemma1, we

get

2 =

∫

M

uN−2v21dvg +

∫

M

uN−2v22dvg

≤

(∫

Ω1

uNdvg

)1− 2
N
(∫

M

|v1|
N dvg

) 2
N

+

(∫

Ω2

uNdvg

)1− 2
N
(∫

M

|v2|
N dvg

) 2
N

≤

(∫

Ω1

uNdvg

)1− 2
N

K2
2 (1 + ǫ)

(∫

M

(∆v1)
2dvg +B(ǫ)

∫

M

v21dvg

)

+

(∫

Ω2

uNdvg

)1− 2
N

K2
2 (1 + ǫ)

(∫

M

(∆v2)
2dvg +B(ǫ)

∫

M

v22dvg

)
.
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And since v1 and v2 are solutions to the equation (3.2), we obtain

2 ≤ K2
2 (1 + ǫ)λ2

((∫

Ω1

uNdvg

)1− 2
N

+

(∫

Ω2

uNdvg

)1− 2
N

)
.

Using Hölder inequality, we get
(∫

Ω1

uNdvg

)1− 2
N

+

(∫

Ω2

uNdvg

)1− 2
N

≤ 2
2
N

(∫

Ω1

uNdvg +

∫

Ω2

uNdvg

)

so

λ2 ≥ 2
4
n (1 + ǫ)−1K−2

2 .

Letting V = span(v1, v2), we obtain for any (α, β) ∈ R2 − (0, 0),

G(u, αv1 + βv2) =

∫
M

[
(∆(αv1 + βv2))

2 +B(ǫ)(αv1 + βv2)
2
]
dvg

∫
M

un−2(αv1 + βv2)2dvg

=
α2
∫
M

(
(∆v1)

2 +B(ǫ)v21
)
dvg + α2

∫
M

(
(∆v2)

2 +B(ǫ)v22
)
dvg

α2
∫
M

uN−2v21dvg + β2
∫
M

uN−2v22dvg

= λ2.

Then

I(u, V ) = sup
(α,β)∈R2−(0,0)

G(u, αv1 + βv2) = λ2

and the proof of the proposition is achieved. �

In the particular case of the standard unit (Sn, h) sphere of Rn+1, we
obtain

Proposition 7. Let (Sn, h) be the unit sphere of Rn+1, n ≥ 5, and let P
be the Paneitz-Branson operator on (Sn, h) . For any u ∈ LN

+ (Sn) and any

v ∈ H2
2 (S

n), we have

∫

Sn

uN−2v2dvh ≤ 2−
4
nK2

2

∫

Sn

vP (v)dvh

(∫

Sn

uNdvh

) 2
N

.

Proof. The proof is similar to that of the propostion6, by using the
Sobolev inequality given by Lemma2 instead of that given by Lemma1. �

As corollary of proposition7, we get the following Sobolev inequality on
the Euclidean space Rn.

Corollary 1. Let C∞
c (Rn) be the space of functions of classe C∞ and of

compact supports on Rn. For any u ∈ LN
+ (Rn) and any v ∈ H2

2 (R
n), we

have ∫

Rn

uN−2v2dx ≤ 2−
4
nK2

2

∫

Rn

(∆v)2dx

(∫

M

uNdx

) 2
N

where dx denotes the Euclidean measure on Rn.
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Proof. Since Rn is conformal to Sn − {p}, where p is any point of Sn

and the Paneitz-Branson is a conformal invariant the corollory1 follows from
proposition7. �

Proposition 8. If µ1(M,g)K2
2 < 1, then

µ(M,g) = µ1(M,g)

Proof.

µ1(M,g) = inf
eg∈[g]

λ1(g̃) (vol(M))
4
n

= inf
u∈C∞(M)

u>0

inf
v∈C∞(M)−{0}

∫
M

vPg(v)dvg∫
M

uN−2v2dvg

(∫

M

uNdvg

) 4
n

≤ inf
v∈C∞(M)−{0}

∫
M

vPg(v)dvg
(∫

M
|v|N dvg

) 2
N

= µ(M,g).

