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Patching over Fields

David Harbater∗ Julia Hartmann†

Abstract

We develop a new form of patching that is both far-reaching and more elementary
than the previous versions that have been used in inverse Galois theory for function
fields of curves. A key point of our approach is to work with fields and vector spaces,
rather than rings and modules. After presenting a self-contained development of this
form of patching, we obtain applications to other structures such as Brauer groups and
differential modules.

1 Introduction

This manuscript introduces a new form of patching, a method that has been used to prove
results in Galois theory over function fields of curves (e.g. see the survey in [13]). Our
approach here, which involves patching vector spaces given over a collection of fields, is more
elementary than previous approaches, while facilitating various applications.

There are several forms of patching in the Galois theory literature, all drawing inspiration
from “cut-and-paste” methods in topology and analysis, in which spaces are constructed on
metric open sets and glued on overlaps. Underlying this classical approach are Riemann’s
Existence Theorem (e.g. see [13], Theorem 2.1.1), Serre’s GAGA [29], and Cartan’s Lemma
on factoring matrices [2]. In the case of formal patching (e.g. in [10], [17], [27]), one considers
rings of formal power series, and “patches” them together using Grothendieck’s Existence
Theorem on sheaves over formal schemes ([5], Corollary 5.1.6). In the context of rigid
patching (e.g. in [22], [28], [26]), one relies on Tate’s rigid analytic spaces, where there is a
form of “rigid GAGA” that takes the place of Grothendieck’s theorem. The variant known
as algebraic patching (e.g. [8], [31], [7]) restricts attention to the line, and draws on ideas
from the rigid approach (most notably, convergent power series rings). But that strategy
avoids relying on more substantial geometric results, and instead works with normed rings
and versions of Cartan’s Lemma.

The current approach differs from formal and rigid patching by focusing on vector spaces
rather than modules; i.e. by working over (fraction) fields rather than rings. Doing so makes
it possible for us to prove our patching results more directly, without the more substantial
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foundations needed in the other approaches. As a result, our approach is conceptually
simpler and should be more accessible to those not already familiar with patching methods.
Moreover our method is not restricted to the case of the line. In addition to providing a
framework in which one can prove the sort of results on inverse Galois theory that have
been shown using previous methods (see Section 7.2 below), our approach also permits easy
application of patching to other situations in which one works just with fields and not with
rings. See Section 7.1 for an application to Brauer groups of fields, and Section 7.3 on an
application to differential modules (which are in fact vector spaces). Further applications in
these directions appear in [16] and [15].

A framework for stating patching results can be found in Section 2, followed by some
preliminary results in Section 3. Our main patching result (Theorem 4.12) and a variant
(Theorem 4.14) are shown in Section 4. Section 5 takes up related forms of patching, in
which “more local” patches are used; the main result there is Theorem 5.9, along with a
variant, Theorem 5.10. A further generalization to singular curves appears in Section 6. The
versions in Section 5 and 6 are designed to allow the method of patching over fields to be
used in a variety of future applications. (Those interested just in our main form of patching,
Theorem 4.12, can skip Sections 5 and 6, as well as the second half of Section 2.) Finally, in
Section 7, we show how our new version of patching can be used to prove both old and new
results.

We thank Daniel Krashen for helpful discussions concerning the application to Brauer
groups in Section 7.1, and both him and Moshe Jarden for further comments and suggestions.
We also thank the Mathematical Sciences Research Institute for their hospitality during the
writing of this paper.

2 The setup for patching over fields

The general framework for patching can be expressed in a categorical language that permits
its use in various contexts. Here we provide such a framework for patching vector spaces over
fields; later in Section 7, we show how our results can be extended and applied to patching
other objects over fields. We begin with some notation.

If αi : Ci → C0 are functors (i = 1, 2), then we may form the 2-fibre product category
C1 ×C0 C2 (with respect to α1, α2), defined as follows: An object in the category consists of a
pair (V1, V2) together with an isomorphism φ : α1(V1) →

∼ α2(V2) in C0, where Vi is an object in
Ci (i = 1, 2). A morphism from (V1, V2;φ) to (V ′1 , V

′
2 ;φ

′) consists of morphisms fi : Vi → V ′i
in Ci (for i = 1, 2) such that φ′ ◦ α1(f1) = α2(f2) ◦ φ.

For any field F , we write Vect(F ) for the category of finite dimensional F -vector spaces.
If F1, F2 are subfields of a field F0 and we let Ci = Vect(Fi), then there are base change
functors αi : Ci → C0 given on objects by αi(Vi) = Vi ⊗Fi

F0. So we can form the category
C := Vect(F1)×Vect(F0)Vect(F2) with respect to these functors (and in the sequel, the functors
αi will be understood, though suppressed in the 2-fibre product notation).

Given an object (V1, V2;φ) in the above category C, let V0 = α2(V2) = V2 ⊗F2 F0. Then
V0, V1, V2 are each vector spaces over F := F1 ∩ F2 ≤ F0. Let i2 : V2 →֒ V0 be the natural
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inclusion, and let i1 : V1 →֒ V0 be the composition of the natural inclusion V1 →֒ α1(V1) =
V1 ⊗F1 F0 with φ. With respect to the inclusions i1, i2, we may form the vector space fibre
product V := V1 ×V0 V2 = {(v1, v2) ∈ V1 × V2 | i1(v1) = i2(v2)} over F ; we call V the fibre
product of the object (V1, V2;φ). Note that if we identify V1 (resp. V2) with its image under
i1 (resp. i2), then the fibre product V is just the intersection of V1 and V2 inside V0. Of
course this identification depends on φ (since i1 depends on φ).

The following is a special case of [9], Proposition 2.1.

Proposition 2.1. Let F1, F2 ≤ F0 be fields, and let F = F1 ∩ F2. Let

β : Vect(F ) → Vect(F1)×Vect(F0) Vect(F2)

be the natural map given by base change. Then the following two statements are equivalent:

(1) β is an equivalence of categories.

(2) For every positive integer n and every matrix A ∈ GLn(F0) there exist matrices Ai ∈
GLn(Fi) such that A = A1A2.

Moreover if these conditions hold, then the inverse of β (up to isomorphism) is given on
objects by taking the fibre product.

Our main Theorems 4.12 and 5.9 assert that the base change functor β : Vect(F ) →
Vect(F1) ×Vect(F0) Vect(F2) is an equivalence of categories in situations where certain fields
F ≤ F1, F2 ≤ F0 arise geometrically. The above proposition reduces the proofs there to
showing the following two statements in those contexts:

Factorization: For every A ∈ GLn(F0) there exist Ai ∈ GLn(Fi) such that A = A1A2.

Intersection: F1 ∩ F2 = F .

In Sections 4 and 5, we prove each of these two conditions in turn, and as a result obtain
the main theorems. Beforehand, in Section 3, we prove a factorization result that will be
useful in proving both of the above two conditions. In later results (Theorems 5.10 and 6.4),
we will consider a more general type of situation, and for this we introduce the following
definitions (which give another perspective on the results of this paper, though they are not
otherwise essential and may be skipped on a first reading).

Let F := {Fi}i∈I be a finite inverse system of fields (not necessarily filtered), whose
inverse limit is a field F . Let ιij : Fi → Fj denote the inclusion map associated to i, j ∈ I
with i ≻ j in the partial ordering on the index set I. By a (vector space) patching problem
for the system F we will mean a system V := {Vi}i∈I of finite dimensional Fi-vector spaces
for i ∈ I, together with Fi-linear maps νij : Vi → Vj for all i ≻ j in I, such that for i ≻ j in
I, the induced Fj-linear map νij ⊗Fi

Fj : Vi ⊗Fi
Fj → Vj is an isomorphism. Note that for

any patching problem V, the dimension dimFi
Vi is independent of i ∈ I; and we call this the

dimension of the patching problem, denoted dimV.
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A morphism of patching problems {Vi}i∈I → {V ′i }i∈I for F is a collection of Fi-
linear maps φi : Vi → V ′i (for i ∈ I) which are compatible with the maps νij : Vi → Vj
and ν ′ij : V ′i → V ′j . The patching problems for F thus form a category PP(F). (One can
also consider the analogous notion of algebra patching problems, in which each of the finite
dimensional vector spaces is given the structure of an associative algebra over its base field.
Similarly one can consider patching problems for (finite dimensional) commutative algebras,
central simple algebras, etc. These also form categories.)

Every finite dimensional F -vector space V induces a patching problem β(V ) for F , by
taking Vi = V ⊗F Fi and taking νij = idV ⊗F ιij . Here β defines a functor from the category
Vect(F ) of finite dimensional F -vector spaces to the category PP(F). If V is a patching
problem for F , and β(V ) is isomorphic to V, we say that V is solution to the patching
problem V. If β : Vect(F ) → PP(F) is an equivalence of categories, then it defines a
bijection on isomorphism classes of objects; i.e., every patching problem for F has a unique
solution up to isomorphism.

The situation described in Proposition 2.1 above can then be rephrased in terms of patch-
ing problems for the inverse system F := {F0, F1, F2} with 0 ≺ 1, 2 in the partial ordering,
and with corresponding inclusions ιi0 : Fi → F0 for i = 1, 2. Namely, the proposition says
that in this situation, the above functor β is an equivalence of categories if and only if the
matrix factorization condition (2) of the proposition holds. As noted above, every patching
problem {V0, V1, V2} for F then has a unique solution V up to isomorphism; and by the last
assertion in the proposition, V is given by the fibre product V1 ×V0 V2, or equivalently by
the inverse limit of the finite inverse system {Vi}. As also noted above, with respect to the
inclusions of V1, V2 into V0, we may also regard this fibre product as the intersection V1 ∩ V2
in V0. The above result then has the following corollary:

Corollary 2.2. Let F1, F2 ≤ F0 be fields and write F = F1∩F2. Let V = {Vi} be a patching
problem for F := {Fi}, and let V = V1 ∩ V2 inside V0. Then the patching problem V has a
solution if and only if dimF V = dim V; and in this case, V is a solution.

Proof. If there is a solution V ′ to the patching problem, then V ′ = V1 ∩ V2 inside V0 by
Proposition 2.1 as rephrased above in terms of patching problems, using the identification
V1 ×V0 V2 = V1 ∩ V2. Here dimFV = dimFi

Vi = dimV since V ⊗F Fi is Fi-isomorphic to Vi.
Conversely, if dimF V = dim V, then dimFi

(V ⊗F Fi) = dimF V = dimFi
Vi; so the

inclusion V ⊗F Fi →֒ Vi induced by the natural map V →֒ Vi is an isomorphism of Vi-vector
spaces for i = 0, 1, 2. Since V is a fibre product, the three maps V →֒ Vi are compatible;
and so V (together with these inclusions) is a solution to the patching problem.

Concerning the last assertion of Proposition 2.1, we have the following more general
result:

Proposition 2.3. Let F = {Fi}i∈I be a finite inverse system of fields whose inverse limit is
a field F , and let V := {Vi}i∈I be a patching problem for F , with a solution V . Then V and
the associated system of isomorphisms V ⊗F Fj →

∼ Vj (for j ∈ I) can be identified with the
inverse limit lim

←
Vi (as F -vector spaces) along with the maps

(

lim
←

Vi
)

⊗F Fj → Vj.
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Proof. This is immediate from the F -vector space identity V ⊗F

(

lim
←
Fi

)

= lim
←

(

V ⊗F Fi

)

.

A special case is that the index set I of the inverse system is of the form {0, 1, . . . , r} with
the partial ordering of I given by i ≻ 0 for i = 1, . . . , r and with no other order relations (as
in Proposition 2.1, where r = 2). Then the above inverse limits can be interpreted as fibre
products:

F = F1 ×F0 F2 ×F0 · · · ×F0 Fr, V = V1 ×V0 V2 ×V0 · · · ×V0 Vr.

If we identify each field and each vector space with its image under the respective inclusion,
we can also regard F as the intersection of F1, . . . , Fr inside F0 and similarly for V and the
Vi, generalizing the context of Proposition 2.1 above. (This situation arises in Theorem 4.14
below.)

Another special case of the above set-up arises in the context of Theorem 6.4 below.
Consider an index set I of the form I0 ∪ I1 ∪ I2, where the partial ordering has the property
that for every i0 ∈ I0 there are unique elements i1 ∈ I1 and i2 ∈ I2 such that i1 ≻ i0 and
i2 ≻ i0; and where there are no other relations in I. For an inverse system of fields F = {Fi}
indexed by I, giving a patching problem (up to isomorphism) for F is equivalent to giving
a finite dimensional Fi-vector space Vi for each i ∈ I1 ∪ I2, and giving an Fi0-vector space
isomorphism µi1,i2,i0 : Vi1 ⊗Fi1

Fi0 →∼ Vi2 ⊗Fi2
Fi0 for every choice of i1, i2, i0 such that each

ij ∈ Ij and i1, i2 ≻ i0. Namely, given a patching problem for F , the collection of maps
νi1,i0 and νi2,i0 (for i1, i2 ≻ i0) determines a collection of maps µi1,i2,i0 as above, given by
(νi2,i0 ⊗Fi2

Fi0)
−1 ◦ (νi1,i0 ⊗Fi1

Fi0). Conversely, given Fi-vector spaces Vi for i ∈ I1 ∪ I2
and a collection of maps µi1,i2,i0 as above, for i0 ∈ I0 we may define Vi0 := Vi2 ⊗Fi2

Fi0

where i2 is the unique index in I2 with i2 ≻ i0. We can then let νi2,i0 be the natural
inclusion Vi2 →֒ Vi2 ⊗Fi2

Fi0 = Vi0 ; and let νi1,i0 be the composition of the natural inclusion
Vi1 →֒ Vi1 ⊗Fi1

Fi0 with µi1,i2,i0 . In this way we obtain inverse transformations between
families {µi1,i2,i0} and families {νi1,i0}, thereby establishing the asserted equivalence.

3 Preliminary results

3.1 Matrix factorization

Below we show two matrix factorization results that will be used in proving our main results,
Theorems 4.12 and 5.9. We begin with a lemma that reduces the problem to factoring
matrices that are close to the identity. This reduction parallels the strategy employed in
[31], Section 11.3, and [6], Section 4.

Lemma 3.1. Let R̂0 be a complete discrete valuation ring with uniformizer t, and let
R̂1, R̂2 ≤ R̂0 be t-adically complete subrings that contain t. Write F0, F1 for the fraction
fields of R̂0, R̂1, and assume that R̂1/tR̂1 is a domain whose fraction field equals R̂0/tR̂0.

