
ar
X

iv
:0

71
0.

13
86

v2
  [

m
at

h.
A

C
] 

 1
7 

Ja
n 

20
08

QUASI-SOCLE IDEALS IN GORENSTEIN NUMERICAL

SEMIGROUP RINGS

SHIRO GOTO, SATORU KIMURA, AND NAOYUKI MATSUOKA

Abstract. Quasi-socle ideals, that is the ideals I of the form I = Q : mq in Goren-
stein numerical semigroup rings over fields are explored, where Q is a parameter
ideal, and m is the maximal ideal in the base local ring, and q ≥ 1 is an integer.
The problems of when I is integral over Q and of when the associated graded ring
G(I) =

⊕
n≥0

In/In+1 of I is Cohen-Macaulay are studied. The problems are rather
wild; examples are given.

1. Introduction

This paper aims at a study of the Polini-Ulrich Conjecture 1.1 ([PU]) of one-

dimensional case. We shall explore Gorenstein numerical semigroup rings over fields

as the test case. Before stating our own result, let us explain the reason why we are

interested in the conjecture of the special case. See Section 2 for the statement of the

main Theorem 2.1 of this paper.

Let A be a Cohen-Macaulay local ring with the maximal ideal m and d = dimA > 0.

Let Q = (a1, a2, · · · , ad) be a parameter ideal in A and let q > 0 be a positive integer.

Then we put I = Q : mq and refer to those ideals as quasi-socle ideals in A.

The study of socle ideals Q : m dates back to the research of L. Burch [B], where she

explored socle ideals of finite projective dimension and gave a very nice characterization

of regular local rings (cf. [GH, Theorem 1.1]). More recently, A. Corso and C. Polini

[CP1, CP2] showed, with the interaction to linkage theory of ideals, that if A is a

Cohen-Macaulay local ring which is not regular, one has the equality I2 = QI for

every parameter ideal Q in A, where I = Q : m. Subsequently, the first author and

H. Sakurai [GSa1, GSa2, GSa3] showed the equality I2 = QI could hold true, where

I = Q : m, for numerous parameter ideals Q in A, even though the base rings A are

not necessarily Cohen-Macaulay. However, a more important thing is the following.

If J is an equimultiple Cohen-Macaulay ideal of reduction number one, the associated

Key words and phrases: Quasi-socle ideal, Numerical semigroup, Gorenstein local ring, associated
graded ring, Rees algebra, integral closure, multiplicity.
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graded ring G(J) =
⊕

n≥0 J
n/Jn+1 is a Cohen-Macaulay ring and, so is the Rees algebra

R(J) =
⊕

n≥0 J
n, provided htA J ≥ 2. One also knows the number and degrees of the

defining equations of R(J), so that one can understand fairly explicitly the process of

desingularization of SpecA along the subscheme V(J). This observation motivated the

ingenious research of C. Polini and B. Ulrich [PU], where they posed, among many

important results, the following conjecture.

Conjecture 1.1 ([PU]). Let (A,m) be a Cohen-Macaulay local ring with dimA ≥ 2.

Assume that dimA ≥ 3 when A is regular. Let q ≥ 2 be an integer and let Q be a

parameter ideal in A such that Q ⊆ m
q. Then

Q : mq ⊆ m
q.

This conjecture was recently settled by H.-J. Wang [W], whose beautiful theorem

says:

Theorem 1.2 ([W]). Let (A,m) be a Cohen-Macaulay local ring with d = dimA ≥ 2.

Let q ≥ 1 be an integer and Q a parameter ideal in A. Assume that Q ⊆ m
q and put

I = Q : mq. Then

I ⊆ m
q, m

qI = m
qQ, and I2 = QI,

provided that A is not regular if d ≥ 2 and that q ≥ 2 if d ≥ 3.

Added to it, the very recent research of S. Goto, N. Matsuoka, and R. Takahashi

[GMT] reported a different approach to the Polini-Ulrich conjecture and proved the

following.

Theorem 1.3 ([GMT]). Let (A,m) be a Gorenstein local ring with d = dimA > 0

and e0
m
(A) ≥ 3, where e0

m
(A) denotes the multiplicity of A with respect to m. Let Q

be a parameter ideal in A and put I = Q : m2. Then m
2I = m

2Q, I3 = QI2, and

G(I) =
⊕

n≥0 I
n/In+1 is a Cohen-Macaulay ring, so that R(I) =

⊕
n≥0 I

n is also

Cohen-Macaulay, provided d ≥ 3.

The researches [W] and [GMT] were independently performed and their methods of

proof are totally different from each other’s. Unfortunately, the technique of [GMT]

can not go beyond the restrictions that A is a Gorenstein ring, q = 2, and e0
m
(A) ≥ 3

and however, despite these restrictions, the result [GMT, Theorem 1.1] holds true even

in the case where dimA = 1, while Wang’s result says nothing about the case where
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dimA = 1. As is suggested in [GMT], the one-dimensional case is rather different from

higher-dimensional cases and much more complicated to control.

It seems natural to ask how one can modify the Polini-Ulrich conjecture, so that

it covers also the one-dimensional case. This question has motivated the present re-

search. We then decided to explore Gorenstein numerical semigroup rings over fields,

as the starting point of our investigations, because they are typical one-dimensional

Cohen-Macaulay local rings and because higher-dimensional phenomena are often re-

alized, with primitive forms, in those rings of dimension one. We expect, with further

investigations, a generalization of the results in this paper to higher-dimensional cases

and a possible modification of the Polini-Ulrich conjecture, as well.

Let us explain how this paper is organized. The statement of the main result Theorem

2.1 and its proof will be found in Section 2. Theorem 2.1 gives a generalization of

[GMT, Theorem 1.1] in the case where the base rings are numerical semigroup rings.

As an application of Theorem 2.1 we will explore in Section 3 numerical semigroup

rings A = k[[ta, ta+1]] (a > 1) over fields k, where t is an indeterminate. We will give a

criterion for the ideal I = (ts) : mq to be integral over the parameter ideal (ts) in A (here

q > 0 is an integer and 0 < s ∈ H = 〈a, a+ 1〉, the numerical semigroup generated by

a, a+1). The problem of when the ring G(I) is Cohen-Macaulay is answered in certain

special cases. We agree with the observation in [GMT] that the one-dimensional case

is wild. To confirm this, we will note two examples in Section 4.