The inequality in the other sense requires a variational method. Let gm =

u
N−2

2
m g with um ∈ LN

+ (M), a minimizer sequence of µ1(M,g) i.e.

µ1(M,g) = lim
m→∞

λ1(gm) (vol(M,g))
4
n .

Considering the Yamabe functional

Y (u, v) =

∫
M

vPg(v)dvg∫
M

uN−2v2dvg

(∫

M

uNdvg

) 4
n

with v ∈ H2
2 (M)− {0} and u ∈ LN

+ (M), we write, for any λ ∈ R∗

Y (λu, v) =

∫
M

vPg(v)dvg

λN−2
∫
M

uN−2v2dvg
λ

2N
n

(∫

M

uNdvg

) 4
n

= Y (u, v).

So, we can choose the sequence (um) such that
∫
M

uNmdvg = 1 and there is
a subsequence of (um) still labelled by (um) converging weakly to u ≥ 0 in
LN (M).

On the other hand, by Proposition3 for any um ∈ LN
+ (M) there is vm ∈

H2
2 (M) solutions of the equation

Pg(vm) = λ1,muN−2
m vm

with the constraint ∫

M

uN−2
m v2mdvg = 1.

Obviously (vm) is bounded in H2
2 (M) so there is v ∈ H2

2 (M) such that
vm → v weakly in H2

2 (M), vm → v a.e. in M .
Since limm→∞ λ1,m = µ1(M,g), v is a weak solution of the equation

Pg(v) = µ1(M,g)uN−2v .
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Now, we are going to show that v satisfies the condition∫

M

uN−2v2dvg = 1.

It is obvious that ∫

M

uN−2v2dvg ≤ 1

So we have to show the inequality in the other sense, to do so, we consider∫

M

uN−2v2dvg =

∫

M

uN−2
m v2mdvg −

∫

M

(uN−2
m v2m − uN−2v2)dvg

= 1−

∫

M

(uN−2
m v2m − uN−2v2)dvg.

Now, since
∣∣uN−2

m v2m − uN−2
m (vm − v)2

∣∣ ≤ CuN−2
m |vm + v| |v|

where C is a postive constant
we get

uN−2
m v2m − uN−2

m (vm − v2)
2 → uN−2v2 in L1(M)

and ∫

M

(
uN−2
m v2m − uN−2v2

)
dvg →

∫

M

uN−2
m (vm − v2)

2dvg.

so

(3.3)

∫

M

uN−2v2dvg = 1−

∫

M

uN−2
m (vm − v)2dvg + o(1).

where o(1) is a sequence converging to 0 as m → +∞. Using simultaneously
the Hölder inequality and the Sobolev inequality given by Lemma1, we get∫

M

uN−2
m (vm − v)2dvg ≤

(
K2

2 + ǫ
)
‖∆(vm − v)‖22 +A(ǫ) ‖vm − v‖22

≤
(
K2

2 + ǫ
)(∫

M

(vmPg(vm)− vPg(v)) dvg

)
+ o(1)

≤
(
K2

2 + ǫ
)
µ1(M,g)

∫

M

(uN−2
m v2m − uN−2v2)dvg + o(1)

≤
(
K2

2 + ǫ
)
µ1(M,g)

(
1−

∫

M

uN−2v2dvg

)
+ o(1).

Taking account of (3.3), we have
∫

M

uN−2v2dvg ≥ 1−
(
K2

2 + ǫ
)
µ1(M,g)

(
1−

∫

M

uN−2v2dvg

)

+o(1).

Then
(
1−

(
K2

2 + ǫ
)
µ1(M,g)

) ∫

M

uN−2v2dvg ≥ 1− 2−
4
n

(
K2

2 + ǫ
)
µ1(M,g)

+o(1).
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So if
µ1(M,g)K2

2 < 1

we get ∫

M

uN−2v2dvg ≥ 1.

Consequently
µ1(M,g) > 0.

