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SOME GEOMETRIC STRUCTURES ASSOCIATED TO A
E-SYMPLECTIC MANIFOLD

ADARA M. BLAGA AND BENIAMINO CAPPELLETTI MONTANO

ABSTRACT. A canonical connection is attached to any k-symplectic manifold. We
study the properties of this connection and its geometric applications to k-symplectic
manifolds. In particular, we prove that, under some natural assumptions, any k-
symplectic manifold admits an Ehresmann connection, discuss some corollaries of
this result and find vanishing theorems for characteristic classes on a k-symplectic
manifold.

1. INTRODUCTION

The theory of k-symplectic manifolds was initiated by A. Awane ([I]), who defined
a k-symplectic structure on an n(k + 1)-dimensional smooth manifold M as an n-
codimensional foliation F and a system of k closed 2-forms vanishing on the subbundle
of TM defined by F with transversal characteristic spaces (for a precise definition see
§[2). The study of these structures was motivated by some mathematical and physical
considerations, like the local study of Pfaffian systems and Nambu’s statistical mechan-
ics. But the interest on k-symplectic geometry has increased especially in recent years
by the awareness of its relationship with polysymplectic (or multisymplectic) and n-
symplectic geometry, and their applications in field theory (cf. [1I7], [I8], [20]). In fact
the k-symplectic formalism is the generalization to field theories of the standard sym-
plectic formalism in mechanics, which is the geometric framework for describing most
of autonomous mechanical systems. Especially it can be used for giving a geometric
description of first order field theories in which the Lagrangian and Hamiltonian depend
on the first jet (prolongation) of the field.

The definition of a k-symplectic manifold is a generalization of the notion of a symplec-
tic manifold foliated by a Lagrangian foliation. Thus it is a natural question whether one
can define an appropriate analogue of the well-known notion of bi-Lagrangian structure to
the context of k-symplectic geometry. We recall that an almost bi-Lagrangian manifold
is a symplectic manifold (M?", w) endowed with two transversal Lagrangian distributions
Ly and Ly. When Ly and Lo are both integrable, we speak of bi-Lagrangian manifold.
The peculiarity of these geometric structures is that a canonical symplectic connection
can be attached to them. This connection was introduced by H. Hess ([13]), who was
working in geometric quantization, and later on its important geometric properties were
pointed out by N. B. Boyom ([9]) and I. Vaisman ([22], [23]).

In this work we consider the k-symplectic analogue of bi-Lagrangian structure and
attach to a such k-symplectic manifold a canonical connection which plays the same role
in k-symplectic geometry as the Hess connection. Moreover we define on a k-symplectic

2000 Mathematics Subject Classification. Primary 53C12, 53C15, Secondary 53B05, 53D05, 57R30.
Key words and phrases. k-symplectic structures, Ehresmann connections, Lagrangian foliations, char-
acteristic classes.

1


http://arxiv.org/abs/0710.1611v3

2 A. M. BLAGA AND B. CAPPELLETTI MONTANO

manifold a family of tensor fields which can be thought as the proper generalization
in this setting of almost K&hler structures, and we prove that under some integrability
assumptions, the above connection coincides with the Levi-Civita connection of a suitable
compatible metric. Finally, as an application, we prove that under some certain natural
assumption, any k-symplectic manifold admits an Ehresmann connection and we deduce
some geometric and topological properties on the k-symplectic manifold in question.

2. k-SYMPLECTIC STRUCTURES

A Ek-symplectic manifold (cf. [I], [19]) is a smooth manifold M together with k closed

2-forms wi, . ..,wy such that

(1) Co(wi)N---NCy (wi) = {0},

(2) wo (X, X')=0for any X, X' € I'(TF) and for all « € {1,...,k},
where Cy (w) = {v € T, M : w, (v,w) =0 for any w € T, M } and F is an nk-dimensional
foliation on M. It follows that dim (M) = n(k+ 1). We will usually denote by L the
tangent bundle of the foliation F. In terms of G-structures, a k-symplectic manifold
can be defined by an integrable Sp(k,n;R)-structure, where Sp(k,n;R) denotes the k-
symplectic group, defined by the set of matrices of the following type

T 0 S1
T Sk
0 b=
where T € Gl(n;R) and Si,...,Sk are n X n real matrices such that TS, = S!T for
all @ € {1,...,k}. The canonical model of these structures is the k-cotangent bundle

(TH*N of an arbitrary manifold N, which can be identified with the vector bundle
JY(N,R¥)q whose total space is the manifold of 1-jets of maps with target 0 € R*,
and projection 7*(j, oo) = x. In this case, identifying (T})*N with the Whitney sum
of k copies of T*N, (T})*N = T*N & --- & T*N, ju 00 — (jloot,...,jF0"), where
0% =ma00: N — R is the a-th component of o, the k-symplectic structure on (T}})* N
is given by wa = (73)"(wo) and TF; , = ker(7*). (4. 00), where 755 : (T} )*N — T*N
is the projection on the a-th copy T*N of (T}})*N and wy is the standard symplectic
structure on T*N.