(a) Then R0 := R̂0 ∩ F1 ⊂ F0 is t-adically dense in R̂0.
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(b) Suppose that for each A ∈ GLn(R̂0) satisfying A ≡ I (mod tMatn(R̂0)), there exist
A1 ∈ GLn(F1), A2 ∈ GLn(R̂2) such that A = A1A2. Then the same conclusion holds
for all matrices A ∈ Matn(R̂0) with non-zero determinant.

Proof. (a) To prove this, we will show by induction that for every f ∈ R̂0 and every m ≥ 0,
there is an element fm ∈ R0 such that f − fm ∈ tmR̂0. This is trivial for m = 0, taking
fm = 0. Suppose the assertion holds for m − 1, and write f − fm−1 = tm−1e, with e ∈ R̂0.
The reduction ē ∈ R̂0/tR̂0 modulo tR̂0 lies in the fraction field of R̂1/tR̂1, and so may be
written as ḡ/h̄, with ḡ, h̄ ∈ R̂1/tR̂1 and h̄ 6= 0. Pick g, h ∈ R̂1 that reduce to ḡ, h̄ modulo
tR̂1. Since R̂0/tR̂0 is a field, h̄ is a unit there, and so h is a unit in the t-adically complete
ring R̂0 (which is the valuation ring of F0). Thus g/h ∈ R̂0, and e − g/h ∈ tR̂0. Taking
fm = fm−1 + tm−1g/h ∈ R̂0 ∩ F1 = R0, we have f − fm ∈ tmR̂0, proving part (a).

(b) Let A ∈ Matn(R̂0) be a matrix with non-zero determinant. So A−1 ∈ t−r Matn(R̂0) ⊂
Matn(F0) for some r ≥ 0. Since R0 is t-adically dense in R̂0 by part (a), there is a C0 ∈
Matn(R0) that is congruent to t

rA−1 ∈ Matn(R̂0) modulo tr+1Matn(R̂0). Let C = t−rC0 ∈
t−r Matn(R0) ⊂ Matn(F1). Then C−A−1 ∈ tMatn(R̂0) and so CA− I ∈ tMatn(R̂0). Hence
CA ∈ GLn(R̂0), and in particular, C has non-zero determinant; i.e. C ∈ GLn(F1). By
hypothesis, there exist A′1 ∈ GLn(F1), A2 ∈ GLn(R̂2) such that CA = A′1A2 in GLn(F0).
Let A1 = C−1A′1 ∈ GLn(F1). Then A = A1A2, as asserted.

Lemma 3.1 will be used in conjunction with the following proposition, which provides a
condition under which the factorization hypothesis of the above lemma is satisfied.

Proposition 3.2. Let T be a complete discrete valuation ring with uniformizer t, let R̂0 be a
t-adically complete T -algebra which is a domain, and let R̂1, R̂2 ≤ R̂0 be t-adically complete
subrings containing T , with fraction fields Fi (i = 0, 1, 2). Assume that M1 ⊂ F0 is a t-
adically complete (e.g. finitely generated) R̂1-submodule of R̂0∩F1 such that for every a ∈ R̂0,
there exist a1 ∈M1 and a2 ∈ R̂2 for which a ≡ a1 + a2 (mod tR̂0). Then every A ∈ GLn(R̂0)
with A ≡ I (mod tMatn(R̂0)) can be written as A = A1A2 with A1 ∈ Matn(M1) and
A2 ∈ GLn(R̂2). Necessarily, A1 ∈ GLn(F1).

Proof. The proof proceeds by constructing A1 and A2, respectively, as the limits of a sequence
of matrices Bi with coefficients in M1, and a sequence of matrices Ci with coefficients in R̂2,
such that

B0 = C0 = I,

A ≡ BiCi (mod ti+1Matn(R̂0)),

Bi ≡ Bi−1 (mod ti Matn(M1)),

Ci ≡ Ci−1 (mod ti Matn(R̂2)).

By t-adic completeness, these limits exist and A2 ∈ GLn(R̂2) since A2 ≡ I (mod tR̂2). Also,
A1 ∈ GLn(F1) because M1 ⊂ F1 and since A,A2 have non-zero determinant.

We now construct this sequence inductively. So suppose for some n ≥ 1 and for all
i ≤ n− 1 that Bi, Ci have already been constructed, satisfying the above conditions; and we
wish to construct Bn, Cn.
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By the inductive hypothesis,

A− Bn−1Cn−1 = tnÃn

for some Ãn with coefficients in R̂0. By the hypothesis of the proposition (applied to the
entries of Ãn), there exist matrices B′n ∈ Matn(M1) and C

′
n ∈ Matn(R̂2) so that

Ãn ≡ B′n + C ′n (mod tMatn(R̂0)),

and thus
tnÃn ≡ tnB′n + tnC ′n (mod tn+1Matn(R̂0)).

So if we define

Bn = Bn−1 + tnB′n
Cn = Cn−1 + tnC ′n,

then

A = Bn−1Cn−1 + tnÃn

≡ Bn−1Cn−1 + tnB′n + tnC ′n (mod tn+1Matn(R̂0))

≡ (Bn−1 + tnB′n)(Cn−1 + tnC ′n) (mod tn+1Matn(R̂0))

≡ BnCn (mod tn+1Matn(R̂0)),

where the second to last congruence uses that

Bn−1 ≡ B0 ≡ I (mod tMatn(M1)) and

Cn−1 ≡ C0 ≡ I (mod tMatn(R̂2)).

This finishes the proof.

In Proposition 4.5 and Lemma 5.3 it will be shown that the hypothesis of Proposition 3.2
(i.e. the sum decomposition with respect to some module M1) holds in the situations of our
main results.

3.2 An intersection lemma

Let T be a complete domain with (t) ⊂ T prime (e.g. a complete discrete valuation ring
T with uniformizer t). Let M ⊆ M1,M2 ⊆ M0 be T -modules with M ∩ tMi = tM and
Mi ∩ tM0 = tMi. Then M/tM = M/(M ∩ tMi) ⊆ Mi/tMi for i = 0, 1, 2, and similarly
Mi/tMi ⊆ M0/tM0 for i = 1, 2. Hence we can form the intersection M1/tM1 ∩M2/tM2 in
M0/tM0; and this intersection contains M/tM . Under certain additional hypotheses, the
next lemma asserts that if this containment is actually an equality then M1 ∩M2 =M .
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Lemma 3.3. Let T be a complete domain with (t) ⊂ T prime, and let M ⊆ M1,M2 ⊆ M0

be T -modules with no t-torsion such that M is t-adically complete, with M ∩ tMi = tM and
Mi ∩ tM0 = tMi, and with

⋂∞
j=1 t

jM0 = (0). Assume that M1/tM1 ∩M2/tM2 = M/tM .
Then M1 ∩M2 =M (where the intersection is taken inside M0).

Proof. After replacing M0 by its submodule M1 +M2 ⊆M0, we may assume that those two
modules are equal. So by the intersection hypothesis, we have an exact sequence

0 →M/tM →M1/tM1 ×M2/tM2 →M0/tM0 → 0,

via the diagonal inclusion of M/tM and the subtraction map toM0/tM0. Let N =M1∩M2

inside M0. So M ⊆ N , and tN = tM1 ∩ tM2 because M0 has no t-torsion. Tensoring the
exact sequence 0 → N → M1 ×M2 → M0 → 0 over T with T/(t) yields the exact sequence
N/tN →M1/tM1×M2/tM2 →M0/tM0 → 0. But the first map in this sequence is injective
because tN = tM1 ∩ tM2; so

0 → N/tN →M1/tM1 ×M2/tM2 →M0/tM0 → 0

is exact. Hence the natural map M/tM → N/tN is an isomorphism; thus M ∩ tN = tM
and N =M + tN . For all j ≥ 0, M ∩ tj+1N =M ∩ tN ∩ tj+1N = tM ∩ tj+1N = t(M ∩ tjN),
where the last equality uses that N has no t-torsion. So by induction, for all j ≥ 0 we have
that M ∩ tjN = tjM , and also that N =M + tjN .

So for n ∈ M1 ∩M2 = N , there is a sequence of elements mj ∈ M with n −mj ∈ tjN .
If h > j then mh − mj ∈ M ∩ tjN = tjM . Since M is t-adically complete, there exists
an element m ∈ M and a sequence ij → ∞ such that m − mj ∈ tijM for all j. We may
assume ij ≤ j for all j. Thus n −m = (n −mj) − (m −mj) ∈ tijN ⊆ tijM0 for all j. But
⋂∞

j=1 t
ijM0 =

⋂∞
j=1 t

jM0 = (0). So n−m = 0 and n = m ∈M .

4 The global case

We now turn to proving our patching result in a global context, in which we consider a
smooth projective curve X̂ over a complete discrete valuation ring T , and use patches that
are obtained from subsets U1, U2 of the closed fibre X of X̂ . These subsets are permitted
to be Zariski open subsets of X , but can also be more general. The strategy is to show
that the factorization and intersection conditions of Section 2 hold, employing the results of
Section 3.

4.1 Factorization

In order to apply the results from the last section to patching, we will need to show that the
hypothesis of Proposition 3.2 is satisfied, i.e., that there is a certain additive decomposition.

As before, T is a complete discrete valuation ring with uniformizer t. Let X̂ be a projec-
tive T -curve with closed fibre X , and let P ∈ X be a closed point at which X̂ is smooth. A
lift of P to X̂ is an effective prime divisor P̂ on X̂ whose restriction to X is the divisor P .

8



Such a lift always exists. Specifically, given P , let π̄ be a uniformizer of the local ring OX,P

and let π ∈ OX̂,P be a lift of π̄. Then the maximal ideal of OX̂,P is generated by π and t,

and we may take P̂ to be the connected component of the zero locus of π that contains P .
More generally, if D =

∑r
i=1 aiPi is an effective divisor on X , and if P̂i is a lift of Pi to

X̂ as above, we call D̂ :=
∑r

i=1 aiP̂i a lift of D to X̂.
The following two propositions are preliminary technical results, which can be avoided

in the special case that T = k[[t]] for some field k and X̂ = X ×k k[[t]]. (Namely there, if
we choose the lift P̂ = P ×k k[[t]], then the next two propositions hold easily by extending
constants from k to k[[t]]. See also [14] for a discussion of this special case.)

As usual, for a Cartier divisor D on a scheme Z, we let L(Z,D) = Γ(Z,OZ(D)), the set
of rational functions on Z whose pole divisor is at most D.

Proposition 4.1. Let T be a complete discrete valuation ring with uniformizer t, and let
X̂ be a smooth connected projective T -curve with closed fibre X of genus g. Let D be an
effective divisor on X and let D̂ be a lift of D to X̂. Then

(a) L(X̂, D̂) is a finitely generated T -module, and

(b) if D has degree > 2g − 2, the sequence

0 → tL(X̂, D̂) → L(X̂, D̂) → L(X,D) → 0

is exact.

Proof. (a) Since X̂ is projective over T , the T -module L(X̂, D̂) = Γ(X̂,O(D̂)) is finitely
generated ([19], II, Theorem 5.19 and Remark 5.19.2); so the first part holds.

(b) Suppose that D is an effective divisor on X of degree d > 2g− 2, with a lift D̂ to X̂ .
The general fibre X◦ of X̂ has genus equal to g because the arithmetic genus is constant for
a flat family of curves, by [19], III, Corollary 9.10. Also, D̂ is flat over the discrete valuation
ring T , since it is torsion-free because its support does not contain the closed fibre X . So by
the same result in [19] on constancy of invariants in flat families, the degree d of the closed
fibre D of D̂ is equal to the degree of the general fibre D◦, viewed as a divisor on X◦.

Applying the Riemann-Roch Theorem ([30], Chapter II, Theorem 3) to the curves X◦

and X , both L(X◦, D◦) and L(X,D) are vector spaces of dimension r := d + 1 − g over
the fraction field K of T and the residue field k of T , respectively. Since L(X̂, D̂) is a
submodule of the function field F of X̂ , it is torsion-free. But T is a principal ideal domain
and L(X̂, D̂)⊗TK = L(X◦, D◦) is an r-dimensional K-vector space; so the finitely generated
torsion-free T -module L(X̂, D̂) is free of rank r. Thus the injection L(X̂, D̂)/tL(X̂, D̂) →
L(X,D) induced by the map L(X̂, D̂) → L(X,D) is an isomorphism of k-vector spaces,
which implies the result.

Remark 4.2. Alternatively, one could deduce this from Zariski’s Theorem on Formal Func-
tions ([19], III, Theorem 11.1 and Remark 11.1.2). But the proof given here is more elemen-
tary, and the above assertion will suffice for our purposes.
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Before we proceed, we introduce some notation that will be frequently used in the sequel.

Notation 4.3. Let T be a complete discrete valuation ring with uniformizer t, and let X̂
be a smooth connected projective T -curve with closed fibre X and function field F . Let R∅

denote the local ring of X̂ at the generic point of X . Given a subset U of X , we introduce
the following objects:

• We set RU := {f ∈ R∅| f is regular on U}, and we let R̂U denote the t-adic completion
of RU .

• If U 6= X , then FU denotes the fraction field of R̂U , and we set Û := Spec R̂U . If
U = X , then FU := F .

In particular, R̂∅ is the completion of the local ring of X̂ at the generic point of the closed
fibre X ; this is a complete discrete valuation ring with uniformizer t, having as residue field
the function field of X . Also, F ≤ FU for all U , and FU ≤ FV if V ⊆ U . (As we will see in
Corollary 4.8 below, for any U ⊆ X , the field FU is the compositum of its subrings F and
R̂U .)

The next result is an analog of Proposition 4.1 for subsets U of the closed fibre X . If D is
an effective divisor on X that is supported on U , then we may regard a lift D̂ of D to X̂ as a
divisor on the scheme Û ; and so as above we may consider L(Û , D̂), the rational functions on
Û with pole divisor at most D̂. We similarly write L(U,D) := {f ∈ k(X)| ((f)+D)|U ≥ 0}.

Proposition 4.4. Let T be a complete discrete valuation ring with uniformizer t, and let X̂
be a smooth connected projective T -curve with closed fibre X of genus g. Let U be a proper
subset of X, let D be an effective divisor on U , and let D̂ be a lift of D to X̂. Then

(a) L(Û , D̂) is a finitely generated R̂U -module, and

(b) if D has degree greater than 2g − 2, the sequence

0 → tL(Û , D̂) → L(Û , D̂) → L(U,D) → 0

is exact.

