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Abstract

Canonical twistor fibrations lead to Pfaffian systems by means of their
superhorizontal distribution. The aim of this note is to identify explicitly
the Pfaffian systems of five or less variables that arise in this way in terms
of the classification given in [1].

1 Introduction

A Pfaffian system on an n-dimensional differentiable manifold is a collection
of 1-forms which are linearly independent at each point. Geometrically this
system gives rise to a subbundle of the tangent space, that is a distribution.
Conversely a distribution induces an equivalence class of Pfaffian systems (see
[1],[3],[6] or [9]). For n ≤ 5 such systems were investigated in detail by E. Cartan.

On the total space of any canonical twistor fibration (see [2] or [5]), there
is a natural “superhorizontal” distribution, which is important in the theory
of harmonic maps. The total space is a flag manifold, and a corresponding
Pfaffian system on the big cell of the flag manifold can be constructed by us-
ing Lie-theoretic local coordinates to express integral curves of the distribution.
The equations for these holomorphic curves are solved explicitly in [4].

In this paper we identify explicitly all Pfaffian systems with n ≤ 5 which
arise from twistor fibrations in this way, in terms of the known classification. It
is of interest to consider the significance of these twistor Pfaffian systems, and we
discuss briefly one aspect here, namely the Lie algebra of infinitesimal symme-
tries. Cartan observed that the Lie algebra of the exceptional group G2 can be
characterized as the symmetry algebra of such a system. However, all the other
systems with n ≤ 5 arising from twistor fibrations have infinite-dimensional
symmetry algebras. In the simplest example, we present an explanation for this
phenomenon.

The paper is organized as follows. In section 2 we describe the basic def-
initions and theorems concerning Pfaffian systems. In addition, the classifica-
tion of low dimensional Pfaffian systems from [1] is reproduced at the end of
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this section (tables 1-3). Section 3 reviews some facts from structure theory
of Lie algebras as well as the concept of twistor fibration. The construction
of Pfaffian systems from twistor fibrations is explained in section 4. Subsec-
tions 4.1 - 4.3 contain detailed computations for three representative examples:
π : F3(C) → CP 2, π : SO(5)/U(1) × SO(2) → SO(5)/SO(2) × SO(3) and
π : G2/U(2) → G2/SO(4). The complete list of results is given in table 4. Fi-
nally in the last section we discuss the Lie algebra of infinitesimal symmetries.

2 Pfaffian systems

In this section we will review some basic concepts and facts on Pfaffian systems
theory (see [3]). Let M be an n−dimensional differentiable manifold. Let TM
and T ∗M denote the tangent and cotangent bundle respectively.

In the following Ωk(M) will denote the space of all differentiable k forms on

M . We have Ωk(M) = Γ(
∧k

T ∗M), where Γ(
∧k

T ∗M) denotes the space of

sections of
∧k

T ∗M .

A (local) Pfaffian system of rank r is a set:

S = {ω1 . . . ωr} ωi ∈ Ω1(M)|U .

where the r differential 1-forms are defined on an open subset U of M and are
required to be linearly independent at each point.

Given a Pfaffian system S, the vector subbundle D of TM |U with n− r di-
mensional fibers Dp =

⋂r
i=1 kerωi(p) for all ωi ∈ S, p ∈ U ⊂ M is a distribution

on U . Conversely, a distribution give rise to an equivalence class of Pfaffian
systems, since the annihilator subbundle of D, with fibers

D⊥
p = {ω ∈ T ∗

pM | ω(X) = 0 ∀X ∈ Dp},

is locally spanned by r linearly independent 1-forms i.e.D⊥
p = span{(ω1)p . . . (ωr)p} ⊂

T ∗
pM . The ideal of Γ(

∧∗
T ∗M) generated by the system is:

I(D) =
n⊕

k=1

Ik(D) =
{ r∑

i=1

αi ∧ ωi | ωi ∈ S, αi ∈ Ω∗(M)
}

.

with Ik(D) = {ω ∈ Ωk(M) | ω(X1 . . . Xk) = 0 ∀Xi ∈ D} for k ≥ 1.

At a point p ∈ M the characteristic space of I(D) is defined as:

A(I(D))p = {Xp ∈ TpM | Xp⌋I(D)p ⊂ I(D)p}
= {Xp ∈ TpM | ωi(Xp) = 0, Xp⌋dωi ≡ 0 mod S, i = 1 . . . r}.

Its annihilator C(I(D))p := A(I(D))⊥p ⊂ T ∗
pM , called the retracting subspace

at p, is the smallest subspace of T ∗
pM such that

∧∗
(C(I(D)) contains a finite

set S of elements generating I(D) as an ideal. The dimension of C(I(D))p is
called the class of S at p.
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A symmetry of S is a local biholomorphism φ on U which preserves D (or
S), i.e. φ∗(D) = D (or φ∗(S) = S). An infinitesimal symmetry is a vector field
X over U which generates a local one parameter transformation group of sym-
metries of S. Namely X satisfies: [X,Γ(D)] ⊆ Γ(D), or equivalently: LXωi ≡ 0
mod S with ωi ∈ S. The set of all infinitesimal symmetries of S is denoted L(S).