2. The main result and the proof

Let 0 < a1 < a2 < · · · < aℓ (ℓ ≥ 1) be integers with GCD(a1, a2, · · · , aℓ) = 1. We

put

H = 〈a1, a2, · · · , aℓ〉 = {
ℓ∑

i=1

αiai | 0 ≤ αi ∈ Z}.

Then, because GCD(a1, a2, · · · , aℓ) = 1, H ∋ n for all n ∈ Z with n ≫ 0. We put

c(H) = min{m ∈ Z | H ∋ n for all integers n ≥ m}, the conductor of H . Let V = k[[t]]

be the formal power series ring over a field k. We put

A = k[[H ]] = k[[ta1 , ta2 , · · · , taℓ ]] ⊆ V.

Let m = (ta1 , ta2 , · · · , taℓ) be the maximal ideal in A. Then A is a Cohen-Macaulay

local ring with dimA = 1 and e0
m
(A) = a1, where e0

m
(A) denotes the multiplicity of A

with respect to the maximal ideal m. The ring V is a module-finite birational extension
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of A. Hence A = V , where A denotes the normalization. We say that the numerical

semigroup H is symmetric, if for every n ∈ Z,

n ∈ H ⇐⇒ α− n 6∈ H,

where α = c(H)− 1 denotes the Frobenius number of H . This condition is equivalent

to saying that A = k[[H ]] is a Gorenstein ring ([HK]).

With this notation we are interested in the problem of when the results of [W] and

[GMT] hold true and our result is summarized into the following.

Theorem 2.1. Suppose that A = k[[H ]] is a Gorenstein ring. Let q > 0 be an integer

and assume that the following two conditions (C1) and (C2) are satisfied for q, where

c = c(H):

(C1) tn ∈ m
q for all integers n ≥ c;

(C2) Let n ∈ H. Then n < a1(q − 1), if tn 6∈ m
q−1.

Let 0 < s ∈ H. Let Q = (ts) and I = Q : mq. Then the following assertions hold true.

(1) m
qI = m

qQ and Q ∩ I2 = QI.

(2) I2 = QI, if s ≥ c.

(3) I3 = QI2 and the associated graded ring G(I) =
⊕

n≥0 I
n/In+1 is Cohen-

Macaulay, if s ≥ a1(q − 1).

Before going ahead, let us note a few remarks on Theorem 2.1.

Remark 2.2. (1) Conditions (C1) and (C2) in Theorem 2.1 are naturally satisfied if

a1 ≥ 2 and q = 1. We will later show that they are satisfied also in the following two

cases.

(i) A = k[[H ]] is a Gorenstein ring, a1 ≥ 3, and q = 2.

(ii) ℓ = 2, a1 > 1, a2 = a1 + 1, and 0 < q < a1.

(2) In Theorem 2.1 the ring G(I) is not necessarily Cohen-Macaulay and the reduction

number

rQ(I) = min{0 ≤ n ∈ Z | In+1 = QIn}

of I with respect to Q can go up, unless s ≥ a1(q − 1). See Theorem 3.8 and Example

4.1.

(3) Unless condition (C2) is satisfied, Theorem 2.1 (3) does not hold true in general,

although condition (C1) is satisfied (and hence I is integral over Q; cf. Lemma 2.4).

See Example 4.2.
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The rest of this section is devoted to the proof of Theorem 2.1. Let us restate our

setting.

Setting. Let 0 < a1 < a2 < · · · < aℓ (ℓ ≥ 1) be integers with GCD(a1, a2, · · · , aℓ) = 1,

H = 〈ai | 1 ≤ i ≤ ℓ〉, c = c(H), a = a1 = min [H \ {0}],

k a field, V = k[[t]] the formal power series ring over k,

A = k[[H ]] = k[[ta1 , ta2 , · · · , taℓ ]] ⊆ V , and

m = (ta1 , ta2 , · · · , taℓ) the maximal ideal in A.

We begin with the following.

Lemma 2.3. Suppose that a ≥ 3 and let α ≥ a − 1 be an integer. Let Λ = {n ∈ Z |

0 ≤ n ≤ α} and assume that for every n ∈ Λ, n ∈ H ⇔ α − n /∈ H. Then α = c − 1,

so that H is symmetric.

Proof. Let 1 ≤ m < a be an integer. Then m /∈ H and so α−m ∈ H , whence α+n ∈ H

for all 1 ≤ n ≤ a − 1. Therefore, since α 6∈ H , to see that α = c − 1, it suffices to

show α + a ∈ H . Assume α + a 6∈ H and put Γ = {n ∈ Z | 0 ≤ n ≤ α + a}. Let

∆ = {n ∈ Z | α + 1 ≤ n ≤ α + a− 1} and let

ϕ : Γ ∩H → Γ \H, n 7→ α + a− n.

Then, since α + a 6∈ H and ∆ ⊆ H , we see

Γ ∩H = (Λ ∩H) ∪∆ and Γ \H = (Λ \H) ∪ {α+ a}.

Therefore, because the map ϕ is injective and ♯(Λ ∩H) = ♯(Λ \H) , we have

a− 1 = ♯∆ ≤ 1,

whence a ≤ 2, which is impossible. Thus α + a ∈ H so that α = c− 1. �

Let q > 0 be an integer and let 0 < s ∈ H . We put Q = (ts) and I = Q : mq. Then

I = (tn | n ∈ H, tn ∈ I),

which is a monomial ideal in A. Let Q denote the integral closure of Q. We then have

Q = tsV ∩ A.

Lemma 2.4. Suppose tn ∈ m
q for all n ∈ Z such that n ≥ c. Then aq ≤ c and I ⊆ Q.

Proof. We have aq ≤ c, since tc ∈ m
q ⊆ taqV (recall m ⊆ taV , since a = min [H \ {0}]).

Let n ∈ H and assume tn ∈ I. We want to show n ≥ s. Assume the contrary and we

see

(s+ c− 1)− n = (c− 1) + (s− n) ≥ c
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because s > n, whence t(s+c−1)−n ∈ m
q by assumption. Therefore, since tn ∈ I = Q : mq,

we get

ts+c−1 = t(s+c−1)−ntn ∈ Q = (ts)

whence tc−1 ∈ A = k[[H ]], which is impossible (recall c = c(H)). Thus tn ∈ tsV , so

that I ⊆ tsV ∩A = Q as is claimed. �

The following result shows that condition (C1) in Theorem 2.1 is satisfied, if A =

k[[H ]] is a Gorenstein ring, a ≥ 3, and q = 2.

Proposition 2.5. Suppose that A is a Gorenstein ring and let a ≥ 3. Then tn ∈ m
2

for all n ∈ Z such that n ≥ c. Hence (ts) : m2 ⊆ (ts) for all 0 < s ∈ H.

