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THE CLASSIFICATION OF SIMPLE JACOBI–RICCI

COMMUTING ALGEBRAIC CURVATURE TENSORS

P. GILKEY AND S. NIKČEVIĆ

Abstract. We classify algebraic curvature tensors such that the Ricci oper-
ator ρ is simple (i.e. ρ is complex diagonalizable and either Spec{ρ} = {a}
or Spec{ρ} = {a1 ± a2

√
−1}) and which are Jacobi–Ricci commuting (i.e.

ρJ (v) = J (v)ρ for all v).

This is dedicated to Professor Oldrich Kowalski

The study of curvature is fundamental in differential geometry. It is often con-
venient to work first in an abstract algebraic context and then subsequently to pass
to the geometrical setting. We say that M := (V, 〈·, ·〉, A) is a model if 〈·, ·〉 is a
non-degenerate inner-product of signature (p, q) on a real vector space V of dimen-
sion m = p + q and if A ∈ ⊗4V ∗ is an algebraic curvature tensor, i.e. a 4-tensor
which has the symmetries of the Riemann curvature tensor:

(1)
A(v1, v2, v3, v4) = −A(v2, v1, v3, v4) = A(v3, v4, v1, v2),
A(v1, v2, v3, v4) +A(v2, v3, v1, v4) +A(v3, v1, v2, v4) = 0 .

If P is a point of a pseudo-Riemannian manifold M = (M, g), then the associated
model is defined by setting M(M, P ) := (TPM, gP , RP ) where RP is the curvature
tensor of the Levi–Civita connection; every model is geometrically realizable in this
fashion. Consequently the study of algebraic curvature tensors plays a central role
in many geometric investigations.

If M is a model, then Jacobi operator J , the skew-symmetric curvature operator
R, and the Ricci operator ρ are defined by the identities:

〈J (x)y, z〉 = A(y, x, x, z), 〈R(x, y)z, w〉 = A(x, y, z, w),

〈ρx, y〉 = Tr
{

z → 1
2R(z, x)y + 1

2R(z, y)x
}

.

One says M is Einstein if ρ = a id; a is called the Einstein constant.
The study of commutativity properties of natural operators defined by the cur-

vature tensor was initiated by Stanilov [4, 5] and has proved to be a very fruitful
one; we refer to [1] for a survey of the field and for a more complete bibliography
than is possible to present here.

We begin with the following fundamental result which is established in [2] and
which examines when the Jacobi operator or the skew-symmetric curvature operator
commutes with the Ricci operator:

Lemma 1. The following conditions are equivalent for a model M:

(1) J (v)ρ = ρJ (v) for all v ∈ V .
(2) R(v1, v2)ρ = ρR(v1, v2) for all v1, v2 ∈ V .
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(3) A(ρv1, v2, v3, v4) = A(v1, ρv2, v3, v4) = A(v1, v2, ρv3, v4)
= A(v1, v2, v3, ρv4) for all v1, v2, v3, v4 ∈ V .

One says that a model M is decomposable if there is an orthogonal direct sum
decomposition V = V1 ⊕V2 inducing a splitting A = A1⊕A2; M is indecomposable
if it is not decomposable. Let Spec(ρ) ⊂ C be the spectrum of the Ricci operator.
One has [3]:

Lemma 2. If M is an indecomposable Jacobi–Ricci commuting model, then either
Spec(ρ) = {a1} or Spec(ρ) = {a1 ± a2

√
−1} where a2 > 0.

Although ρ is self-adjoint, ρ need not be diagonalizable in the higher signa-
ture setting and in fact the Jordan normal form of ρ can be quite complicated.
To simplify the discussion, we shall suppose ρ complex diagonalizable henceforth.
Motivated by Lemmas 1 and 2, we make the following:

Definition 3. If M is a model which has any of the (3) equivalent properties listed
in Lemma 1, then M is said to be a Jacobi–Ricci commuting model. If in addition,
the Ricci operator ρ is complex diagonalizable and if either Spec(ρ) = {a1} or
Spec(ρ) = {a1 ± a2

√
−1} for a2 > 0, then M is said to be a simple Jacobi–Ricci

commuting model. If M is a pseudo-Riemannian manifold, then M is said to be
simple Jacobi–Ricci commuting if M(M, P ) is a simple Jacob–Ricci commuting
model for all points P of M .