Let u = a |v| with a > 0 and
∫

M

uNdvg = aN
∫

M

vNdvg = 1

then

µ1(M,g) ≤

∫
M

vPg(v)dvg∫
M

uN−2v2dvg

≤
µ1(M,g)

∫
M

uN−2v2dvg

aN−2
∫
M

vNdvg

≤ a2µ1(M,g)

∫

M

uN−2v2dvg

≤ µ1(M,g)

∫

M

uN−2u2dvg

The Hölder inequality implies that

µ1(M,g) ≤ µ1(M,g)

(∫

M

uNdvg

)1− 2
N
(∫

M

uNdvg

) 2
N

≤ µ1(M,g).

So the equality is attained in the Hölder inequality and this is possible only
if

u = cu

with c > 0 is a constant which implies that

c = 1

and
u = u = a |v| .

Also

aN−2

∫

M

vNdvg =

∫

M

uN−2v2dvg = 1

and
aN
∫
M

vNdvg

a2
= 1

Finally since a > 0, we get
a = 1

hence
u = |v| .
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That means that v is a weak solution in H2
2 (M) to the equation

Pg(v) = µ1(M,g) |v|N−2 v.

The condition
∫
M

vNdvg = 1 implies that v is non trivial. Consequently

µ1(M,g) =

∫
M

Pg(v)dvg∫
M

|v|N dvg
≥ µ(M,g).

�

4. Existence of a minimizer to µ2(M,g)

Proposition 9. If µ2(M,g)K2
22

− 4
n < 1, then µ2(M,g) is attained by a

generalized metric uN−2g, u∈ LN
+ (M).

Proof. Let gm = uN−2
m g with um ∈ C∞(M) and um > 0 be a minimiz-

ing sequence of µ2(M,g). Since we can assume that
∫

M

uNmdvg = 1

we have
lim
n

λ2,m = µ2(M,g)

By Proposition3, there are vm, wm ∈ H2
2 (M) such that

(4.1) P (vm) = λ1,muN−2
m vm

and

(4.2) P (wm) = λ2,muN−2
m wm

with the normalized conditions

(4.3)

∫

M

uN−2
m v2mdvg =

∫

M

uN−2
m v2mdvg = 1,

∫

M

uN−2
m vmwmdvg = 0.

First, we have for any integer m ≥ 1,

λ1,m < λ2,m.

Since, if λ1,m = λ2,m; wm is a minimizer of λ1,m. On other hand taking
account of the coerciveness of the Paneitz operator P and applying the
Lax-Milgram theorem, we get easily that the first eigenvalue λ1,m of Pg is
simple, so wm = αvm with a real α 6= 0. Thus by (4.3), we get that

∫

M

uN−2
m v2mdvg = 0

a contradiction. The sequences (vm)m and (wm)m are bounded in H2
2 (M) so

there are functions v,w ∈ H2
2 (M) and subsequences still denoted by (vm)m

and (wm)m converging weakly to v and w, respectively, in H2
2 (M). This

latter facts and the weak convergence of (um) to u in LN (M) allow us to
write in the weak sense that

(4.4) Pg(v) = νuN−2v
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and w

(4.5) Pg(w) = µ2(M,g)uN−2w

where ν = limm λ1,m ≤ µ2(M,g).
Now, we are going to show that v ,w fulfill respectively the conditions∫

M
uN−2v2dvg =

∫
M

uN−2w2dvg = 1 and by the way v, w are not identically
null. To do so, we borrow ideas and notations from([1]). Set

Sm =
{
λmvm + µmwm: (λm, µm) ∈ R2, λ2

m + µ2
m = 1, λmµm > α > 0

}

S =
{
λv + µw: (λ, µ) ∈ R2, λ2 + µ2 = 1

}

and let wm = λmvm + µmwm , w = λv + µw where up to a subsequence
(λm, µm) → (λ, µ).

Obviously, we have

(4.6)

∫

M

uN−2w2dvg ≤ lim
m

inf

∫

M

uN−2
m w2

mdvg = 1.