Then the characteristic space A(I(D)) =
⋃

p∈U A(I(D))p of I(D) can be
described (cf. [6]) in terms of infinitesimal symmetries as:

A(I(D)) = L(S) ∩ Γ(D). (1)

A submanifoldN ofM is called an integral manifold of S (orD) if TpN ⊆ Dp

for any p ∈ N . Equivalently an integrable manifold is given by an immersion
i : N 7−→ M such that i∗(α) = 0 for all α ∈ I(D).

A Pfaffian system S (or the distribution D) is said to be completely inte-
grable if there exists an integrable manifold of dimension dim(M) − rank(S),
passing through every point.

The integrability of Pfaffian systems can be characterized in various ways:

Theorem 1 (Frobenius). Let M be a differentiable manifold. Let S = {ωi}ri=1

by a Pfaffian system of rank r with induced n − r dimensional distribution D
defined over U ⊂ M . Let I(D) be the ideal generated by the system as above.
Then the following are equivalent:

i) S (or D) is completely integrable.

ii) D is involutive: [Γ(D),Γ(D)] ⊂ Γ(D).

iii) I(D) is a differential ideal: dI(D) ⊂ I(D), i.e. dωi =
∑r

j=1 α
i
j ∧ ωj for

ωj ∈ S and αi
j ∈ Ωk(M)|U . Briefly we write: dωi ≡ 0 mod S.

iv) Locally there exists a coordinate system (y1 . . . yn) such that I(D) is gen-
erated by (dy1 . . . dyr).

v) rankp(S) = classp(S) for every p ∈ U ⊂ M . In this case A(I(D)) = D
and C(I(D)) = S.

A natural problem in Pfaffian systems theory is the classification of systems
with constant rank, which requires the study of invariants. The class and the
rank are fundamental invariants that entirely determine the local classification
of completely integrable systems by the Frobenius theorem.

For a nonintegrable Pfaffian system S of rank r and corresponding distribu-
tion D, we define the subbundle D′ which has fibers spanned by all elements of
TpM of the form Xp + [Yp, Zp] with X,Y, Z ∈ Γ(D), i.e.

D′ = Γ(D) + [Γ(D),Γ(D)].

Notice that Dp ⊂ D′
p. A representative S′ of the equivalence class of Pfaffian

systems corresponding to this distribution is called (with abuse of notation) the
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derived system of S. This leads to the notion of higher derived systems. The
k-th derived system Sk is defined successively by:

Sk+1 = (Sk)′, S0 := S.

It follows that the rank and the class of Sk are invariants of such a Pfaffian
systems. S is called regular if all derived systems are of constant rank. For a
regular system S, there exists µ ∈ Z≥0 such that:

Sµ+1 = Sµ ⊂ · · · ⊂ Sk ⊂ Sk−1 ⊂ · · · ⊂ S′′ ⊂ S′ ⊂ S.

Sµ is always 0 or completely integrable; It is the smallest completely inte-
grable subsystem of S. (See [10],[1]).

The basic idea to achieve the classification of nonintegrable Pfaffian systems
of constant rank is to look for completely integrable subsystems of S and use
the defined invariants to determine a local model of the system.

In [1] the equivalence classes of low dimensional (n ≤ 5) Pfaffian systems of
constant rank and class is presented by giving local models of those systems.
Nevertheless this is a partial classification, since for the cases S11

5 (f) and S15
5 (f)

the local equivalence classes are not specified. For the sake of reference this
classification is reproduced in the following tables.

Table 1. Pfaffian systems of dimension 3.

Pfaffian system S rank(S) class(S)
S1
3 = {dz1} 1 1

S2
3 = {dz1 + z2dz3} 1 3
S3
3 = {dz1, dz2} 2 2

S4
3 = {dz1, dz2, dz3} 3 3

Table 2. Pfaffian systems of dimension 4.

Pfaffian system S rank(S) class(S) rank(S′) class(S′)
S1
4 = {dz1} 1 1

S2
4 = {dz1, dz2, dz3} 3 3

S3
4 = {dz1, dz2, dz3, dz4} 4 4
S4
4 = {dz1 + z2dz3} 1 3
S5
4 = {dz1, dz2} 2 2

S6
4 = {dz1, dz2 + z3dz4} 2 4 1 1

S7
4 = {dz1 + z2dz3, dz2 + z4dz3} 2 4 1 3
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Pfaffian system S rank(S) class(S) rank(S′) class(S′) rank(S′′) class(S′′)
S1
5 = {dz1} 1 1

S2
5 = {dz1 + z2dz3} 1 3

S3
5 = {dz1 + z2dz3 + z4dz5} 1 5

S4
5 = {dz1, dz2, dz3, dz4, dz5} 5 5
S5
5 = {dz1, dz2, dz3, dz4} 4 4
S6
5 = {dz1, dz2, dz3} 3 3