Proof. (a) We proceed by induction on N = deg(D). The result holds for N = 0 since then
D = 0 and L(Û , D̂) = R̂U . So take D of degree N > 0 and assume that the result holds for
smaller degrees. Write D =

∑r
i=1 aiPi for integers ai > 0 and distinct closed points Pi on U ;

and write D̂ =
∑r

i=1 aiP̂i for some lifts P̂i of the points Pi. Let D
′ = D−P1 and D̂

′ = D̂−P̂1.

Then D′ is effective of degree less than N , and so L(Û , D̂′) has a finite generating set S ′ over
R̂U .

Pick a closed point Q ∈ X r U and a lift Q̂ of Q to X̂ . Let X◦ be the generic fibre of
X̂ , and let P ◦1 and Q◦ be the generic points of P̂1 and Q̂. The residue field K1 of R̂U at P ◦1
is a finite extension of the fraction field K of T , and the local ring OÛ ,P ◦

1
at P ◦1 is an equal

characteristic discrete valuation ring with residue field K1 (which can also be regarded as
the constant subfield of OÛ ,P ◦

1
).
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By the Strong Approximation Theorem ([3], Proposition 3.3.1), there is a rational func-
tion f on X◦ (or equivalently, on X̂) that has a pole of order a1 at P ◦1 and is regular on
X◦ r {P ◦1 , Q

◦}. After multiplying f by an appropriate power of t, we may assume that f is
a unit at the generic point of X . So f ∈ L(Û , a1P̂1)r L(Û , (a1 − 1)P̂1).

For any h ∈ L(Û , D̂), there is an element c̄ ∈ K1 ≤ OÛ ,P ◦

1
such that h− c̄f ∈ OÛ ,P ◦

1
has

a pole at P ◦1 of order at most a1 − 1 (since the local ring at P ◦1 is an equal characteristic
discrete valuation ring with constant field K1, and since f has a pole of order a1 at P

◦
1 ). Now

viewing K1 as the residue field of OÛ ,P ◦

1
, lift c̄ ∈ K1 to c ∈ R̂U . Then h − cf ∈ L(Û , D̂′),

and hence it is an R̂U -linear combination of the elements of S ′. So S := S ′ ∪ {f} is a finite
R̂U -generating set for L(Û , D̂).

(b) The kernel of L(Û , D̂) → L(U,D) is clearly tL(Û , D̂). To show surjectivity of
L(Û , D̂) → L(U,D), let b̄ ∈ L(U,D) and consider b̄ as a rational function on X . Let
{P ′i | i = 1, . . . , m} be the set of poles of b̄ that are not in U , of orders ni ∈ N. Then

b̄ ∈ L(X,
m
∑

i=1

niP
′
i + D). If D has degree greater than 2g − 2, then so does

m
∑

i=1

niP
′
i + D.

For each i choose a lift P̂ ′i of P ′i to X̂ . Proposition 4.1(b) then gives a preimage b of b̄ in

L(X̂,
m
∑

i=1

niP̂
′
i + D̂) ⊆ L(Û , D̂), as desired.

Proposition 4.5. Let T be a complete discrete valuation ring with uniformizer t. Let X̂ be
a smooth connected projective T -curve with function field F and closed fibre X of genus g.
Consider proper subsets U1, U2 ⊂ X, with U0 := U1 ∩ U2 empty. Let R̂i := R̂Ui

, Fi := FUi
.

Then there exists a finite R̂1-submodule M1 of R̂0∩F1 ⊆ F0 with the following property: For
every a ∈ R̂0 there exist b ∈M1 and c ∈ R̂2 so that a ≡ b+ c (mod tR̂0). More precisely, for
any closed point P ∈ U1 ⊂ X, for any lift P̂ of P to X̂, and for any non-negative integer
N > 2g − 2, the module M1 can be chosen as L(Û1, NP̂ ).

Proof. Let P and P̂ be as above, and let M1 = L(Û1, NP̂ ) for some non-negative integer
N > 2g − 2. Thus M1 ⊆ R̂0 ∩ F1. By Proposition 4.4(a), the R̂1-module M1 is finitely
generated.

Given a ∈ R̂0, its mod t reduction ā ∈ R̂0/tR̂0 may be viewed as a rational function on
X . Consider the family of rational functions {fQ}Q∈X on X given by fQ = ā for Q ∈ U1

and fQ = 0 for Q /∈ U1. Since N > 2g − 2, the Riemann-Roch Theorem ([30], Chapter II,
Theorem 3) implies that H1(X,OX(NP )) = 0. Hence by [30], Chapter II, Proposition 3,
there is a rational function c̄ on X such that fQ − c̄ is regular at Q for all Q 6= P , and such
that fP − c̄ has a pole at P of order at most N . In particular, c̄ is regular on U2. Thus
c̄ ∈ R̂2/tR̂2, and c̄ is the reduction of some c ∈ R̂2. By the definition of c̄, the rational
function b̄ := ā− c̄ on X is regular on U1 except possibly at P , where it has a pole of order
at most N ; i.e., b̄ ∈ L(U1, NP ). Proposition 4.4(b) implies that b̄ is the image of an element
b ∈ L(Û1, NP̂ ) =M1, since N > 2g − 2; and then a ≡ b+ c (mod tR̂0).

The main result of this section is a factorization result for use in patching. As above, we
use Notation 4.3.
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Theorem 4.6. Let T be a complete discrete valuation ring, and let X̂ be a smooth connected
projective T -curve with closed fibre X. Let U1, U2 be subsets of X and assume that U0 :=
U1 ∩ U2 is empty. Let Fi := FUi

and R̂i = R̂Ui
(i = 0, 1, 2). Then for every matrix

A ∈ GLn(F0) there exist matrices A1 ∈ GLn(F1) and A2 ∈ GLn(F2) such that A = A1A2.

Proof. We may assume that U1, U2 are proper subsets of X ; otherwise the assertion is trivial.
As observed at Notation 4.3, R̂0 = R̂∅ is a complete discrete valuation ring whose residue
field R̂0/tR̂0 is the function field of X (which is also the fraction field of R̂1/tR̂1). Moreover
the uniformizer t of T is also a uniformizer for R̂0. By Proposition 4.5, there exists a finite
R̂1-moduleM1 ⊂ R̂0∩F1 satisfying the hypothesis of Proposition 3.2. So by Proposition 3.2,
for every A ∈ GLn(R̂0) that is congruent to the identity modulo t, there exist A1 ∈ GLn(F1)
and A2 ∈ GLn(R̂2) such that A = A1A2. By Lemma 3.1, the same conclusion then holds
for any matrix A ∈ Matn(R̂0) having non-zero determinant. Finally, for any A ∈ GLn(F0),
there is an r ≥ 0 such that trA ∈ Mat(R̂0) with non-zero determinant. Since trI ∈ GLn(F1),
the conclusion again follows.

The above proof actually shows a stronger result: Namely, every matrix A ∈ GLn(F0)
may be factored as A = A1A2, for some matrices A1 ∈ GLn(F1) and A2 ∈ GLn(R̂2).

A generalization of Theorem 4.6 in which U1 ∩ U2 can be non-empty appears in Theo-
rem 4.10 below.

4.2 Intersection

We continue to use Notation 4.3.

Proposition 4.7 (Weierstrass Preparation). Let T be a complete discrete valuation ring
and let X̂ be a smooth connected projective T -curve with function field F and closed fibre X.
Suppose that U ⊆ X. Then every element f ∈ R̂U may be written as f = bu with b ∈ F and
u ∈ R̂×U .

Proof. If U = X then R̂U = T ⊂ F , and the result is immediate. If U = ∅, then R̂U is a
discrete valuation ring, and the uniformizer t of T is also a uniformizer of R̂U . In this case
the result also follows easily, by taking b to be a power of t. So from now on we assume that
U 6= X,∅.

Let U1 := X rU . Thus U1 ∩U = ∅ and R̂∅/tR̂∅ is the function field of X . Let f ∈ R̂U ;
we may assume f 6= 0 since otherwise the result is trivial. Since t ∈ F , after factoring out
a power of t from f , we may assume that f /∈ tR̂U . Let f̄ ∈ R̂U/tR̂U ⊂ R̂∅/tR̂∅ be the
reduction of f modulo t. Here f̄ is a non-zero rational function on X whose pole divisor D is
supported on U1. If D = 0, then f̄ is a nonzero constant function on X , and hence is a unit
in R̂U/tR̂U , the ring of functions on U . In this case f is a unit in the t-adically complete
ring R̂U , and we may take u = f , b = 1.

So now assume instead that D is a nonzero effective divisor, hence of degree at least
1. Let D̂ be a lift of D to X̂ , and pick a positive integer N > 2g − 2, where g is the
genus of X . Thus f̄ ∈ L(X,D) ⊆ L(X,ND). By Proposition 4.1(b), there exists some
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f̂ ∈ L(X̂, ND̂) ⊂ RU ⊆ F ∩ R̂U whose reduction mod tR̂U is f̄ ; thus f ≡ f̂ (mod tR̂U).
Here f̂ 6∈ tR̂U because f̄ 6= 0; so f̂ is invertible in the t-adically complete ring R̂∅. Let
f̃ = f/f̂ ∈ R̂∅. Hence f̃ ≡ 1 (mod tR̂∅). Let P be a point of U1 and let P̂ be a lift of P to
X̂ . By Proposition 4.5 (with U2 = U and U0 = ∅), Proposition 3.2 allows us to write f̃ = f1f2
with f1 ∈ L(Û1, NP̂ ) and f2 ∈ R̂×U . So f̂f1 = ff−12 ∈ L∩ R̂U , where L := L(Û1, ND̂+NP̂ ),

using that f̂ ∈ L(X̂, ND̂) ⊆ L(Û1, ND̂). By Proposition 4.4(b), L/tL = L(U1, ND +
NP ). Thus L/tL ∩ R̂U/tR̂U = L(X,ND +NP ) = L(X̂, ND̂ + NP̂ )/tL(X̂, ND̂ +NP̂ ) by
Proposition 4.1(b). Applying Lemma 3.3 to the four T -modules L(X̂, ND̂+NP̂ ) ⊆ L, R̂U ⊆
R̂∅ yields that f̂ f1 ∈ L∩ R̂U = L(X̂, ND̂+NP̂ ) ⊂ F . Hence we may take b = f̂ f1 ∈ F and
u = f2 ∈ R̂×U .

Note that if X̂ = P1
T and U consists of a single point, then this assertion is related to the

classical form of the Weierstrass preparation theorem (e.g. see [4], p.8).

Corollary 4.8. With notation as in Proposition 4.7, every element f in the fraction field of
R̂U may be written as f = bu with b ∈ F and u ∈ R̂×U . Hence FU is the compositum of R̂U

and F .

Here the first assertion is immediate from the above proposition, and the second assertion
then follows from the definition of FU in Notation 4.3, using R̂X = T .

We are now in a position to prove the intersection result needed for patching.

Theorem 4.9. Let T be a complete discrete valuation ring, let X̂ be a smooth connected
projective T -curve with closed fibre X. Let U1, U2 be subsets of X, and write U = U1 ∪ U2,
U0 = U1 ∩ U2. Then FU1 ∩ FU2 = FU inside FU0.

Proof. Let R̂i := R̂Ui
and Fi := FUi

, and let t be a uniformizer of T . We need only show
that F1 ∩ F2 ⊆ FU , the reverse inclusion being trivial. Take an element f ∈ F1 ∩ F2. By
Corollary 4.8, f = f1u1 = f2u2 with fi ∈ F ≤ FU and ui ∈ R̂×i . We wish to show that
f ∈ F .

First, assume that U 6= X . Thus FU is the fraction field of R̂U . Write fi = ai/bi
with ai, bi ∈ R̂U . So f = a1u1/b1 = a2u2/b2. Hence a1b2u1 = a2b1u2, where the left side
is in R̂1 and the right side is in R̂2. Since R̂1/tR̂1 ∩ R̂2/tR̂2 = R̂U/tR̂U , the hypotheses of
Lemma 3.3 are seen to hold in this situation (withMi := R̂i,M := R̂U ); so R̂1∩R̂2 = R̂U and
a1b2u1 ∈ R̂U . But then f = a1u1/b1 = a1b2u1/b1b2, where the numerator and denominator
are both in R̂U ; i.e., f ∈ FU .

Next suppose that U = X , so that FU = F . We may assume that U1, U2 are proper
subsets of X , since otherwise the assertion is trivial. So U2 is not contained in U1. Pick a
closed point P ∈ U2rU1 and a lift P̂ ∈ Û2 ⊂ X̂ . By Propositions 4.1(b) and 4.4(b), the mod
t reduction maps L(X̂, NP̂ ) → L(X,NP ) and L(Û2, NP̂ ) → L(U2, NP ) are surjective for
N sufficiently large. Then, by Lemma 3.3, R̂1 ∩ L(Û2, NP̂ ) = L(X̂, NP̂ ) for N ≫ 0, using
in particular that the same statement is true modulo t. Let R′ =

⋃∞
N=0 L(X̂, NP̂ ), the ring

of regular functions on X̂ r P̂ ; and let R̂′2 =
⋃∞

N=0 L(Û2, NP̂ ), the ring of regular functions

on Û2 r P̂ . The above intersection for N ≫ 0 implies that R̂1 ∩ R̂
′
2 = R′, and in particular
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that R′ ⊂ R̂1. Also, R̂2 ⊂ R̂′2, and F is the fraction field of R′. Proceeding as in the previous
paragraph but with R̂U and R̂2 respectively replaced by R′ and R̂′2, we may write fi = ai/bi
with ai, bi ∈ R′. Thus a1b2u1 = a2b1u2 ∈ R̂1 ∩ R̂

′
2 = R′ and so f = a1b2u1/b1b2 ∈ F .

Using Theorem 4.9, we next obtain a strengthening of the factorization result Theorem 4.6
that applies to more general pairs U1, U2. This result, which may be regarded as a form of
Cartan’s Lemma ([2], Section 4, Théorème I), also generalizes Corollary 4.5 of [6] (which
dealt just with the case that the Ui are Zariski open subsets of the line in order to make use
of unique factorization of the corresponding rings).

Theorem 4.10. Let T be a complete discrete valuation ring, let X̂ be a smooth connected
projective T -curve with closed fibre X. Let U1, U2 ⊆ X, let U0 = U1 ∩ U2, and let Fi := FUi

(i = 0, 1, 2) under Notation 4.3. Then for every matrix A ∈ GLn(F0) there exist matrices
Ai ∈ GLn(Fi) such that A = A1A2.