The following is immediate from the definitions we have given.

Lemma 4. Let M be a model.

(1) M is Einstein if and only if M is a simple Jacobi–Ricci commuting model
with Spec(ρ) = {a1}.

(2) Let M be a simple Jacobi–Ricci commuting model which is not Einstein.
Set J = JM := a−1

2 {ρ− a1 id}. Then J is a self-adjoint complex structure
on V , A(Jx, y, z, w) = A(x, Jy, z, w) = A(x, y, Jz, w) = A(x, y, z, Jw), and
ρ = a1 + a2J .

In view of Lemma 4 (1), we shall assume M is not Einstein henceforth. The
following ansatz for constructing simple Jacobi–Ricci commuting models which are
not Einstein will be crucial:

Definition 5. Let N := (V0, g, A1, A2) where g is a positive definite inner product
on a finite dimensional real vector space V0 and where A1 and A2 are Einstein
algebraic curvature tensors with Einstein constants, respectively, a1 and a2 > 0.
Extend g, A1, and A2 to be complex linear on the complexification VC := V0 ⊗R C.
Let V := V0⊕V0

√
−1 be the underlying real vector space of VC, let 〈·, ·〉 := Re g(·, ·),

and let A := Re{A1 +
√
−1A2} define M(N) := (V, 〈·, ·〉, A).

The following classification result is the fundamental result of this paper:

Theorem 6. Adopt the notation established above:

(1) M(N) is a simple Jacobi–Ricci commuting model which is not Einstein,
which has Spec{ρ} = {2a1 ± 2a2

√
−1}, and which has that JM(N) is mul-

tiplication by
√
−1.

(2) Let M be a simple Jacobi–Ricci commuting model which is not Einstein
with Spec(ρ) = {2a1 ± 2a2

√
−1} for a2 > 0. Then there exists N so M is

isomorphic to M(N).
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(3) If N = (V0, g, A1, A2) and Ñ = (Ṽ0, g̃, Ã1, Ã2), then M(N) is isomorphic to

M(Ñ) if and only if there is an isomorphism θ : V0 → Ṽ0 and a skew-adjoint
linear transformation T of (V0, g) with |T | < 1 so that:

(2)

g̃(θv, θw) = g(v, w)− g(Tv, Tw),

Ã1(θv, θw, θx, θy) = A1(v, w, x, y)−A1(Tv, Tw, x, y)
−A1(Tv, w, Tx, y)−A1(Tv, w, x, T y)−A1(v, Tw, Tx, y)
−A1(v, Tw, x, T y)−A1(v, w, Tx, T y) +A1(Tv, Tw, Tx, T y)
−A2(Tv, w, x, y)−A2(v, Tw, x, y)−A2(v, w, Tx, y)
−A2(v, w, x, T y) +A2(Tv, Tw, Tx, y) +A2(Tv, Tw, x, T y)
+A2(Tv, w, Tx, T y) +A2(v, Tw, Tx, T y)

Ã2(θv, θw, θx, θy) = A2(v, w, x, y)−A2(Tv, Tw, x, y)
−A2(Tv, w, Tx, y)−A2(Tv, w, x, T y)−A2(v, Tw, Tx, y)
−A2(v, Tw, x, T y)−A2(v, w, Tx, T y) +A2(Tv, Tw, Tx, T y)
+A1(Tv, w, x, y) +A1(v, Tw, x, y) +A1(v, w, Tx, y)
+A1(v, w, x, T y)−A1(Tv, Tw, Tx, y)−A1(Tv, Tw, x, T y)
−A1(Tv, w, Tx, T y)−A1(v, Tw, Tx, T y)

Theorem 6 completes the analysis in the algebraic setting. In the geometric set-
ting, by contrast, the situation is still far from clear. However there is a geometrical
example known [2] in signature (2, 2) which may be described as follows; we refer
to [2] for further details. Let (x1, x2, x3, x4) be coordinates on R4. Define a metric
whose non-zero components are, up to the usual Z2 symmetries, given by:

(3)
g(∂1, ∂3) = g(∂2, ∂4) = 1, g(∂3, ∂4) = s(x2

2 − x2
1),

g(∂3, ∂3) = 2sx1x2, g(∂4, ∂4) = −2sx1x2 .