Proof. We may assume that H is minimally generated by {ai}1≤i≤ℓ. Hence ℓ ≥ 2 and

H 6= 〈aj | 1 ≤ j ≤ ℓ, j 6= i〉 for all 1 ≤ i ≤ ℓ. We have c ≥ a ≥ 3, since 0 < c ∈ H .

Notice that c > a. In fact, assume that c = a. Then H ∋ n for all integers n ≥ a.

Therefore, because ai + aj − a ≥ a for all 1 ≤ i, j ≤ ℓ, we have m
2 = tam, so that

ℓA(A/t
aA) ≤ 2, since A is a Gorenstein local ring. This is however impossible, because

ℓA(A/t
aA) = e0

m
(A) = a ≥ 3, where e0

m
(A) denotes the multiplicity of A with respect

to m. Hence c > a.

Let n ≥ c be an integer and assume that tn /∈ m
2. Then n = ai for some 1 ≤ i ≤ ℓ.

We have i > 1, since c > a. Let

K = 〈aj | 1 ≤ j ≤ ℓ, j 6= i〉 .

Then ai /∈ K. We have GCD(aj | 1 ≤ j ≤ ℓ, j 6= i) = 1. In fact, let 1 ≤ m < a be an

integer. Then m 6∈ H but ai +m ∈ H , since ai ≥ c. We write

ai +m =

ℓ∑

j=1

cjaj

with 0 ≤ cj ∈ Z. Then ci = 0, because m 6∈ H . Therefore ai+m ∈ K for all 1 ≤ m < a.

Hence ai + 1, ai + 2 ∈ K, because a ≥ 3. Thus GCD(aj | 1 ≤ j ≤ ℓ, j 6= i) = 1.

We now apply Lemma 2.3 to the numerical semigroup K. Let α = c − 1 and let

0 ≤ m ≤ α be an integer. Then, since 0 ≤ m < c ≤ ai, we have m ∈ K =

〈aj | 1 ≤ j ≤ ℓ, j 6= i〉, once m ∈ H (recall that a = a1 < a2 < · · · < aℓ). Suppose

now that α−m 6∈ K. Then α−m 6∈ H as 0 ≤ α−m ≤ α, whence m ∈ H because the

numerical semigroup H is symmetric, so that we have m ∈ K. Conversely, if m ∈ K,

then m ∈ H , whence α−m /∈ H so that α−m 6∈ K. Consequently, because α ≥ a and

a = min [K \ {0}], by Lemma 2.3 we get c(K) = α + 1 = c. Hence ai ∈ K, because
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ai ≥ c. This is impossible. Thus tn ∈ m
2 for all integers n ≥ c. The second assertion

follows from Lemma 2.4. �

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. (1) We will show that m
q−1I ⊆ m

qQ : m. We put Λ =

{(α1, α2, · · · , αℓ) ∈ Zℓ | αi ≥ 0 for all 1 ≤ i ≤ ℓ and
∑ℓ

i=1 αi = q − 1}. Let

α = (α1, α2, · · · , αℓ) ∈ Λ and let n ∈ H such that tn ∈ I. Let ϕ = t
P

ℓ

i=1
αiai ·tn.

Then

ϕ ∈ m
q−1I ⊆ Q : m = (ts) + (ts+c−1),

where the equality Q : m = (ts) + (ts+c−1) follows from the fact that A is a Gorenstein

ring (notice that ts+c−1 6∈ Q = (ts) but tm·ts+c−1 = ts·tm+c−1 ∈ Q = (ts) for every

0 < m ∈ H , because c = c(H) is the conductor of H). Consequently ϕ ∈ (ts) or

ϕ ∈ (ts+c−1), since ϕ is a monomial in t. Because tm·ts+c−1 = tm+(c−1)·ts ∈ m
qQ for all

0 < m ∈ H (use condition (C1); notice that m+ (c− 1) ≥ c), we have m·ts+c−1 ⊆ m
qQ.

Hence mϕ ⊆ m
qQ if ϕ ∈ (ts+c−1).

Suppose that ϕ ∈ (ts) = Q and write

ℓ∑

i=1

αiai + n = h + s

with h ∈ H . Then, since n ≥ s by Lemma 2.4, we get

h =

ℓ∑

i=1

αiai + (n− s)

≥
ℓ∑

i=1

αiai

≥ a·
ℓ∑

i=1

αi = a(q − 1),

so that we have th ∈ m
q−1 by condition (C2). Hence ϕ = t

P

ℓ

i=1
αiai+n = th·ts ∈ m

q−1Q

and so mϕ ⊆ m
qQ. Thus mq−1I ⊆ m

qQ : m, whence m
qI = m(mq−1I) ⊆ m

qQ.

Let us show Q ∩ I2 = QI. Since m
qI = m

qQ, we have m
qIn = m

qQn for all n ∈ Z.

Let x ∈ Q ∩ I2 and write x = tsy with y ∈ A. Then for all α ∈ m
q, we have

ts·αy = αx ∈ m
qI2 ⊆ Q2 = (t2s).

Hence αy ∈ Q = (ts) so that we have y ∈ Q : mq = I. Thus x ∈ QI whence Q∩I2 = QI.
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(2) It suffices to show I2 ⊆ Q. Let m,n ∈ H such that tm, tn ∈ I. Then m,n ≥ s ≥ c

by Lemma 2.4. We get m+ n− s ∈ H , since m+ n− s = m+ (n− s) ≥ c. Therefore

tmtn = tm+n−sts ∈ Q, whence I2 ⊆ Q.

(3) We may assume that I2 6= QI. Hence I2 6⊆ Q, because Q ∩ I2 = QI. We

have I ⊆ m
q−1 by condition (C2), since s ≥ a(q − 1) and I ⊆ Q ⊆ tsV . Then, since

I2 ⊆ m
q−1I, we get

Q ( Q+ I2 ⊆ Q : m = Q + (ts+c−1).

Therefore, since ℓA([Q : m]/Q) = 1 (recall that A is a Gorenstein ring), we have

Q + I2 = Q : m = Q+ (ts+c−1),

whence ts+c−1 ∈ I2 because ts+c−1 6∈ Q. Consequently

I2 = (Q ∩ I2) + (ts+c−1) = QI + (ts+c−1)

because Q ∩ I2 = QI, whence

I3 = QI2 + I·ts+c−1.