Returning to the general case of an arbitrary k-symplectic manifold (M, w,, F), for
each a € {1,...,k} we set

(2.1) La, =[] Ce (wg).
Bt
Then we have ([3]):
(a) for each o € {1,...,k} the distribution L, = (La, )zenm is integrable (we denote
by F. the foliation integral to L,);
(b) L=L1®---® Ly;
(c) for each o € {1,...,k} the map i : Ly — (NF)*, X — ixw,, is an isomor-
phism, where NF denotes the normal bundle of F.
The standard Darboux theorem for Lagrangian foliations holds also for k-symplectic
manifolds:

Theorem 2.1 ([1]). About any point of a k-symplectic manifold (M, wq, F), o € {1, ..., k},
there exist local coordinates {x1,...,Tn, Y1, ..., Ykn} such that we =y 1, dziNdY(o—1)nti
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and F is described by the equations {x; = const.}. In particular, for each a € {1,... k},
o)

L, is generated by Dot T

Recall that a vector field X on a symplectic manifold (M?",w) is said to be symplectic
if Lxw = 0. For k-symplectic manifolds we prove the following lemma which will be useful
in the sequel.

Lemma 2.2. In any k-symplectic manifold, Lxwq = 0, for any X € T'(Lg) with a # 5.

Proof. Using the Cartan formula for the Lie derivative, we have Lxw, = ixdw, +
dixws = dixwg, since wy, is closed. But, for any V € T' (T M), ixwa (V) = 2w, (X, V) =
0 from the definition of L,,. O

3. A CANONICAL CONNECTION ON k-SYMPLECTIC MANIFOLDS

Let (M,wq,F), a € {1,...,k}, be a k-symplectic manifold. In what follows, Q will
denote an n-dimensional integrable distribution on M transversal to F such that
(i) we (YY) =0forany V.Y’ € I'(Q) and for all & € {1,...,k},
(i) [X,Y] €T (Lo® Q) for any X € I'(L,) and for any Y € ' (Q).
Occasionally, we will denote by G the foliation integral to Q.

The geometric interpretation of the condition (i) is that, for each a € {1,...,k} and
for any © € M, @, is a Lagrangian subspace of the symplectic vector space (Lo, @
Qz,Wa, ). The condition (ii) is more technical; it will be essential for proving some
preliminary results, like the following Lemma [3.2] and then for the generalization of the
Hess’s construction to the k-symplectic setting. Its geometric meaning is that for each
fixed @ € {1,...,k}, the subbundle L, & @ is integrable, hence it defines a foliation
whose leaves are symplectic manifolds with respect to the restriction of the k-symplectic
form w, to the leaves. We also have that (L, Q) is a bi-Lagrangian structure on the
leaves of the foliation defined by L, & Q.

A simple example of a k-symplectic manifold endowed with a transversal integrable
distribution verifying (i) and (ii) is given by R™*+1) with its standard k-symplectic struc-

ture given by Theorem 2.1l and taking as @) the distribution spanned by 32—1, cee 3(2_

We also remark that the splitting TM = LEQ = L1®- - -® L ®Q induces a canonical
isomorphism between @ and NF := TM/L, the normal bundle to the foliation F. In
particular, it follows that Q* = ann(L) and, arguing in the same way for the foliation
Dpra Ls ® Q, we get that Ly, = ann(Ps, L © Q), for each a € {1,...,k}. Taking

into account these remarks, we can prove the following preliminary lemmas:
Lemma 3.1. Let X, X' € I'(L). For each a € {1,...,k}, the map

XXV s (Lxixwa) (V) = X (wa (X', V) = wa (X', [X, V),
for any V e T(T M), belongs to Q*.

Proof. For any X" € T' (L), (Lxixwa) (X") =X (wa (X', X)) —wa (X', [X, X"]) =0,
from which, since Q* = ann (L), we get the result. O

Lemma 3.2. Let Y,Y' € T'(Q). For each o € {1,...,k}, the map
WYYV s (Lyiywa) (V) =Y (wa (Y, V) — we (Y, Y, V]),
for any V e T(T'M), belongs to L%,
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Proof. Since L, = ann(Pg, Ls ® Q), we have to prove that (Lyiywa)(X) = 0 and
(Lyiyrwa) (Y") = 0 for any X € I'(Lg), 8 # «, and for any Y” € I'(Q). Indeed,
(Lyiyrwa) (X) = Y (wa (Y, X)) —we (Y, [Y,X]) = 0 by the definition of Lg and by
(i)). Next, (Lyiywa)(Y") =Y (wo Y, Y")) —wo (Y, [Y,Y"]) = 0 by (i) and by the
integrability of Q. O

Theorem 3.3. Let (M,w,,F), a € {1,....,k}, be a k-symplectic manifold and let Q
be an integrable distribution supplementary to TF werifying the above conditions (i),

(ii) and such that (it) (YY) = - = (i7) "1 WYY") for any Y,Y' € T(Q), where
}/Y/, ceey }C/Y/ are the maps defined in Lemmal3.2. Then there exists a unique connec-

tion V on M satisfying the following properties:

(1) VFo C Fy for each a € {1,...,k}, and VQ C Q,
(2) Vwy =+ =Vuw, =0,
(3) T(X,Y)=0 for any X € I' (L) and for any Y € T'(Q),

where T denotes the torsion tensor field of V.