For the inequality in the other sense, we have

∫

M

uN−2w2dvg =

∫

M

uN−2
m w2

mdvg −

∫

M

(uN−2
m w2

m − uN−2w2)dvg

= 1−

∫

M

(uN−2
m v2m − uN−2v2)dvg.

Now, since

(4.7)
∣∣uN−2

m w2
m − uN−2

m (wm − w)2
∣∣ ≤ CuN−2

m |wm + w| |w|

where C > 0 is some constant
we get

∣∣uN−2
m w2

m − uN−2
m (wm − w)2

∣∣→ uN−2w2 in L1(M)

and

(4.8)

∫

M

(
uN−2
m w2

m − uN−2w2
)
dvg →

∫

M

uN−2
m (wm − w)2dvg.

Thus ∫

M

uN−2w2dvg = 1−

∫

M

uN−2
m (wm − w)2dvg + o(1)

where o(1) is a sequence which goes to 0 as m → +∞.
Using the Sobolev inequality given by proposition(6), and taking account

of

‖um‖N = 1

we get
∫

M

uN−2
m (wm −w)2dvg ≤ 2−

4
n

(
K2

2 + ǫ
)
‖∆(wm − w)‖22 +A(ǫ) ‖wm − w‖22 .
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Now by the Brezis-Lieb lemma([3]) and the fact that ‖wm − w‖2 → 0 as
m → +∞, we obtain

(4.9)

∫

M

uN−2
m (wm −w)2dvg ≤ 2−

4
n

(
K2

2 + ǫ
) (

‖∆wm‖22 − ‖∆w‖22

)
+ o(1).

By the fact that

wm − w → 0 in H2
q (M), q = 0, 1 as m → +∞

we have

‖∆wm‖22 − ‖∆w‖22 =

∫

M

(wmPg(wm)− wP (w)) dvg + o(1).

= λ1,mλ2
m

∫

M

uN−2
m v2m+λ2,mµ2

m

∫

M

uN−2
m w2

m−ν(M,g)λ2

∫

M

uN−2v2−µ2µ
2

∫

M

uN−2w2+o(1)

Taking into account of (4.6), we get

‖∆wm‖22 − ‖∆w‖22 ≤ λ2,m

(∫

M

uN−2
m w2

m −

∫

M

uN−2w2dvg

)

+
(
λ1,mλ2

m − ν(M,g)λ2
) ∫

M

uN−2v2 +
(
λ2,mµ2

m − µ2µ
2
) ∫

M

uN−2w2 + o(1)

≤ µ2(M,g)

∫

M

(uN−2
m w2

m − uN−2w2)dvg + o(1).

Consequently∫

M

uN−2w2dvg ≥ 1−2−
4
n

(
K2

2 + ǫ
)
µ2(M,g)

∫

M

(uN−2
m w2

m−uN−2w2)dvg+o(1)

and since ∫

M

uN−2
m w2

mdvg = 1

we obtain
(
1− 2−

4
n

(
K2

2 + ǫ
)
µ2(M,g)

) ∫

M

uN−2w2dvg ≥ 1−2−
4
n

(
K2

2 + ǫ
)
µ2(M,g)+o(1).

So if
K2

2µ2(M,g)2−
4
n < 1

we choose ǫ > 0 sufficiently small and get∫

M

uN−2w2dvg ≥ 1.

The inequality(4.9), the Lieb-Brezis lemma ([3]) and the strong convergence
of the sequence (wm)m to w in H2

q (M) , q = 0, 1, we get
∫

M

uN−2
m (wm − w)2dvg ≤ 2−

4
n

(
K2

2 + ǫ
) (

‖∆wm‖22 − ‖∆w‖22

)
+ o(1)

≤ 2−
4
n

(
K2

2 + ǫ
)(

λ2,m

∫

M

uN−2
m w2

mdvg − µ2(M,g)

∫

M

uN−2w2dvg

)

+o(1)
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≤ 2−
4
n

(
K2

2 + ǫ
) [

(λ2,m − µ2(M,g))

∫

M

uN−2
m w2

mdvg

+ µ2(M,g)

∫

M

(
uN−2
m w2

m − uN−2w2
)
dvg

]
+ o(1).