S7
5 = {dz1, dz2, dz3 + z4dz5} 3 5 2 2

S8
5 = {dz1, dz2 + z3dz4, dz3 + z5dz4} 3 5 2 4 1 1

S9
5 = {dz1 + z2dz3, dz2 + z4dz3, dz3 + z5dz4} 3 5 2 4 1 3

S10
5 = {dz1 + z2dz3, dz2 + z4dz3, dz4 + z5dz3} 3 5 2 4 1 3

S11
5 (f) =

{

dz1 + z3dz4, dz2 + z5dz3 + fdz4, dz3 +
∂f
∂z5

dz4

}

3 5 2 5

S12
5 = {dz1, dz2} 2 2

S13
5 = {dz1, dz2 + z3dz4} 2 4 1 1

S14
5 = {dz1 + z2dz3, dz2 + z4dz3} 2 4 1 3

S15
5 (f) = {dz1 + z3dz4, dz2 + z5dz3 + fdz4} 2 5
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3 Twistor fibrations

The aim of this section is to review the twistor fibration concept. We start by
recalling some facts from the structure theory of Lie algebras.

Let g be a Lie algebra of a compact semisimple Lie group with Cartan sub-
algebra t. Let gC be the complexification of g, and tC that of t.

A functional α ∈ (tC)∗ is called a root of gC (with respect to tC) if gα 6=
{0}, where gα = {X ∈ gC | ad(H)X = α(H)X for all H ∈ tC} is the root
space of α. The Lie algebra gC has then a root decomposition into the Cartan
subalgebra and the root spaces:

gC = tC ⊕
( ⊕

α∈∆

gα
)
.

Here ∆ denotes the set of roots of gC. This is a finite subset of (tC)∗.

It is also necessary to recall the existence of a subset Π = {α1 . . . αr} (r =

dimCt
C) of ∆ such that every root can be expressed uniquely as α =

∑l
i=1 niαi

where the ni are integers, either all nonnegative (α is then a positive root) or
all non-positive (α is a negative root). Such a set is called set of simple roots
for ∆. Each subset I = {αi1 , . . . , αis} of Π defines on ∆ a height function nI

by nI(α) =
∑

i∈I ni.

According to this any parabolic subalgebra of gC can be expressed as:

pI = tC ⊕
(⊕

i≤0

gIi

)

, with gIi =
⊕

nI(α)=i

gα.

Given a parabolic subalgebra pI , there exists a unique element ξ ∈ tC such
that α(ξ) =

√
−1nI(α). i.e.

⊕

α(ξ)=
√
−1i

gα = gIi .

This element is called the canonical element of pI . This element defines an
involutive automorphism τξ = Ad(exp(πξ)) of g (the complex linear extension
to gC) called the canonical involution for pI .

The facts mentioned above are intimately related with the concept of gen-
eralized flag manifolds, which are homogeneous spaces of the form G/H where
G is a compact Lie group and H is the centralizer of a torus in G. We have a
natural isomorphism GC/PI

∼= G/H where GC is the complexification of G and
PI = {g ∈ GC|Ad(g)pI ⊆ pI} is a parabolic subgroup of GC .

Let G/H ∼= GC/PI be a generalized flag manifold and let ξ be the canonical
element of the Lie algebra pI of PI with canonical automorphism τξ. Then the
following is true:

• GC/PI
∼= Ad(G)ξ.
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• H = PI ∩G.

• For g = expπξ define σg = Rg−1 ◦ Lg. If K is a closed subgroup of GC

such that H ⊆ K ⊆ G, G0
σg

⊆ K ⊆ Gσg
, then G/K is a symmetric

space. Here Gσg
denotes the set of fixed points of σg and G0

σg
its identity

component.

Finally we have:

Definition 1. The natural map πξ : G/H 7−→ G/K is called the canonical
(Burstall-Rawnsley) twistor fibration associated to the generalized flag manifold
G/H ∼= GC/PI .

For details we refer to [5], [2] and [7].

4 Pfaffian systems from twistor fibrations

Now we are in a position to describe how Pfaffian systems and twistor fibrations
are related. The key is to consider a certain subbundle of the tangent bundle of
the generalized flag manifold of the twistor fibration.

Let GC/PI be a generalized flag manifold. Recall that as an homogeneous
space its tangent bundle is isomorphic to GC ×PI

(
gC/pI

)
. An explicit isomor-

phism f : GC ×PI

(
gC/pI

)
→ TGC/PI is given by:

f([(g, [Y ])]) =
d

ds
g ◦ exp sY PI

∣
∣
∣
∣
s=0

. (2)

Definition 2. The subbundle SH of TGC/PI which corresponds to

GC ×PI

(
(pI ⊕ gI1)/pI

)

is called the superhorizontal distribution.

This concept arises from the study of harmonic maps that come from twistor
fibrations.

We shall construct a particular Pfaffian system corresponding to the super-
horizontal distribution by expressing integral curves of the distribution in Lie
theoretic local coordinates. The equations for integral curves of this distribution
are solved expliclitly in [4], (see page 561).

