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THE CLASSIFICATION OF SIMPLE JACOBI-RICCI
COMMUTING ALGEBRAIC CURVATURE TENSORS

P. GILKEY AND S. NIKCEVIC

ABSTRACT. We classify algebraic curvature tensors such that the Ricci oper-
ator p is simple (i.e. p is complex diagonalizable and either Spec{p} = {a}
or Spec{p} = {a1 + az/—1}) and which are Jacobi-Ricci commuting (i.e.
pT (v) = T (v)p for all v).

This is dedicated to Professor Oldrich Kowalski

The study of curvature is fundamental in differential geometry. It is often con-
venient to work first in an abstract algebraic context and then subsequently to pass
to the geometrical setting. We say that 0 := (V,(-,-), A) is a model if (-,-) is a
non-degenerate inner-product of signature (p, ¢) on a real vector space V' of dimen-
sion m = p+ ¢ and if A € @*V* is an algebraic curvature tensor, i.e. a 4-tensor
which has the symmetries of the Riemann curvature tensor:

(1)

If P is a point of a pseudo-Riemannian manifold M = (M, g), then the associated
model is defined by setting M(M, P) := (TpM, gp, Rp) where Rp is the curvature
tensor of the Levi—Civita connection; every model is geometrically realizable in this
fashion. Consequently the study of algebraic curvature tensors plays a central role
in many geometric investigations.

If M is a model, then Jacobi operator J, the skew-symmetric curvature operator
R, and the Ricci operator p are defined by the identities:

<‘-7(:E)y7 Z> = A(y7 x? x? 2)7 <R(‘/I;7 y)z7 w> = A(:E7 y7 27 w)?
(pz,y) = Tr {z = 3R(z,2)y + 3R(z,y)a} .

One says 9 is Einstein if p = aid; a is called the Finstein constant.

The study of commutativity properties of natural operators defined by the cur-
vature tensor was initiated by Stanilov [4] [5] and has proved to be a very fruitful
one; we refer to [I] for a survey of the field and for a more complete bibliography
than is possible to present here.

We begin with the following fundamental result which is established in [2] and
which examines when the Jacobi operator or the skew-symmetric curvature operator
commutes with the Ricci operator:

A(vy,v2,v3,v4) = —A(v2,v1,03,04) = A(vs, V4, 01,02),
A('Ul,'UQ,'Ug,’U;l) + A('UQ,'Ug,’Ul,'U4) + A(U37017027v4) = O

Lemma 1. The following conditions are equivalent for a model M :

(1) TJ()p =pJ () for allveV.
(2) R(v1,v2)p = pR(v1,v2) for all v1,v2 € V.
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(3) A(pvi,v2,v3,v1) = A(v1, pv2,v3,v4) = A(v1,v2, pv3, v4)
= A(v1,v2,v3, pvg) for all vi,va,v3,v4 € V.

One says that a model M is decomposable if there is an orthogonal direct sum
decomposition V = Vi @ V5 inducing a splitting A = A1 @ Ag; M is indecomposable
if it is not decomposable. Let Spec(p) C C be the spectrum of the Ricci operator.
One has [3]:

Lemma 2. If M is an indecomposable Jacobi-Ricci commuting model, then either
Spec(p) = {a1} or Spec(p) = {a1 £ as/—1} where az > 0.

Although p is self-adjoint, p need not be diagonalizable in the higher signa-
ture setting and in fact the Jordan normal form of p can be quite complicated.
To simplify the discussion, we shall suppose p complex diagonalizable henceforth.
Motivated by Lemmas [ and 2] we make the following:

Definition 3. If M is a model which has any of the (3) equivalent properties listed
m Lemmaldl, then I is said to be a Jacobi—Ricci commuting model. If in addition,
the Ricci operator p is complex diagonalizable and if either Spec(p) = {a1} or
Spec(p) = {a1 & as\/—1} for az > 0, then M is said to be a simple Jacobi-Ricci
commuting model. If M is a pseudo-Riemannian manifold, then M is said to be
simple Jacobi—Ricci commuting if M(M, P) is a simple Jacob—Ricci commuting
model for all points P of M.

The following is immediate from the definitions we have given.

Lemma 4. Let 9 be a model.

(1) M is Einstein if and only if M is a simple Jacobi—Ricci commuting model
with Spec(p) = {a1}.

