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COMMENT ON GL(2,R) GEOMETRY OF 4TH ORDER ODE’S

PAWEL NUROWSKI

ABsTRACT. We describe 4th order ODEs satisfying two contact invariant con-
ditions of Bryant in terms of the Ricci tensor of a certain gl(2,R) valued con-
nection. We also provide nonhomogeneous examples of such ODEs.
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1. INTRODUCTION

Recently there is a growing interest in the geometrization program of ODEs
[5, 6L [7, 8, 11, 10]. Although the program my be traced back to S. Lie [9] and M.
A. Tresse [12], and although it was formulated by E. Cartan and S. S. Chern in the
1940s [2 3, 4], it was not very popular until the works of R. Bryant (see e.g. [1]) on
the invariants of the fourth order ODEs. In the present note we restate some of the
results of [I] in terms of the invariants of the recently discussed GL(2, R) geometry
of ODEs [§]. In particular we interpret Bryant’s results in terms of the Ricci tensor
of a certain gl(2,R) connection, which characterises the ODEs satisfying contact
invariant conditions of Bryant [1J.

Our starting point is the following well known

Proposition 1.1. Ordinary differential equation

y® =0
has GL(2,R) x, R? as its group of contact symmetries. Here p : GL(2,R) —
GL(4,R) is the 4-dimensional irreducible representation of GL(2,R).
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The representation p, at the level of the Lie algebra gl(2,R), is given in terms of
the Lie algebra generators

0 3 00 00 0 0 -3 0 0 0
00 2 0 1 0 0 0 0 -1 0 0
Ev=1o o001l B==lo 200 ®={0 o 1 ol
00 0 0 0 0 3 0 0 0 0 3
3000
0 3 00
(1.1) E=~10 0 3 o
00 0 3

These matrices satisfy the gl(2,R) commutation relations
[Eo,Ey] = —2E, , |Eo,E_|=2E_ , |E4,E_|=—-E,

where the commutator in the gl(2,R) = Spang(E_, E,, Ey, E) C End(R?) is the
usual commutator of matrices.
Now, we consider a general 4-th order ODE

(1.2) y W = F(z,y,y, 9" yP).

To simplify the notation, we introduce the coordinates x,y,y1 = ¥/, y2 = v, y3 =
y® on the 5-dimensional jet space .J. Introducing the four contact forms

)

W0 =dy — yyde
(1.3) wh = dy; — yoda

w? = dyy — y3dz

w® =dys — F(z,9,91, 2, y3)dx,
and an additional 1-form

w4 = dz,
we define a contact transformation to be a diffeomorphism ¢ : J — J which trans-
forms the above five one-forms via:
b = aoowo

p*wt = alyw’ + oty

(1.4) o w? = oW’ +a? 1w +a2w2
¢*w? = a3w’ + a3 w! + adw? + adw?
o wy = a’w® + ot w! + atywy.

Here aij, 1,7 =0,1,2,3,4,5, are real functions on J such that
%yt a?al;at, # 0.

The contact equivalence problem for the 4th order ODEs (L2) can be studied in
terms of the invariant forms (6°, 60,6263, Q. ) defined by

6° a% w?
0! aly ahy w!
(1.5) 0> [ =% o o% w?
63 a?, ail oy, ady \ w3

4
Qy o’y af a®y wy
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Among all ODEs ([I2)) considered modulo contact transformations (L) there is a
remarkable class for which the invariant forms satisfy

d6® =3(Q+ Qo) AO° — 30, A O

do' = —Q_ A0+ (324 Qo) A O — 20, A 62
(1.6) do? = 20 N0  + (32— Qo) A O —Q NG

de® = —3Q_ A6 +3(Q — Q) A 6.

This system is defined on an 8-dimensional GL(2,R) principal fibre bundle P over
the solution space M* for the corresponding ODE ([Z). The invariant forms
(69,01,6%,03,Q,) together with the additional three 1-forms (Q_,Q0,) consti-
tute a well defined coframe on P.

As noted by Bryant [T], the class of ODEs having forms (69, 01,602,603, Q. ,Q_,Q0,Q)
of system (L8], is distinguished by the demand that their defining functions F =
F(x,y,y1,Y2,ys) satisfy the following two conditions:

4D?*F3 — 8DFy + 8F) — 6DF3F3 + 4Fy Fy + F3 = 0,

(1.7)
160D*Fy — 640D Fy + 144(DF3)? — 352D F3F) + 144F3F —
80DFyF3 + 160F, F3 — T2DF3F3 + 88F2 F§ 4+ 9F; + 16000F, = 0.