Proof. According to the decomposition TM = L1 ®--- & L & Q, we define a connection
VEe on each subbundle L,, a connection V@ on @ and then we take the sum of these
connections for defining a global connection on M. Fix an a € {1,...,k}. We define
Ve X =Y, X]p, forany X € I'(Ly) and Y € T'(Q). Now we have to define Vi X' for
X e (L), X' €T (L,). Since iq : Ly, —> Q* is an isomorphism for any fixed X € I" (L),
X' €T (L,), by LemmaB.T] there exists a unique section H,, (X, X’) € I' (L) such that
o (Ho (X, X)) = XX that is wa (Ha (X, X'),Y) = X (wa (X',Y)) — wa (X', [X,Y])
forany Y € T'(Q). Weset Vi X' := H, (X, X’) € T'(L,). Now we define the connection
V¥ For any X € I'(L) and Y € T'(Q) we put V?(Y = [X,Y]g. It remains to define
VgY’ for Y, Y’ € T (Q). The isomorphism i : L, — @Q* determines an isomorphism %
between @ and L% such that i} (V) (X) = wq (Y, X). Then, for any fixed V.Y’ € T'(Q),
by Lemma [3.2] there exists a unique section H, (Y,Y’) € I'(Q) such that ¢}, (H (Y,Y")) =
YYY' that is we (He (Y, Y'), X) =Y (wa (Y, X)) — we (Y, [V, X]) for any X € T'(Ly).
Moreover, our assumption ensures that Hy (Y,Y’) =--- = H, (Y, Y') = H(Y,Y’). We
set V,Q/Y’ = H (Y,Y') € T'(Q). Now we prove that V? is a connection on @ and, for
each o € {1,...,k}, VEe is a connection on L,. For any X € I'(L), Y € I'(Q) and
f e C> (M) we have

VY = [fX,Y], = X, Y], - Y (f) Xq = f[X,Y], = fVRY,
VE(fY) =X, [Y]g = [[X.Y]o+ X (f) Yo = VY + X ()Y,

and, for any X € I' (L,), V.Y € T (Q),

wa(VHY', X) = wa (Ho (fY,Y"), X)
= fY (wa (Y, X)) —wa (Y, [fY, X])
= fY (wa (Y, X)) = fwa (Y, [V, X]) + X (f)wa (YY)
= fwa (H ( )7X)

= wa(fvgylv )a
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from which we get V?YY’ = ngY’ . Moreover,
wa(VP(FY). X) = wa (H (Y, Y"), X)
=Y (wa (fY', X)) = wa (fY", [V, X])
= 1Y (wa (Y, X)) +Y (f)wa (Y, X) = fua (Y, [Y, X])
= fuwa (HY,Y'), X) + Y (flwa (Y, X)
=wa(fVRY +Y ()Y, X),

from which we obtain Vg (fY") = ngY’ + Y (f)Y’. Now we prove that Ve is a

connection on the subbundle L, for each o € {1,...,k}. As before it is easy to show
that Vig X = fV§*X and Vi~ (fX) = fV§*X + Y (f) X for any X € I'(L,) and
Y e I‘(Q) Then for any X € I'(L), X' € ' (L,) and any ¥ € I' (Q)
wa(Vi§X'Y) = wa (Ha (f X, X'),Y)
= [X (wa (X',Y)) —wa (X', [fX,Y])
= [X (wa (X',Y)) = fwa (X, [X,Y]) + Y (f) wa (X', X)
= fwa (Ho (X, X'),Y)

= wa(fV5X"Y),
from which we get V?;‘{X’ = ngg*X’. Moreover,
wa(VE (fX'),Y) = wa (Ha (X, fX'),Y)
= X (wo (fX',Y)) —wa (f X', [X, Y])
= X (wa (X',Y)) + X (f)wa (XY) = fwa (X', [X,Y])
= fwa (Ha (X, X'), Y)+X(f)wa(X’ Y)
= wo (fVF X + X (f) X',Y)

from which we get V4> (fX') = fV5* X’ + X (f) X'. Therefore we can define a global
connection on M putting, for any V,W € T'(TM),

(3.1) VvW = VWL, + -+ VP, + VEW,.