(2) Let M be a simple Jacobi-Ricci commuting model which is not Einstein.
Set J = Jon 1= a;l{p —ayid}. Then J is a self-adjoint complex structure
onV, A(Jz,y, z,w) = Az, Jy, z,w) = A(z,y, Jz,w) = A(x,y, z, Jw), and
p=ai+axJ.

In view of Lemma Ml (1), we shall assume 9 is not Einstein henceforth. The
following ansatz for constructing simple Jacobi—Ricci commuting models which are
not Einstein will be crucial:

Definition 5. Let 91 := (V}, g, A1, A2) where g is a positive definite inner product
on a finite dimensional real vector space V and where A; and A, are Einstein
algebraic curvature tensors with Einstein constants, respectively, a; and as > 0.
Extend g, A1, and Ay to be complex linear on the complexification Vi := V) ®g C.
Let V := Vo ®Vpv/—1 be the underlying real vector space of V¢, let (-, -) := Reg(, "),
and let A := Re{A; +v/—1A43} define M(MN) := (V, (-,-), A).

The following classification result is the fundamental result of this paper:

Theorem 6. Adopt the notation established above:

(1) M(N) is a simple Jacobi-Ricci commuting model which is not Einstein,
which has Spec{p} = {2a1 + 2a27/—1}, and which has that Joym) is mul-
tiplication by v/—1.

(2) Let M be a simple Jacobi-Ricci commuting model which is not Einstein
with Spec(p) = {2a1 & 2a2v/—1} for az > 0. Then there exists M so M is
isomorphic to M(MN).
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(3) If N = (Vo,9, A1, A2) and N = Vo, §, A1, Ag), then M(MN) is isomorphic to
M(N) if and only if there is an isomorphism 0 : Vo — Vi and a skew-adjoint
linear transformation T of (Vo,g) with |T| < 1 so that:

g(0v,0w) = g(v,w) — g(Tv, Tw),

Ay (Bv, 0w, 0z, 0y) = Ay (v, w, x,y) — AL (Tv, Tw, z,y)
—Ay(Tv,w, Tx,y) — Ay (Tv,w,z, Ty) — Ay (v, Tw, Tx,y)
—A1(v,Tw,z, Ty) — Ay (v,w, Tz, Ty) + A1 (Tv, Tw, Tz, Ty)
—As(Tv,w,z,y) — As (v, Tw, z,y) — Az (v, w, Tz, y)
—As(v,w, 2z, Ty) + Ao (Tv, Tw, Tx,y) + As(Tv, Tw, x, Ty)

(2) +As(Tv,w, Tz, Ty) + As(v, Tw, Tz, Ty)

Ay (Bv, 0w, 0z, 0y) = Ax(v,w, x,y) — As(Tv, Tw, z,y)
—Ay(Tv,w, Tx,y) — As(Tv,w,x, Ty) — As(v, Tw, Tx,y)
—Ay(v,Tw,x,Ty) — As(v,w, Tz, Ty) + As(Tv, Tw, Tz, Ty)
+ A (Tv,w,x,y) + A1 (v, Tw, x,y) + A1 (v, w, Tx,y)
+A (v,w,z, Ty) — A1 (Tv, Tw, Tz, y) — A (Tv, Tw, z, Ty)
—Ay(Tv,w, Tz, Ty) — A1 (v, Tw, Tz, Ty)

Theorem [6] completes the analysis in the algebraic setting. In the geometric set-
ting, by contrast, the situation is still far from clear. However there is a geometrical
example known [2] in signature (2,2) which may be described as follows; we refer
to [2] for further details. Let (21, 2,3, 24) be coordinates on R*. Define a metric
whose non-zero components are, up to the usual Zy symmetries, given by:

3) g(01,05) = g(02,04) =1, g(3,04) = s(a3 — 27),
9(03,03) = 2sx 122, 9(04,04) = —252123 .

Lemma 7. Let M be as in Equation [3). Then M is a locally symmetric simple
Jacobi-Ricci commuting manifold with Spec(p) = {£2sv/—1} of signature (2,2).
The Ricci oprator and non-zero curvatures are described by:

Ri314 = s, Rizes = —s, Riaza =,  Rosoa = —s,

p81 = —2582, p82 = 2581, pag = 2584, pa4 = —2583.