Lemma 7. Let M be as in Equation (3). Then M is a locally symmetric simple
Jacobi–Ricci commuting manifold with Spec(ρ) = {±2s

√
−1} of signature (2, 2).

The Ricci oprator and non-zero curvatures are described by:

R1314 = s, R1323 = −s, R1424 = s, R2324 = −s,

ρ∂1 = −2s∂2, ρ∂2 = 2s∂1, ρ∂3 = 2s∂4, ρ∂4 = −2s∂3 .

The remainder of this note is devoted to the proof of Theorem 6.

Proof of Theorem 6 (1): We generalize the discussion of [2]. Let {ei} be an or-
thonormal basis for V0. Let e

+
i := ei and e−i :=

√
−1ei be an orthonormal basis for

V ; the vectors e+i are spacelike and the vectors e−i are timelike so M(N) has neutral
signature. Clearly the symmetries of Equation (1) hold for the complexification of
A1 and A2 and, consequently, for A1 +

√
−1A2 and A = Re(A1 +

√
−1A2). Thus

M(N) is a model and the non-zero components of A relative to this basis are given
by:

(4)

A(e−i , e
+
j , e

+
k , e

+
l ) = A(e+i , e

−
j , e

+
k , e

+
l ) = A(e+i , e

+
j , e

−
k , e

+
l )

= A(e+i , e
+
j , e

+
k , e

−
l ) = −A2(ei, ej, ek, el),

A(e+i , e
−
j , e

−
k , e

−
l ) = A(e−i , e

+
j , e

−
k , e

−
l ) = A(e−i , e

−
j , e

+
k , e

−
l )

= A(e−i , e
−
j , e

−
k , e

+
l ) = A2(ei, ej , ek, el),

A(e+i , e
+
j , e

+
k , e

+
l ) = A(e−i , e

−
j , e

−
k , e

−
l ) = A1(ei, ej, ek, el),

A(e+i , e
+
j , e

−
k , e

−
l ) = A(e+i , e

−
j , e

+
k , e

−
l ) = A(e−i , e

+
j , e

+
k , e

−
l )

= A(e+i , e
−
j , e

−
k , e

+
l ) = A(e−i , e

+
j , e

−
k , e

+
l ) = A(e−i , e

−
j , e

+
k , e

+
l )

= −A1(ei, ej, ek, el) .
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Let ρ := ρA and ρi := ρAi
. We sum over k in the following expansions to see:

〈ρe+i , e+j 〉 = A(e+i , e
+
k , e

+
k , e

+
j )−A(e+i , e

−
k , e

−
k , e

+
j ) = 2ρ1(ei, ej) = 2a1δij ,

〈ρe−i , e−j 〉 = A(e−i , e
+
k , e

+
k , e

−
j )−A(e−i , e

−
k , e

−
k , e

−
j ) = −2ρ1(ei, ej) = −2a1δij ,

〈ρe+i , e−j 〉 = A(e+i , e
+
k , e

+
k , e

−
j )−A(e+i , e

−
k , e

−
k , e

−
j ) = −2ρ2(ei, ej) = −2a2δij .

This shows that ρe±i = 2a1e
±
i ± 2a2e

∓
i . Thus we may view ρ as acting by complex

scalar multiplication by λ := 2a1+2a2
√
−1 on VC. This implies that the underlying

real operator is complex diagonalizable and Spec(ρ) = {λ, λ̄}. Since the tensors Ai

were extended to be complex multi-linear, we have

A(ρv1, v2, v3, v4) = Re{A1(λv1, v2, v3, v4) +
√
−1A2(λv1, v2, v3, v4)}

= Re{λA1(v1, v2, v3, v4) +
√
−1λA2(v1, v2, v3, v4)}

= Re{A1(v1, λv2, v3, v4) +
√
−1A2(v1, λv2, v3, v4)} = A(v1, ρv2, v3, v4) .