Here F; = g—i and D = 0, + 410y + Y20y, +y30y, + F0,,. Bryant’s conditions (L7),
considered simultaneously, are contact invariant; if the ODE undergoes contact
transformation of its variables, the conditions (7)) are preserved. Examples are

known of ODEs satisfying these conditions [I], the simplest being

(1.8) Y@ = ()43,

The purpose of this note is to establish a theorem on speciality of a gl(2, R)-valued
connection defined by such ODEs on their solution spaces.
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2. THE CLOSED SYSTEM

Let us make the following choice

% = —3al,at,
1\2 1
2 (a 0) 'y 2
= - —24DF;5 + 36F, + 11F.
% Salat, T 22007, ¢ 3+ 365+ 11E5)
201 ot
2 0 1
o = =0 F;
1 30444 12a44
1
2 Q'
a = —
2 20444
11\3 1
3 (a 0) ) 2
= 24DF; — 36F, — 11F.
“o 9l al)? " 240 a44)2( 3 2 3)+
1
«
(2.1) m(%(DFQ —4F)) + 18(DF;3 — 2F,)F3 — TF3)
1\2 1 1
3 (a 0) Q7 Q' 2
= — F. 36DF; — 84F, — 19F.
1 Bal(af)?  12(ai)? * T 240 a44)2( s 2 5)
al al
ob, = 40 _ 1y

T T (a,)

s %N ohn . 6R 4 FLE

Qay = —W( 33 — 6Fb3 + F3F33)
4

for the group parameters defining forms (6°,6%,62%,6%,Q,) of (L3). Then we have
the following

Theorem 2.1. If a fourth order ODE

(2.2) y W = F(z,y, v, 9", y¥)

satisfies contact invariant conditions

4D?*F3 — 8DF, + 8F; — 6DF3F3 +4Fy Fy + F3 = 0,

(2.3)
160D*Fy — 640D F) + 144(DF3)? — 352D F3Fy + 144F% —
80DFyFs + 160F, F3 — T2DF3F3 + 88Fy Fy + 9F4 + 16000F, = 0

then the manifold P parametrised by (z,y,y1,y2,vs, %, aly, o) is a principal
GL(2,R) bundle P — M* over the solution space M* of (Z2) and forms (6°,0,62%,6%,Q.),
together with additional three 1-forms (21—, Qo, ), constitute an invariant coframe
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on P satisfying

d® = 3(Q+Q)A0°—30, A
do' = —Q_ A+ (32 + Qo) AOF —2Q, A G
(2.4) de? = 20 A0 + (32— Q) A0 —Qy NG
de® = —3Q_AN0*+3(Q—Q)NE°
dQy = 290 AQp + 15(—3a0 +4b1)0° A O" +

(a1 + 2b2)0° A 6% + L (3as + 4b3)0° A 0% +
1(=5as + 4b3)0" A 6 + Lbs0" A 63

Q- = =209 AQ_ + bt A6 +
2 (—3ap +4b1)0° A 6% + £ (5ap + 4b1)0" A 6% +
(2.5) 1(—a1 +2b2)0" A O® + 35(3az + 4b3)0° A 6°
A = QL AQ- —1bp0° A 0" +

2 (—3ag — 4b1)0° A 6% + La16° A6 — $a10" N6 +
o7 (—3ag + 4bg)0' A 6° + Lbs6% A 67
dQ = —Fbot NG — 1b16° N 67 — £ba6° NG —
2020" A 6% — 1b30' A O° — Lbs67 N 6P
The coefficients ag, a1, az, by, b1, b2, bs, by are totally determined by (2.2) and

are expressible in terms of the derivatives of function F' and the coordinates. The
simplest of these coefficients are:

(0444)3
by = _2WF333
(0444)2 20410(0444)2
by = ——2"_ (6DF 5F3F333) — —2— 4 R
3 12(al,)? ( 333 + 5F3F333) 3(al,)? 333
204, (aly)? ot al
by = ——2_ 0 p, 10 (6DFR 5F3F:
2 Slal )t 138 T Tg(al)s (6D F333 + 5F3F333) +
4
ﬁ[m(wﬁgg + 4F 53 — 2F503 + D333 F3) + (—36DFs + 204F, + 79 F) Fy33]
1
as = __(a%) (18 DF333 + 24Fp33 + 4F 55 + 27TF3F333).
45(aty)?

Other coefficients are given in the next two sections.

The proof of this theorem is a lengthy calculation based on a variant of Cartan’s
equivalence method. In the next section we outline the main points of the proof.