Since λ2,m → µ2(M,g) as m → +∞ and

(4.10)

∫

M

(
uN−2
m w2

m − uN−2w2
)
dvg =

∫

M

uN−2
m (wm − w)2 dvg + o(1)

we obtain
(
1− 2−

4
n

(
K2

2 + ǫ
)
µ2(M,g)

) ∫

M

uN−2
m (wm − w)2 dvg ≤ o(1).

So if
K2

2µ2(M,g)2−
4
n < 1

we get

lim
m→+∞

∫

M

uN−2
m (wm − w)2 dvg = 0.

Hence by the equality(4.10), we get
∫

M

uN−2
m w2

mdvg →

∫

M

uN−2w2dvg.

So ∫

M

uN−2w2dvg = 0

and since ∫

M

uN−2v2dvg =

∫

M

uN−2w2dvg = 1

and
λ2 + µ2 = 1, λµ 6= 0

it follows that ∫

M

uN−2vwdvg = 0.

Thus the functions u
N−2

2 v, u
N−2

2 w are linearly independent. �

5. An estimation to µ2(M,g)

Mimicking which is done in [1], we establish the following lemma.

Lemma 5. If the manifold (M,g) is of dimensional n ≥ 12, then µ2(M,g) <
[
µ1(M,g)

n
4 +

(
K−2

2

)n
4

] 4
n
.

To prove this lemma, we need the following elementary inequality.

Lemma 6. [1] For any real numbers x > 0, y > 0 and p > 2, there is a
constant C > 0 such that

(x+ y)p ≤ xp + yp + C(xp−1y + xyp−1).
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Proof. (of Lemma[?]) Let xo ∈ M , δ > 0 sufficiently small and Bxo(δ)
the ball of center xo and of radius δ and η a C∞-function

η(x) =

{
1 if x ∈ Bxo(δ)
0 if x /∈ Bxo(2δ)

.

Put
ϕǫ = η(r2 + ǫ2)−

n−4
2

where η is a bumping function, obviously ϕǫ ∈ H2
2 (M).

For any n > 6 and ǫ → 0, a calculation done in [4] leads to

(5.1) Y (ϕǫ) → K−2 − ǫ2co +O(ǫ3)

where

Y (v) =

∫
M

vPg(v)dvg
(∫

M
|v|N dvg

) 2
N

co > 0
and

K−2
2 =

n(n+ 2)(n − 2)(n − 4)

16
ω

4
n

n−1.

ωn−1 denotes the volume of the unit Euclidean sphere.
Consider the function

(5.2) vǫ = cǫϕǫ

with cǫ > 0 is such that
∫
M

vNǫ dvg = 1 . Standard computations give

(5.3) cǫ = coǫ
n−4
2

with co > 0.
Denote also by v a smooth positive solution of the equation

Pg(v) = µ1(M,g)vN−1

with ‖v‖N = 1. .
Put

uǫ = Y (vǫ)
1

N−2 vǫ + µ1(M,g)
1

N−2 v.

For any (λ, µ) ∈ R2 − {(0, 0)}, we have
∫

M

(λvǫ + µv)Pg(λvǫ + µv)dvg)
2dvg

=

∫

M

(
λ2vǫP (vǫ)dvg + µ2vP (v) + 2λµvǫP (v)

)
dvg.

Since
∫
M

vPg(v)dvg = µ1(M,g) and
∫
M

vǫPg(vǫ)dvg = Y (vǫ), we get
∫

M

(λvǫ + µv)Pg(λvǫ + µv)dvg = λ2Y (vǫ) + µ2µ1(M,g)

+2λµµ1(M,g)

∫

M

vǫv
N−1dvg.

and
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∫

M

uN−2
ǫ (λvǫ + µv)2dvg = λ2

∫

M

uN−2
ǫ v2ǫ dvg + µ2

∫

M

uN−2
ǫ v2dvg

+2λµ

∫

M

uN−2
ǫ vǫvdvg

≥ λ2Y (vǫ)

∫

M

vNǫ dvg + µ2µ1(M,g)

∫

M

vNdvg + 2λµ

∫

M

uN−2
ǫ vǫvdvg

= λ2Y (vǫ) + µ2µ1(M,g) + 2λµ

∫

M

uN−2
ǫ vǫvdvg.