This establishes one equality of Lemma 1 (3); the other equalities follow similarly
and hence M(N) is Jacobi–Ricci commuting as well. ⊓⊔

We shall need the following technical result before establishing the second as-
sertion of Theorem 6. Although well known, we include the proof for the sake of
completeness and to establish notation:

Lemma 8. Let J be a self-adjoint map of (V, 〈·, ·〉) so that J2 = − id. Then there
exists an orthonormal basis {e±1 , ..., e±p } for V so that Je±i = ±e∓i .

Proof. We assume that p = 1 as the general result then follows by induction. Let
{f±} be an orthonormal basis for V where f+ is spacelike and f− is timelike. As
J is trace-free and self-adjoint,

J =

(

a b

−b −a

)

.

Since J2 = − id, b2 − a2 = 1. Let e(θ) := cosh θf+ + sinh θf−. Then

〈Je(θ), e(θ)〉
= 〈(a cosh θ + b sinh θ)f+ + (−b cosh θ − a sinh θ)f−, cosh θf+ + sinh θf−〉
= a cosh2 θ + b cosh θ sinh θ + b cosh θ sinh θ + a sinh2 θ

= 1
2{(a+ b)e2θ + (a− b)e−2θ} .

Since a2 − b2 = −1, a+ b and a− b have opposite signs. Thus for some value of θ,
we have 〈Je(θ), e(θ)〉 = 0. Set e+i = e(θ) and e−i = Je(θ). ⊓⊔

Proof of Theorem 6 (2): Let M = (V, 〈·, ·〉, A) be a simple Jacobi–Ricci commut-
ing model. Assume that the Ricci operator ρ is complex diagonalizable and that
Spec(ρ) = {2a1± 2a2

√
−1} for a2 > 0. By Lemma 8, there is an orthonormal basis

{e±i } for V so Je±i = ±e∓i . Set

A1(ei, ej, ek, el) := A(e+i , e
+
j , e

+
k , e

+
l ),

A2(ei, ej, ek, el) := −A(e−i , e
+
j , e

+
k , e

+
l ) .

We may then derive the relations of Equations (4) from Lemma 4 (2). We check
that A1 and A2 are algebraic curvature tensors by verifying that:
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A1(ei, ej , ek, el) = A(e+i , e
+
j , e

+
k , e

+
l ) = −A(e+j , e

+
i , e

+
k , e

+
l )

= −A1(ej , ei, ek, el),

A1(ei, ej , ek, el) = A(e+i , e
+
j , e

+
k , e

+
l ) = A(e+k , e

+
l , e

+
i , e

+
j )

= A1(ek, el, ei, ej),
A1(ei, ej , ek, el) +A1(ej , ek, ei, el) +A1(ek, ei, ej , el)

= A(e+i , e
+
j , e

+
k , e

+
l ) +A(e+j , e

+
k , e

+
i , e

+
l ) +A(e+k , e

+
i , e

+
j , e

+
l ) = 0,

A2(ei, ej , ek, el) = −A(e−i , e
+
j , e

+
k , e

+
l ) = A(e+j , e

−
i , e

+
k , e

+
l )

= −A(e−j , e
+
i , e

+
k , e

+
l ) = −A2(ej , ei, ek, el),

A2(ek, el, ei, ej) = −A(e−k , e
+
l , e

+
i , e

+
j ) = −A(e+i , e

+
j , e

−
k , e

+
l )

= −A(e−i , e
+
j , e

+
k , e

+
l ) = A2(ei, ej, ek, el),

A2(ei, ej , ek, el) +A2(ej , ek, ei, el) +A2(ek, ei, ej , el)
= −A(e−i , e

+
j , e

+
k , e

+
l )−A(e−j , e

+
k , e

+
i , e

+
l )−A(e−k , e

+
j , e

+
i , e

+
l )

= −A(e−i , e
+
j , e

+
k , e

+
l )−A(e+j , e

+
k , e

−
i , e

+
l )−A(e+k , e

+
j , e

−
i , e

+
l ) = 0.

We verify A1 and A2 are Einstein by summing over k to compute

(ρ1ei, el) = A(e+i , e
+
j , e

+
j , e

+
l )

= 1
2A(e

+
i , e

+
j , e

+
j , e

+
l )− 1

2A(e
+
i , e

−
j , e

−
j e

+
l ) =

1
2 〈ρe

+
i , e

+
l 〉 = a1δil.