3. PROOF OF THE MAIN THEOREM

The basic idea in the proof of Theorem 21]is to force 1-forms ([LH) to satisfy
system (6. This requirement makes restrictions on the free parameters o ; and,

more importantly, on the possible functions F = F(z,y,9,vy",y®) defining the
ODE.
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The main steps when imposing (L) on (L3) are:

1) equation df% A 0° A 62 = 304 A0 A 0L A 62 requires o) = —3at oy,
2) the first equation (LB) gives a relation between €, Qo, da*, and da',,
3) similarly, equation d9' AP A0? = —Q_ NGO AOL NO? gives a relation between

Q_, daty, do'ly,
1
4) equation do' A 6° AG' = —2Q, AG° A O A2 gives oy = — 5
Xy

5) equation df' A0 A G = —(3Q+ Qo) A0 A" A 6? gives a relation between
Q, Qo and daly,

6) now, the expressions for d92 A0° AOL AG3, AO? AOONOL AG3, A3 NGO NOL N O?
enable us to fix o, a®;, and a2 respectively,

7) considering successively d63 A% A9, 62 A00, O A O NG A O3 we fix o,
a31a 04307

8) now the requirement df® A 6° A 6% A 63 = 0 gives the first Bryant condition
4D2F3 —8DFy + 8F1 —6DF5Fs + 4F5F3 — F33 =0,

9) the second of Bryant’s conditions (I.7) is equivalent to the requirement that
de> A Gt A G2 A3 =0,

10) now, having Braynt’s conditions determined, it is straightforward to obtain
the required system (L6) and express all the o’;s in terms of o', o'y and
a*,only,

11) the expressions for o' ;s are given by (ZI)); inserting them to ([L3) we get
the invariant forms (69, 01,602,603, Q)

12) forms Qg,Q2_,Q are determined by the linear relations from points 2), 3)
and 5).

In this way one finds the explicit expressions for the invariant coframe satisfying sys-
tem (L8). Instead of giving these formulae we present formulae for (6°, 0%, 02,63, Q)
evaluated at (aly,a';,af) = (0,1,1). Denoting these forms by (69,63, 63, 63,9%),
we have

0y = —3w0

0 =

0 = %( 24DFj3 + 36F; + 11F7)w’ + £ Fw' — 1w?

0~ (30 DF2—4F1)+18(DF3—2F2)F3—7F3>W -
75 (36DF3 — 84F, — 19F3)w' — 1 Fyw?® + 1uw?

Q) = —&(12DFs3 — 6553 + F3Fs3)w’ + 2 Fyaw' + wo.
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The remaining three 1-forms (Q0, Q_, ), when written in the gauge (ay, al;, ) =
(0,1, 1), read:

1
Q) = m(72DFg3 +432F13 — 288Fhs + 60D F33F3 — 216 Fa3F3 —
1

108D F3F33 + 324 F, F33 + ATEF2 F33)0) + Tag (3D Fss — 9Fas — F3F33)00 +

1 1

— 3302 — —F30)

670 12770

1

Qb = 51500 (720D P2y + 288D F3 DFyy — 2160F1; — 432D Fig Fy + 216 DFy Fig +

216 Fy Fy3 + 720D Fo3F3 — 1080F13F3 — 360Fs0 F3 + 48D F33F2 —
174 F53 Ff — 360D Fy Fys + 1440F Fag + 24D F3 F3 Fag + 324 F, F3 Fag +
20F3 Fs3 + 3600F3, )0 +

1
— (108D Fys — 288F 5 + 252Fyy — 54D F33Fy + 186 Fys Fy +

1080
1
66D F3F33 — 252F, Fsg — 31F2 Fy3)0) + og (12D Fss — 6Fy3 + F3F33)0% +
1
%(—24DF3 + 361 + 11F3)6;
1
Qb = m(120DF23 +240F 3 — 240Fys + 36 DF33F3 — 168 Fag Fy —

36 DF3F33 + 204F, Fy3 + 17TF3 F33)0 +

1 1 1 2 1 4
12( DF33+F23)90 6F3390+ 12F390.

All the eight forms (6°,60%,62, 6%, Q% ,QF, Q% , Q") satisfy system (24)-(23), with
corresponding coefficients (aJ, a?, a3, b3, b9, 63, b9,b%) given by:

V) = —2Fs33

W o— %(—6DF333 — 5FyFys3)

W= ﬁ(m DFyss + 240F 33 — 120F03 + 60D Fy33F — 36 DF3 Fyss + 204F, Fygs + T9F2Fys3)
o= ﬁ(—RODFms — 540F 23 + 360F320 — 90D Fi3 Fos + 2T0F5; + 90D F3 Fass — 540F, Fass

—180D Fy33F3 — 270F 33 F3 + 360F503F35 — 45DF333F32 — 45F233F32 + 90D Fy3F33 +
90F 3 F33 — 360F5 F33 — 90Fo3 F5 Fs3 + 90F2F323 + 18D FyF333 — 7T2F F333 +
54D F3F3F533 — 288F5 F3F333 — 71F§’F333 — 180F%3,)
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—129600(—8640DF233DF3 —12960D Fo3 D F33 — 4320D F5 D F333 4 43200D Fg,, +