We have also ∫

M

uN−2
ǫ vǫvdvg ≥ µ1(M,g)

∫

M

vǫv
N−1dvg

so, if λµ ≥ 0 ∫
M
(λvǫ + µv)Pg(λvǫ + µv)dvg∫
M

uN−2
ǫ (λv + µvǫ)2dvg

≤ 1.

In the case λµ < 0 and N − 2 ∈ (0, 1] i.e. n ≥ 12, we have

uN−2
ǫ =

(
Y (vǫ)

1
N−2 vǫ + µ1(M,g)

1
N−2 v

)N−2

≤ Y (vǫ)v
N−2
ǫ + µ1(M,g)vN−2.

Consequently∫

M

uN−2
ǫ (λvǫ + µv)2dvg = λ2

∫

M

uN−2
ǫ v2ǫ dvg + µ2

∫

M

uN−2
ǫ v2dvg

+2λµ

∫

M

uN−2
ǫ vǫvdvg ≥ λ2Y (vǫ) + µ2µ1(M,g)

+2λµY (vǫ)

∫

M

vN−1
ǫ vdvg + 2λµµ1(M,g)

∫

M

vǫv
N−1dvg

≥ λ2Y (vǫ) + µ2µ1(M,g) −C

(∫

M

vN−1
ǫ vdvg +

∫

M

vǫv
N−1dvg

)

where C > 0 is a constant independent of ǫ.
Now taking account of (5.2) and (5.3) we get, for any (λ, µ) ∈ R2 −

{(0, 0)}, ∫
M
(λvǫ + µv)Pg(λvǫ + µv)dvg∫
M

uN−2
ǫ (λv + µvǫ)2dvg

≤ 1 +O(ǫ
n−4
2 ).

By Lemma6, we obtain∫

M

uNǫ dvg ≤ Y (vǫ)
n
4

∫

M

vNǫ dvg + µ1(M,g)
n
4

∫

M

vNdvg ≥

+C

(∫

M

vN−1
ǫ vdvg +

∫

M

vvN−1
ǫ dvg

)

= Y (vǫ)
n
4 + µ1(M,g)

n
4 + C

(∫

M

vN−1
ǫ vdvg +

∫

M

vǫv
N−1dvg

)
.
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And by the relation (5.1), we deduce that

(∫

M

uNǫ dvg

) 4
n

≤
[
µ1(M,g)

n
4 + (K−2

2 )
n
4 − c.ǫ2 + o(ǫ3) + o(ǫ

n−4
2 )
] 4

n

=
[
µ1(M,g)

n
4 + (K−2

2 )
n
4

] 4
n
− c.ǫ2 + o(ǫ3) (

n− 4

2
≥ 4).

where c > 0 is a constant.
Hence, for any (λ, µ) ∈ R2 − {(0, 0)},

∫
M
(λvǫ + µv)Pg(λvǫ + µv)dvg∫
M

uN−2
ǫ (λv + µvǫ)2dvg

(∫

M

uNǫ dvg

) 4
n

≤

[
µ1(M,g)

n
4 + (K−2

2 )
n
4

] 4
n
− c.ǫ2 +O(ǫ3)

so

µ2(M,g) <
[
µ1(M,g)

n
4 +

(
K−2

2

)n
4

] 4
n
.

�

6. Strong convergence

Lemma 7. Suppose that µ2K
2
22

− 4
n < 1. Then the sequence (vm)m (resp.

(wm)m ) of solutions of the equations(4.1) (resp. of solutions of the equations
(4.2)) has a bounded subsequence on M .