(ρ2ei, el) = −A(e−i , e
+
j , e

+
j , e

+
l )

= − 1
2A(e

−
i , e

+
j , e

+
j , e

+
l ) +

1
2A(e

−
i , e

−
j , e

−
j e

+
l ) = − 1

2 〈ρe
−
i , e

+
l 〉 = a2δil.

The desired result now follows. ⊓⊔

Replacing e−i by −e−i in Equation (4) yields an isomorphism between the models
N(V, (·, ·), A1, A2) and N(V, (·, ·), A1,−A2); it is for this reason that we may always
assume the Einstein constant of A2 is positive. This reflects that complex conjuga-
tion defines a field isomorphism of C taking λ → λ̄ or, equivalently, by replacing a2
by −a2 in the construction. More important, however, is the fact that the splitting
V = V+ ⊕ V− where V± := Span{e±i } which is crucial to our discussion is highly

non-unique. Let N = (V0, g, A1, A2) and let Ñ = (Ṽ0, g̃, Ã1, Ã2). Let M = M(N)

and M̃ = M(Ñ). Let J and J̃ be the associated complex structures on V and on

Ṽ , respectively. We then have maximal spacelike subspaces V+ := V0 and Ṽ+ := Ṽ0

of V and Ṽ , respectively, so that for all x, y, z, w in V0 and for all x̃, ỹ, z̃, w̃ in Ṽ0,

V+ ⊥ JV+, Ṽ+ ⊥ J̃ Ṽ+,

A1(v, w, x, y) = A(v, w, x, y), Ã1(ṽ, w̃, x̃, ỹ) = Ã(ṽ, w̃, x̃, ỹ),

A2(v, w, x, y) = A(Jv, w, x, y), Ã2(ṽ, w̃, x̃, ỹ) = −Ã(J̃ ṽ, w̃, x̃, ỹ),
g(x, y) = 〈x, y〉, g̃(x̃, ỹ) = 〈x̃, ỹ〉 .

Suppose that Θ is an isomorphism from M to M̃. We may then identify V = Ṽ

and J = J̃ . The decomposition V = V+ ⊕ JV+ defines orthogonal projections π±.

Since Ṽ+ is spacelike, π+ defines an isomorphism θ from Ṽ+ to V+. Let

T = −J ◦ π− ◦ θ−1 : V+ → Ṽ+ → V− → V+ .

We may then represent any element of Ṽ+ in the form v + JTv for v ∈ V+.

Lemma 9. Adopt the notation established above:

(1) Ṽ+ ⊥ JṼ+ if and only if T is skew-adjoint.

(2) The induced metric on Ṽ+ is positive definite if and only if |T | < 1.
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Proof. We have that J is self-adjoint and that J2 = − id. Consequently, we have
the following implications which establish Assertion (1):

Ṽ+ ⊥ JṼ+.

⇔ 〈v + JTv, Jw + JJTw〉 = 0 for all v, w ∈ V+.

⇔ −〈v, Tw〉 − 〈Tv, w〉 = 0 for all v, w ∈ V+.

⇔ T is skew-adjoint.

We argue similarly to prove Assertion (2):

〈v + JTv, v + JTv〉 > 0 for all 0 6= v ∈ V+.

⇔ g(v, v)− g(Tv, T v) > 0 for all 0 6= v ∈ V+.

⇔ |Tv|2 < |v|2 for all 0 6= v ∈ V+.

⇔ |T | < 1. ⊓⊔

Proof of Theorem 6 (3). Suppose Θ : M(V0, A1, A2) → M(Ṽ0, Ã1, Ã2) is an iso-

morphism. We use Θ to identify V with Ṽ and to parametrize Ṽ+ in the form
{v + JTV } where T is a skew-adjoint linear map of V0 with |T | < 1. We then the
following identities for all v, w, x, and y:

(5)

g̃(v, w) = 〈v + JTv, w + JTw〉,
Ã1(v, w, x, y) = A(v + JTv, w + JTw, x+ JTx, y + JTy),

Ã2(v, w, x, y) = A(J(v + JTv), w + JTw, x+ JTx, y + JTy) .

Lemma 1 (2) and Equation (5) imply that Equation (2) holds. This establishes
one implication of Theorem 6 (3). As the arguments are reversible, the converse
implication holds as well. ⊓⊔
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