Proof. Let U ′2 = U2 r U0, and write F ′2 = FU ′

2
and F ′0 = F∅. Any A ∈ GLn(F0) lies in

GLn(F
′
0), and so by Theorem 4.6 we may write A = A1A2 with A1 ∈ GLn(F1) ≤ GLn(F0)

and A2 ∈ GLn(F
′
2). But also A2 = A−11 A ∈ GLn(F0); and F

′
2∩F0 = F2 by Theorem 4.9 since

U ′2 ∪ U0 = U2. So actually A2 ∈ GLn(F2).

Remark 4.11. In Theorem 4.10, we cannot replace GLn everywhere by Matn, as the fol-
lowing example shows. With notation as above, assume U0 6= U1, U2, and consider the
matrix

A =

(

1 a1
a2 a1a2

)

∈ Matn(F0)

with ai ∈ Fi r FU . If there is a factorization A = A1A2 with Ai ∈ Matn(Fi), then either
A1 or A2 has determinant 0, since det(A) = 0. Without loss of generality, we may assume
det(A1) = 0 (since otherwise we can interchange the roles of U1, U2 and consider the transpose
of A). So there exist r, s ∈ F1, not both zero, such that r(A1)1 = s(A1)2, where (A1)i denotes
the ith row of A1. Multiplying by A2 on the right then gives the equality r(A)1 = s(A)2
for the rows of A; in particular, r = sa2. If s 6= 0, then a2 = r/s ∈ F1. By assumption,
a2 ∈ F2, and thus a2 ∈ FU by Theorem 4.9; a contradiction. Consequently, s = 0, and thus
r = sa2 = 0, contradicting the fact that r, s are not both zero. Hence no such factorization
can exist.

4.3 Patching

We now turn to our global patching result for function fields. We consider an irreducible
projective T -curve X̂ with closed fibreX . For any subset U ⊆ X we write V(U) for Vect(FU),
where FU is as in Notation 4.3.

Theorem 4.12. Let T be a complete discrete valuation ring and let X̂ be a smooth connected
projective T -curve with closed fibre X. Let U1, U2 be subsets of X. Then the base change
functor

V(U1 ∪ U2) → V(U1)×V(U1∩U2) V(U2)
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is an equivalence of categories.

Proof. In view of Proposition 2.1, the result follows from the factorization result Theo-
rem 4.10 and the intersection result Theorem 4.9.

By Proposition 2.1, the inverse of the above equivalence of categories (up to isomorphism)
is given by taking the fibre product of vector spaces.

Remark 4.13. Theorem 4.12 can also be deduced just from Theorem 4.6 and Theorem 4.9,
without using Theorem 4.10. Namely, the case that U0 = ∅ follows with Theorem 4.6
replacing Theorem 4.10 in the above proof; and the general case then follows from that by
setting U ′2 = U2 r U0 and using the equivalences of categories

V(U1)×V(U0) V(U2) = V(U1)×V(U0) (V(U0)×V(∅) V(U
′
2))

= V(U1)×V(∅) V(U
′
2) = V(U1 ∪ U

′
2) = V(U1 ∪ U2).

Theorem 4.12 generalizes to a version that allows patching more than two vector spaces at
the same time. This next result will become important in later applications, where sometimes
U0 is empty.

Theorem 4.14. Let T be a complete discrete valuation ring and let X̂ be a smooth connected
projective T -curve with closed fibre X. Let U1, . . . , Ur denote subsets of X, and assume that
the pairwise intersections Ui ∩ Uj (for i 6= j) are all equal to a common subset U0 ⊆ X. Let

U =
r
⋃

i=1

Ui. Then the base change functor

V(U) → V(U1)×V(U0) · · · ×V(U0) V(Ur)

is an equivalence of categories.

Proof. We proceed by induction; the case r = 1 is trivial. Since

( r−1
⋃

i=1

Ui

)

∩ Ur =

r−1
⋃

i=1

(Ui ∩ Ur) = U0,

Theorem 4.12 yields an equivalence of categories

V

( r
⋃

i=1

Ui

)

= V

( r−1
⋃

i=1

Ui

)

×V(U0) V(Ur).

By the inductive hypothesis, the first factor on the right hand side is equivalent to the
category V(U1)×V(U0) · · · ×V(U0) V(Ur−1), proving the result.

Note that by Theorem 4.9 and induction, FU is the intersection of the fields FU1 , . . . , FUr

inside FU0 . So as with Theorem 4.12, the inverse to the equivalence of categories (up to
isomorphism) in Theorem 4.14 is given by taking the fibre product of the given FUi

-vector
spaces (i = 1, . . . , r) over the given FU0-vector space; this is by Proposition 2.3.
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5 The Complete Local Case

In this section, we will prove a different patching result, in which complete local rings are
used at one or more points, and which is related to results in [11], Section 1. The proof here
relies on the case dealt with in Section 4. Again, the ingredients we need are a factorization
result and an intersection result. We use the following

Notation 5.1. Let R̂ be a 2-dimensional regular local domain with maximal ideal m and
local parameters f, t, such that R̂ is t-adically complete. Let R̂1 be the m-adic completion of
R̂, let R̂2 be the t-adic completion of R̂[f−1], and let R̂0 be the t-adic completion of R̂1[f

−1].
Also let R̄ := R̂/tR̂ and let R̄i = R̂i/tR̂i for i = 0, 1, 2.

Lemma 5.2. In the context of Notation 5.1, the following hold:

(a) R̂1 is the f -adic completion of R̂, and R̂ ≤ R̂i ≤ R̂0 for i = 1, 2.

(b) tR̂i ∩ R̂ = tR̂ for i = 0, 1, 2, and tR̂0 ∩ R̂i = tR̂i for i = 1, 2.

(c) R̂2 and R̂0 are complete discrete valuation rings with uniformizer t; and R̄ and R̄2 are
discrete valuation rings with uniformizer f̄ , the mod t reduction of f .

(d) R̄1 is the f̄ -adic completion of R̄; while R̄2 and R̄0 are respectively isomorphic to R̄[f̄−1]
and R̄1[f̄

−1], the fraction fields of R̄ and R̄1.

(e) R̄ ≤ R̄i ≤ R̄0 for i = 1, 2, with R̄1 ∩ R̄2 = R̄ inside R̄0.

Proof. (a) Since R̂ is t-adically complete, R̂ = lim
←
R̂/tjR̂. In R̂, (f 2n, t2n) ⊂ m

2n ⊂ (fn, tn)

for all n ≥ 0. So the f -adic completion of R̂ is lim
←
R̂/f iR̂ = lim

←
lim
←

(R̂/tjR̂)/f i(R̂/tjR̂) =

lim
←

lim
←
R̂/(f i, tj) = lim

←
R̂/mn = R̂1. This proves the first part of (a).

According to [1], III, §3.2, Corollary to Proposition 5, given an ideal I in a commutative
ring A, the intersection

⋂

In is equal to (0) if no element of 1 + I is a zero-divisor. Hence
the completion maps R̂ → R̂1, R̂[f

−1] → R̂2, and R̂1[f
−1] → R̂0 are injections. Thus so are

R̂ → R̂2 and R̂1 → R̂0.
It remains to show that R̂2 → R̂0 is injective. Since the image f̄ of f is in the maximal

ideal of R̂/tjR̂, no element of 1+ (f̄) ⊆ R̂/tjR̂ is a zero-divisor. The above result in [1] then
implies that

⋂∞
n=1(f̄

n) = (0) ⊂ R̂/tjR̂ for j ≥ 1. Hence
⋂∞

n=1(t
j , fn) = (tj) ⊂ R̂ for each

j. Meanwhile, since R̂1 is the f -adic completion of R̂ (as shown above), R̂ ∩ fnR̂1 = fnR̂,
and tjR̂ is f -adically dense in tjR̂1. By this density, if g ∈ tjR̂1 ∩ R̂, then g = tjr + fnr1 for
some r ∈ R̂ and r1 ∈ R̂1. But then fnr1 ∈ R̂ ∩ fnR̂1 = fnR̂; i.e. r1 ∈ R̂. This shows that
g lies in the ideal (tj , fn) ⊂ R̂. Since this holds for all n, and since

⋂∞
n=1(t

j, fn) = tjR̂, it

follows that g ∈ tjR̂. That is, tjR̂1 ∩ R̂ ⊆ tjR̂. The reverse containment is trivial, and so
tjR̂1 ∩ R̂ = tjR̂. Hence tjR̂1[f

−1] ∩ R̂[f−1] = tjR̂[f−1] for all j ≥ 1; thus the map R̂2 → R̂0

on completions is injective.
(b) It was shown in the proof of part (a) that tR̂1 ∩ R̂ = tR̂. So if g ∈ tR̂1[f

−1] ∩ R̂,
then fng ∈ tR̂1 ∩ R̂ = tR̂ for some n, and hence g ∈ tR̂ because f, t are a system of local
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parameters. Passing to the t-adic completion preserves the t-adic metric, and so tR̂0∩R̂ ⊆ tR̂.
The reverse containment is trivial; hence tR̂0 ∩ R̂ = tR̂. Since tR̂2 ⊆ tR̂0, we then also have
tR̂2 ∩ R̂ = tR̂.

Since the t-adic metric is preserved under t-adic completion, to prove that tR̂0∩R̂1 = tR̂1

it suffices to show that tR̂1[f
−1] ∩ R̂1 = tR̂1. Say g is in the left hand side. Then for some

n ≥ 1, fng ∈ tR̂1 ∩ f
nR̂1 = tfnR̂1; i.e., g ∈ tR̂1. Thus tR̂1[f

−1] ∩ R̂1 ⊆ tR̂1, and the reverse
containment is trivial. Finally, the equality tR̂0 ∩ R̂2 = tR̂2 follows from the assertion
tR̂1[f

−1] ∩ R̂[f−1] = tR̂[f−1] shown in the proof of part (a).
(c) Since f ∈ m, the rings R̂[f−1] and R̂1[f

−1] are regular domains of dimension one;
and their t-adic completions R̂2 and R̂0 are thus complete discrete valuation rings with
uniformizer t.

Since f, t form a system of local parameters at the maximal ideals of the two-dimensional
regular local domains R̂ and R̂1, the reduction f̄ is a local parameter for the reductions R̄
and R̄1, which are one-dimensional regular local domains. That is, R̄ and R̄1 are discrete
valuation rings with uniformizer f̄ .

(d) The first assertion follows from the fact that R̂1 is the f -adic completion of R̂ (proven
in part (a)). The second assertion follows from part (c) and the definitions of R̂2 and R̂0.

(e) These assertions follow from the characterizations of R̄, R̄1, R̄2, R̄0 in part (d).

5.1 Factorization

Lemma 5.3. In the context of Notation 5.1, for every a ∈ R̂0 there exist b ∈ R̂1 and c ∈ R̂2

such that a ≡ b+ c (mod tR̂0).

Proof. We may assume a 6= 0. Write vf̄ for the f̄ -adic valuation on R̄0. Let ā be the

image of a in R̄0 = R̂0/tR̂0. If vf̄ (ā) ≥ 0, then ā ∈ R̄1; and so there exists b ∈ R̂1 such

that a ≡ b (mod tR̂0). Taking c = 0 completes the proof in this case. Alternatively, if
vf̄ (ā) = −r < 0, then f ra has the property that its reduction modulo tR̂0 lies in R̄1 ⊂ R̄0,
since the f̄ -adic valuation of this reduction is 0. Since R̄ is f̄ -adically dense in R̄1 by
Lemma 5.2(d), there exists d̄ ∈ R̄ such that d̄ ≡ f̄ rā (mod f̄ rR̄1). Let c̄ = f̄−rd̄ ∈ R̄2. Then
f̄ r(ā− c̄) = f̄ rā− d̄ ∈ f̄ rR̄1, and so ā− c̄ is equal to some element b̄ ∈ R̄1. Choosing b ∈ R̂1

lying over b̄, and c ∈ R̂2 lying over c̄, completes the proof.

Theorem 5.4. In the context of Notation 5.1, let Fi be the fraction field of R̂i. Then for
every A ∈ GLn(F0) there exist A1 ∈ GLn(F1) and A2 ∈ GLn(F2) such that A = A1A2.

Proof. By Lemma 5.2(d), R̄0 is a field. By Lemma 5.3, the module M1 := R̂1 ⊂ R̂0 satisfies
the hypothesis of Proposition 3.2. So in the case of matrices A ∈ GLn(R̂0) that are congruent
to the identity modulo tR̂0, the assertion follows from that proposition. The result for an
arbitrary matrix A ∈ Matn(R̂0) with non-zero determinant then follows from Lemma 3.1
(whose other hypotheses are satisfied, by parts (c) and (d) of Lemma 5.2). Finally, the
general case of a matrix A ∈ GLn(F0) then follows since trA ∈ Mat(R̂0) with non-zero
determinant for some r ≥ 0, and since trI ∈ GLn(F1).
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5.2 Intersection

The proof of Weierstrass preparation in the local case does not entirely parallel the global
case; instead, we require the following lemma.

Lemma 5.5. In the context of Notation 5.1, every unit a ∈ R̂×0 may be written as a = bc
for some units b ∈ R̂×1 and c ∈ R̂×2 .

Proof. Since a ∈ R̂×0 , a 6≡ 0 (mod tR̂0). So the reduction of a modulo tR̂0 is a non-zero
element of R̄0 = R̄1[f̄

−1], and hence is of the form f̄ sū for some integer s and some unit
ū ∈ R̄1. Choose u ∈ R̂1 with reduction ū. Thus u is a unit in the t-adically complete ring
R̂1 and f s is a unit in R̂2. Replacing a by u−1af−s, we may assume that a ≡ 1 (mod tR̂0).

Since R̂1, R̂2 are t-adically complete, it now suffices to define sequences of units bm ∈ R̂1,
cm ∈ R̂2 such that

bm+1 ≡ bm (mod tm+1R̂1), cm+1 ≡ cm (mod tm+1R̂2), a ≡ bmcm (mod tm+1R̂0)

for all m ≥ 0. This will be done inductively.
Take b0 = 1, c0 = 1. Suppose bm−1 and cm−1 have been defined, with m ≥ 1. Thus

bm−1 ≡ 1 (mod tR̂1), cm−1 ≡ 1 (mod tR̂2), and dm := ab−1m−1 − cm−1 is divisible by tm in R̂0.