Proof. Let as in the section2 um ∈ LN
+ (M) and vm, wm ∈ H2

2 (M)
solutions respectively of the equations

(6.1) P (vm) = λ1,muN−2
m vm

and

(6.2) P (wm) = λ2,muN−2
m wm.

Set

Sm =
{
λmvm + µmwm: (λm, µm) ∈ R2, λ2

m + µ2
m = 1, λmµm > α > 0

}

S =
{
λv + µw: (λ, µ) ∈ R2, λ2 + µ2 = 1

}

and let wm = λmvm + µmwm , w = λv + µw where up to a subsequence
(λm, µm) → (λ, µ).

First we are going to show that the sequence (wm)m is uniformally

bounded on the manifold M. Suppose by contradiction that (Wm)m is un-
bounded. Then, for every m there exists a point xm ∈ M such that

wm(xm) = max
x∈M

wm = ξm → +∞ as m → +∞.
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Given δ > 0 less than the injectivity radius of (M,g), we let w̃m and ũm
be the functions defined on the Euclidean ball of center 0 and radius δξm,
Bo(δξm), by

w̃m(x) =
1

ξm
wm(expxm

(
x

ξm
))

where expm is the exponential map at xm. Denote by

gm(x) =
(
expxm

)∗
g(

x

ξm
)

the Riemannian metric on the ball Bo(δξm). Clearly, if E is the Euclidean
metric, gm → E in C2 on any compact set.

Now, since the functions vm and wm are solutions respectively of the
equations (6.1) and (6.2) then multiplying by wm ∈ H2

2 (M) and integrating
over the geodesic ball expxm

(Bo(δξm)), we obtain
∫

Bo(δξm)
w̃m∆2

gmw̃mdvgm +
α

ξ2m

∫

Bo(δξm)
w̃m∆w̃mdvgm

+
a

ξ4m

∫

Bo(δξm)
w̃2
mdvgm ≤ λ2,m

∫

Bo(δξm)
ũN−2
m w̃2

mdvgm .

Thus the fact that |w̃m| ≤ 1 on Bo(δξm) and standard elliptic theory lead
after passing to a subsequence to

w̃m → w̃ in C4
loc(R

n).

Independently, we have, for any R > 0
∫

Bo(Rδ)
ũN−2
m dx =

∫

Bo(Rδ)
uN−2
m (expxm

(
x

R
))w̃2

mdvgm + o(1)

=

∫

B(xm,Rδ)
uN−2
m (expxm

(
x

R
))dvg + o(1)

≤

∫

M

uN−2
m (x)dvg + o(1).

So ũm → ũ weakly in LN
loc(R

n)
∫

Bo(Rδ)
uNm(expxm

(
x

R
))dvgm =

∫

B(xm,Rδ)
uNm(x)dvg ≤

∫

M

uNm(x)dvg

Now letting m → ∞, we get
∫

Rn

(∆Ew̃)
2 dx ≤ µ2

∫

Rn

uN−2w̃2dx

and by the Sobolev inequality given by Corollary1, we obtain that
∫

Rn

(∆Ew̃)
2 dx ≤ µ22

− 4
nK2

2

∫

Rn

(∆Ew̃)
2 dx

(∫

Rn

uNdx

) 2
N

≤ µ22
− 4

nK2
2

∫

Rn

(∆Ew̃)
2 dx.
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Consequently

µ2K
2
22

− 4
n ≥ 1

which contradicts the inequalityof the hypothesis, so the sequence (wm) is
bounded on M . �

Corollary 2. The sequence (vm)m (resp. (wm)m )given in (4.1) (resp. in
(4.2)) converges strongly in LN (M).

Proof. Let ǫ > 0, the Hölder inequality leads to
∫

M

|vn − v|N dvg ≤

(∫

M

|vn − v|N−ǫ dvg

) 1
2
(∫

M

|vn + v|N+ǫ dvg

) 1
2

.

By the boundedness of the sequence (vn)n in M and the strong convergence
of the latter to v in LN−ǫ(M), we get that vn → v in LN (M). The same is
also true for the sequence (wn)n. �

Corollary 3. The functions u
N−2

2 v and u
N−2

2 w are linearly independent.