Now we prove that the connection V satisfies (1)—(3). By construction V preserves the
distributions L, and @. Then, by (1) we have that, obviously, (Vyws) (X, X’) = 0 for
any X,X' € T'(L) and V € T'(TM). For the same reason, (Vyw,) (Y,Y’) = 0 for any
Y,Y' € T(Q) and V € T(T'M). Now, let X € T' (L), X' € ['(L,) and Y € I'(Q). Then

(Vxwa) (X,Y) = X (wa (X,Y)) —wa (H (X, X),Y) — wa(X, [X,Y]y)
=X (wo (X',Y)) = X (wa (X', Y)) + wa (X', [X,Y])
—w (X', [X,Y]) =0.
Moreover, for any 8 # o (Vxwg) (X',Y) = 0 because Vx X’ € I'(L,). Finally, for any
X' €T (Ly) and YV, Y € T (Q),
(Vywa) (XY") =Y (wa (X", Y") = wa([Y, X', ,Y') —wa (X', H (Y,Y))
=Y (wa (X",Y")) —wa ([Y; X', Y') +Y (wa (Y, X))
—we (Y [V, X']) = 0.
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Thus we conclude that (Vyw,) (X,Y) =0 for any X € T'(L,), Y € T'(Q) and V €
T (T'M). Analogously, one can compute for all the other cases, concluding that Vw, = 0
for all @ € {1,...,k}. Finally, for any X € I'(Ly) and Y € I'(Q) we have T (X,Y) =
(X, Y] -V, X, —[X,Y]=[X,Y] g0 [X,Y]=0,since by (ii) [X,Y] € (Lo ® Q).
It remains to prove the uniqueness of this connection up to the properties (1)—(3). Let
Xel(L)andY €' (Q). For any X' € ' (L) we have, by (1) and (3), wa (VxY, X') =
wa (Vy X +[X,Y],X') = wo ([X,Y],X), for all « € {1,...,k}, from which we get
VxY = [X,Y],. Then, using (3) again, we obtain Vy X = [Y, X];. Moreover, for any
X el (L), X el'(Ly) and Y € T'(Q) by (2) we have w, (Vx X', Y) = X (wo (X', Y)) —
wa (X', VxY) =X (wa (X, Y)) —wa(X', [X,Y]g) = X (wa (X',Y)) —wa (X, [X,Y]) =
wa (Ho (X, X"),Y), from which, since Vx X', H, (X, X’) € T'(L,), we get VxX' =
H, (X, X’). Similarly, one can find that VyY’' = H (Y,Y”) for any YV, Y’ € T' (Q). O

Proposition 3.4. The connection V defined in Theorem [33 is torsion free along the
leaves of the foliations F and G.

Proof. Let X € T'(Lg) and X' € I' (L,) and assume that o # 8. We have T' (X, X') =
Ho (X, X') — Hs (X', X) — [X,X'] € T (L). Then for any Y € T'(Q)

wa (T (X, X'),Y) = wa (Ha (X, X) — [X,X],Y)
= X (wo (X',Y)) = wa (X, [X,Y]) — wa (X, X'],Y)
= 3dwe (X, X',Y) =0

since each w, is closed. Analogously, ws (T (X, X’),Y) = 0. Moreover, for each v # «,
wy (T(X,X'),Y) = —wy ([X, X'],Y) = 3dw, (X, X"Y) = 0.

Then T (X, X") € C(w1)N---NC(wg) = {0}. If X, X' € T'(Ly), we have T (X, X') =
Ho (X,X") — Ho (X', X) — [X,X'] € T (Lo) and

Wa (T(X,X),Y) = X (wa (X',Y)) —wa (X, [X,Y]) = X' (wa (X,Y))
+wa (X, [X,Y]) — wa ([X,X'],Y)
= 3dw, (X, X',Y) =0,

hence T (X, X’) = 0. Analogously, one can prove that T (Y,Y’) = 0 for any Y,Y’ €
r'(Q). O

Proposition 3.5. The curvature tensor field of the connection V defined in Theorem
vanishes along the leaves of the foliations F and G.

Proof. For any X, X’ € T'(L) and Y € T'(Q), using the integrability of L, we have

RxxY =Vx [X'Y]y — Vx [X, Y]y — Vixx1¥
= Vx [X', Y]y~ Vx [X, Y], — [[X,X'], Y], =0

by the Jacobi identity. Then, for any X, X' € I' (L) and X" € ' (L,) we have

(32) RX,X’XH = HOt (X7 HOt (leXH)) - HOt (le HOt (X7 XH)) - H(l ([Xa X/] aX”)
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Now, for any Y € T' (Q)
Wa(Ha(Xa Hoz(X/aX”)) )

X(wa(Ha(X', X"),Y)) = wa(Ha (X', X"), [X, Y])

= X(wa(H(X', X"),Y)) = wa(H(X', X"), [X,Y])
X(X'(wa(X",Y))) = X (wa(X", [X',Y]))

—X’(wa(X”,[ X YD) + wa (X7 (XY X

Y1),

/

wa(Hao (X', Ha(X, X")),Y) = X'(wa(Ha(X, X"),Y)) = wa(Ha (X, X"), [X', Y])
X'(wa(H(X, X"),Y)) - wa(H(X, X"),[X",Y])
X'(X (wa(X",Y))) = X' (wa(X", [X,Y]))