It is well known that local coordinates for the generalized flag manifold,
GC/PI are provided by the “big cell” [exp

⊕

i>0 g
I
i ]

∼= Cm. Locally therefore we
can construct any complex integral curve Φ : C 7−→ GC/PI by giving a holo-
morphic map C : C 7−→

⊕

i>0 g
I
i and setting Φ = ρ(expC), where ρ denotes

the projection GC 7−→ GC/PI .
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The condition for this integral curve to be tangent to the superhorizontal
distribution, i.e. dΦ

(
∂
∂z

)
∈ SH , is that:

(
(expC)−1(expC)′

)

g
I
i

= 0 (i ≥ 2) (3)

In other words, (exp−C)(expC)′ should have zero component in
⊕

i≥2 g
I
i .

Using the formula for the derivative of the exponential map one has:

(exp−C)(expC)′ =
I − e−adC

adC
C′

= C′ − 1

2!
adCC′ +

1

3!
(adC)2C′ − · · ·

= C′ − 1

2
[C,C′] +

1

6
[C, [C,C′]]− · · ·

Applying this to (3), the resultant expression determines n differential equa-
tions in m functions, C′

i = F (C1, . . . , Ci−1) (i ≥ 2) for an integral curve of the
superhorizontal distribution, where n =

∑

i≥2 dim gIi and m =
∑

i≥1 dim gIi .

These equations can be written in local coordinates corresponding to
⊕

i>0 g
I
i

as 1-forms of m-variables giving in this way a Pfaffian system S on Cm with
rank(S) = n.

Proposition 1. The Pfaffian system S just obtained satisfies the following prop-
erties:

• class(S) =
∑

i≥1 dim gIi = m.

• The first derived system S′ of S corresponds to:

GC ×PI

(
(pI ⊕ gI1 ⊕ gI2)/pI

)
.

Proof. Notice first that dimA(I(SH)) = 0 is equivalent to A(I(SH)) = L(S)∩
Γ(SH) = 0 , i.e. if X ∈ Γ(SH) satisfies

[X,Γ(SH)] ⊆ Γ(SH), (4)

then X = 0. We show that this is the case. Take X ∈ SH satisfying (4). Then
X is expressed as X = [(g, [Z])] with g ∈ GC and [Z] ∈ gI1/pI . Now under
the isomorphism f , the condition (4) is equivalent to having Z ∈ gI1 such that
[Z, gI1] ∈ gI1. But since [gIi , g

I
j ] ∈ gIi+j we must have Z = 0.

Similarly, SH ′ = ker(S′) is spanned by:

Γ(SH) + [Γ(SH),Γ(SH)],

which under the isomorphism f is equivalent to:

SH ′ ∼= GC ×PI

(
pI ⊕ (gI1 + [gI1, g

I
1])/pI

)

∼= GC ×PI

(
pI ⊕ gI1 ⊕ gI2/pI

)
.
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Now we concentrate entirely on the case when m ≤ 5 and compute all
Pfaffian systems that arises from twistor fibrations of semisimple Lie algebras
by using the above construction and identifying the obtained system – after a
suitable change of local coordinates – with a model in the classification of low
dimensional Pfaffian system mentioned in section 1 (tables 1, 2 and 3).

Theorem (2) collects these results in a detailed list. Since the proof is purely
computational, in order to illustrate how the calculation is carried out we present
three representative examples:

4.1 π : F3(C) → CP 2.

Let G = SU3, then GC = SL3C with Lie algebra sl3C consisting of all endo-
morphisms of C3 with zero trace. Let tC = {H ∈ sl3C |H = diag(a1, a2, a3)} be
the corresponding Cartan subalgebra.

The set of roots is then given by: ∆ = {±(ri − rj) |1 ≤ i, j ≤ 3 i 6= j}
where ri denotes the linear functional ri : tC → C defined by ri(H) = ai. In
this case the set of simple roots is Π = {α1 = r1 − r2, α2 = r2 − r3} and the
corresponding root spaces are:

gα1
= C ·E12 , gα2

= C ·E23 , gα1+α2
= C · E13 (5)

where Eij stands for the matrix whose (i, j) entry is 1 and all others 0.

If we choose I = Π, then:

gI1 =











0 w1 0
0 0 w2

0 0 0





∣
∣
∣
∣
∣
∣

w1, w2 ∈ C






, gI2 =











0 0 w3

0 0 0
0 0 0





∣
∣
∣
∣
∣
∣

w3 ∈ C






.

and the corresponding parabolic subalgebra is:

pI = tC ⊕ g−α1
⊕ g−α2

⊕ g−α3
=











∗ 0 0
∗ ∗ 0
∗ ∗ ∗



 ∈ sl3C







with parabolic subgroup:

PI = {g ∈ GC | Ad(g)pI ⊆ pI} =











∗ 0 0
∗ ∗ 0
∗ ∗ ∗



 ∈ SL3C






(6)

Since H = PI ∩G ∼= S(U1 × U1 × U1) the generalized flag manifold G/H is
SU3/S(U1 × U1 × U1) ∼= F3(C).