Let us check that I·ts+c−1 ⊆ QI2. Let n ∈ H and assume that tn ∈ I. We will show that

tnts+c−1 ∈ QI2. We may assume that n > s. Let h = (n+s+c−1)−2s = (n−s)+(c−1).

Then h ∈ H since h ≥ c. Therefore

αth·t2s = α·tnts+c−1 ∈ m
qI3 ⊆ Q3 = (t3s)

for all α ∈ m
q and so αth ∈ Q. Consequently, th ∈ Q : mq = I, whence tnts+c−1 =

t2sth ∈ Q2I ⊆ QI2. Thus I·ts+c−1 ⊆ QI2 so that I3 = QI2. Since I3 = QI2 and

Q ∩ I2 = QI, we get Q ∩ I i+1 = QI i for all i ∈ Z, whence G(I) is a Cohen-Macaulay

ring. �

Combining Proposition 2.5 and Theorem 2.1, we readily get [GMT, Theorem 1.1]

in the case where the base rings are numerical semigroup rings. Notice that condition

(C2) is automatically satisfied for q = 2.

Corollary 2.6 (cf. [GMT, Theorem 1.1]). Suppose that A = k[[H ]] is a Gorenstein

ring and that a ≥ 3. Let 0 < s ∈ H and put I = Q : m2, where Q = (ts). Then the

following assertions hold true.

(1) m
2I = m

2Q and I3 = QI2.

(2) G(I) =
⊕

n≥0 I
n/In+1 is a Cohen-Macaulay ring.

(3) I2 = QI, if s ≥ c.
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3. The case where H = 〈a, a + 1〉

In this section let H = 〈a, a+ 1〉 with a ≥ 2. Applying Theorem 2.1, we shall explore

the numerical semigroup H = 〈a, a+ 1〉. Let c = a(a − 1), that is the conductor of

H . Similarly as in Section 2, let k be a field and A = k[[H ]] = k[[ta, ta+1]] ⊆ V , where

V = k[[t]] is the formal power series ring over k. We denote by m = (ta, ta+1) the

maximal ideal in A.

Let 0 < s ∈ H , Q = (ts), and I = Q : m
q with q > 0 an integer. We study

the problems of when I is integral over Q and of when the associated graded ring

G(I) =
⊕

n≥0 I
n/In+1 is a Cohen-Macaulay ring.

Let us begin with the following.

Lemma 3.1. The following assertions hold true.

(1) Let ℓ, i ≥ 0 be integers. Then aℓ + i ∈ H, if i ≤ ℓ. The converse is also ture, if

i < a.

(2) m
ℓ = (taℓ+i | 0 ≤ i ≤ ℓ) = (tn | n ∈ H, n ≥ aℓ) for all integers ℓ ≥ 0.

Proof. (1) If i ≤ ℓ, then certainly aℓ + i = a(ℓ − i) + (a + 1)i ∈ H . Suppose that

aℓ + i ∈ H and i < a. We write aℓ + i = αa + β(a + 1) with 0 ≤ α, β ∈ Z. Then

β = a[ℓ − (α + β)] + i and so, letting m = ℓ − (α + β), we see m ≥ 0, because β ≥ 0

and i < a. Hence

ℓ ≥ α + β ≥ β = am+ i ≥ i.

Thus i ≤ ℓ.

(2) Let ℓ ≥ 0 be an integer. Then since

a(ℓ− i) + (a+ 1)i = aℓ+ i

for all 0 ≤ i ≤ ℓ, we get

(♯) m
ℓ = (ta, ta+1)

ℓ
= (taℓ+i | 0 ≤ i ≤ ℓ).

To see m
ℓ ⊇ (tn | n ∈ H , n ≥ aℓ), let n ∈ H such that n ≥ aℓ. We write n = ap + i

with p ≥ ℓ and 0 ≤ i < a. Then p ≥ i by assertion (1), so that tn = tap+i ∈ m
p by

equality (♯). Hence tn ∈ m
ℓ, because p ≥ ℓ. Thus mℓ = (tn | n ∈ H, n ≥ aℓ). �

Proposition 3.2. Conditions (C1) and (C2) in Theorem 2.1 are satisfied for q if and

only if q < a.

Proof. Assume that q < a and let n ≥ c be an integer. Then n ≥ aq, since q < a and

c = a(a− 1). Hence tn ∈ m
q by Lemma 3.1 (2). Let n ∈ H and assume that tn 6∈ m

q−1.
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We then have again by Lemma 3.1 (2) that n < a(q − 1). Thus conditions (C1) and

(C2) in Theorem 2.1 are satisfied. See Lemma 2.4 for the only if part. �

The question of when I is integral over Q is now answered in the following way.

Theorem 3.3. The following three conditions are equivalent to each other.

(1) I ⊆ Q.

(2) m
qI = m

qQ.

(3) q < a.

Proof. (2) ⇒ (1) This is clear and well known ([NR]).

(3) ⇒ (2) This follows from Proposition 3.2. See Theorem 2.1.

(1) ⇒ (3) Assume q ≥ a. We will check that s− a 6∈ H . Suppose s− a ∈ H and let

n ∈ H with n ≥ aq. Then

n− a ≥ aq − a ≥ a2 − a = c,

whence (n+s−a)−s = n−a ∈ H , so that tnts−a = t(n+s−a)−sts ∈ Q. Because s−a ∈ H

and m
q = (tn | n ∈ H, n ≥ aq) by Lemma 3.1 (2), we get ts−a ∈ Q : mq = I ⊆ Q ⊆ tsV

by assumption (1), which is impossible. Thus s − a 6∈ H whence s > a. We write

s = aℓ + r with ℓ ≥ 1 and 0 ≤ r < a. Then r > ℓ− 1 by Lemma 3.1 (1) since s− a =

a(ℓ− 1) + r /∈ H , while r ≤ ℓ by Lemma 3.1 (1) since 0 ≤ r < a and s = aℓ + r ∈ H .

Thus r = ℓ so that s = (a+ 1)ℓ. Hence ℓ < a because s− a < c (= a(a− 1)).

Let n ∈ H with n ≥ aq. Then

aℓ + n− s = n− ℓ ≥ aq − ℓ ≥ a2 − (a− 1) = c+ 1,

whence aℓ+ n− s ∈ H , so that tntaℓ = taℓ+n−sts ∈ Q for all n ∈ H with n ≥ aq. Thus

taℓ ∈ Q : mq = I since m
q = (tn | n ∈ H, n ≥ aq) by Lemma 3.1 (2). Consequently

taℓ ∈ Q ⊆ tsV by assumption (1), so that aℓ ≥ s = (a+1)ℓ, which is impossible because

ℓ ≥ 1. Thus q < a as is claimed. �

Corollary 3.4. Assume that q < a. Then the following assertions hold true.