17280D F333Fy + 129600F) 13 — 64800 F 20 — 34560 D F33Fy3 — 86400D F3Fy33 +
12960 D Fy33Fy + 194400F33F + 30240 D F33Fa + 32400 D F3 Fagz — 64800 F5 Faos +
6480 D Fy3 Foz — 2592013 Fo3 — 15120 F50 Foz + 2160 D Fy Fazz — 8640 F) Fass —

64800 Fh3, — 6480DF3, F3 — 6480D F3D Fy33 Fy — 21600F 23 F5 + 108000 F33F5 Fy —
10800 Faga F + 25560D Fa3Fo3 3 — 18360 F 55 5 + 13320 D F3 Fag3 Fy — 25920 F5 Fozs s +
3960 D Fy33F§ + 50400 F133F5 — 28800 F 03 F5 + 2820D F333F5 — 10980 Fs3 5 —
18000 D Fyo Fy3 + 6480 D F3 D F3 F33 + 86400 Fy9F33 — 28080 D F33Fy Fsy —
11880 D F3 Fa3 F33 + 10800 Fy Foz Fa3 — 19080 D Foz F3 Fys + 18720 F 33 Fas +
16920 oo F3 Fys — 8100 D F33 3 Fa3 + 720003 F5 Fas + 7560D Fy Fyy — 30240 F Fiy —
11520, F3 Fyy — 1620F5 Fiy + 11664 D Fy Fy33 — 63072D F3 Iy Fa33 + T6464F3 F333 —
2520 D Fy F3 Fs33 + 10080F, F3 Fy33 — 177T12D F3F3 Fag3 + 42768 Fy Fy Fizs + 5299 F3 Fas3 —

18000 F Fy3,, — 75600 Fs3 F,, + 43200 F333F, )
1

15 (T18DFags — 24Fg3 — AF2, — 2TF3F333)

1
%(—721)}7233 — 432F 33 + 216 F5o3 — 36 D F333F3 + 96 Fy33F3 + 48D F33F33 + 16F3F323 +

108 DF3Fy33 — 324 F, F333 — 81F3 Fy33)

1
m(—180DF223 + 288D F3; — 4860123 + 2520Fp02 — 378 D Fs3Fos + 1782F 5, +

810D F3 Fys3 — 2700 Fy Fazz — 180D Fazz Fy — 2430F 33 F3 + 2880 Fp03F3 — 45D F333F7 +
435 Fy33 F + 810D Fa3 F3 4 810 Fy3F33 — 2520 Fh9 F33 + 408D Fy3 F3 Fyz — 594 Fp3 F3 F3 +
810FL Fyy + 122FF F3y — 270D Fy Fags + 1080 F Fy33 + 270D F3 F3 Fags —

1080 Fy F3 Fz3 — 135F; Fszs + 2700F33,).

One can use these, relatively simple, formulae to generate expressions for the in-
variant forms on P. This may be achieved by means of a matrix

1 .4
ooty 0 0 0
_aly 1 0 0
3 a
3.1 m =
( ) (a10)2 _20‘10 0‘11 0
9a11a44 3a44 a44
*(0‘10)3 (0‘10)2 o O‘10 0‘11
27 a11a44)2 3(111((144)2 (a44)2 (a44)2

Then the expression for the invariant 1-forms (6°) = (69, 6',62%,6%) can be written

as

(3.2)

0’ =m0, i,j=0,1,2,3.

The residual group G = {m | o'}, a*, # 0,a’, € R} has the Lie algebra g = h2 ® b
isomorphic to the direct sum of the 2-dimensional noncommuting Lie algebra ho and
a 1-dimensional Lie algebra h;. Algebra bs is related to the parameters (o', a?,)
and algebra h; is associated with ozll.
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The action of G on 6}, induces its action on (3,04, Q2% ,Q°). Indeed, defining

=B +QLE, +O)E, + Q"E,
and

I'=Q_E_+Q.E; +QyEy + QF,
where 4 x 4 matrices (E_, E, Ey, F) are the generators of the Lie algebra gl(2,R)
given in (1)), we find that

0
I'=mIm™ ' +mdm™ .

This enables us to find the explicit expressions for the invariant forms (24, Qg, Q_, Q).

The transformation rule for I' resembles transformation rule for a connection.
Since T" is gl(2,R)-valued, it is reasonable to look for a GL(2,R) principal fibre
bundle associated with corresponding ODE (2.2).

Due to properties of system ([Z4)-(2.3) the desired bundle is just P of Theorem
21 To see this, note that equations (2.4)) ensure that (8,62, 63, 6%) form a closed
differential ideal. Thus a 4-dimensional distribution V on P such that V_160* = 0,
Vi = 0,1,2,3, is integrable. As a consequence, the manifold P is foliated by 4-
dimensional integral leaves of this distribution. Looking at equations (2.3) we
see that on each leaf of V the forms (24,0, 02—, Q) satisfy the Maurer-Caratn
equations for the GL(2,R) group. This means that P is a principal GL(2,R)
bundle over the leaf space M* = P/V. This 4-dimensional space may be identified
with a solutions space of ODE ([2Z2]).