The remainder of this note is devoted to the proof of Theorem

Proof of Theorem [@ (1): We generalize the discussion of [2]. Let {e;} be an or-
thonormal basis for Vj. Let ej ‘=¢;and e; = v/—1e; be an orthonormal basis for
V; the vectors e; are spacelike and the vectors e are timelike so (M) has neutral
signature. Clearly the symmetries of Equation (II) hold for the complexification of
A; and Ay and, consequently, for A; + /=145 and A = Re(A; + /—143). Thus
M(N) is a model and the non-zero components of A relative to this basis are given
by:

j e,ef) = A(ej‘,e] el ef) = A(ej,ej,e,:,el"')

,ez,el_) = —As(e;, €5, e, €1),

e, ,€ )= A(e;,ej,e;,ef) = A(e;,e;,ez,ef)

7,6;) = AQ(eHeJaekael)v

A(e:r, 2 i€ €€ )= 1(ez,ej,ek,el)

Alel ef e er) = Ale] e el e) = Aley e el ep)
= Alef e e, 6) = A(e;ej,e;,e?) =A<e;,e;,e:7el+>
= —A(e;, e, e, €1).
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Let p:=pa and p; := pa,. We sum over k in the following expansions to see:

(pe?‘,ej> = A(e?‘,e:,ez,ej) - A(e?‘,e;,e;,e;') = 2p1(e;, €5) = 2a10;,
(pei_,ej_> = A(e;,ez,e:,e;) —Ale; e e e5) = —2p1(e;,e5) = —2a10;5,
(pej,e}) = A(ef,ez,e:,e;) - A(e;r,e,:,e,:,e;) = —2pa(e;, ej) = —2a20;;.

This shows that peEt = 2ale§t + 2ase;. Thus we may view p as acting by complex
scalar multiplication by A := 2a; +2asv/—1 on Ve. This implies that the underlying
real operator is complex diagonalizable and Spec(p) = {\, A}. Since the tensors A;
were extended to be complex multi-linear, we have

A(pv1,va,v3,v4) = Re{A1 (A1, va,v3,v4) + V—1A3(Av1, 02, v3,04)}
= Re{)\Al(’Ul,vg,vg,U4)—|—\/—1)\A2(’Ul,’02,1}3,1}4)}
= Re{Al(Ul, )\’02; U3, U4) + v —1A2(U1, )\’02; U3, U4)} = A(Ul, pU2, V3, 'U4) .

This establishes one equality of Lemma [I] (3); the other equalities follow similarly
and hence MM(N) is Jacobi-Ricci commuting as well. O

We shall need the following technical result before establishing the second as-
sertion of Theorem [6l Although well known, we include the proof for the sake of
completeness and to establish notation:

Lemma 8. Let J be a self-adjoint map of (V, (-,-)) so that J> = —id. Then there
ezists an orthonormal basis {efc, e e?f} for V' so that Je?E = te;.

Proof. We assume that p = 1 as the general result then follows by induction. Let
{f*} be an orthonormal basis for V where f* is spacelike and f~ is timelike. As
J is trace-free and self-adjoint,

a b
J= ( ot ) |
Since J? = —id, b? — a? = 1. Let ¢(f) := coshff* +sinhf~. Then

(Je(6), ¢(0))
= {(acosh@ + bsinh@)f* + (=bcosh® — asinh @) f~,cosh@f T +sinh6f )
= acosh® + beosh@sinh 6 + bcosh @sinh 6 + asinh® §

H{(a+b)e?” + (a —b)e~2}.

Since a2 — b?> = —1, a + b and a — b have opposite signs. Thus for some value of 6,
we have (Je(f),e(6)) = 0. Set e = e(0) and e; = Je(0). O

Proof of Theorem [@ (2): Let M = (V, (-,-), A) be a simple Jacobi-Ricci commut-
ing model. Assume that the Ricci operator p is complex diagonalizable and that
Spec(p) = {2a; & 2az/—1} for az > 0. By Lemmal[§ there is an orthonormal basis
{e£} for V so Jef = +eF. Set

Aq(eiyej,ex,ep) = A(ej, e;r, e:, efL),

As(eiyej,ex, ep) = —A(e;,ej,ez,el"’)

We may then derive the relations of Equations (] from Lemma @ (2). We check
that Ay and As are algebraic curvature tensors by verifying that:
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Ai(ei,ej, e, e1) = A(ej,ej,e}l‘,e?‘) = —A(ej,ej,e}l‘,e?‘)
= —A(ej, e, ek, €1),
Aq(ei,ej, ek, er) = A(e?‘,e}',ez,el"’) = A(ez,ef,ej,ej)
:Al(ek,el,ei,ej),
Al(ez,e],ek,el) —i—Al(eJ,ek,el,el) —i—Al(ek,ez,e],el)
= A(ef, €5 ,ek,el D)+ Alef €, 7€k7 i vez )+A(ek7 i 7eg+=€z+)—07