(1) I2 = QI, if s ≥ aq.

(2) I3 = QI2 and G(I) is a Cohen-Macaulay ring, if s ≥ a(q − 1).

Proof. Since q < a, conditions (C1) and (C2) in Theorem 2.1 are satisfied (Proposition

3.2). Hence Q∩ I2 = QI by Theorem 2.1 (1). Therefore, to see assertion (1), it suffices

to show that I2 ⊆ Q. Let n ∈ H with tn ∈ I. Then, since tn ∈ Q ⊆ tsV by Theorem
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3.3, we have n ≥ s ≥ aq, whence tn ∈ m
q by Lemma 3.1 (2). Consequently, I ⊆ m

q, so

that we have I2 ⊆ m
qI ⊆ Q as is required. See Theorem 2.1 (3) for assertion (2). �

In order to study rQ(I) and the question of when G(I) is a Cohen-Macaulay ring in

the case where q < a, thanks to Corollary 3.4, we may restrict our attention to the case

where s < aq. For the rest of this section we assume that

q < a and s < aq.

We write s = aℓ+ r with 1 ≤ ℓ < q and 0 ≤ r < a. Then r ≤ ℓ by Lemma 3.1 (1). We

put

p = (a− 1) + (ℓ− q),

whence ℓ ≤ p < a− 1.

We shall explore whether G(I) is a Cohen-Macaulay ring or not in certain special

cases. For the purpose we need the following.

Proposition 3.5. I = Q+m
p+1+(tap+i | p− ℓ+ r < i ≤ p). In particular, I = Q+m

p

if r = 0.

Proof. We will show that I = Q + m
p+1 + (tap+i | r ≤ i ≤ p). Let n ∈ H . Then by

Lemma 3.1 (2) we see

(♯) tn ∈ I ⇔ aq + i+ (n− s) ∈ H for all 0 ≤ i ≤ q.

Let n ∈ H such that n ≥ a(p + 1). Then, since s = aℓ + r and p = (a − 1) + (ℓ − q),

we get

aq + (n− s) ≥ aq + [a(p+ 1)− s] = c+ (a− r) > c,

so that aq + i + (n− s) ∈ H for all 0 ≤ i ≤ q. Hence tn ∈ I by (♯) for all n ∈ H with

n ≥ a(p+ 1). Consequently m
p+1 ⊆ I by Lemma 3.1 (2).

Let r ≤ i ≤ p and put n = ap + i. Then n ∈ H by Lemma 3.1 (1). We get

aq + (n− s) ≥ c (use s = aℓ+ r and p = (a− 1) + (ℓ− q)), so that tn ∈ I by (♯). Thus

I ⊇ Q+m
p+1 + (tap+i | r ≤ i ≤ p).

We put K = Q + m
p+1 + (tap+i | r ≤ i ≤ p). We will show I ⊆ K. Let n ∈ H with

tn ∈ I. We write n = aq1+r1 with q1 ≥ 0 and 0 ≤ r1 < a. Hence r1 ≤ q1 by Lemma 3.1

(1). Then it is clear from the above that tn ∈ K if n ≥ ap+ r. Let us consider the case

where n < ap+ r. We will show that tn ∈ Q. We have n ≥ s, because tn ∈ I ⊆ tsV by
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Theorem 3.3. Let n− s = aq2 + r2 with 0 ≤ q2 and 0 ≤ r2 < a. Then, since s = aℓ+ r,

we have

aq2 + r2 = n− s < ap+ r − s = a(p− ℓ),

whence q2 < p−ℓ. Thus 0 < p−ℓ−q2 = (a−1)−(q+q2) (recall that p = (a−1)+(ℓ−q)),

so that we have

q + q2 < a− 1.

Claim. r2 ≤ q2. Hence n− s = aq2 + r2 ∈ H by Lemma 3.1 (1).

Proof of Claim. We will show that r2 + q ≤ a− 1. Suppose that r2 + q > a− 1 and let

i = a− 1− r2. Then 0 ≤ i < q and so, since tn ∈ I, by (♯) we get

a(q + q2) + (a− 1) = a(q + q2) + (r2 + i) = aq + i+ (n− s) ∈ H.

Therefore a− 1 ≤ q + q2 by Lemma 3.1 (1), which is impossible. Hence r2 + q ≤ a− 1.

By (♯) we then have a(q + q2) + (r2 + q) = aq + q + (n− s) ∈ H , because tn ∈ I. Thus

r2 + q ≤ q + q2 by Lemma 3.1 (1), so that r2 ≤ q2. Hence n − s = aq2 + r2 ∈ H by

Lemma 3.1 (1).

Thanks to Claim we get tn ∈ Q if n < ap+ r. Thus I ⊆ K, whence I = K.

We will show that I = Q+m
p+1 + (tap+i | p− ℓ+ r < i ≤ p). Let r ≤ i ≤ p− ℓ+ r.

Then ap + i ∈ H by Lemma 3.1 (1), since i ≤ p. Because s = aℓ + r, we have

ap+ i− s = a(p− ℓ)+ (i− r) ∈ H (cf. Lemma 3.1 (1); recall that i− r ≤ p− ℓ). Hence

tap+i ∈ Q. Thus I ⊆ Q+m
p+1 + (tap+i | p− ℓ+ r < i ≤ p), whence

I = Q+m
p+1 + (tap+i | p− ℓ+ r < i ≤ p).

Because I = Q+m
p+1+(tap+i | r ≤ i ≤ p), the second assertion follows from Lemma

3.1 (2). �

Recall that rQ(I) = min {0 ≤ n ∈ Z | In+1 = QIn} is the reduction number of I

with respect to Q. For each α ∈ R let

⌈α⌉ = min {n ∈ Z | α ≤ n}.

With this notation we have the following.

Corollary 3.6. Assume that q = a− 1. Then the following assertions hold true.

(1) Let r = 0. Then I = m
ℓ and G(I) is a Cohen-Macaulay ring.

(2) Let r = ℓ. Then G(I) is a Cohen-Macaulay ring with rQ(I) = ⌈a−1
ℓ+1

⌉.
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Proof. (1) We have p = ℓ and s = aℓ. Hence I = Q + m
ℓ = m

ℓ by Proposition 3.5.