Remark 3.1. For local calculations, it may be convenient to pass from coordinates
(7,9, 1, Y2, Y3, &y, @y, @*;) on P to coordinates (co, c1, ca, c3, 5, o'y, aly, ;) on P,
where (co, c1,c2,c3) are the integration constants of ODE ([2.2)), and s is a real
parameter such that the total differential vector filed D = 0;. In such parametri-
sation (s, aly, aly, a?,) constitute coordinates on the leaves of V and (co, 1, c2, c3)
parametrise the solution space M*.

4. GL(2,R) GEOMETRY ON THE SOLUTION SPACE

Using matrices I' = (I';), i,j = 0,1,2,3, and part §° = (6°,6",6%,6°) of the
invariant coframe we rewrite equations ([2.4) in a compact form as:
(4.1) do* +T"; A ¢ =0,
and equation (Z3) in a compact form as:
(4.2) dre, + 1% AT, = IR, 67 A6
The coefficients R? jki appearing in this last equation can be easily read off from
@3). They are linear combinations of the coefficients ag, a1, as, as, bo, b1, ba, bs, bs
of (Z3). The meaning of equations ([@I)-([2) is obvious: they constitute, respec-
tively, the first and the second Cartan’s structure equations, for a gl(2,R)-valued
connection I' on the principal fibre bundle GL(2,R) — P — M*. Due to the first
equation, (@I, this connection has no torsion. The second equation, ([@2]), deter-
mines the curvature of I'; the coefficients R';,, are the curvature tensor coefficients

for I.
Given the curvature tensor R’ i Of I' we define its ‘Ricci’ tensor Rj;; by

_ i
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Recalling that the curvature of I is totally expressible in terms of ag, a1, as, as, by,
b1, b2, b3, by and performing a purely algebraic manipulation on the curvature tensor
coefficients R';;, we get a remarkable

Theorem 4.1. Every 4th order ODE satisfying conditions (Z.3) uniquely defines
a principal fibre bundle GL(2,R) — P — M?* over the space of its solutions M*
and a torsionless gl(2,R)-connection I’ on P with curvature Rijkl having the Ricci
tensor R in the form

0 bo ap +2b1  —ay +bo
R — —bo —2(10 ay + 3b2 az + 2b3
at = ag — 2b1 a] — 3b2 —2@2 b4
—a1 — b2 as — 2b3 —b4 0
Its respective symmetric and antisymmetric parts read:
0 0 () —ai
o 0 —2(10 aq a9
R(jl) o an aq —2(12 0 ’
—aq a9 0 0
and
0 bo 2b;  be
R — —bo 0 3by  2b3
U= —2b, —3ba 0 by

by —2b3 —by O

Thus the entire curvature tensor R'j,, is encoded in the Ricci tensor.

Remark 4.2. Note that we also have R, = 2Ry

Now we can use matrix m of the previous section to find explicit formulae for
the coefficients ag, a1, az, as, bo, b1, b2, b3, bs. It follows that if we evaluate R;; for
(a'y,a'y, ) = (0,1,1), denoting the calculated R;; by Rf;, then the full Ricci
tensor R;; is related to R?j via

_ po -1k 1l
(43) RZ] = Rklm ;e g
Here m~1 = (m_”j) is the inverse matrix to m. From this expression we can
calculate explicit form of ag,aq,ae,as, bg, b1, ba, b3, by. The resulting formulae in-
volve coefficients al, a{, a3, a3, b3, b9, b3, b3, b3 of the previous section and parameters
aly,aly, af and read:

(0444)3

by = —2 40
! (0411)2 :
4\2 1,42
by — (0414)2 bg+ o 0(014 42 g
(a'y) 3(ahy)
ot 20! o al)2ad
o (a142bg+ 3 0401 )§b§+ (9(24)1 )441)2
1 1 1
1 ol (aly)? (aly)?
bl — b0+ 0 b0+ 0 b0+ 0 bO
(@27t (al)37 7 Bal)t T 27(ad)5
1 4ot 2(a'ly)? 4(aty)? (aty)?
b — bO 0 0 0 bO 0 bO 0
© T @t T B, T By iat, 2 (et )pat, T 8l(al, ),

b

0
4
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(a44)2 0
as = a
(a1))??
Oé4 Oél Oé4
(4.4) ap = 4 af - 224
(@h)2! 3(al)?
1 0 20410 0 (0410)2 0
N N R A TP E I T )

This, in particular, means that the respective spaces consisting of (b9, 59, b9, b3, 53)
and of (al,a?,ay) constitute a 5-dimensional and 3-dimensional representation of
G and, as a consequence of GL(2,R).