As(eiyej e, e) = —Ale; ,ej,ez,ef) = A(e;L,eZ cervel)
= —Ale; €;,¢; 7ezvel+) = —Az(ej, e, ex, €1),
AQ(ekvel;e’LveJ) A(ek; ,6?,6?,6;) A(ejaejvelgaef)

= _A( € ] ,6:,6?) A2(6156J56k76l);

As(ei, e, ex, er) +A2(€J,€k,6i,€z) + As(ex, ei,e4,€r)
= _A( i ] 762_’6?_) A(eg‘_’ez’ejve;_) _A(elzvej’ez—'i_’e?_)

= —Ae; ;€] efelef) — A(ej,ez,e;,e?') - A(ez,e;’,ei—,el"’) =0.

We verify A; and As are Einstein by summing over k to compute

(preiser) = Aef el ef e?‘)

3

= %A(ej,ej,ej,e?) — %A(ej,ej_,ej_e?') = 3{pef.ef) = arda.
(p2e7,7€l) _A(el_uej7e;_76?_)
= —1A(e; ,ej',e;',el"’) %A(ei_,ej_,ej_e?') = —1{pe; e ) = azxdy.
The desired result now follows. a

Replacing e; by —e; in Equation (@) yields an isomorphism between the models
NV, (-, 1), A1, Az) and ‘ﬁ( , (1), A1, — Ag); it is for this reason that we may always
assume the Einstein constant of As is positive. This reflects that complex conjuga-
tion defines a field isomorphism of C taking A — A or, equivalently, by replacing as
by —as in the construction. More important, however, is the fact that the splitting
V =V, & V_ where Vi := Span{ejt} which is crucial to our discussion is highly
non-unique. Let 9 = (Vp, g, 41, A2) and let N = Vo, §, A1, Az). Let O = M(N)
and 9 = M(MN). Let J and J be the associated complex structures on V and on
v, respectively. We then have maximal spacelike subspaces V,. := Vj and V+ = Vo
of V and V, respectively, so that for all z, y, z, w in V, and for all Z, §, Z, @ in Vj,

Vi LJVy, Ve LIV,

Al(vaw7x7y) = A(U7w7x7y)7 41(?},@,@,@) = A(?u@ai‘7g)u
A2(va73373/) = A(J’vavxvy)a AQ(i}a ~7 N?ﬂ) = —A(J’D,d),f,g),
9(x,y) = (z,y), 9(x,9) = (2,9) -

Suppose that © is an isomorphism from 9 to M. We may then identify V =V
and J = J. The decomposition V' =V, & JV, defines orthogonal projections 7.
Since V is spacelike, 71 defines an isomorphism 6 from V, to V. Let

T=—Jom_ o0 'V, 5V, -V_ = V,.
We may then represent any element of V. in the form v + JTw for v € V.

Lemma 9. Adopt the notation established above:
(1) Vi L JV, if and only if T is skew-adjoint.
(2) The induced metric on Vi is positive definite if and only if |T| < 1.
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Proof. We have that J is self-adjoint and that J? = —id. Consequently, we have
the following implications which establish Assertion (1):
Ve LJV,.
< v+ JTv, Jw+ JJTw) =0 for all v,w € V4.
< —(v,Tw) — (Tv,w) =0 for all v,w € V.
& T is skew-adjoint.
We argue similarly to prove Assertion (2):

(v+ JTv,v+ JTv) >0 for all 0 £ v € V.
< g(v,v) — g(Tv,Tv) >0 for all 0 # v € Vj.
& [Tv|]? < |v]? for all 0 # v € V.
< |T) < 1. O

Proof of Theorem [@ (3). Suppose © : M(Vpy, Ay, As) — M(Vo, A1, As) is an iso-
morphism. We use © to identify V with V and to parametrize V+ in the form
{v+ JTV} where T is a skew-adjoint linear map of Vp with |7 < 1. We then the
following identities for all v, w, x, and y:

g(v,w) = (v + JTv,w + JTw),

(5) 41(v,w,:v,y):A(v+JTv,w—i—JTw,:v—i—JTx,y—i—JTy),
As(v,w,x,y) = A(J(v+ JTw),w+ JTw,x + JTz,y + JTy) .

Lemma [ (2) and Equation (@) imply that Equation (2)) holds. This establishes
one implication of Theorem [B (3). As the arguments are reversible, the converse
implication holds as well. a
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