So dm = δmt
m for some δm ∈ R̂0; denote its reduction modulo tR̂0 by δ̄m ∈ R̄0. For some non-

negative integer i we have f̄ iδ̄m ∈ R̄1. But R̄ is f̄ -adically dense in R̄1; so there exists ε̄m ∈ R̄
such that ε̄m ≡ f̄ iδ̄m (mod f̄ iR̄1). So b̄

′
m := δ̄m−f̄

−iε̄m ∈ R̄1 and c̄
′
m := f̄−iε̄m ∈ R̄[f̄−1] = R̄2.

Choose elements b′m ∈ R̂1 and c′m ∈ R̂2 respectively lying over b̄′m ∈ R̄1 and c̄′m ∈ R̂2, and
let bm = bm−1 + b′mt

m ∈ R̂1 and cm = cm−1 + c′mt
m ∈ R̂2. Thus bm ≡ bm−1 (mod tmR̂1),

cm ≡ cm−1 (mod tmR̂2), and ab
−1
m−1 − cm−1 = dm = δmt

m ≡ b′mt
m + c′mt

m (mod tm+1R̂0). So

a ≡ bm−1cm−1 + bm−1b
′
mt

m + bm−1c
′
mt

m ≡ bm−1cm + b′mt
m ≡ bmcm (mod tm+1R̂0), using that

bm−1 ≡ 1 (mod tR̂1), cm ≡ 1 (mod tR̂2).

Proposition 5.6 (Local Weierstrass Preparation). In the context of Notation 5.1, let F be
the fraction field of R̂. Then every element of R̂1 is the product of an element of F and a
unit in R̂1.

Proof. We may assume a ∈ R̂1 is non-zero, and hence a = tsa′ for some non-negative integer
s and some a′ ∈ R̂1 that is not divisible by t. Replacing a by a

′, we may assume that a 6∈ tR̂1,
and hence that a is a unit in the discrete valuation ring R̂0. So by Lemma 5.5, a = bc for
some units b ∈ R̂×1 and c ∈ R̂×2 , and then c = ab−1 ∈ R̂1. But R̂1 ∩ R̂2 = R̂ by Lemma 3.3,
using in particular that R̄1 ∩ R̄2 = R̄. Hence c ∈ R̂1 ∩ R̂2 = R̂ ⊂ F .

Theorem 5.7. In the context of Notation 5.1, let F, F1, F2, F0 be the fraction fields of
R̂, R̂1, R̂2, R̂0 respectively. Then F1 ∩ F2 = F in F0.

Proof. Let h ∈ F1 ∩ F2. Write h = a/b with a, b ∈ R̂1. By Proposition 5.6, b = uf for some
unit u ∈ R̂1 and some non-zero f ∈ F . Thus h = au−1/f ; and replacing h by fh, we may
assume h = au−1 ∈ R̂1. But R̂2 is a complete discrete valuation ring with uniformizer t
(Lemma 5.2(c)); so after multiplying h ∈ F2 by a non-negative power of t we may assume
h ∈ R̂2 ∩ R̂1. As noted in the above proof, Lemma 3.3 implies that R̂1 ∩ R̂2 = R̂ ⊂ F and
hence h ∈ F .
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5.3 Patching

We begin with a local patching result, using the above factorization and intersection results.

Theorem 5.8. In the context of Notation 5.1, let F be the fraction field of R̂ and let Fi be
the fraction field of R̂i for i = 0, 1, 2. Then the base change functor

Vect(F ) → Vect(F1)×Vect(F0) Vect(F2)

is an equivalence of categories.

Proof. This follows from Theorem 5.4 and Theorem 5.7, by Proposition 2.1.

Combining this with the global patching result Theorem 4.12, we obtain the following
result on complete local/global patching:

Theorem 5.9. Let T be a complete discrete valuation ring with uniformizer t, and let X̂ be
a smooth connected projective T -curve with closed fibre X. Let R̂Q be the completion of the

local ring of X̂ at a closed point Q; let R̂◦Q be the t-adic completion of the localization of R̂Q

at the height one prime tR̂Q; and let FQ, F
◦
Q be the fraction fields of R̂Q, R̂

◦
Q. Let U be a

subset of X that contains Q, let U ′ = U r {Q}, and let FU and FU ′ be as in Notation 4.3.
Then the base change functor

Vect(FU) → Vect(FQ)×Vect(F ◦

Q
) Vect(FU ′)

is an equivalence of categories.

Proof. As in Notation 4.3, we let R̂∅ be the t-adic completion of the local ring of X̂ at the
generic point of X and let F∅ be the fraction field of R̂∅. Here R̂Q denotes the completion of

the local ring of X̂ at Q with respect to its maximal ideal, whereas R̂{Q} denotes the t-adic

completion of this same local ring. Also, FQ, F{Q} denote the fraction fields of R̂Q, R̂{Q}.

Since X̂ is a smooth projective T -curve, R̂{Q} is a two-dimensional regular local domain,

with maximal ideal mQ, and with mQ-adic completion R̂Q. Choose a lift f ∈ R̂{Q} of a

uniformizer f̄ of Q on the closed fibre X ; thus f, t form a system of local parameters for X̂
at Q. The localization R̂{Q}[f

−1](t) contains the local ring R∅ of X̂ at the generic point of

X and is contained in the t-adic completion R̂∅ of R∅; hence R̂∅ is the t-adic completion of
R̂{Q}[f

−1](t), or equivalently of R̂{Q}[f
−1]. Similarly, the localization R̂Q[f

−1](t) contains the

localization (R̂Q)(t), and is contained in the t-adic completion R̂◦Q of that ring; hence R̂◦Q is

in fact the t-adic completion of R̂Q[f
−1](t), or equivalently of R̂Q[f

−1]. Thus the four rings

R̂{Q}, R̂Q, R̂∅, R̂
◦
Q satisfy the assumptions of Notation 5.1 for the rings R̂, R̂1, R̂2, R̂0 there.

So by Theorem 5.8, the base change functor

Vect(F{Q}) → Vect(FQ)×Vect(F ◦

Q
) Vect(F∅)

is an equivalence of categories. By Theorem 4.12, the base change functor

Vect(FU) → Vect(F{Q})×Vect(F∅) Vect(FU ′)
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is also an equivalence. Hence the composition

Vect(FU) → Vect(F{Q})×Vect(F∅) Vect(FU ′)

→
(

Vect(FQ)×Vect(F ◦

Q
) Vect(F∅)

)

×Vect(F∅) Vect(FU ′)

→ Vect(FQ)×Vect(F ◦

Q
) Vect(FU ′),

given by base change, is an equivalence of categories.

To illustrate the above result, let T = k[[t]], let X̂ be the projective x-line over T , let
Q be the point x = t = 0, let U = P1

k, and let U ′ = U r {Q}. The ring RU ′ contains
k[[t]][x−1], the ring of regular functions on an affine open subset Ũ ′ of P1

T ; and it is equal
to the intersection of the localizations of k[[t]][x−1] at the maximal ideals corresponding to
the points of U ′ (i.e. the closed points of the closed fibre of Ũ ′). So RU ′ is the localization
S−1(k[[t]][x−1]), where S is the multiplicative set of elements that lie in none of these maximal
ideals, or equivalently are units modulo t (and hence modulo tn for all n). Thus the inclusion
k[[t]][x−1] →֒ RU ′ becomes an isomorphism modulo tn for all n. Hence k[[t]][x−1] is t-adically
dense in RU ′ , and these two rings have the same t-adic completion; i.e. k[x−1][[t]] = R̂U ′ .
The local ring of X̂ at Q is k[[t]][x](x,t), whose t-adic completion R̂{Q} is k[x](x)[[t]], this being
the inverse limit of the mod tn-reductions k[t, x](x)/(t

n). The (x, t)-adic completion of this

same local ring is R̂Q = k[[x, t]]; while R̂∅ = k(x)[[t]] and R̂◦Q = k((x))[[t]], these being the
t-adic completions of k[[t]][x](x) and k[[x, t]][x

−1]. The fields FU ′ , F{Q}, FQ, F∅, and F
◦
Q are

the respective fraction fields of the above complete rings. The function field FU of X̂ is the
fraction field k((t))(x) of k[[t]][x], the ring of functions on the dense open subset A1

T .
The next result is a generalization of Theorem 5.9 that allows more patches.

Theorem 5.10. Let T be a complete discrete valuation ring with uniformizer t, and let X̂ be
a smooth connected projective T -curve with closed fibre X. Let Q1, . . . , Qr be distinct closed
points on X̂. For each i = 1, . . . , r, let R̂i be the complete local ring of X̂ at Qi; let R̂

◦
i be

the t-adic completion of the localization of R̂i at the height one prime tR̂i; and let Fi, F
◦
i

be the fraction fields of R̂i, R̂
◦
i . Let U be a subset of X that contains S = {Q1, . . . , Qr}, let

U ′ = U r S, and let FU and FU ′ be as in Notation 4.3. Then the base change functor

Vect(FU) →
r
∏

i=1

Vect(Fi)×Qr
i=1 Vect(F

◦

i )
Vect(FU ′)

is an equivalence of categories.

Proof. This follows by induction from Theorem 5.9, using the identification of

j−1
∏

i=1

Vect(Fi)×Qj−1
i=1 Vect(F ◦

i )

(

Vect(Fj)×Vect(F ◦

j )
Vect(FUr{Q1,...,Qj})

)

with
j
∏

i=1

Vect(Fi)×Qj
i=1 Vect(F

◦

i )
Vect(FUr{Q1,...,Qj}).
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In the terminology of Section 2, we may rephrase the above result in terms of patching
problems. Namely, consider the partially ordered set I = {1, . . . , r, 1′, . . . , r′, U ′}, where i ≻ i′

for each i, and where U ′ ≻ i′ for all i. Set Fi′ = F ◦i for each i, and consider the corresponding
finite inverse system of fields F = {Fi, Fi′ , FU ′} indexed by I. Then Theorem 5.10 asserts
that the base change functor Vect(FU ) → PP(F) is an equivalence of categories.

Remark 5.11. The above theorem can be regarded as analogous to a special case of Theo-
rem 4.14 — viz. where each of the sets Ui consists of a single point, except for one Ui which
is disjoint from the others. Both results then make a patching assertion in the context of one
arbitrary set and a finite collection of points not in that set. The main difference between the
two results is that in the above special case of Theorem 4.14, the local patches correspond
to the fraction fields of the t-adic completions of the local rings at the respective points Qi;
whereas Theorem 5.10 uses the fraction fields of the mQi

-adic completions of the local rings
at those points. In the special case of Theorem 4.14, the “overlap” fields associated to the
pairwise intersections Ui ∩ Uj are each just the fraction field F∅ of the t-adic completion of
the local ring at the generic point of X ; whereas in Theorem 5.10, the “overlap” fields F ◦i
are different from each other (and are larger than F∅). So Theorem 5.10 can no longer be
phrased as a fibre product over a single base as in Theorem 4.14.

Proposition 5.12. In Theorems 5.8, 5.9, and 5.10, the inverse of the base change functor
(up to isomorphism) is given by taking the inverse limit of the vector spaces on the patches.
In Theorems 5.8 and 5.9, this inverse limit is given by taking the intersection of vector
spaces.

Proof. By Corollary 2.2, the assertion for Theorems 5.8 and 5.9 follows from verifying the
intersection condition of Section 2 concerning fields (i.e. that F1∩F2 = F in Theorem 5.8 and
that FQ∩FU ′ = FU in Theorem 5.9). That condition follows for Theorem 5.8 by Theorem 5.7;
and for Theorem 5.9 by combining that in turn with Theorem 4.9.

To prove the result in the case of Theorem 5.10, we rephrase that theorem as asserting that
Vect(FU) → PP(F) is an equivalence of categories, where F is as defined in the paragraph
following the proof above. By Theorem 5.7, FQ ∩ FU ′ = FU in the situation of Theorem 5.9.
So by induction on r, it follows that FU is the inverse limit of the fields in F . Hence
Proposition 2.3 asserts that if a patching problem V = {Vi, Vi′, VU ′} in F is induced (up to
isomorphism) by a finite dimensional FU -vector space V , then V is isomorphic to the inverse
limit of V. Such a V exists since the functor in Theorem 5.10 is an equivalence of categories;
hence the assertion follows.

6 Allowing Singularities

In view of later applications, it is desirable to have a version of Theorem 5.10 that can be
applied to a singular curve. Let T be a complete discrete valuation ring with uniformizer t.
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In order to perform patching in the case of normal curves X̂ → T that are not smooth, we
introduce some terminology that was used in a related context in [17], Section 1.

Let X̂ be a connected projective normal T -curve, with closed fibre X . Consider a non-
empty finite set S ⊂ X that contains every point where distinct irreducible components of X
meet. Thus each connected component of XrS is contained in an irreducible component of
X , and moreover is an affine open subset of that component, since each irreducible component
of X contains at least one point of S (by connectivity of X and the fact that X 6= ∅). For
any non-empty irreducible affine Zariski open subset U ⊆ X r S, we consider as before the
ring RU of rational functions on X̂ that are regular at the points of U (and hence also at the
generic point of the component of X containing U); and the fraction field FU of the t-adic
completion R̂U of RU (which is a domain by the irreducibility of U). For each point P ∈ S,
the complete local ring R̂P of X̂ at P is a domain, say with fraction field FP . Each height
one prime ideal ℘ of R̂P that contains t determines a branch of X at P (i.e. an irreducible
component of the pullback of X to Spec R̂P ); and we let R̂℘ denote the complete local ring

of R̂P at ℘, with fraction field F℘. Since t ∈ ℘, the contraction of ℘ ⊂ R̂P to the local ring
OX̂,P defines an irreducible component of SpecOX,P ; hence an irreducible component of X
containing P . This in turn is the closure of a unique connected component U of X rS; and
we say that ℘ lies on U . (Note that several branches of X at P may lie on the same U , viz.
if the closure of U is not unibranched at P .)

In this situation, we obtain a finite inverse system consisting of fields FU , FP , F℘. More
precisely, let I1 be the set of irreducible (or equivalently, connected) components U of XrS;
let I2 = S; let I0 be the set of branches ℘ of X at points P ∈ S; and let I = I1∪I2∪I0. Give
I the structure of a partially ordered set by setting U ≻ ℘ if ℘ lies on U , and setting P ≻ ℘ if
℘ is a branch of X at P . This defines the asserted finite inverse system F = FX̂,S = {Fi}i∈I
consisting of the fields FU , FP , F℘ under the natural inclusions FU → F℘ and FP → F℘.

Theorem 6.4 below, which states a patching result for singular curves, will be proven by
relating a given singular curve to an auxiliary smooth curve. That theorem and the results
preceding it will be in the following situation:

Hypothesis 6.1. We make the following assumptions:

• T is a complete discrete valuation ring with uniformizer t.