Due to (@3] the vanishing of any of the two determinants:

det (R(U) ) and det(R[w] )

is a contact invariant property of the corresponding 4th order ODE (I2)). These two
determinants, when expressed in terms of the eight curvature coefficients ag, a1, a2, bo,
bl, bg, bg, b4, are
det(R;j)) = (a3 — apas)?
and
det(Ry;;)) = (3b5 — 4b1bs + boba)>.
Thus they are expressible in terms of the two well known GL(2, R)-invariant poly-
nomials
I = a% — apas and I3 = 3b§ — 4b1bs + boby.

Remark 4.3. In this context it is interesting to note that function F = (y3)*/3) of
the well known example (L])), provides a contact equivalent class of ODEs that has
both invariants I> and I3 vanishing.

Interestingly, the next GL(2, R)-invariant polynomial
I = —3(0M)2(0%)% + 46°(6)% 4 4(01)%0° — 66°0'6%0° + (6°)%(6°)?,
when thought as defined on P in terms of forms (6°,6%,62 63) of the invariant
coframe (0°,6%,6%,03,Q,,Q_,00,Q), has the following property:
LxIy = 12(XJ Q)I4,
where X € V is any vertical vector field on GL(2,R) — P — M*. Thus I, descends
to a well defined conformal symmetric tensor of fourth degree on the solution space
M* of the ODE [I]. Let us denote the descended to M* tensor I by Y. It is also
worthwhile to mention that, for the vertical vectors X € V, we have
LxQ=d(X_1Q).

This means that on the solution space M* the form  is defined up to a gradient.
It is convenient to rescale €2 and to define a 1-form A on P equal to

A=-12Q.

This form is also defined up to a gradient on the solutions space M*. Thus, a
solution space M* of any 4th order ODE satisfying [Z3) is equipped with a sort
of Weyl geometry [T, A]. This consists of class of pairs (T, A), in which T is a
4th order symmetric tensor field, A is a 1-form on M*, and two pairs (T, A) and
(Y, A") represent the same class iff

T = et A = A — 4dé.
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In the context of this gauge freedom, it is worthwhile to note that the vanishing of
Ry;j corresponds to the [T, A] geometries on M* with form A that can be gauged
to A = 0. Such situation occurs if and only if b; = 0 for all i = 0,1, 2, 3, 4.

Remark 4.4. In terms of the Weyl-like geometry [T, A] on the solution space M*,
the gl(2, R)-valued connection may be defined as the unique torsionless connection
satisfying

VxT =-A(X)Y.

Thus we have the following

Theorem 4.5. Every {th order ODE 3y = F(z,y,y,vy",y®) satisfying Braynt’s
conditions (Z3) uniquely defines a conformal Weyl-like geometry [T, A] on its so-
lution space M*. The Weyl-like geometry [, A] consists of a symmetric jth rank
tensor T and a 1-form A given up to transformations

T =t A = A — 4dé.

Its corresponding gl(2, R)-valued connection has no torsion and very special curva-
ture tensor described by Theorem [{.]]

5. EXAMPLES

5.1. Equations with symmetric Ricci tensor. There is only one contact equiv-
alence class of ODEs (2:2) having an 8-dimensional group of contact symmetries.
This is equivalent to y*) = 0 and the symmetry group is GL(2,R) %, R*. For this
class of equation the gl(2, R)-valued connection of Theorem 1l is flat.

In this section we focus on the equivalence classes of ODEs (2.2)) for which the
Maxwell form dA = —12dQ2 of this connection is flat dF' = 0. In such case we have
bo = b1 = ba = bg = by = 0.

Let us assume that we are in this situation.

Looking at the transformation properties (£4]) of the curvature coefficient as we
see that there are essentially two distinct cases distinguished by the vanishing or
not of the expression Ay = 4—15(—18DF333 — 24F233 — 4F323 — 27F3F333).

We analyse the more easy case a3 = 0 first.

If ag = 0 then also as = 0. Thus we have as = 0 everywhere on P with the
full system ([Z4)-(Z3) of eight independent 1-forms 61,62 63, Q. ,Qg, Q_, Q there.
Imposing (d2Q,) A 0 A 6% = 0 on ([Z4)-(Z3F) quickly leads to a; = 0 and, conse-
quently, by imposition of (d?Q) A ' = 0, to ap = 0. This shows that if a§ = 0
then the corresponding ODEs (Z2) are contact equivalent to y* = 0.

Now we assume that a9 # 0. Then the choice

oty = % 03]
brings as to the form
ag = 861,

where €; = sgn(a). Then the choice

makes
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After these two normalisations we get

861 0.0

= T oo \agly — CLO2.
ap = (044(1:8)2)( 0“2 (1))

Thus again we have two cases, depending on the vanishing or not of the invariant
19 = (a9)? - .