The canonical element is calculated as follows: Taking ξ ∈ tC as

ξ = diag(
√
−1a1,

√
−1a2,

√
−1a3)

with ai ∈ R,
∑

ai = 0, since αi(ξ) =
√
−1nI(αi) we get α1(ξ) = α2(ξ) = 1 and

α3(ξ) = 2, which implies a1 = 1, a2 = 0, a3 = −1.

9



We have g = expπξ = diag(e
√
−1π, 1, e−

√
−1π) and therefore the set of fixed

points of σg is:

Gσg =











a11 0 a13
0 a22 0
a31 0 a33



 ∈ SU3 | a22 ∈ U1 ,

(
a11 a13
a31 a33

)

∈ U2







∼= S(U1 × U2).

Here since H ⊂ Gσg , setting K = Gσg we can write:

G/K ∼= SU3/S(U1 × U2) ∼= CP 2.

Thus in this case the twistor fibration is precisely π : F3(C) → CP 2.

Now, the integral curve is constructed defining the map C : C → ⊕2
i=1 g

I
i

as:

C(z) =





0 a(z) c(z)
0 0 b(z)
0 0 0



 .

Since

gI1 ⊕ gI2 =











0 w1 w3

0 0 w2

0 0 0





∣
∣
∣
∣
∣
∣

w1, w2, w3 ∈ C







we have:

exp(−C)(expC)′ =





0 a′(z) c′(z)− 1
2a(z)b

′(z) + 1
2a

′(z)b(z)
0 0 b′(z)
0 0 0





After applying the condition (3) we obtain the following ordinary differential
equation:

c′(z)− 1

2
a(z)b′(z) +

1

2
a′(z)b(z) = 0.

In terms of local coordinates of exp
⊕2

i=0 g
I
i this becomes

dw3 −
1

2
w1dw2 +

1

2
w2dw1 = 0.

Since

dw3 −
1

2
w1dw2 +

1

2
w2dw1 = d(w3 −

1

2
w1w2) + w2dw1,

the change of coordinates

(z1, z2, z3) = (w3 −
1

2
w1w2, w2, w1)

identifies this Pfaffian system with:

S2
3 = {dz1 + z2dz3}.
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4.2 π : SO(5)/U(1)× SO(2) → SO(5)/SO(2)× SO(3).

Let G = SO(5). By definition the corresponding Lie algebra is given by:

soC5 = {X ∈ Hom(C5,C5) | (Xv,w) + (v,Xw) = 0}.

After choosing a basis:

v1 = e1 +
√
−1e4, v2 = e2 +

√
−1e5, v3 = e3,

v4 = e2 −
√
−1e5, v5 = e1 −

√
−1e4.

where {ei}5i=1 denotes the canonical basis of C
5, a suitable matrix representation

is obtained:

so(5,C) =















r1 x t1 y 0
x̃ r2 t2 0 −y
2t̃1 2t̃2 0 −2t2 −2t1
ỹ 0 −t̃2 −r2 −x
0 −ỹ −t̃1 −x̃ −r1









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

r1, r2, x, y, t1, t2, x̃, ỹ, t̃1, t̃2 ∈ C







.

In this case the set of roots is: ∆ = {±(ri ± rj),±rk | 1 ≤ i, j, k ≤ 2, i 6= j}
with simple roots Π = {α1 = r1 − r2, α2 = r2}, and the root spaces are:

gα1
= C · (E12 − E45), gα2

= C · (E23 − 2E34),

gα1+α2
= C · (E13 − 2E35), gα1+2α2

= C · (E14 − E25).

Setting I = Π, we have:

gI1 = gα1
⊕ gα2

, gI2 = gα1+α2
, gI3 = gα1+2α2

.

The map C : C → ⊕

i>0 g
I
i can be defined as:

C(z) =









0 x(z) t1(z) y(z) 0
0 0 t2(z) 0 −y(z)
0 0 0 −2t2(z) −2t1(z)
0 0 0 0 −x(z)
0 0 0 0 0









In the same way as above, calculating (exp−C)(expC)′ under the condition
(3), we obtain the following system of differential equations:

t′1 −
1

2
xt′2 +

1

2
t2x

′ = 0, y′ + t1t
′
2 − t2t

′
1 +

1

3
t2xt

′
2 −

1

3
t22x

′ = 0.

In terms of local coordinates these are: dt1 − 1
2xdt2 +

1
2 t2dx = 0 and dy +

t1dt2−t2dt1+
1
3 t2xdt2− 1

3 t
2
2dx = 0. The associated Pfaffian system S = {ω1, ω2}

is given by:

ω1 : = dt1 −
1

2
xdt2 +

1

2
t2dx,

ω2 : = dy + t1dt2 − t2dt1 +
1

3
t2xdt2 −

1

3
t22dx.
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Notice that S is not completely integrable and that the derived system is
S′ = {ω2} since dω2 ∧ ω1 ∧ ω2 = 0. Moreover, since dω2 ∧ ω2 6= 0 we have
class(S′) = 3 and the system must be equivalent to S7

4 . We shall find an explicit
change of coordinates. First, ω2 can be expressed as:

ω2 = d(y − t1t2 −
1

3
xt22) + (2t1 + xt2)dt2,

to obtain:

(z1, z2, z3) = (y − t1t2 −
1

3
xt22, 2t1 + xt2, t2).