— X (wa (X", [X, [X, Y])) 4 wa (X", [X, [X7, YT])

and
wa (Ha ([X, X', X") V) = [X, X') (wa (X", Y)) = wa (X", [[X, X'],Y)).
Therefore
Wo (Rx,x' X", Y) = [X, X' (wa (X",Y)) + wa (X", [X",[X,Y]]) — wa (X", [X,[X",Y]])
— [X, X' (wa (X",Y)) + wa (X7, [[X, X], Y])
= wo (X" [[X, X Y]+ [[X Y], X]+ [\, X], X)) =0

by the Jacobi identity. This shows that Rx x» = 0 for any X, X’ € I'(L). In the same
way, one can prove the flatness along the leaves of the foliation defined by Q. O

Corollary 3.6. The leaves of the foliations F and G admit a canonical flat affine struc-
ture.

Now we give an interpretation of the connection stated in Theorem B3] in terms
of some geometric structures which can be attached to a k-symplectic manifold. So
let (M,wq,F), @ € {1,...,k}, be a k-symplectic manifold and let  be a distribu-
tion transversal to F such that wo(Y,Y’) = 0 for any Y,Y’ € I'(Q). Assume that
M admits a Riemannian metric g such that the distributions L4, ..., Ly, @ are mutu-
ally orthogonal. For each a € {1,...,k}, since w, is non-degenerate on L, & @, one
can find a linear map A, : Lo ® Q — Lo @ Q such that w,(X,Y) = g(X, A.Y),
for any X,Y € T'(L, @ Q). The operator A,, o € {1,...,k}, is skew-symmetric and
An A%, a € {1,...,k}, is symmetric and positive definite, thus it diagonalizes with pos-
itive eigenvalues (A, )i, @ € {1,...,2n}, Ay A% = Badiag{(Aa)1,---,(Aa)2n} Byt Set
VAo AL == Bydiag{\/(Aa)1,---,v/(Aa)2n} B5' which is also symmetric and positive

definite. Set
I = (\/ AaA?;)ilAaa on L, ® Q;
0, on Lg, 8 # a.

Then (Jp,...,Ji) is a family of endomorphisms of the tangent space satisfying
(i) La = Nga ker(Js),
(i) J2=—-Ton L, ®Q and JoLy = Q, JoQ = L,

(iii) wa(X, Y)=yg(X,J.Y) for any X, Y e I'(TM).
Note also that the Riemannian metric g satisfies g(Jo X, JoY) = ¢g(X,Y) for each a €
{1,...,k} and for any X, Y € T'(TM). We call (Jyi,...,Jk,g) a compatible almost k-
Kdhler structure. Now assume to be under the assumptions of Theorem Note that
for each « € {1, ..., k}, the leaves of the foliation defined by L, ® @, endowed with the
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tensor fields induced by J,, are almost Kahler manifolds. Then we have that [J,, J,] =0
if and only if each leaf of the foliation L, @ @ is K&hlerian. When [J,, J,] = 0, for each
a € {1,...,k}, that is the leaves of all the foliations L, @ @ are K&hler manifolds, we
say that (M, wq,F, Ju, g) is a k-Kdhler manifold. Then we have the following result.

Theorem 3.7. Let (M,wq, F,Ja,9), a € {1,...,k}, be a k-Kahler manifold. If the
Lewvi-Civita connection V9 preserves the distributions L, then it preserves also Q) and it
coincides with the canonical connection V.

Proof. We show that the Levi-Civita connection V9 satisfies the properties (1), (2), (3)
which, according to Theorem [3.3] define uniquely the canonical connection V. First of all
we prove that V9 preserves Q. Let Y € T' (Q). Then, since VIg =0, for any V € T' (T M)
and X € I' (T'F), we have

0= (Vig) (X,Y) =V (g(X,Y)) = g(ViX,Y) - g(X, ViY) = —g(X, VY,

since VIF C F. Thus VIQ C Q. Finally we have to prove that VIw, = 0, for each
a € {1,...,k}. We observe, firstly, that V9.J, = 0, for each « € {1,...,k}. This is a
consequence of the definition of J,, of the fact that the leaves of the foliation defined
by L, ® @ are Kéhlerian manifolds, and of the above properties that VYL, C L, and
VIQ C Q. Now we can prove that (V{,wo)(W,W’) = 0, for any V,W, W’ € T (TM).
This equality holds immediately for W, W’ € I' (L) and for W,W’ € T'(Q) because L
and @ are preserved by V9. So it remains to show that (V{w,) (X,Y) = 0, for any
X el (L) and Y € T'(Q). In fact, since VI9.J, =0 and VIg = 0,

(Viwa) (X,Y) =V (g (X, JaY)) = g (V. X, JaY) = g (X, JaVTY)
=V (g(X,JaY))—g(V{X,J.Y)—g(X,V{J.Y)
= (V‘;]/g) (X,J,Y)=0.