It follows that the I3 = 0 case, which under our assumptions is the same as
ag = 0, corresponds to only one nonequivalent class of equations. They are defined
by €1 = 1 (the ¢4 = —1 case is not compatible with system (24)-(Z3)), and are
described by the following

Theorem 5.1. All ODEs 49 = F(x,y,v',y",y®) satisfying Bryant’s conditions
(Z3), having symmetric Ricci tensor, and invariants Io = 0 and as # 0, are in
local one-to-one correspondence with coframes (60°,0%,0%,03,Q,, Q) on a 6-manifold
satisfying:

d0° = 1207 6° — 30, AG' + 3260 A g2

9" = 6QAG —20, NG+ L2(0° N 6° 46" N 6?)
de? = —Q, A0 +V200 AP

d6® = —6QA6 +3vV20° N 6?

dQ, = 6QAQ + V20, A2+ 600N 603 — 501 A 62

dQ = 0.
The forms Q and Qg are given by

3 3
0 - %93, 0y = 30 — %92.

All the equations having such invariant forms are equivalent to an ODE defined by

Y
3 Y2

This class has strictly 6-dimensional group of contact symmetries.

Now we pass to the I3 # 0 case. We introduce ez = +1, which encodes the sign
of I9. This is defined by e1e2(adad — (af)?) > 0. Now we chose

. \/m(agag — (a9)?)

(0% 4 -
0\2
(a3)
This normalises ag to

apg = 862.
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Under such normalisations system (Z4)-(23)) descends from P to the 5-dimensional
jet space J. There, it reads:

d® = 3(Q+Q) A0 -39, A6

do' = —Q_ A0+ (32 + Qo) AOF —2Q4 A G

de? = 20 A0'+ (32— Q) A0 - QL AG

de® = —3Q_A0*+3(Q—Q)NE
dQy = 200 AQy —260° A O + €1 (6° A O3 — 50 A 6?)
dQ. = —2Q0AQ_ 4+ ea(—0° A0 + 501 A 6?) + 2€,0% A 6P
dQ = QU AQ. — 0" A0 — 0 A O3

aQ = 0

To close this system it is convenient to eliminate form 2. This can be achieved by
an introduction of new forms (0%, 01,02, 03) related to (6°,6%,62,6°) via:

O’O — eweO7 0_1 — ewol7 0,2 — ew92, 0,3 — 671)937

where w is a function on J such that = —%dw. The local existence of such
function is guaranteed by dQ2 = 0. In terms of the new variables (¢°, 0!, 02, 0%), w,
the reduced system takes a form in which the 1-form €2 is not present:

do® = 3QuA0°—30, Aot
dot = —Q_Ad"+ QA0 —20, Ao?
do? = —20_ Aot —QoA0?—Qp A3
do? = —30_Ad?=-3Q0) N>
(5.1)
dQy = 2Q9A Q4 + e_2w( — 26306 Aol + ¢ (UO Ao — 5ol A 02))
dQ. = —200AQ_ +e 2 (62(—0’0 Ao+ 50t A 02) + 26102 A 03)
dQQy = QL AQ_ —e2¥ (620’0 Ao? +eot A 03).

As we can see the price paid for elimination of §2 is and introduction of nonconstant
function w appearing explicitly in these equations.

Now the remarkable fact is that system (51)) closes on J and is described by the
following Theorem.

Theorem 5.2. All ODEs yY = F(x,y,v,y",y®) satisfying Bryant’s conditions
(Z3), having symmetric Ricci tensor, and invariants I # 0 and as # 0, are in
local one-to-one correspondence with coframes (0°,0', 02,0, on a 5-manifold

satisfying system (&) with:
Qy = ’wQUO — (w1 + 46162’(1}3)01 + (46162’(1}0 + w2)02 — w30
(5.2) Q_

3

—61629+ — 2(6162’[1}1 + 2’[1}3)00 + 2wgo1 +
2¢1e2w30° — 2(2e1€0wp + w3 )0,
Functions w, wp, w1, ws, ws appearing here are defined by:

(5.3) dw = wea® + wiot + weo? + w30,
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They satisfy

1
dwg = —61€2w19+ + Z(—€2€_2w + 4’[1}% + 16w ws + 326162’(1}%)00 +

3’[1)0’[1)10’1 — (—616211}13 — 1lwowy — 46162’(1}% + Hepeswiwg + 12w§)02 +
(11wg + ey eow)wso?

dw; = (Bwg — 2€1€2w2) Q. + (—3wow; — 4e1eawiwy — 1261 exwows — Swows)o® —

1

1(3616_2“’ + 24616211)(2) - ZOw% + 8€1e0w13 + 64wows + 326162’(0% -
120616211)1103 — 192105)0’1 -