Indeed, since the sequence (vm)m ( resp.(vm)m ) converges strongly to v
(resp.to w) in LN (M), we pass to the limit in the last equality in (4.3) and
get

∫
M

uN−2vwdvg = 0
As a corollary of Lemma 7 and Corollary 2, we obtain our main result

Theorem 3. If the Einsteinian manifold (M,g) is of dimension n ≥ 12,
then µ2(M,g) is attained by a generalized metric.

7. Nodals solutions

The same arguments as in the proof of Lemma3.3 [1] allow us to state.

Lemma 8. Let u ∈ LN
+ (M) with ‖u‖N = 1.Suppose that w1, w2 ∈ H2

2 (M)−
{0}, such that w1 ≥ 0, w2 ≥ 0 satisfy

(7.1)

∫

M

w1P (w1)dvg ≤ µ2(M,g)

∫

M

uN−2w2
1dvg

(7.2)

∫

M

w2P (w2)dvg ≤ µ2(M,g)

∫

M

uN−2w2
2dvg.

If (M − w−1
1 (0)) ∩ (M − w−1

2 (0)) has measure 0, then there exist constants
a > 0 and b > 0 such that u = aw1 + bw2 and the equalities in (7.1) and
(7.2) hold.

Now we establish the existence of a nodal solution.

Theorem 4. Let v and w as in the Proposition(3) and suppose that the
scalar curvature of (M ; g) is positive and µ2(M,g) 6= 0 and attained by a
general metric g̃ = uN−2g with u ∈ LN

+ (M). Then u = |w| and in particular
the equation

(7.3) Pg(w) = µ2(M,g) |w|N−2 w

has a nodal solution.
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Proof. Let v and w as in the Proposition(3). Without lost of generality,
we choose u ∈ LN

+ (M) with
∫
M

uNdvg = 1, hence λ2(g̃) = µ2(M,g). As in
the proof of Proposition9 we have λ1(g̃) < λ2(g̃). Suppose that the solution
of the equation(7.3) is not nodal, by taking − w if w is non positive, we
assume that w ≥ 0. On the other hand since the scalar curvature of (M,g)
is positive, by Proposition(2) the equation

Pg(v) = λ1(g̃)u
N−2v

has a positive solution and by Proposition3 with the constraints
∫

M

uN−2v2dvg =

∫

M

uN−2w2dvg = 1

and ∫

M

uN−2vwdvg = 0.

This latter equality implies that the set (M − v−1(0)) ∩ (M − w−1(0)) has
measure 0. So by Lemma8, we get equalities in ( 7.3), a contradiction with
the fact that λ1(g̃) < λ2(g̃). Consequently w is a nodal function.

Suppose that the compact manifold M splits into two non empty disjoint
domains Ω1and Ω2 such that M = Ω1 ∪ Ω2 ∪̥ with measure(̥) = 0. Let
v1 and v2 be positive solutions to the equation Pg(vi) = λ2u

N−2vi, such
that vi = 0 and ∆vi = 0 on ∂Ωi, where λ2 is the second eigenvalue of the
Paneitz-Branson operator Pg. By Lemma8, there exist constants a > 0 and
b > 0 such that u = av1 + bv2. It follows that u is of class Co,α(M) with
α ∈ (0, N − 2). Observe that the nodal set u−1(0) ⊂ v−1

1 (0) ∩ v−1
2 (0) ⊂ ̥.

Now we follows the proof in [1]. Let h ∈ C∞(M) with support in M −
u−1(0) and put ut = u+th. Since u is continuous and positive on the support
of h, then ut > 0 for t close to 0. The same arguments as the proof in the
Proposition3.3 in [1] we obtain that |w| = u on M − u−1(0). Independently
since the nodal set u−1(0) is negligible and u, |w| are continuous, then
|w| = u on M . �

Corollary 4. µ2(M,g) is not attained by a classical conformal metric.

Since if it is not the case, u > 0 and w such that |w| = u is not nodal.
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