This concludes the proof. O

4. APPLICATIONS

In this section we will examine some consequences of Theorem It can be use-

ful to find the connection defined in Theorem in Darboux coordinates {z1,...,Zn,
Y1,--.,Yen} according to Theorem 21  There exist functions ¢;7 such that Q =

. 0 _ aj 9 R
span{Xy,..., X, }, where X; := oz Za 12; s —— We put Y, =
ﬁ. Then by a straightforward computation we have that

a—1)n+1
Vv, Y =0, Vy, 0
k n Bh n aj
ot; ot
Vx,Yo; = Vs, Vx, X; = — * Xhs
’ 521 hzl ay (a—1)n+j g ! ];1 5y(a71)n+h
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. aj 1j
where the functions ¢;7 satisfy the conditions % =0 for a # B, and % =
kj
= ayi(fi)mrh’ for all 4,5, h € {1,...,n}. Moreover, the curvature is given by
(41) RYai7Yﬂj = O, RXi,Xj = O,
P& O
4.2 Ry, x;Ypn = J Y.,
2 o 7221; Y (a-1)ntiOYE-1yntn
- o
43 Ry, x, Xp=— i X
( ) ; ay(afl)nJriay(afl)nJrl

Then we have that the curvature 2-form of V has the following very simple expressiorﬂ:
0= Z Qa,jdr; A dy(a—1yntj-

from which it follows that Q" vanishes for h > n. Thus if f € I"(G) is an ad (G)-
invariant polynomial of degree h, where G = Sp(k,n;R), we have that f(2) = 0 for
h = deg (f) > n. This proves the following result.

Proposition 4.1. Under the assumptions of Theorem[3.3, we have that Pont? (TM) = 0
for all j > 2n, where Pont(T'M) denotes the Pontryagin algebra of the bundle TM.

Another strong consequence of Theorem [3.3] is the existence of an Ehresmann con-
nection. We recall the concept of Ehresmann connection for foliations. Let (M, F) be
a foliated manifold and D a distribution on M which is supplementary to the tangent
bundle L of the foliation F at every point. A horizontal curve is a piecewise smooth
curve 3 : [0,b] — M, b € R, such that ' (t) € Dy for all t € [0,b]. A wertical curve
is a piecewise smooth curve a : [0,a] — M, a € R, such that o' (t) € Ly for all
t € [0, a], i.e. which lies entirely in one leaf of F. A rectangle is a piecewise smooth map
o :[0,a] x [0,b] — M such that for every fixed s € [0,b] the curve o, = 0[g,a]x{s}
is vertical and for every fixed ¢ € [0,a] the curve o' := o34[0y is horizontal. The
curves og = o (+,0), op = o (-,b), 0¥ = ¢ (0,-) and 0® = o (a,-) are called, respectively,
the initial vertical edge, the final vertical edge, the initial horizontal edge and the final
horizontal edge of 0. We say that the distribution D is an Ehresmann connection for
F if for every vertical curve o and horizontal curve 8 with the same initial point, there
exists a rectangle whose initial edges are o and 8 (cf. [6]). This rectangle is unique and
is called the rectangle associated to o and 3. Tt is known ([5]) that every totally geodesic
foliation of a complete Riemannian manifold admits an Ehresmann connection, namely
the distribution orthogonal to the leaves of the foliation. Furthermore, by the duality
Riemannian — totally geodesic, the orthogonal bundle to a Riemannian foliation is also
an Ehresmann connection for this foliation.

Recall that given a foliated manifold (M, F) and a supplementary subbundle D to T'F
(not necessarily an Ehresmann connection), any horizontal curve 7 : [0,1] — M defines
a family of diffeomorphisms {¢; : Vo — Vi},¢( 1) such that

(1) each V; is a neighborhood of 7 (¢) in the leaf of F through 7 (¢), for all ¢ € [0, 1],
(2) ¢t (7(0)) =7(¢) for all ¢t € [0,1],
(3) for any fixed p € Vj the curve ¢ — ; (x) is horizontal,

1Throughout all this work, if no confusion is feared, we identify forms on M with their lifts to principal
bundle of linear frames LM.
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(4) @o: Vo — V, is the identity map.

This family of diffeomorphisms is called an element of holonomy along 7 ([6]). It is
shown in ([I4]) and in ([5]) that an element of holonomy along 7 exists and is unique, in
the sense that any two elements of holonomy must agree on some neighborhood of 7 (0)
in the leaf through 7 (0). When the leaves of F have a geometric structure — such as a
Riemannian metric or a linear connection — we say that D preserves the geometry of the
leaves if the element of holonomy along any horizontal curve is a local isomorphism of
the particular geometric structure.

Using the canonical connection which we have defined in §[Blwe prove now the following
result.