Therefore G(I) is a Cohen-Macaulay ring, because so is G(m) =
⊕

n≥0m
n/mn+1 (recall

that G(m) ∼= k[X, Y ]/(Y a), where k[X, Y ] denotes the polynomial ring).

(2) We have p = ℓ and I = Q + m
ℓ+1. Let x = ta and y = ta+1. Hence ts = yℓ. Let

n ≥ 1 be an integer. Then, since m = (x, y), we have

In = QIn−1 +m
n(ℓ+1) = QIn−1 + (xn(ℓ+1)−iyi | 0 ≤ i ≤ n(ℓ+ 1)).

Let ℓ ≤ i ≤ n(ℓ+ 1) be an integer. Then, since

[n(ℓ+ 1)− i] + (i− ℓ) = (n− 1)(ℓ+ 1) + 1,

we get xn(ℓ+1)−iyi = yℓ·xn(ℓ+1)−iyi−ℓ ∈ Q·m(n−1)(ℓ+1) ⊆ QIn−1. Hence

In = QIn−1 + (xn(ℓ+1)−iyi | 0 ≤ i ≤ ℓ− 1).

Let 0 ≤ i ≤ ℓ− 1 be an integer and let

ϕ = a[n(ℓ + 1)− i] + (a+ 1)i− s

= a(n− 1)(ℓ+ 1) + (a+ i− ℓ).

Then, since 0 < a + i − ℓ < a and (n − 1)(ℓ + 1) ≥ 0, we get by Lemma 3.1 (1)

that ϕ ∈ H if and only if (n − 1)(ℓ + 1) ≥ a + i − ℓ. When this is the case, we have

xn(ℓ+1)−iyi = ts·tϕ ∈ QIn−1, because ϕ = a[(n−1)(ℓ+1)− (a+ i−ℓ)]+(a+1)(a+ i−ℓ)

and therefore tϕ ∈ m
(n−1)(ℓ+1) ⊆ In−1. Let

∆ = {0 ≤ i ≤ ℓ− 1 | (n− 1)(ℓ+ 1) < a + i− ℓ}.

We then have

In = QIn−1 + (xn(ℓ+1)−iyi | i ∈ ∆)

and summarize this observation into the following.

Claim. For a given integer n ≥ 1 the following conditions are equivalent to each other.

(1) In = QIn−1.

(2) Q ⊇ In.

(3) ∆ = ∅.

(4) n− 1 ≥ ⌈a−1
ℓ+1

⌉.

Hence rQ(I) = ⌈a−1
ℓ+1

⌉.

Proof of Claim. The implications (3) ⇒ (1) ⇒ (2) are clear.

(2) ⇒ (3) See the observation above.
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(3) ⇔ (4) ∆ = ∅ if and only if ℓ − 1 6∈ ∆, and the latter condition is equivalent to

saying that (n− 1)(ℓ+ 1) ≥ a− 1, that is n− 1 ≥ ⌈a−1
ℓ+1

⌉.

Now we will show that Q ∩ In = QIn−1. We may assume that ∆ 6= ∅. Because

Q ∩ In = QIn−1 + [Q ∩ (xn(ℓ+1)−iyi | i ∈ ∆)]

and the ideals considered are all generated by monomials in t, it suffices to show that

Q ∩ (xn(ℓ+1)−iyi) ⊆ QIn−1

for all i ∈ ∆. Let R = k[[X, Y ]] be the formal power series ring over k and let us identify

A = R/(Xa+1−Y a). Let ∗ denote the image in R/(Xa+1−Y a). Let z ∈ Q∩(xn(ℓ+1)−iyi)

and write

z = yℓη = xn(ℓ+1)−iyiρ

with η, ρ ∈ R. Then

Y ℓη = Xn(ℓ+1)−iY iρ+ (Xa+1 − Y a)δ

for some δ ∈ R. Therefore, since n(ℓ + 1)− i < a+ 1 (recall that i ∈ ∆), we have

Y ℓ(η + Y a−ℓδ) = Xn(ℓ+1)−i[Y iρ+X(a+1)−[n(ℓ+1)−i]δ],

whence

η + Y a−ℓδ = Xn(ℓ+1)−iε and Y iρ+X(a+1)−[n(ℓ+1)−i]δ = Y ℓε

for some ε ∈ R. Here notice that δ ∈ (Y i) and we have

z = yℓη ∈ (ya+i, xn(ℓ+1)−iyℓ)

in A = R/(Xa+1 − Y a). Consequently z ∈ QIn−1, because a + i − ℓ > (n − 1)(ℓ + 1)

and n(ℓ+ 1)− i ≥ (n− 1)(ℓ+ 1). Thus

Q ∩ (xn(ℓ+1)−iyi | i ∈ ∆) ⊆ QIn−1,

whence Q ∩ In = QIn−1 and therefore, G(I) is a Cohen-Macaulay ring with rQ(I) =

⌈a−1
ℓ+1

⌉.

�

When q = a − 1 and r < ℓ, we also have the following estimation of the reduction

number rQ(I) of I with respect Q.

Proposition 3.7. Assume that q = a− 1 and r < ℓ. Then rQ(I) ≤ a− ℓ.
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Proof. Since q = a− 1 and s = aℓ+ r, we have p = ℓ and I = (taℓ+i | r ≤ i ≤ ℓ) +m
ℓ+1

by Proposition 3.5. Therefore, because

ts+i, ta(ℓ+1)+j ∈ I for all 0 ≤ i ≤ ℓ− r and 0 ≤ j ≤ r − 1,

multiplying with the elements ts, ts+1 ∈ I, we have by induction on n that

tns+i, ta(ℓ+1)+(n−1)s+j ∈ In for all 0 ≤ i ≤ ℓ+ n− r − 1 and 0 ≤ j ≤ r − 1

for every integer n ≥ 1. We now take n = a− ℓ. Then, since

[a(ℓ + 1) + (n− 1)s]− [ns+ (ℓ+ n− r − 1)] = 1

and (ℓ+ n− r) + r = ℓ+ n = a, we have

tm ∈ Ia−ℓ for s(a− ℓ) ≤ ∀m ≤ s(a− ℓ) + (a− 1),

whence tm ∈ Ia−ℓ for all m ≥ (a − ℓ)s so that tm ∈ Ia−ℓ+1 for all m ≥ (a − ℓ + 1)s.

Consequently, because Im ⊆ tmsV for all m ≥ 1 (recall that I ⊆ Q ⊆ tsV ; cf. Theorem

3.3), we get Ia−ℓ = t(a−ℓ)sV and Ia−ℓ+1 = t(a−ℓ+1)sV , whence Ia−ℓ+1 = QIa−ℓ. Thus

rQ(I) ≤ r − ℓ. �

The following two results show that G(I) is not necessarily a Cohen-Macaulay ring,

even though q < a.