• f : X̂ → X̂ ′ is a finite morphism of connected projective normal T -curves with function
fields F, F ′, and closed fibres X,X ′, such that X̂ ′ is smooth over T .

• S ′ 6= ∅ is a finite set of closed points of X ′, say with complement U ′ = X ′ − S ′, such
that S := f−1(S ′) ⊂ X contains the points where distinct irreducible components of
X meet.

Lemma 6.2. Under Hypothesis 6.1 and the above notation, let P ′ ∈ S ′ and let ℘′ be the
branch of X ′ at P ′.

(a) The natural maps

F ⊗F ′ FU ′ →
∏

FU , F ⊗F ′ FP ′ →
∏

FP , F ⊗F ′ F℘′ →
∏

F℘

22



are isomorphisms of F -algebras, where the products respectively range over the con-
nected components U of X rS, the points P of S lying over P ′, and the branches ℘ of
X over ℘′.

(b) The natural inclusions FU ′ → F℘′ and FP ′ → F℘′ are compatible with the natural
inclusions

∏

FU →
∏

F℘ and
∏

FP →
∏

F℘, where U and P range as above and ℘
ranges over the branches of X at points of S.

Proof. (a) Choose a Zariski affine open subset Spec R̃′ of X̂ ′ that meets X ′ in U ′, and let
Spec R̃ be its inverse image in X̂ . The fraction fields of R̃, R̃′ are respectively the function
fields F, F ′ of X̂, X̂ ′, since Spec R̃ ⊂ X̂, Spec R̃ ⊂ X̂ ′ are Zariski open dense subsets.

At every closed point of U ′, the rings R̃′ and R′U ′ have the same localization and hence

the same completion; so R′U ′ and its subring R̃′ have the same t-adic completion R̂U ′ . By
the hypothesis on S, the inverse image f−1(U ′) = X r S ⊂ X is the disjoint union of its
irreducible components U . Thus the corresponding ideals IU of R̃ are pairwise relatively
prime; hence tR̃ =

∏

IU and more generally tnR̃ =
∏

InU for n ≥ 1. By the Chinese
Remainder Theorem, R̃/tnR̃ is isomorphic to the product

∏

U R̃/I
n
U =

∏

U RU/I
n
URU =

∏

U RU/t
nRU ; and taking inverse limits shows that the t-adic completion of R̃ is

∏

R̂U . By

definition, the fraction fields of R̂U , R̂U ′ are respectively FU , FU ′ , where as above U ranges
over the connected components of X r S.

The natural R̃-algebra homomorphism R̃ ⊗R̃′ R̂U ′ →
∏

R̂U is bijective, by [1], Theo-
rem 3(ii) in §3.4 of Chapter III, and thus is an isomorphism. Hence so is R̃ ⊗R̃′ FU ′ =

R̃ ⊗R̃′ R̂U ′ ⊗R̂U′
FU ′ →

∏

R̂U ⊗R̂U′
FU ′. Now R̃ is finite over R̃′, and R̂U is finite over R̂U ′ ;

so F = R̃ ⊗R̃′ F ′ and FU = R̂U ⊗R̂U′
FU ′ . Hence

∏

FU =
∏

R̂U ⊗R̂U′
FU ′ as F -algebras.

Thus the natural map F ⊗F ′ FU ′ = R̃ ⊗R̃′ F ′ ⊗F ′ FU ′ = R̃ ⊗R̃′ FU ′ →
∏

FU is an F -algebra
isomorphism. This proves that the first map is an isomorphism. The proofs for the other
two maps are similar.

(b) This follows from the fact that each of these maps is given by base change.

In the situation of Hypothesis 6.1, consider the diagonal inclusion map F →
∏

FU×
∏

FP ,
where U ranges over the components ofXrS and P ranges over S. For each such U consider
the diagonal inclusion ιU : FU →

∏

F℘, where ℘ ranges over branches of X lying on U ; and
for each P consider the diagonal inclusion ιP : FP →

∏

F℘, where ℘ ranges over branches of
X at P . Consider the sum

∏

FU ×
∏

FP →
∏

F℘ of the maps ιU and −ιP on the respective
components; here ℘ ranges over all the branches at points of S.

Proposition 6.3. Under Hypothesis 6.1 and the above notation, the sequence

0 → F →
∏

FU ×
∏

FP →
∏

F℘

of F -vector spaces is exact. Equivalently, F is the inverse limit of the inverse system FX̂,S

of F -algebras consisting of the fields FU , FP , F℘ with the natural inclusions.
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Proof. With respect to the inclusions FU ′ → F℘′ and ιP ′ : FP ′ → F℘′, we obtain an inverse
system F ′ = FX̂′,S′ of fields FU ′ , FP ′, F℘′, where P ′ ranges over S ′ and ℘′ ranges over the
corresponding branches. Applying Proposition 5.12 in the situation of Theorem 5.10, the
function field F ′ of X̂ ′ is the inverse limit of the system F ′, viewing each of the fields fields
FU ′, FP ′, F℘′ as a one-dimensional vector space over itself. Writing F ′ → FU ′ ×

∏

FP ′ and
FU ′ →

∏

F℘′ for the diagonal inclusions, and writing
∏

FP ′ →
∏

F℘′ for the product of the
maps −ιP ′ , the inverse limit assertion for F ′ is equivalent to the exactness of the sequence
of F ′-vector spaces

0 → F ′ → FU ′ ×
∏

FP ′ →
∏

F℘′ .

The desired exactness now follows from tensoring this exact sequence over F ′ with F ,
and using Lemma 6.2. This exactness is then equivalent to the assertion that F is the inverse
limit of the system FX̂,S.

Note that in the above result, as in Proposition 5.12 in the situation of Theorem 5.10, we
must phrase the assertion in terms of inverse limits rather than intersections, because the
various fields in the inverse system are not all contained in some common overfield in the
system.

Under Hypothesis 6.1 and the above notation, we define a (field) patching problem
V for (X̂, S) to be a patching problem (in the sense of Section 2) for the inverse system
F = FX̂,S. Because of the form of the index set of F , and as noted in the last paragraph of
Section 2, giving such a patching problem is equivalent to giving:

(i) a finite dimensional FU -vector space VU for every irreducible component U of X r S;

(ii) a finite dimensional FP -vector space VP for every P ∈ S;

(iii) an F℘-vector space isomorphism µU,P,℘ : VU ⊗FU
F℘ →∼ VP ⊗FP

F℘ for each choice of
U, P, ℘, where U is an irreducible component of X r S; P ∈ S is in the closure of U ;
and ℘ is a branch of X at P that lies on U .

We write PP(X̂, S) for the category PP(F) of patching problems for (X̂, S) (or equiva-
lently, for F). The function field F of X̂ is contained in each Fi for i ∈ I, and in fact F is
the inverse limit of the Fi by Proposition 6.3.

By the above containments, every finite dimensional F -vector space V induces a patching
problem βX̂,S(V ) for (X̂, S) via base change, and βX̂,S defines a functor from Vect(F ) to

PP(X̂, S). There is also a functor ιX̂,S from PP(X̂, S) to Vect(F ) that assigns to each
patching problem its inverse limit (which we view as the “intersection”, though as in the case
of the fields there is in fact no common larger object within which to take an intersection).

The following result is similar to Theorem 1(a) of [17], §1, which considered a related
notion of patching problems for rings and modules rather than for fields and vector spaces.

Theorem 6.4. Under Hypothesis 6.1, the base change functor βX̂,S : Vect(F ) → PP(X̂, S)
is an equivalence of categories, and ιX̂,SβX̂,S is isomorphic to the identity functor on Vect(F ).
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Proof. The equivalence of categories assertion is that βX̂,S is surjective on isomorphism
classes; and that the natural maps HomF (V1, V2) → HomF (βX̂,S(V1), βX̂,S(V2)) are bijective
for V1, V2 in Vect(F ). We show that these hold, and that ιX̂,SβX̂,S is isomorphic to the
identity functor, in steps (with the surjectivity requiring the bulk of the work).

Step 1: To show that βX̂,S is surjective on isomorphism classes.

As in the discussion before the theorem, a patching problem V for (X̂, S) corresponds
to a collection of finite-dimensional FU -vector spaces VU and FP -vector spaces VP together
with isomorphisms µU,P,℘. Let WU ′ =

∏

VU (ranging over components U of X r S); and for
P ′ ∈ S ′ let WP ′ =

∏

VP , where P ranges over SP ′ := f−1(P ′) ⊆ S. Since the fields FU and
FP are respectively finite over FU ′ and FP ′ (where f(P ) = P ′), WU ′ is a finite dimensional
vector space over FU ′, and WP ′ is a finite dimensional vector space over FP ′.

For each P ′ ∈ S ′ with associated branch ℘′, we have identifications
∏

FU ⊗FU′
F℘′ =

(F ⊗F ′ FU ′) ⊗FU′
F℘′ = F ⊗F ′ F℘′ =

∏

F℘ of F℘′-algebras, where the last product ranges
over the branches ℘ lying over ℘′. Using the algebra isomorphisms F ⊗F ′ FU ′ →∼

∏

FU

and F ⊗F ′ F℘′ →∼
∏

F℘ from Lemma 6.2, we thus obtain identifications WU ′ ⊗FU′
F℘′ =

(
∏

VU)⊗FU′
F℘′ = (

∏

VU)⊗Q

FU
(
∏

FU⊗FU′
F℘′) = (

∏

VU)⊗Q

FU

∏

F℘ =
∏

U(VU⊗FU

∏

F℘) =
∏

U

∏

℘ VU ⊗FU
F℘ of F℘′-vector spaces, with the products ranging over components U over

U ′, and branches ℘ lying on U (and lying over ℘′). Similarly, using the algebra isomorphisms
F ⊗F ′ FP ′ →∼

∏

FP and F ⊗F ′ F℘′ →∼
∏

F℘ from Lemma 6.2, we obtain an identification
WP ′ ⊗FP ′

F℘′ =
∏

P

∏

℘ VP ⊗FP
F℘ of F℘′-vector spaces, where the products range over points

P ∈ SP ′ and branches ℘ lying over ℘′. Combining the above identifications with the product
of the isomorphisms µU,P,℘ : VU ⊗FU

F℘ →∼ VP ⊗FP
F℘ for P ∈ S over P ′ ∈ S ′, we obtain an

isomorphism µ′U ′,P ′,℘′ : WU ′ ⊗FU′
F℘′ →∼ WP ′ ⊗FP ′

F℘′ of F℘′-vector spaces.
As in the discussion before the theorem, the vector spacesWU ′ ,WP ′ together with the F℘′-

isomorphisms µ′U ′,P ′,℘′ define a patching problem W =: f∗(V) for (X̂
′, S ′). By Theorem 5.10,

there is a finite dimensional F ′-vector space W which is a solution to the patching problem
W; i.e., W = βX̂′,S′(W ). In order to complete the proof of the surjectivity of βX̂,S on
isomorphism classes of objects, it will suffice to give W the structure of an F -vector space
and to show that with respect to this additional structure, βX̂,S(W ) is isomorphic to the

given patching problem V for (X̂, S).
To do this, consider the “identity patching problem” βX̂,S(F ) for (X̂, S), given by FU ,

the FP , and the identity maps on each F℘. Let f∗(F ) denote F viewed as an F ′-vector space;
similarly let f∗(FU), f∗(FP ) denote FU , FP as vector spaces over FU ′, FP ′ respectively. The
patching problem βX̂′,S′(f∗(F )) for (X̂ ′, S ′) induced by f∗(F ) is thus given by f∗(FU), the
f∗(FP ), and the identity map on F℘′. Let αU : f∗(FU) → EndFU′

(WU) and αP : f∗(FP ) →
EndFP ′

(WP ) (for P ∈ SP ′) be the maps corresponding to scalar multiplication by FU and
FP on the factors VU of WU ′ and the factors VP of WP ′, respectively. These maps define a
morphism in the category of patching problems ᾱ : βX̂′,S′(f∗(F )) → βX̂′,S′(EndF ′(W )) for

(X̂ ′, S ′). By the equivalence of categories assertion in Theorem 5.10 applied to the T -curve
X̂ ′ and finite subset S ′, the element ᾱ ∈ HomF ′(βX̂′,S′(f∗(F )), βX̂′,S′(EndF ′(W )) is induced
by a unique morphism α ∈ HomF ′(f∗(F ),EndF ′(W )) in the category of finite dimensional
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F ′-vector spaces. As a result, W is given the structure of a finite dimensional F -vector space,
with α defining scalar multiplication. It is now straightforward to check that βX̂,S(W ) is
isomorphic to V, showing the desired surjectivity on isomorphism classes.

Step 2: To show that ιX̂,SβX̂,S is isomorphic to the identity functor.

For any V in Vect(F ), the induced patching problem βX̂,S(V ) corresponds to data
VU , VP , µU,P,℘. Tensoring the exact sequence in Proposition 6.3 over F with V gives an
exact sequence

0 → V →
∏

VU ×
∏

VP →
∏

V℘

of F -vector spaces. Here V℘ := VP ⊗FP
F℘ for ℘ a branch of X at P ; VU → V℘ is defined

via µU,P,℘; and VP → V℘ is minus the natural inclusion. This shows that V is naturally
isomorphic to ιX̂,S(βX̂,S(V )); i.e., ιX̂,SβX̂,S is isomorphic to the identity functor on Vect(F ).

Step 3: To show that βX̂,S induces a bijection between maps between corresponding
objects.

Consider V1, V2 in Vect(F ), with induced patching problems βX̂,S(V1), βX̂,S(V2). Then
Vi → Vi,U := Vi ⊗F FU and Vi → Vi,P := Vi ⊗F FP are inclusions for i = 1, 2, for
all U and P ; and a set of compatible maps V1,U → V2,U and V1,P → V2,P determines a
unique map ιX̂,S(βX̂,S(V1)) → ιX̂,S(βX̂,S(V2)). So the natural map from HomF (V1, V2) to
HomF (βX̂,S(V1), βX̂,S(V2)) is bijective (and this concludes the proof that βX̂,S is an equiva-
lence of categories).

Thus with X̂ and S as in the theorem, every patching problem for (X̂, S) has a unique
solution up to isomorphism, and this solution is given by the inverse limit of the fields
defining the patching problem.

Remark 6.5. Given a non-empty finite subset S ′ ⊂ X ′, the hypothesis on S = f−1(S ′) is
satisfied if S contains every point at which X is not unibranched. In particular, it is satisfied
if S contains all the points at which the reduced structure of X is not regular.