Theorem 4.2. Let (M,w,,F), a € {1,...,k}, be a compact connected k-symplectic
manifold and let Q@ be an integrable distribution transversal to F and satisfying the as-
sumptions of Theorem [Z3. If the leaves of F are complete affine manifolds, then the
distribution Q is an Ehresmann connection for F. Furthermore, if the canonical con-
nection V. on M induced by Q) is everywhere flat, then the Ehresmann connection @
preserves V.

Proof. Let a : [0,a] — M and S : [0,b] — M be, respectively, a vertical and a
horizontal curve such that a(0) = z = 3(0). We need to show that there exists a full
rectangle o : [0, a] x [0,b] — M whose initial vertical and horizontal edges are just « and
B, respectively. First we will show it under the further assumption that « is a geodesic
(with respect to the connection V). Fix an s € [0,b]. We transport by parallelism the
vector o/ (0) along the curve 3, obtaining a vector vs € Tj(5)M which is in turn tangent
to F since the V-parallel transport preserves the foliation F (note also that the vector
v, does not depend on the curve because the curvature vanishes identically). Let 7, be
the geodesic determined by the initial conditions 75(0) = S(s) and 7.(0) = vs. Since
the foliation F is totally geodesic (with respect to V), 75 is a curve lying on the leaf
L, of F passing for §(s), and the assumption on the completeness of L, implies that
we can extend 74 for all the values of the parameter ¢. In this way we obtain a map
o :[0,a] x [0,b] — M, defined by o(t,s) := 75(¢), and it is easy to show that it is
just the rectangle we are looking for. Now we have to prove the theorem dropping the
assumption that the curve « is a geodesic. Because M is compact and the leaves of F
are complete affine manifolds with respect to V, we find € > 0 such that for any x € M,
the e-ball B(x,¢€) is convex. As the leaves are totally geodesic, the e-balls Bz (x,€) in any
leaf £ coincide with the corresponding connected components of B(z,¢€) N L. Therefore,
for any © € M, there exists € > 0 such that the e-balls Bz (x, €) are convex. Suppose now
that « : [0,a] — M is a vertical curve contained in B (z,¢€), with x = a(0). Let oy
denote the geodesic on £ joining = with « (t), for any fixed ¢ € [0,a]. Then we define

0 (t,8) 1= Oay pl1o. (£:8)

for any (t,s) € [0,a] x [0,b], where 0,, g, , denotes the rectangle associated to the
curves ay and S| . By the first part of the proof, o is just the rectangle whose initial
edges are o and S. Finally, if o is any leaf curve on M, not necessarily contained in
B (z,¢), then we can always find a partition of [0,a], say 0 = tg < t1 < -+ < b, = a,
with the property that, for any i € {0,...,m — 1}, a(t;),a(tiy1) € B(a(t;),€). Let
o(0) be the rectangle corresponding to (g, and . The curve 51 := o(g)|{}1x[0,] 18
horizontal and 8 (0) = a (1), so we can find a rectangle o(1) whose edges are aj, , .
and (1. After m steps we have m rectangles o(gy,0(1),..,0(m—1) and we can define
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o =0 Uon)U---Uog,_1) obtaining the rectangle whose initial edges are o and f3.
The last part of the statement follows directly from ([6, Proposition 5.3]). O

The existence of an Ehresmann connection implies strong consequences for the fo-
liation. Many of them have been studied in ([6]), from which we have the following
results.

Corollary 4.3. Let (M,wqs, F), a € {1,...,k}, be a k-symplectic manifold satisfying
the assumptions of Theorem[{.9 Then the following statements hold:
(a) Any two leaves of F can be joined by a horizontal curve.
(b) The universal covers of any two leaves of F are isomorphic.
(¢) The universal cover M of M is topologically a product £ x Q, where L is the
universal cover of the leaves of F and Q the universal cover of the leaves of the
foliation integral to Q.

In general, to each leaf £ of a foliation admitting an Ehresmann connection D, it is
attached a group Hp (L, z), x € L, defined as follows ([6]). Let ©, be the set of all hori-
zontal curves (3 : [0, 1] — M with starting point 2. Then there is an action of the funda-
mental group m (£, ) of £ on €, given in the following way: for any § = [7] € m1 (£, z)
and for any 8 € €, 7 - is the final horizontal edge of the rectangle corresponding
to 7 and . It can be proved that this definition does not depend on the vertical loop
T in x representing 6. Let Kp (L,z) = {0 € my (L,x):7- = for all 5 € Q,}. Then
Kp (L, z) is a normal subgroup of 71 (£, z) and we define

Hp (L,x):=m (L,z) /Kp (L, 2).
It is known that Hp (£, z) does not depend on the Ehresmann connection D, thus it is

an invariant of the foliation. Then we have the following result.

Corollary 4.4. Let (M, wq,F), a € {1,...,k}, be a k-symplectic manifold satisfying
Theorem[{.2 If F has a compact leaf Lo with finite Hp (Lo, x0), then every leaf L of F
is compact with finite Hp (L, x).