On the other hand:

ω1 =
1

2
(d(2t1 + xt2) + (−2x)dt2)

hence the change of coordinates:

(z1, z2, z3, z4) = (y − t1t2 −
1

3
xt22, 2t1 + xt2, t2, − 2x)

shows that the Pfaffian system is :

S7
4 = {dz1 + z2dz3, dz2 + z4dz3}.

4.3 π : G2/U(2) → G2/SO(4).

In this example we consider G2 = {X ∈ SO(7,R) | X(v × w) = Xv ×Xw},
with Lie algebra:

gC2 = {X ∈ soC7 | X(v × w) = Xv × w + v ×Xw}.

As for the last example, in order to obtain a matrix representation for SO(7)
we choose a basis:

v1 = e1 +
√
−1e5, v2 = e2 +

√
−1e6, v3 = e3 +

√
−1e7, v4 = e4,

v5 = e3 −
√
−1e7, v6 = e2 −

√
−1e6, v7 = e1 −

√
−1.

Then under this representation any element of gC2 can be expressed as:













r2 + r3 x1 x2 y3 y2 y1 0
x̃1 r2 x3 −x2 y3 0 −y1
x̃2 x̃3 r3 x1 0 −y3 −y2
2ỹ2 −2x̃2 2x̃1 0 −2x1 2x2 −2y3
ỹ2 ỹ3 0 −x̃1 −r3 −x3 −x2

ỹ1 0 −ỹ3 x̃2 −x̃3 −r2 −x1

0 −ỹ1 −ỹ2 −ỹ3 −x̃2 −x̃1 −r2 − r3













In this case the set of roots is:

∆ = {±α1,±α2,±(α1 + α2),±(2α1 + α2),±(3α+ α2),±(3α1 + 2α2)}

12



with simple roots Π = {α1, α2}, where α1 = r3 and α2 = r2 − r3. Here the root
spaces are:

gα1
= C · (E12 + E34 − 2E45 − E67),

gα2
= C · (E23 − E56),

gα1+α2
= C · (E13 − E24 + 2E46 − E57),

g2α1+α2
= C · (E14 + E25 − E36 − 2E47),

g3α1+α2
= C · (E15 − E37),

g3α1+2α2
= C · (E16 − E27).

Taking I = {α1} we have :

gI1 = gα1
⊕ gα1+α2

, gI2 = g2α1+α2
, gI3 = g3α1+α2

⊕ g3α1+2α2
.

Thus the map C : C → ⊕

i>0 g
I
i takes the form:

C(z) =













0 x1(z) x2(z) y3(z) y2(z) y1(z) 0
0 0 0 −x2(z) y3(z) 0 −y1(z)
0 0 0 x1(z) 0 −y3(z) −y2(z)
0 0 0 0 −2x1(z) 2x2(z) −2y3(z)
0 0 0 0 0 0 −x2(z)
0 0 0 0 0 0 −x1(z)
0 0 0 0 0 0 0













This time the condition of the integral curve to the superhorizontal distri-
bution gives the following system of differential equations:

y′3 − x2x
′
1 + x1x

′
2 =0,

y′2 −
3

2
x1y

′
3 +

3

2
y3x

′
1 − x2

1x
′
2 + x1x2x

′
1 =0,

y′1 +
3

2
x2y

′
3 −

3

2
y3x

′
2 + x1x2x

′
2 − x2

2x
′
1 =0.

After expressing them in terms of local coordinates we set

ω1 : = dy3 − x2dx1 + x1dx2,

ω2 : = dy2 −
3

2
x1dy3 +

3

2
y3dx1 − x2

1dx2 + x1x2dx1,

ω3 : = dy1 +
3

2
x2dy3 −

3

2
y3dx2 + x1x2dx2 − x2

2dx1.

Then the induced Pfaffian system is S = {ω1, ω2, ω3} which is not completely
integrable. Now, for i = 2, 3 we have that:

dωi ∧ ω1 ∧ ω2 ∧ ω3 = 0.

Therefore, the derived system is S′ = {ω2, ω3}. Moreover since dω2 = −3ω1∧dx2

and dω3 = 3ω1 ∧ dx1 we have class(S′) = 5, and then the system S is identified
to be S11

5 (f).
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Now ω3 can be written as:

ω3 = d(y2 −
3

2
x1y3 − x2

1x2) + (3y3 + 3x1x2)dx1

hence:

(w1, w3, w4) = (y2 −
3

2
x1y3 − x2

1x2, 3y3 + 3x1x2, x1)

In the same way:

ω2 = d(y1 −
3

2
x2y3 − x1x

2
2) + (x2)d(3y3 + 3x1x2)− 3x2

2dx1,

ω1 =
1

3
(d(3y3 + 3x1x2)− 6x2dx1).

implies:

(w1, w2, w3,w4, w5) =

(y2 −
3

2
x1y3 − x2

1x2, y1 −
3

2
x2y3 − x1x

2
2, 3y3 + 3x1x2, x1, x2).