Theorem 3.8. Assume that q = a − 1 and r = ℓ − 1. Then Q ∩ Ia−ℓ 6= QI(a−ℓ)−1,

provided that ℓ ≥ 2 and a ≥ ℓ + 3. Hence G(I) is not a Cohen-Macaulay ring and

rQ(I) = a− ℓ.

Proof. Since p = ℓ, by Proposition 3.5 (1) we get I = Q +m
ℓ+1 + (taℓ+ℓ). It suffices to

show (taℓ+ℓ)a−ℓ ∈ Q but (taℓ+ℓ)a−ℓ /∈ QI(a−ℓ)−1.

Since s = aℓ + (ℓ− 1) and c = a(a− 1), we have

[(aℓ+ ℓ)(a− ℓ)− s]− c = (ℓ− 1)a2 − (ℓ2 − 1)a− (ℓ2 + ℓ− 1) > 0

(recall that ℓ ≥ 2 and a ≥ ℓ+3), so that (aℓ+ ℓ)(a− ℓ)− s ∈ H whence (taℓ+ℓ)a−ℓ ∈ Q.

To show that (taℓ+ℓ)a−ℓ 6∈ QI(a−ℓ)−1, we put α1 = aℓ + (ℓ − 1) (= s), α2 = aℓ + ℓ,

and αi = a(ℓ + 1) + (i − 3) for 3 ≤ i ≤ n, where n = ℓ + 4. Then αi ∈ H for all

1 ≤ i ≤ n by Lemma 3.1 (1) and 0 < αi < αi+1 for all 1 ≤ i < n. We furthermore have

I = (tαi | 1 ≤ i ≤ n), because I = Q+m
ℓ+1 + (taℓ+ℓ). Hence

I(a−ℓ)−1 = (t
P

n

i=1
αiβi | 0 ≤ βi ∈ Z,

n∑

i=1

βi = a− ℓ− 1).
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We put Λ = {(β1, β2, · · · , βn) ∈ Zn | 0 ≤ βi ∈ Z,
∑n

i=1 βi = a − ℓ − 1}. Assume now

that (taℓ+ℓ)a−ℓ ∈ QI(a−ℓ)−1. Let

ϕ = (aℓ+ ℓ)(a− ℓ)− s (= a2ℓ− aℓ2 − ℓ2 − ℓ+ 1).

We then have

ϕ =
n∑

i=1

αiβi + h

for some β = (β1, β2, · · · , βn) ∈ Λ and h ∈ H . Then β1 < a− ℓ− 1, since

ϕ− α1(a− ℓ− 1) = a− ℓ /∈ H.

Because, for each 1 ≤ j ≤ n,

ϕ ≥
n∑

i=1

αiβi =
∑

i 6=j

αiβi + αjβj

≥
∑

i 6=j

α1βi + αjβj

=
n∑

i=1

α1βi + (αj − α1)βj

= α1(a− ℓ− 1) + (αj − α1)βj ,

we notice that if βj ≥ 1 for some 3 ≤ j ≤ n, then

ϕ ≥ α1(a− ℓ− 1) + (αj − α1)

≥ α1(a− ℓ− 1) + (α3 − α1)

= a2ℓ− aℓ2 − ℓ2 − ℓ+ 2

= ϕ+ 1,

which is absurd. Thus βj = 0 for all 3 ≤ j ≤ n. Because β1 + β2 = a− ℓ− 1, we have

ϕ = α1β1 + α2β2 + h

= a2ℓ− aℓ2 − ℓ2 − ℓ− β1 + h

= (ϕ− 1)− β1 + h

whence h = 1 + β1 ∈ H , which is impossible because 1 ≤ 1 + β1 < a − ℓ < a. This

is a required contradiction and so (taℓ+ℓ)a−ℓ /∈ QI(a−ℓ)−1. Hence G(I) is not a Cohen-

Macaulay ring, because Q∩Ia−ℓ 6= QI(a−ℓ)−1. We get rQ(I) = a−ℓ for the same reason,

because rQ(I) ≤ a− ℓ by Proposition 3.7. �
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Theorem 3.9. Assume that q = a−1 and 0 < r < ℓ. Let k = ℓ−r. Then Q∩I3 6= QI2,

if 2ℓ+ 1 ≥ a ≥ ℓ+ k + 2, whence G(I) is not a Cohen-Macaulay ring.

Proof. We have p = ℓ and I = Q + m
ℓ+1 + (taℓ+i | r < i ≤ ℓ) = (taℓ+i | r ≤ i ≤

ℓ) + (ta(ℓ+1)+i | 0 ≤ i ≤ ℓ + 1). For each 1 ≤ i ≤ ℓ + k + 3, let αi = aℓ + r − 1 + i if

1 ≤ i ≤ k+1, and αi = a(ℓ+1)+ i−(k+2) if k+2 ≤ i ≤ ℓ+k+3. Then 0 < αi < αi+1

for all 1 ≤ i < ℓ+ k + 3 and I = (tαi | 1 ≤ i ≤ ℓ+ k + 3).

We put ϕ = (2aℓ + 2ℓ + 1) + s. Then ϕ ∈ H by Lemma 3.1 (1), because ϕ =

3aℓ + [3ℓ + (1 − k)] and 0 < 3ℓ + (1 − k) ≤ 3ℓ. We furthermore have tϕ ∈ I3, since

ϕ = (aℓ + r + 1) + 2(a + 1)ℓ. We get tϕ ∈ Q by Lemma 3.1 (1) as well, because

ϕ− s = 2aℓ+ 2ℓ+ 1 = a(2ℓ+ 1) + (2ℓ+ 1− a) ∈ H (recall that 0 ≤ 2ℓ+ 1− a by our

assumption). We now claim the following, which proves Q ∩ I3 6= QI2.

Claim. tϕ−s 6∈ I2.

Proof. Assume that tϕ−s ∈ I2 and write ϕ− s = αi +αj + h with 1 ≤ i ≤ j ≤ ℓ+ k+3

and h ∈ H . If j ≥ k + 2, then

ϕ− s = 2aℓ+ 2ℓ+ 1 ≥ α1 + αk+2 = 2aℓ+ a+ ℓ− k.

