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Abstract 

 
We observe after Bayle and Rosales that the Levy-Gromov isoperimetric 

inequality generalizes to convex manifolds with boundary. 
 

 
1. Introduction. The Levy-Gromov isoperimetric inequality ([G, §2.2], [BZ, 34.3.2]) 
provides a sharp lower bound on the perimeter required to enclose given volume in a 
closed manifold M in terms of a positive lower bound on the Ricci curvature, by 
comparison with the sphere. Our Theorem 1 shows that the result and its proof 
generalize to compact, convex manifolds with boundary. The heart of the proof is the 
observation that the region of prescribed volume is covered by rays normal to the 
enclosing, area-minimizing surface, yielding an inequality for the volume in terms of the 
surface and its mean curvature after Heintze and Karcher [HK]. In a convex manifold with 
boundary, the surface should meet the boundary of M orthogonally, the normal rays 
should still cover the region, and the same result should hold. 
 The case of smooth boundary was proved by Bayle and Rosales [BR, Thm. 4.8], 
using the second variation formula. 
 

 So let M be a compact, convex n-dimensional Riemannian manifold with 
boundary B, smooth on the interior. The (partially free boundary) isoperimetric problem 
seeks a region of prescribed volume fraction 0 < V < 1 of least perimeter, not counting 
perimeter inside B. We review some results from geometric measure theory (see [M1], 
[M3]). Existence follows from standard compactness arguments. Let S be the closure of 
the part of the boundary of the region in the interior of M. At an interior point p, S has a 
tangent cone, area-minimizing without volume constraint; if such a cone is a plane, then S 
is a smooth, constant-mean-curvature hypersurface at p. (Actually it is known that the 
interior singular set has Hausdorff dimension at most n−8.) At boundary points of S, 
tangent “cones” still exist, and one expects S to be normal to B at most regular points of 
B, although we do not need such delicate regularity. 

For our convexity hypothesis, all we need to know is that M has a convex tangent 
cone at all boundary points, that some shortest path between interior points lies on the 
interior, and that some shortest path between an interior point and a boundary point q is 
not tangent to the boundary at q. 
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1. Theorem (Levy-Gromov for convex manifolds with boundary). Let M be an n-
dimensional, compact, convex, connected Riemannian manifold with boundary, smooth on 
the interior, with Ricci curvature bounded below by n−1 and volume λ times the volume of 
the unit sphere. Then the isoperimetric profile P(V), the least perimeter to enclose given 
volume fraction 0<V<1, satisfies 
 
(9) P   ≥  λP0 , 
 
where P0 is the isoperimetric profile of the unit sphere. Equality holds only if M is the 
round suspension of a space form with boundary . 
 
We provide a sketch of the whole proof. The main new ingredient for the generalization 
appears in paragraph three, the observation that shortest paths from an interior point to 
an isoperimetric surface meet the surface on the interior, so that normal rays from the 
interior of the surface cover the interior of the region. 
 
Proof sketch. For given volume fraction 0 < V < 1, let P be the perimeter of a minimizing 
hypersurface S in M and let P0 be the perimeter of the hypersphere S0 in the unit sphere. 
By replacing V by 1−V (which changes the sign of the mean curvatures) if necessary, we 
may assume that the mean curvature of S is greater than or equal to that of S0. 
 The idea is to estimate V by the volume of the union of rays normal to S at regular 
points of S. Consider a shortest path γ from a point p to the surface S, meeting S at a 
point q. We claim that if q is an interior point, then q must be a regular point of S. Since γ 
is a shortest path, an (area-minimizing) tangent cone C to S at q lies in the far halfspace 
bounded by the hyperplane normal to γ. It follows that C must be a hyperplane (or 
moving the vertex in the direction of the continuation of γ would decrease area to first 
order). Moreover, as a shortest path, γ must meet S normally.  
 We claim that q cannot be a boundary point; suppose it were. Since γ is a shortest 
path, C must lie in the far half-space intersect the convex tangent cone C' to the boundary 
of M at q. It follows that C must be the portion of a hyperplane inside C' and that the 
line tangent to γ at q must lie in C' (or moving the vertex in the direction of the 
continuation of γ would decrease area to first order; if the line leaves C' keep only the part 
of C inside C' and do better). Thus γ is tangent to the boundary of M at q, a contradiction 
of convexity.  
  Therefore the union of rays normal to S at regular points of S cover the region of 
volume fraction V. By the calculus estimate of Heintze-Karcher [HK], the volume λV 
enclosed by S satisfies 
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as desired. If equality holds for some V, then a pencil of geodesics normals to S must be 
isometric to a pencil of normals to the equator of a round sphere, M is the round 
suspension of a convex space form with boundary, and equality holds for all V.  
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Technical note. While the existence of a tangent cone depends on so-called 
monotonicity, we just need a non-zero tangent object (weak limit of homothetic 
expansions), which follows from lower density bounds (which can be proved for example 
as in [M2, Lemma 3.6]) and trivial upper density bounds. This not an issue when M is 
smooth up to the boundary. 
 
2. Corollary. Let R be a convex subregion of the nD unit hemisphere with volume λ times 
the volume of the hemisphere. Then the isoperimetric profile P(V) (least perimeter to 
enclose given volume fraction 0<V<1) satisfies 
 
(9) P   ≥  λP1 , 
 
where P1 is the isoperimetric profile of the unit hemisphere. If equality holds for some V, 
then M is the suspension of a convex subset of an equatorial hypersphere (and hence 
equality holds for all V). 
 
Proof. Corollary 2 follows immediate from Theorem 1 because P1 = .5P0 and the λ of the 
corollary is twice the λ of the theorem. 
 

As a further corollary we have an isoperimetric result stated in Morgan [M2, 
Rmk. 3.11], a paper which dealt primarily with the surface of polytopes. Corollary 3 was 
proved earlier without uniqueness by Lions and Pacella [LP, Thm. 1.1]. See also [M4, 
Rmk. after Thm. 10.6] and for the smooth case [RR,Thm. 4.11]. 
 
3. Corollary. Let Pn be a solid (convex) polytope in Rn. For small prescribed volume, 
isoperimetric regions are balls about a vertex. 
 
Proof.The proof for solid polytopes follows the proof for surfaces of polytopes [M2]. 
The proof applies an isoperimetric comparison theorem [Ros, Thm. 3.7]  for products 
and cones to the cone C over a vertex of P. Roughly, since balls about the origin are 
isoperimetric in a halfplane, they are isoperimetric in C. There is a hypothesis on the link, 
which requires Corollary 2 above, without the need for smoothing or the consequent loss 
of uniqueness which occur in the original proof for surfaces of polytopes.   
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