Therefore we must have S11
5 (f) with f = −3w2

5. But in general, the change
of coordinates corresponding to S11

5 (c · w2
5) is:

(z1, z2, z3, z4, z5) = (w1, w2,
1
3
√
c
w3,

3
√
cw4,

3
√
cw5).

Thus we can identify our Pfaffian system to be of the form S11
5 (z25). Explicitly

this can be expressed as

S11
5 (z25) = {dz1 + z3dz4, dz2 + z5dz3 + z25dz4, dz3 + 2z5dz4}.

under the change of coordinates:

z1 = y2 −
3

2
x1y3 − x2

1x2,

z2 = y1 −
3

2
x2y3 − x1x

2
2,

z3 = − 3
3
√
3
y3 −

3
3
√
3
x1x2,

z4 = − 3
√
3x1,

z5 = − 3
√
3x2.

After the examples finally we are in position to state the main theorem of
this section:

Theorem 2. The Pfaffian systems of at most five variables that arise from
superhorizontal distributions of twistor fibrations of semisimple Lie algebras are
given explicitly in table 4.

Proof. By direct calculation.
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Lie group decomposition of T1,0G/H Pfaffian system

SU3
S2
3 = {dz1 + z2dz3}
(w3 − 1

2
w1w2, w2, w1)

g
I
1

︷ ︸︸ ︷

gα ⊕ gβ
⊕

g
I
2

︷ ︸︸ ︷
gα+β

SU4

S15
5 (0) = {dz1 + z3dz4, dz2 + z5dz3}
(w5 + 1

2
w1w3, w4 − 1

2
w1w2, w1,−w3, w2)

g
I
1

︷ ︸︸ ︷

gα ⊕ gβ ⊕ gβ+γ

⊕

g
I
2

︷ ︸︸ ︷

gα+β ⊕ gα+β+γ

S15
5 (0) = {dz1 + z3dz4, dz2 + z5dz3}
(w5 − 1

2
w2w3, w4 + 1

2
w1w2, w2, w3,−w1)

g
I
1

︷ ︸︸ ︷

gβ ⊕ gγ ⊕ gα+β

⊕

g
I
2

︷ ︸︸ ︷

gβ+γ ⊕ gα+β+γ

S3
5 = {dz1 + z2dz3 + z4dz5}

(w5 − 1

2
w1w4 − 1

2
w2w3, w4, w1, w2, w3)

g
I
1

︷ ︸︸ ︷

gα ⊕ gγ ⊕ gα+β ⊕ gβ+γ

⊕
g
I
2

︷ ︸︸ ︷
gα+β+γ

SO5

S2
3 = {dz1 + z2dz3}
(w3 − w1w2, 2w2, w1)

g
I
1

︷ ︸︸ ︷

gβ ⊕ gα+β

⊕
g
I
2

︷ ︸︸ ︷
gα+2β

S7
4 = {dz1 + z2dz3, dz2 + z4dz3}

(w4 − w2w3 − 1

3
w1w

2

2
, 2w3 + w1w2, w2,−2w1)

g
I
1

︷ ︸︸ ︷

gα ⊕ gβ
⊕

g
I
2

︷ ︸︸ ︷
gα+β

⊕
g
I
3

︷ ︸︸ ︷
gα+2β

SO6

S3
5 = {dz1 + z2dz3 + z4dz5}

(w5 − 1

2
w2w3 − 1

2
w1w4, w3, w2, w4, w1)

g
I
1

︷ ︸︸ ︷

gβ ⊕ gγ ⊕ gα+β ⊕ gα+γ

⊕
g
I
2

︷ ︸︸ ︷
gα+β+γ

S15
5 (0) = {dz1 + z3dz4, dz2 + z5dz3}
(w4 + 1

2
w1w2, w5 − 1

2
w2w3,−w1, w2, w3)

g
I
1

︷ ︸︸ ︷

gα ⊕ gγ ⊕ gα+β

⊕

g
I
2

︷ ︸︸ ︷

gα+γ ⊕ gα+β+γ

S15
5 (0) = {dz1 + z3dz4, dz2 + z5dz3}
(w4 + 1

2
w1w2, w5 − 1

2
w2w3,−w1, w2, w3)

g
I
1

︷ ︸︸ ︷

gα ⊕ gβ ⊕ gα+γ

⊕

g
I
2

︷ ︸︸ ︷

gα+β ⊕ gα+β+γ

Sp2

S2
3 = {dz1 + z2dz3}
(w3 − w1w2, 2w2, w1)

g
I
1

︷ ︸︸ ︷

gα ⊕ gα+β

⊕
g
I
2

︷ ︸︸ ︷
g2α+β

S7
4 = {dz1 + z2dz3, dz2 + z4dz3}

(w4 − w1w3 + 1

3
w2

1
w2, 2w3 − w1w2, w1, 2w2)