Hence ℓ+ 1 ≥ a− k ≥ ℓ + 2, which is impossible. Thus j ≤ k + 1, so that

ϕ− s = αi + αj + h = 2aℓ+ i+ j + 2r − 2 + h,

whence

h = 2ℓ+ 1− [i+ j + 2(ℓ− k)− 2]

= 2k − (i+ j) + 3

= (k + 1− i) + (k + 1− j) + 1 > 0.

On the other hand, since a ≥ ℓ+ k + 2, we have

a− h = a− [2k − (i+ j) + 3]

≥ ℓ+ k + 2− [2k − (i+ j) + 3]

= (ℓ− k) + (i+ j − 1) ≥ 2.

Thus 0 < h < a, which is impossible, because h ∈ H and a = min [H \ {0}]. Hence

tϕ−s 6∈ I2. �

Thanks to Theorem 3.9, we have the following, where the if part follows from Corol-

lary 3.6.
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Corollary 3.10. Assume that a ≥ 5 and let a = 2ℓ + 1 with ℓ ≥ 2 an integer. Let

0 ≤ r ≤ ℓ and put s = aℓ+r. Then G(I) is a Cohen-Macaulay ring if and only if either

r = 0 or r = ℓ, where I = (ts) : ma−1.

Remark 3.11. (1) Corollary 3.6 and Theorems 3.8, 3.9 give only partial answers, in

the case where q < a and s < aq, to the question of when G(I) is Cohen-Macaulay.

(2) Some of the results of this section are possibly generalized for numerical semi-

groups H = 〈a, b〉 with 0 < a < b and GCD(a, b) = 1.

We would like to leave further investigations to interested readers.

4. Examples

In this section we note two examples H = 〈10, 13, 16, 17, 19〉 , 〈7, 10, 18, 22〉 of sym-

metric numerical semigroups, for both of which we consider the ideals I = (ts) : m3

with 0 < s ∈ H . In Example 4.1, the associated graded rings G(I) =
⊕

n≥0 I
n/In+1 are

Cohen-Macaulay except s = 16, while in Example 4.2, G(I) are not Cohen-Macaulay

rings for all but finitely many 0 < s ∈ H . Thus, even in the case where q = 3, the

question of when G(I) is Cohen-Macaulay is rather wild.

In Example 4.2, condition (C1) is satisfied but condition (C2) is not. This shows, to

control the Cohen-Macaulay property of the associated graded rings G(I) of I, we need

both conditions (C1) and (C2) in Theorem 2.1.

Example 4.1. Let H = 〈10, 13, 16, 17, 19〉 and A = k[[t10, t13, t16, t17, t19]]. Then

c(H) = 42 and A is a Gorenstein local ring, which satisfies, for q = 3, conditions

(C1) and (C2) in Theorem 2.1. Let 0 < s ∈ H . We put Q = (ts) and I = Q : m3. Then

we have m
3I = m

3Q, whence I ⊆ Q, and if s ≥ 10·(3− 1) = 20, G(I) =
⊕

n≥0 I
n/In+1

is a Cohen-Macaulay ring, thanks to Theorem 2.1 (3). When s < 20, that is the case

ts /∈ m
2, we have the following Table 1, where rQ(I) = min{0 ≤ n ∈ Z | In+1 = QIn}.

Let us explain how to read the table. The table says, for example, that if s = 10, the

ideal I = Q : m3 is equal to the maximal ideal m and generated by five monomials

t10, t13, t16, t17, t19. We have rQ(I) = 3 and G(I) is a Cohen-Macaulay ring.

Hence G(I) is a Cohen-Macaulay ring if and only if s 6= 16. When s = 16, then

rQ(I) = 5. We have ℓA(I
2/QI) = 2, ℓA(I

3/QI2) = ℓA(I
4/QI3) = ℓA(I

5/QI4) = 1, and

Q ∩ I4 6= QI3.
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Table 1. s < 20

s I G(I) is CM rQ(I)
10 (10, 13, 16, 17, 19) = m Yes 3
13 (13, 16, 19, 20, 27, 34) Yes 3
16 (16, 19, 23, 30, 32, 34, 37) No 5
17 (17, 20, 23, 26, 29, 35, 38) Yes 2
19 (19, 25, 26, 32, 33, 34, 37, 40) Yes 2

Example 4.2. Let H = 〈7, 10, 18, 22〉. Then c(H) = 34. Let

A = k[[t7, t10, t18, t22]] ⊆ k[[t]],

where k[[t]] denotes the formal power series ring over a field k. Then A is a Gorenstein

ring. Let 0 < s ∈ H . We put Q = (ts) and I = Q : m3. Then, since tn ∈ m
3 for all

n ∈ Z such that n ≥ 34, I ⊆ Q, thanks to Lemma 2.4, and we get the following Tables

2, 3. In Table 2 we assume that ts 6∈ m
3. We then have s = 7, 10, 14, 17, 18, 20, 22, 25,

or 29. If s = 7, then the ideal I = Q : m3 is generated by four monomials t7, t18, t20, t22,

and G(I) is a Cohen-Macaulay ring with rQ(I) = 2 and m
3I = m

3Q. If s = 10, then

G(I) is not a Cohen-Macaulay ring, rQ(I) = 2, but m3I 6= m
3Q. We have rQ(I) = 3, if

s = 18, 25.

In Table 3 we assume that ts ∈ m
3. Then the ideal I is generated by the monomials

ts, ts+4, ts+8, ts+10, ts+13, ts+16, ts+19, and G(I) is a Cohen-Macaulay ring if and only if

s = 21. We have rQ(I) = 2 but m3I 6= m
3Q always.

Table 2. Q 6⊆ m
3

s I G(I) is CM rQ(I) m
3I = m

3Q
7 (7, 18, 20, 22) Yes 2 Yes
10 (10, 14, 18, 29) No 2 No
14 (14, 18, 22, 27, 30) Yes 2 No
17 (17, 21, 25, 30, 36) No 2 No
18 (18, 22, 31, 34, 37) No 3 No
20 (20, 24, 28, 36, 39) No 2 No
22 (22, 30, 35, 38, 41) Yes 1 No
25 (25, 29, 38, 40, 41, 44) No 3 No
29 (29, 37, 40, 42, 45, 48) Yes 1 No
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Table 3. Q ⊆ m
3

s I G(I) is CM rQ(I) m
3I = m

3Q
21 (s, s+ 4, s+ 8, s+ 10, Yes 2 No

otherwise s+ 13, s+ 16, s+ 19) No 2 No

Hence G(I) is a Cohen-Macaulay ring if and only if s = 7, 14, 21, 22, and 29.
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