In order to apply Theorem 6.4 to T -curves X̂ that are not necessarily given in the context
of Hypothesis 6.1, we prove the next result.

Proposition 6.6. Let X̂ be a projective curve over a discrete valuation ring T , having
closed fibre X. Let S be a finite set of closed points of X̂. Then there is a finite T -morphism
f : X̂ → P1

T such that S ⊆ f−1(∞).

Proof. Let t be a uniformizer of T . Since X̂ is projective, we may fix an embedding X̂ →֒ Pn
T

for some n ≥ 1. We proceed by induction on n. If n = 1 then X̂ = P1
T . Choosing a rational

function f on P1
T with poles at each point of S ⊂ X̂ = P1

T yields the result in this case.
So assume n > 1 and that the result holds for n − 1. Pick a closed point P ∈ Pn

T r X̂ .
Its residue field k′ is a finite extension of the residue field k of T ; and P is defined over
k′, say with homogeneous coordinates (a0 : · · · : an) where each ai ∈ k′. Possibly after
permuting the coordinates, we may assume that a0 6= 0. For each i 6= 0, let gi(x) ∈ k[x]
be the monic minimal polynomial of ai/a0 ∈ k′ over k. Since k is the residue field of T , we
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may choose monic polynomials Gi(x) ∈ T [x] whose reductions modulo tT (x) are gi(x). Let
di be the degree of Gi (or of gi); let d be the least common multiple of d1, . . . , dn; and let
Hi(x, y) = ydGi(x/y)

d/di ∈ T [x, y]. Thus Hi is a homogeneous polynomial that has total
degree d in x, y, and is congruent to xd modulo yT [x, y]. Letting m0, . . . , mN be the distinct
(unordered) monomials of degree d in x0, . . . , xn, we may write Hi(xi, x0) =

∑N
j=0 cijmj for

some elements cij ∈ T . Note that the locus of H1(x1, x0) = · · · = Hn(xn, x0) = 0 is a closed

subset of Pn
T that meets the closed fibre precisely at P , and so is disjoint from X̂ .

Define the morphism p : X̂ → Pn−1
T by p(x0 : · · · : xn) = (H1(x1, x0) : · · · : Hn(xn, x0)).

Thus p is the composition of the d-uple embedding ιd of X̂ ⊂ Pn
T into PN

T with the projection
morphism π : PN

T −L → Pn−1
T defined on the complement of the linear subspace L ⊂ PN

T that

is given by the linear forms
∑N

j=0 cijmj on PN
T for i = 1, . . . , n. Now the d-uple embedding ιd

is finite; and so is the restriction of the projection π to the closed subscheme ιd(X̂) ⊂ PN
T −L,

by Proposition 6 of Chapter II, Section 7 of [24]. So p is finite.
Let X̂1 ⊆ Pn−1

T be the image of p. By the inductive hypothesis there is a finite T -morphism

f1 : X̂1 → P1
T such that π(S) ⊆ f−11 (∞). So f1 ◦ π : X̂ → P1

T is a finite T -morphism such
that S ⊆ f−1(∞).

Using the above proposition, we may apply Theorem 6.4 to a given curve X̂ and a given
finite set S after possibly enlarging S:

Corollary 6.7. Let T be a complete discrete valuation ring; let X̂ be a connected projective
normal T -curve with closed fibre X; and let S be a finite set of closed points of X. Then
there exists a finite subset S1 ⊂ X containing S such that Theorem 6.4 holds for X̂, S1.

Proof. After enlarging S, we may assume that S contains the (finitely many) closed points
of X where distinct irreducible components of X meet. By Proposition 6.6, there is a finite
morphism f : X̂ → P1

T such that S ⊆ f−1(∞). So Hypothesis 6.1 is satisfied by the data T ,
f : X̂ → P1

T , S
′ = {∞}, S1 = f−1(S ′). Thus Theorem 6.4 holds for X̂ , S1.

7 Applications

In this section, we give several short applications of the new version of patching.

7.1 Patching Algebras and Brauer Groups

Our patching results for vector spaces carry over to patching for algebras of various sorts,
because patching was phrased as an equivalence of categories.

To be more precise, for a field F we will consider finite dimensional associative F -algebras,
with or without a multiplicative identity. We will also consider additional structure that may
be added to the algebra, e.g. commutativity, separability, and being Galois with (finite) group
G. A finite commutative F -algebra is assumed to have an identity; and it is separable if
and only if it is a product of finitely many separable field extensions of F . By a G-Galois
F -algebra we will mean a commutative F -algebra E together with an F -algebra action of G
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on E such that the ring of G-invariants of E is F , and such that the inertia group Im ≤ G
at each maximal ideal m of E is trivial. Such an extension is necessarily separable and the
G-action is necessarily faithful. If E is a field, being a G-Galois F -algebra is equivalent to
being a G-Galois field extension. We will also consider (finite dimensional) central simple
algebras over F .

Theorem 7.1. Under the hypotheses of the patching theorems of Sections 4, 5, and 6 (The-
orems 4.12, 4.14, 5.9, 5.10, 6.4, patching holds with the category of finite dimensional vector
spaces replaced by any of the following (all assumed finite dimensional over F ):

(i) associative F -algebras;

(ii) associative F -algebras with identity;

(iii) commutative F -algebras;

(iv) separable commutative F -algebras;

(v) G-Galois F -algebras;

(vi) central simple F -algebras.

Proof. We follow the strategy of [9], Prop. 2.8 (cf. also [13], 2.2.4).
The equivalence of categories in each of the patching results of Sections 4 and 5 is given

by a base change functor β, which preserves tensor products. So β is an equivalence of tensor
categories.

An associative F -algebra is an F -vector space A together with a vector space homomor-
phism p : A ⊗F A → A that defines the product and satisfies an identity corresponding to
the associative law. Since the base change patching functor β is an equivalence of tensor cat-
egories, the property of having such a homomorphism p is preserved; so (i) follows. Part (ii)
is similar, since a multiplicative identity corresponds to an F -vector space homomorphism
i : F → A satisfying the identity law.

Part (iii) follows from the fact that up to isomorphism, β has an inverse given by inter-
section (i.e. fibre product or inverse limit); see Propositions 2.1 and 2.3. So a commutative
F -algebra induces commutative algebras on the patches and vice versa. Part (iv) holds be-
cause if F ′ is a field extension of F , then a finite F -algebra E is separable if and only if the
F ′-algebra E ⊗F F

′ is separable.
For part (v), the first condition (on G-invariants) follows using that the inverse to β is

given by intersection, together with the fact that the intersection of the rings of G-invariants
in fields Ei := E ⊗F Fi is the ring of G-invariants in the intersection of the Ei. The second
condition, on inertia groups, holds because the residue fields of E are contained in those of
Ei, with the G-actions on the latter being induced by those on the former.

For part (vi), we are reduced by (ii) to verifying that centrality and simplicity are pre-
served. If E is the center of an F -algebra A, then E ⊗F F

′ is the center of the F ′-algebra
A′ := A⊗F F

′. So centrality is preserved by β and its inverse. The same holds for simplicity
(in the presence of centrality) by [25], Section 12.4, Lemma b.
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On the other hand, Theorem 7.1 as phrased above does not apply to (finite dimensional
central) division algebras over F . For example, in the context of global patching in Section 4,
let T = k[[t]] where char k 6= 2; X̂ = P1

T (the projective x-line over T ); U1 = A1
k = P1

kr{∞},
U2 = P1

k r {0}, and U0 = U1 ∩ U2 = P1
k r {0,∞}. With notation as in Section 4, we

consider the function field F = k((t))(x) of X̂ , along with the fraction fields F1, F2, F0 of the
rings k[x][[t]], k[x−1][[t]], k[x, x−1][[t]], respectively. Let D be the quaternion algebra over F
generated by elements a, b satisfying a2 = b2 = 1 − xt, ab = −ba. Then D ⊗F F1 is split as
an algebra over F1, i.e. is isomorphic to Mat2(F1) (and not to a division algebra), because
F1 contains an element f such that f 2 = 1 − xt (where f is given by the binomial power
series expansion in t for (1− xt)1/2).

But the other direction of the above theorem does hold for division algebras: viz. if
D1, D2, D0 are division algebras over F1, F2, F0 in the context of Theorem 4.12, then the
resulting finite dimensional central simple F -algebra D (given by part (vi) of the above
theorem) is in fact a division algebra. This is because D is contained in the division algebras
Di, hence it has no zero-divisors, and so is a division algebra (being finite dimensional over
F ).

Despite the failure of the above result for division algebras, below we state a patching
result for Brauer groups. For any field F , let Br(F ) be the set of isomorphism classes of (finite
dimensional central) division algebras over F . The elements of Br(F ) are in bijection with
the set of Brauer equivalence classes [A] of (finite dimensional) central simple F -algebras
A. Namely, by Wedderburn’s theorem, every central simple F -algebra A is isomorphic to a
matrix ring Matn(D) for some unique positive integer n and some F -division algebraD which
is unique up to isomorphism; and two central simple algebras are called Brauer equivalent
if the underlying division algebras are isomorphic. By identifying elements of Br(F ) with
Brauer equivalence classes, Br(F ) becomes an abelian group under the multiplication law
[A][B] = [A⊗F B], called the Brauer group of F . (See also Chapter 4 of [20].)

If F ′ is an extension of a field F (not necessarily algebraic), and if A is a central simple F -
algebra, then A⊗F F

′ is a central simple F ′-algebra ([25], 12.4, Proposition b(ii)). Moreover
if A,B are Brauer equivalent over F , then A⊗F F

′, B ⊗F F
′ are Brauer equivalent over F ′.

So there is an induced homomorphism Br(F ) → Br(F ′). In terms of this homomorphism, we
can state the following patching result for Brauer groups, which says that giving a division
algebra over a function field F is equivalent to giving compatible division algebras on the
patches:

Theorem 7.2. Under the hypotheses of Theorem 4.10, let U = U1 ∪ U2 and form the fibre
product of groups Br(F1) ×Br(F0) Br(F2) with respect to the maps Br(Fi) → Br(F0) induced
by Fi →֒ F0. Then the base change map β : Br(FU) → Br(F1) ×Br(F0) Br(F2) is a group
isomorphism.

Proof. Base change defines a homomorphism β as above, and we wish to show that it is an
isomorphism.

For surjectivity, consider an element in Br(F1) ×Br(F0) Br(F2), represented by a triple
(D1, D2, D0) of division algebras over F1, F2, F0 such that the natural maps Br(Fi) → Br(F0)
take the class of Di to that of D0, for i = 1, 2. Since the dimension of a division algebra is
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a square, there are positive integers n0, n1, n2 such that the three integers n2
i dimFi

Di (for
i = 0, 1, 2) are equal. Let Ai = Matni

(Di) for i = 0, 1, 2. Then Ai is a central simple
algebra in the class of Di for i = 0, 1, 2; and Ai ⊗Fi

F0 is F0-isomorphic to A0 for i = 1, 2,
compatibly with the inclusions Fi →֒ F0 (because they lie in the same class and have the same
dimension). So by part (vi) of Theorem 7.1, there is a (finite dimensional) central simple
FU -algebra A that induces A0, A1, A2 compatibly with the above inclusions. The class of A is
then an element of Br(FU) that maps under β to the given element of Br(F1)×Br(F0)Br(F2).

To show injectivity, consider an element in the kernel, represented by an FU -division
algebra D. Then Ai := D ⊗F Fi is split for i = 0, 1, 2; i.e. for each i there is an Fi-
algebra isomorphism ψi : Matn(Fi) → Ai, where n

2 = dimF D. For i = 1, 2 let ψi,0 be the
induced isomorphism Matn(F0) → A0 obtained by tensoring ψi over Fi with F0 and iden-
tifying each Ai ⊗Fi

F0 with A0. So ψ−12,0 ◦ ψ1,0 is an F0-algebra automorphism of Matn(F0),
and hence is given by (right) conjugation by a matrix C ∈ GLn(F0) (by [20], Corollary to
Theorem 4.3.1). By Theorem 4.10, there are matrices Ci ∈ GLn(Fi) such that C = C1C2.
Let ψ′1 = ψ1ρC−1

1
: Matn(F1) →∼ A1 and ψ′2 = ψ2ρC2 : Matn(F2) →∼ A2, where ρB denotes

right conjugation by a matrix B. Also let ψ′i,0 : Matn(F0) →∼ A0 be the isomorphism in-

duced from ψ′i by base change to F0. Then ψ′−12,0 ◦ ψ′1,0 = ρC−1
2
ρCρC−1

1
is the identity on

Matn(F0); the common isomorphism ψ′1,0 = ψ′2,0 will be denoted by ψ′0. Thus the three
isomorphisms ψ′i : Matn(Fi) →

∼ Ai (for i = 0, 1, 2) are compatible with the natural isomor-
phisms Matn(Fi) ⊗Fi

F0 →
∼ Matn(F0) and Ai ⊗Fi

F0 →
∼ A0 for i = 1, 2. Equivalently, letting

CSA(K) denote the category of finite dimensional central simple K-algebras for a field
K, the triples (A1, A2, A0) and (Matn(F1),Matn(F2),Matn(F0)), along with the associated
natural base change isomorphisms as above, represent isomorphic objects in the category
CSA(F1) ×CSA(F0) CSA(F2). Using the equivalence of categories in part (vi) of the above
theorem, there is up to isomorphism a unique central simple FU -algebra inducing these ob-
jects. But D and Matn(FU) are both such algebras. Hence they are isomorphic. So n = 1
and D = FU , as desired.

These ideas are pursued further in [16], in the context of studying Galois groups of
maximal subfields of division algebras.

7.2 Inverse Galois Theory

We can use our results on patching over fields to recover results in inverse Galois theory that
were originally proven (by the first author and others) using patching over rings. The point
is that if F is the fraction field of a ring R, then Galois field extensions of F are in bijection
with irreducible normal Galois branched covers of SpecR, by considering generic fibres and
normalizations. So one can pass back and forth between the two situations.

In particular, we illustrate this by proving the result below, on realizing Galois groups
over the function field of the line over a complete discrete valuation ring T . This result
was originally shown in [10] (Theorem 2.3 and Corollary 2.4) using formal patching, and
afterwards reproven in [22] using rigid patching. We first fix some notation and terminology.
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Let G be a finite group, let H be a subgroup of G, and let E be an H-Galois F -algebra
for some field F . The induced G-Galois F -algebra IndG

H E is defined as follows:
Fix a set C = {c1, . . . , cm} of left coset representatives of H in G, with the identity coset

being represented by the identity element. Thus for every g ∈ G and every i ∈ {1, . . . , m}
there is a unique j such that gcj ∈ ciH . Let σ(g) ∈ Sm be the associated permutation given

by σ
(g)
i = j. Thus for each i, the element hi,g := c−1i gc

σ
(g)
i

lies in H .