g
I
1

︷ ︸︸ ︷

gα ⊕ gβ
⊕

g
I
2

︷ ︸︸ ︷
gα+β

⊕
g
I
3

︷ ︸︸ ︷
gα+2β

Sp3
S3
5 = {dz1 + z2dz3 + z4dz5}

(w5 − w1w4 − w2w3, 2w4, w1, 2w3, w2)

g
I
1

︷ ︸︸ ︷

gα ⊕ gα+β ⊕ gα+β+γ ⊕ gα+2β+γ

⊕
g
I
2

︷ ︸︸ ︷
g2α+2β+γ

G2

S11
5 (z25) = {dz1 + z3dz4, dz2 + z5dz3 + z25dz4, dz3 + 2z5dz4}

(w4 − 3

2
w1w3 − w2

1
w2, w5 − 3

2
w2w3 − w1w

2

2
,− 3

3√
3

w3 − 3

3√
3

w1w2,− 3
√
3w1,− 3

√
3w2)

g
I
1

︷ ︸︸ ︷

gα ⊕ gα+β

⊕
g
I
2

︷ ︸︸ ︷
g2α+β

⊕

g
I
3

︷ ︸︸ ︷

g3α+β ⊕ g3α+2β

S3
5 = {dz1 + z2dz3 + z4dz5}

(w5 − 3

2
w2w3 − 1

2
w1w4, 3w2, w3, w4, w1)

g
I
1

︷ ︸︸ ︷

gβ ⊕ gα+β ⊕ g2α+β ⊕ g3α+β

⊕
g
I
2

︷ ︸︸ ︷
g3α+2β

1
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Remark: Since so5 is isomorphic to sp2 and so6 to su4, the corresponding
Pfaffian systems must be equivalent. However since in each case the details of
the calculation are different and for the sake of confirmation their description is
also included in the above list.

5 Application: infinitesimal symmetries.

The remainder of this note presents an example of how the twistor Pfaffian sys-
tems discussed above are related to the corresponding Lie algebra of infinitesimal
symmetries, which in general is infinite dimensional.

It is well known that gC ⊆ L(S), because the superhorizontal distribution is a
GC−invariant distribution, i.e. GC acts on GC/PI by left translations preserving
SH . More precisely, for any X ∈ gC the infinitesimal symmetries of SH are
given in a canonical way by the vector fields:

X∗
[g] =

d

dt
[exp(tX)g]|t=0, (7)

with [g] ∈ B, the big cell of GC/PI .

Secondly, E. Cartan observed (see [8]) that the Pfaffian system S11
5 (z25) on

C5 has the property L(S11
5 (z25))

∼= gC2 and therefore dimL(S11
5 (z25))C = 14.

More generally, K. Yamaguchi in [10] considered examples of regular differ-
ential systems, which turn out to agree with the Pfaffian systems arising from
twistor fibrations. For any such system S, the main result of [10] asserts that
L(S) ∼= gC except for the following three cases:

(1) gC = gI−1 ⊕ gI0 ⊕ gI1.

(2) gC =
⊕2

i=−2 g
I
i (If dim gI−2 = dim gI2 = 1).

(3) gC is a Lie algebra of type Al such that I = {α1, αm}, or type Cl such
that I = {α1, αl}. (1<m< l).

Notice that all the examples presented in table 4 belong to one of these cat-
egories with the exception of S11

5 (z25), the Cartan case.

The fact that the Pfaffian system S2
3 on C3 originates from two different

twistor fibrations (see table 4) give us a natural explanation of the fact that
dimL(S2

3) = ∞. In fact, as we have seen in 3.1, the twistor fibration

π : SU3/S(U1 × U1 × U1) ∼= F3(C) → SU3/S(U1 × U2) ∼= CP 2,

with big cell C3 has a superhorizontal distribution generated by {∂1, ∂2+w1∂3}
and therefore a Pfaffian system S = {dw3 − w1dw2}, which is equivalent to S2

3

under the change of coordinates: (z1, z2, z3) = (w3,−w1, w2). By computing (7)
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for a basis of the lie algebra sl3C, a set of 8 vector fields is obtained. The Lie
algebra L′ spanned by this set is a subalgebra of the infinitesimal symmetries
of S2

3 . Similarly, for the fibration

π : Sp2/Sp1 × U1
∼= CP 3 → Sp2/Sp1 × Sp1 ∼= S4,

we have SH = 〈{∂1 − w2∂3, ∂2 + w1∂3}〉 and S = {dw3 + w2dw1 − w1dw2}
which under the change of coordinates (z1, z2, z3) = (w3 − w1w2, 2w2, w1) also
corresponds to S2

3 . In the same way as above, we can construct a Lie subalgebra
L′′ of L(S2

3) spanned by 10 vector fields by means of (7).

By direct calculation we find that the Lie algebra 〈L′,L′′〉 generated by L′

and L′′ is an infinite dimensional Lie subalgebra of L(S2
3). In a future paper

we shall discuss further ramifications of this observation.
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