3

(54) (12’[1)0’[1}16162 + wywe + 30wows + 46162’[1)2’(1}3)02 + wy30
dwy = (211)1 — 36162103)Q+ +

1
5(246162’(0(2) + 2€160w13 + 30wowe + 8616210% — 26€160w w3 — 48w§)0'0 —

(8e1e2wowy + wiws + 24wews + 12€1eawrws)ot +

1
Z(—362e—2w + 96w2 — 8wz — 12w3 + 40w w3 + 96ere2w3 o> —

3(8616211}0 + 3’(1}2)’11}30'3
dws = w2(2+ + (4616211)0’[1)1 + 2wy ws + 11wows + 46162’(1}2’11}3)0'0 +
(w13 + 8epeawowy + 4’[1}% — dwywsz — 126162’(1}?,)01 + w2w302 +

2

1
—(—e1e7" 4+ 326162’(03 + 32wows + 8616210% + 4w§)03,

4

with a function w3 satisfying

dwis = (—12616210011)1 — wiws + 4bwows + 306162w2w3)9+ +

1
5(—662’[1}08_21” — 240’[1}8 + 406162’(1}0’[1}% — 16wowig + 561w2€_2w —

4726162’[1}%’[1}2 + 20’(1}%11}2 — 16€1e0wi3we — 304’[1}011}% — 646162’[1}% +
384wowiws + 192¢1 eowiwows + 5526162w0w§ + 272’(1}2’11}%)0'0 —

2w

1
Z(zerwle* — 256wiw; — 28w w3 — 41661 ewowr we — 144wiws +

156qwse 2% — 840616210311)3 + Zwawg — 24€1eawi3ws — 1440wowows —

(5.5) 480616211)%11)3 - 406162w1w§ - 192w§)01 -
1
5(—1561’(1}06_21” + 4806162’[1}8 — 24e1e0wowe3 — 262w26_2w + 544’(1}(2)’11}2 —

16w 3ws + 1846162’[1}0’(1}% + 16’[1}3 + 240€1 eawowiws + 80w wowsz +

588wow3 + 184€1ewaw})o? —

1
Z(Selwledw - 160616210311)1 — 160wowiwe — 406162w1w§ +
36eqwze 2 — 1152waws — 28wi3ws — 1152€1ewowaws —

288wiws + 20w w3 )o®.

System ([(51)-([E3) is closed, meaning that d> = 0 does not implies any further

relations between forms o°, o', 02,03, Q4 and functions w,wo, wy, wy, w3, wys.
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We easily see that the assumption that all w,wq, w,ws, ws, w3 are constant is
incompatible with system (G.I)-(5.3). Finding any solution to system (G.I)-(5.3) is
a difficult tusk.

5.2. Inhomogeneous examples. Here we present examples of contact equivalent
classes of 4th order ODEs satisfying Bryant’s conditions (Z3)) which are not homo-
geneous. By this we mean they do not admit a transitive contact symmetry group
of dimension greater than four. We consider an ansatz in which function F’ depends
in a special way on only two coordinates y» and y3. Explicitly:

s (Y3
(5.6) F= () q(5).
Y2
where g = ¢(z) is a sufficiently differentiable real function of its argument
2
.y
Ya

Imposing Bryant’s conditions (23] on (5.6) we find the following

Proposition 5.3. Function F' of {50) satisfies Bryant’s conditions (23) if and
only if

a) either:
62(32 — 2¢)¢" + 32¢° — 6q¢’ +4q =0,
b) or:
62(3z — 2¢)q" + 32¢"° — 6q¢’ + 14q — 152 = 0.

The special solutions of a) are: ¢(z) = 0 and ¢(z) = 3z. In case b) we have
q(z) = 3z and ¢q(z) = %z as special solutions. Writing these four solutions as
q(z) = cz we remark that in cases ¢ = 0 and ¢ = 3 function F' defines a 4th order
ODE which is contact equivalent to y* = 0. Cases ¢ = % and ¢ = % define two

different I's, but the corresponding 4th order ODEs are contact equivalent. They
both are equivalent to the ODE described by Theorem 5.1

We emphasise that apart from the singular solutions ¢ = ¢z, each equation a)
or b) admits a 2-parameter family of solutions. Every solution ¢ = ¢(z) from these
two families leads to a 4th order ODE which satisfies Bryant’s conditions (23] and
which is inhomogeneous. Remarkably all Bryant’s F's which are defined by the
ansatz (0.6 have Is = I, = 0, but as # 0 and by # 0. Thus, in particular, dA # 0
for them.

We were unable to find any example of Bryant’s ODEs for which at least one of
Iy or I3 is not vanishing.
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