Proof. Tt is a direct consequence of (|7, Theorem 1]). O

Another consequence of Theorem is the following result.

Corollary 4.5. Let (M, wa,F), « € {1,...,k}, be a k-symplectic manifold satisfying the
assumptions of Theorem[].2 Then F has no vanishing cycles. Moreover, the homotopy
groupoid of F is a Hausdorff manifold.

Proof. The assertions follow from ([25, Theorem 2]) and ([25, Corollary 2]). O

Now we study more deeply k-symplectic manifolds whose canonical connections are
flat. From ([@I)—(@3) it follows that the geometric interpretation of the flatness of V is
that the functions t;-lj are leaf-wise affine. Usually this condition is expressed saying that
Q is an affine transversal distribution for F (see, for instance, [22], [23]). In the following
theorem we give a normal form for flat k-symplectic manifolds:

Theorem 4.6. Let (M,w,, F), a € {1,...,k}, be a k-symplectic manifold and Q a
distribution satisfying the assumptions of Theorem [Z.3. If the corresponding canonical
connection V is flat, then there exist local coordinates {x1,...,%n,Y1,. .., Ykn} with re-
spect to which each 2-form wq is given by

(44) Wo = Z dwz A dy(afl)nJriv

=1
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F is described by the equations {x1 = const.,...,x, = const.} and Q is spanned by
o) 0]
m,.- .7%77].

Proof. Let © € M be a point and U C M a chart containing z. One can consider an
adapted basis {e1, ..., eyx11)} of T M such that, foreach o € {1,..., k}, {e(a—1)nt1,---»

an} is a basis of La,, {€knt1;- -+, €ns1)} is @ basis of @, and

(4.5) Wa (€(8—1)n+is E(v—1)n+j) = Wa (€kn+is €rntj) = 0,
1

(4.6) Wa (€(B—1)ntis €hntj) = —§5Qﬁ5ij7

for all o, B,y € {1,...,k}, 4,5 € {1,...,n}. Foreachl € {1,...,n(k+ 1)} we define a
vector field Fyx on U by the V-parallel transport along curves. More precisely, for any
y € U we consider a curve 7 : [0,1] — U such that v(0) = z, v(1) = y and define
Ei(y) == 1y (e1), 7y : ToM — T, M being the parallel transport along . Note that
E; (y) does not depend on the curve joining 2 and y, since R = 0. Thus we obtain n(k+1)
vector fields on U, Ei,..., Eyq1) such that, for each o € {1,...,k}, i € {1,...,n},
Ea—1yn+i € I'(La) and Eyy,1; € T'(Q), since the connection V preserves the subbundles
L, and Q. Moreover, by ([@A)-(8) we have for any y € U and o, 8,7 € {1,...,k},

,7€{1,...,n}

(4.7) wa (Eg-1yn+is By-1n+j) = Wa (Bkntis Erntj) =0,
1
(4.8) Wa (Bg-1yn+i> Brntj) = —§5aﬁ5ij-

Indeed, for all I,m € {1,...,n(k+ 1)},

d

ZiWa (Bt (v(1)), B (7(1))) = wa (Vo Bty Bin) + wa (Ey, Vyr B ) = 0

because w, is parallel with respect to V. Thus wa, (e1,em) = wa, (£ (y), Em (),
for any y € U. Note that, by construction, we have Vg E, = 0 for all I,m €
{1,...,n(k+1)}. ;From this, Theorem and Proposition B4 it follows that the vec-
tor fields Ei, ..., Eyx41) commute each other. Therefore there exist local coordinates

0 0
TlyeeesTnyYly-- s Ykn s, @ € {1,...,k}, such that Fio_1yp1i = and Fjypi; = ,
{z1 Y1 Yen} { } (a=1)n+ e, kn+j Jz;

for any i,j € {1,...,n}. Note that by @) Z8) we get that we = > dzi Ady(a—1)n+i-
Thus, with respect this coordinate system,
0 o)
a—1)n+1 [ ayan,
(ii) @ is spanned by 8‘2—1, cee 8‘2—",
(iii) the k-symplectic forms w, are given by wa = Y11 dzi A dy(a—1)n—ti-

(i) each L, is spanned by m

This proves the assertion. (I

Remark 4.7. Theorem [£.6]should be compared with Theorem 2.1l It should be remarked

that according to Theorem2dlthere always exist local coordinates {21, ..., Zn, Y1, -, Ykn}
verifying (£4) and such that the foliation F is locally given by the equations {x; =

const., ..., x, = const.}. On the other hand, by the general theory of foliations there al-

ways exists local coordinates {z},..., 2}, y1, ..., YL, With respect to which the foliation

defined by @ is described by the equations {y} = const.,...,y;, = const.}. In general

these two types of coordinate systems do not coincide. Theorem just states that a

sufficient condition for this is expressed by the flatness of the canonical connection. Note

that this condition is also necessary, as easily it follows from (@II)—3).
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