As an F -algebra, let IndG
H E be the direct product of m copies of E indexed by C. For

g ∈ G and (e1, . . . , em) ∈ IndG
H E, set g · (e1, . . . , em) ∈ IndG

H E equal to the element whose
ith entry is hi,g(eσ(g)

i

). This defines a G-action on IndG
H E, whose fixed ring is F (embedded

diagonally). For all i, j ∈ {1, . . . , m}, the elements of ciHc
−1
j define isomorphisms Ej → Ei,

where Ei denotes the ith factor of IndG
H E. In particular, ciHc

−1
i is the stabilizer of Ei for

each i. One checks that up to isomorphism, this construction does not depend on the choice
of left coset representatives.

Note that IndG
1 F is just the direct product of copies of F that are indexed by G and

are permuted according to the left regular representation; i.e. g · (e1, . . . , en) = (e′1, . . . , e
′
n)

is given by e′i = ej where gcj = ci. (Here n = |G|.) Also, IndG
GE = E if E is a G-Galois

F -algebra. If H ≤ J ≤ G and E is an H-Galois F -algebra, we may identify IndG
J IndJ

H E
with IndG

H E as G-Galois F -algebras. If A is any G-Galois F -algebra, and E is a maximal
subfield of A containing F , then E is a Galois field extension of F whose Galois group
H := Gal(E/F ) is a subgroup of G, and A is isomorphic to IndG

H E as a G-Galois F -algebra.
As in the proof in [10] of the result below, we will patch together “building blocks” which

are Galois and cyclic and which induce trivial extensions over the closed fibre t = 0 (though
here we will consider extensions of fields rather than rings). For example, if F contains a
primitive nth root of unity, then an n-cyclic building block may be given by yn = f(f−t)n−1,
for some f . If there is no primitive nth root of unity in F but n is prime to the characteristic,
then one can descend some n-cyclic extension of the above form from F [ζn] to F ; while if n is
a power of the characteristic, building blocks can be constructed using Artin-Schreier-Witt
extensions. See [10], Lemma 2.1, for an explicit construction.

Theorem 7.3. Let K be the fraction field of a complete discrete valuation ring T and let
G be a finite group. Then G is the Galois group of a Galois field extension A of K(x) such
that K is algebraically closed in A.

Proof. Let g1, . . . , gr be generators for G that have prime power orders, and let Hi ≤ Gi be
the cyclic subgroup generated by gi. Let k be the residue field of T , and pick distinct monic
irreducible polynomials f1(x), . . . , fn(x) ∈ k[x]; these define distinct closed points P1, . . . , Pn

of the projective x-line P1
k. For each i let f̂i(x) ∈ T [x] be some (irreducible) monic polynomial

lying over fi(x). This defines a lift P̂i of Pi to a reduced effective divisor on P1
T .

According to [10], Lemma 2.1, there is an irreducible Hi-Galois branched cover Yi → P1
T

whose special fibre is unramified away from Pi, and such that its fibre over the generic
point η of the special fibre is trivial (corresponding to a mock cover, in the terminology
there). That is, there is an isomorphism φi : Spec

(

IndHi

1 k(x)
)

→ Yi ×P1
T
η as Hi-Galois

covers of η. Replacing Yi by its normalization in its function field, we may assume that Yi is
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normal. Necessarily, Yi → P1
T is totally ramified over the closed point Pi. Namely, if I ≤ Hi

is the inertia group at Pi then Yi/I → P1
T is unramified and hence purely arithmetic (i.e.

of the form P1
S → P1

T for some finite extension S of T ); but generic triviality on the special
fibre then implies that S = T and so I = Hi. (The fact that it is totally ramified at Pi can
also be deduced from the explicit expressions in the proof of [10], Lemma 2.1.)

Let t be a uniformizer for T , and for i = 1, . . . , r let R̂i be the t-adic completion of the
local ring of P1

T at Pi, with fraction field Fi. The pullback of Yi → P1
T to Spec R̂i is finite

and totally ramified. Hence it is irreducible, of the form Spec Ŝi for some finite extension Ŝi

of R̂i that is a domain. Thus the fraction field Ei of Ŝi is an Hi-Galois field extension of Fi.
Let R̂0 be the completion of the local ring of P1

T at η, with fraction field F0. Let Rr+1 be
the subring of F := K(x) consisting of the rational functions on P1

T that are regular on the
special fibre P1

k away from P1, . . . , Pr. Let R̂r+1 be the t-adic completion of Rr+1 and let Fr+1

be the fraction field of R̂r+1. Also let H0 = Hr+1 = 1 ≤ G and write E0 = F0, Er+1 = Fr+1.
For i = 0, 1, . . . , r + 1, we consider the G-Galois Fi-algebra Ai := IndG

Hi
Ei.

We claim that there is an isomorphism Ei ⊗Fi
F0 → IndHi

1 F0 of Hi-Galois F0-algebras
along with compatible Fi-algebra inclusions Ei →֒ E0 = F0 and Ai →֒ A0, for i = 1, . . . , r+1.
In the case i = r + 1 this is clear from the definitions of Hr+1 and Er+1, via the inclusion
Fr+1 →֒ F0. For 1 ≤ i ≤ r, the asserted isomorphisms are induced by φi. Namely, by Hensel’s
Lemma applied to R̂0, there is a unique isomorphism φ̂i : Spec

(

IndHi

1 R̂0

)

→ Yi ×P1
T
Spec R̂0

of Hi-Galois covers of Spec R̂0 that lifts φi. Using the natural identifications Yi×P1
T
Spec R̂0 =

Yi×P1
T
Spec R̂i×Spec R̂i

Spec R̂0 = Spec Ŝi×Spec R̂i
Spec R̂0 = Spec(Ŝi⊗R̂i

R̂0), the isomorphism

φ̂i corresponds on the ring level to an isomorphism Ŝi ⊗R̂i
R̂0 → IndHi

1 R̂0 of Hi-Galois R̂0-

algebras. Since Ei is the fraction field of the finite R̂i-algebra Ŝi, and since Fi is the fraction
field of R̂i, there is a natural identification of Ei with Ŝi ⊗R̂i

Fi. So tensoring the above R̂0-

algebra isomorphism with F0 yields an isomorphism Ei⊗Fi
F0 = Ŝi⊗R̂i

Fi⊗Fi
F0 = Ŝi⊗R̂i

F0 →

IndHi

1 F0 of Hi-Galois F0-algebras; and hence also an Fi-algebra inclusion Ei →֒ F0, using
the projection onto the identity component. The functor IndG

Hi
then induces an isomorphism

IndG
Hi

(Ei ⊗Fi
F0) → IndG

Hi
IndHi

1 F0 = IndG
1 F0 = A0 of G-Galois F0-algebras. Tensoring the

inclusion Fi →֒ F0 with the Fi-algebra Ai yields an Fi-algebra inclusion Ai = IndG
Hi
Ei →֒

(IndG
Hi
Ei)⊗Fi

F0 = IndG
Hi

(Ei ⊗Fi
F0) → A0, concluding the verification of the claim.

Thus we may apply Theorem 7.1(v), in the case of Theorem 4.14, to the fields Fi and the
G-Galois Fi-algebras Ai, for i = 0, 1, . . . , r+1. We then obtain a G-Galois F -algebra A that
induces the Ai’s compatibly. Moreover, as observed after Theorem 4.14, A is the intersection
of the algebras A1, . . . , Ar, Ar+1 inside A0. Note that K is algebraically closed in A because
it is algebraically closed in F0 and hence in A0.

It remains to show that the G-Galois F -algebra A is a field. For i = 0, 1, . . . , r + 1 let
Ii ⊂ Ai be the kernel of the projection of Ai = IndG

Hi
Ei onto the identity copy of Ei (i.e.

the copy of Ei indexed by the identity element of G), and identify this identity copy with
Ai/Ii. Then Ii ⊂ Ai is the inverse image of I0 ⊂ A0 under Ai →֒ A0, since the inclusions
Ai →֒ A0 and Ei →֒ E0 = F0 are compatible with the projections Ai → Ei onto their identity
components. Let I ⊆ A be the inverse image of I0 ⊂ A0 under A →֒ A0, and let E = A/I.
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Thus I is also the inverse image of Ii ⊂ Ai under A →֒ Ai, since A →֒ A0 factors through Ai

and Ii ⊂ Ai is the inverse image of I0 ⊂ A0 under Ai →֒ A0. Hence I is a prime ideal of A,
and E is an integral domain. But E is finite over the field F , since the G-Galois F -algebra A
is. Thus E is a field. Now the above inclusions are compatible with the G-Galois actions. So
using the identification Ei = Ai/Ii and the fact that Hi = Gal(Ei/Fi) ⊆ G is the stabilizer
of Ii in G, we have that every element of Hi restricts to an element of H := Gal(E/F ) ⊆ G,
the stabilizer of I in G. That is, H contains Hi for all i. But H1, . . . , Hr generate G. So
H = G. Thus I is stabilized by all of G; and since the identity component of each element
of I is zero (regarding I ⊆ I0 ⊂ A0 = IndG

1 F0), it follows that I = (0). Hence E = A and A
is a field.

Remark 7.4. (a) The above proof can be extended to more general smooth curves X̂
over a complete discrete valuation ring T . Namely, Theorem 4.14 permits patching
on such curves; and the same expressions used for building blocks in the case of the
line can be used for other curves, since they remain n-cyclic and totally ramified. This
latter fact can be seen directly from the construction in [10]. It can also be seen
by choosing a parameter x for a point P on the closed fibre X of X̂ ; constructing
the building blocks for the x-line over T ; and then taking a base change to the local
ring at P (which, being étale, preserves total ramification). This contrasts with the
strategy in [7], Proposition 1.4, which is to map a curve to the line; perform a patching
construction there; and then deduce a result about the curve.

(b) Alternatively, the above proof can be extended to more general smooth curves over
T by using Theorem 5.10 instead of Theorem 4.14 (where the complete local ring is
independent of which smooth curve is taken). It can also be extended to the case of
a singular normal T -curve whose closed fibre is generically smooth, by instead using
Theorem 6.4.

(c) In [10], Section 2, more was shown: that the theorem remains true if we replace T by
any complete local domain that is not a field. But in fact this more general assertion
follows from the above theorem because every such domain contains a complete discrete
valuation ring; see [21], Lemma 1.5 and Corollary 1.6.

(d) One can similarly recover other results in inverse Galois theory within our framework
of patching over fields; e.g., the freeness of the absolute Galois group of k(x), for k
algebraically closed (the “Geometric Shafarevich Conjecture” [12], [26]). But the above
result is merely intended to be illustrative, to show how patching over fields can be
used in geometric Galois theory.

7.3 Differential Modules

The main interest in patching vector spaces is of course that we can also patch vector spaces
with additional structure. This was done for various types of algebras in Section 7.1 above.
The following application is another example of this sort.
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Suppose that F is a field of characteristic zero equipped with a derivation ∂F . A differ-
ential module over F is a finite dimensional F -vector space M together with an additive
map ∂M :M →M such that ∂M(f ·m) = ∂F (f) ·m+f ·∂M(m) for all f ∈ F,m ∈M (Leibniz
rule). A homomorphism of differential modules is a homomorphism of the underly-
ing vector spaces that respects the differential structures. It is well known that differential
modules over a differential field F form a tensor category ∂-Mod(F ) (in fact a Tannakian
category over F ; e.g. see [23], §1.4).

We will state only the simplest version of patching differential modules, a consequence
of Theorem 4.12. There are respective versions of Theorem 4.14, and of the patching results
in Section 5.

Theorem 7.5. Let T be a complete discrete valuation ring with fraction field K of char-
acteristic zero and residue field k, and let X̂ be a smooth connected projective T -curve with
closed fibre X and function field F . Let U1, U2 ⊆ X, and let U := U1 ∪ U2, U0 := U1 ∩ U2.
Equip FU , FUi

with the derivation d
dx

for some rational function x on X̂ that is not contained
in K.

Then the base change functor

∂-Mod(FU) → ∂-Mod(FU1)×∂-Mod(FU0
) ∂-Mod(FU2)

is an equivalence of categories, with inverse given by intersection.

Proof. Recall that FU = FU1 ∩ FU2 (Theorem 4.9). By Theorem 4.12, base change is an
equivalence of categories on the level of vector spaces; so for every object (M1,M2;φ) in
∂-Mod(FU1)×∂-Mod(FU0

) ∂-Mod(FU2), there is an FU -vector space M that induces (M1,M2;φ)
as an object in Vect(FU1) ×Vect(FU0

) Vect(FU2). Moreover, as noted after that result, M is
given by M1 ∩M2. Consequently, the derivations on M1 and M2 restrict compatibly to M ;
i.e., M is a differential module under that common restricted derivation. By Corollary 2.2,
dimFU

M = dimFUi
Mi for i = 1, 2; in particular, M contains a basis of Mi as a vector space

over FUi
(i = 1, 2). But the derivation on each Mi is already determined when given on such

a basis (by the Leibniz rule). Thus M induces the Mi’s as differential modules, compatibly
with φ.

So the base change functor gives a bijection on isomorphism classes. Similarly, mor-
phisms between corresponding objects in the two categories are in bijection on the level of
vector spaces, and hence also on the level of differential modules (using that the derivations
are related by taking base change and restriction). Thus the functor is an equivalence of
categories.

After choosing a basis of each Mi in the above proof, one can also explicitly define the
derivation on M using the matrix representations of the derivations and a factorization of
the matrix defining φ given by Theorem 4.10.

Remark 7.6. As noted in the proof of Theorem 7.1, the equivalence of the categories
of vector spaces is in fact an equivalence of tensor categories; the same remains true for
differential modules.
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There is a Galois theory for differential modules that mimics the usual Galois theory of
finite field extensions. A natural question to ask is whether one can control the differential
Galois group of a differential module obtained by patching. This question (along with its
implications for the inverse problem in differential Galois theory) is the subject of [15] (see
also [18]), which provides applications of the above theorem.

References

[1] Nicolas Bourbaki, Commutative Algebra, Addison-Wesley Publishing Co., 1972.

[2] Henri Cartan, Sur les matrices holomorphes de n variables complexes, Journal de
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d’Abhyankar, Invent. Math. 116 (1994), 425–462.

36
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