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TESTING BENSON’S REGULARITY CONJECTURE

DAVID J. GREEN

Abstract. D. J. Benson conjectures that the Castelnuovo-Mumford regular-
ity of the cohomology ring of a finite group is always zero. More generally
he conjectures that there is always a very strongly quasi-regular system of pa-
rameters. Computer calculations show that the second conjecture holds for all
groups of order less than 256.

1. Introduction

This paper is concerned with a conjecture of D. J. Benson [4] about the commu-
tative algebra of group cohomology rings. There are several results relating the
group structure of a finite group G to the commutative algebra of its cohomology
ring H∗(G) = H∗(G, k) with coefficients in a field of characteristic p. For the
Krull dimension and depth we have the following inequalities, where S denotes
a Sylow p-subgroup of G. Recall that the p-rank of G is the rank of the largest
elementary abelian p-subgroup.

(1) p-rk(Z(S)) ≤ depthH∗(S) ≤ depthH∗(G) ≤ dimH∗(G) = p-rk(G) .

See Evens’ book [11] for proofs of the first inequality (Duflot’s theorem) and
the last one (due to Quillen). The second inequality is Theorem 2.1 of Benson’s
paper [2] and “must be well known”. The third is automatic for finitely generated
connected k-algebras. Note that the dimension and depth only depend on G, p:
not on k. These inequalities motivate the following definitions.

Definition. Let G, p, k, S be as above. The group-theoretic defect gtDp(G), and
the Cohen–Macaulay defect δp(G) are defined by

gtD(G) = p-rk(G)− p-rk(Z(S)) δ(G) = dimH∗(G, k)− depthH∗(G, k)

It follows from Eqn. (1) that

0 ≤ δ(G) ≤ gtD(G) gtD(G) = gtD(S) δ(G) ≤ δ(S) .(2)

The term Cohen–Macaulay defect (sometimes deficiency) is already in use among
workers in the field. To state Benson’s conjectures we need some terminology.
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Definition. Let p, k be as above. Let A be a graded commutative k-algebra
which is both connected and finitely generated. Connected means that A0 = k
and A<0 = 0. Let ζ1, . . . , ζr be a system of homogeneous elements in A>0, and
set ni = |ζi| > 0.

a) The system is called a filter-regular system of parameters if multiplication
by ζi+1 has finite-dimensional kernel as an endomorphism of A/(ζ1, . . . , ζi)
for each 0 ≤ i ≤ r, where ζr+1 = 0. Observe that a filter-regular system of
parameters really is a system of parameters.

b) A very strongly quasi-regular system of parameters is a system which is
a filter-regular system of parameters by virtue of the property that this
kernel is restricted to degrees ≤ n1+ · · ·+ni+ di for each 0 ≤ i ≤ r, where
dr = −r and di = −i− 1 for all i < r.

Theorem 1.1 (Benson). Let G be a finite group, p a prime number and k a field
of characteristic p.

a) The cohomology ring A = H∗(G, k) does have filter-regular systems of pa-
rameters: the Dickson invariants (suitably interpreted) form one.

b) Either every filter-regular system of parameters in A is very strongly quasi-
regular, or none are.

c) If the Cohen–Macaulay defect of G satisfies δ(G) ≤ 2 then there is a very
stong quasi-regular system of parameters in A. In particular δ(G) ≤ 2
holds for all 267 groups of order 64.

d) If there is a very strongly quasi-regular system of parameters in A, then the
Castelnuovo–Mumford regularity of A is zero.

Proof. The main reference is Benson’s paper [4]. Part a) is Coroll. 9.8 and Part b)
is Coroll. 4.7(c), whereas Part d) follows from Coroll. 4.7(c) and Theorem 4.2.
The first statement of Part c) is Theorem 1.5 of [4]; the second one was observed
by Carlson [8, 10], who computed the cohomology ring of every group of order 64.
The reader may find the tabulated data in [3, Appendix] useful. �

Remark. A weaker version of the δ(G) = 2 case of c) was also proved by Okuyama
and Sasaki. It is a shame that their paper [20] appeared so late: I know that it
had completed the refereeing process by the end of April 2001, but it had been
superseded by the time it was finally published in 2004.

Conjecture 1.2 (Benson [4]). Let G be a finite group, p a prime number and
k a field of characteristic p. The cohomology ring H∗(G, k) has Castelnuovo–
Mumford regularity zero.

Conjecture 1.3. Let G be a finite group, p a prime number and k a field of
characteristic p. The cohomology ring H∗(G, k) always contains a very strongly
quasi-regular system of parameters.

Remark. Conjecture 1.2 is Benson’s Conjecture 1.1. By Theorem 1.1 d) it is a
weak form of Conjecture 1.3, which is only implicitly present in Benson’s paper.
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Kuhn has shown that Conjecture 1.2 has applications to the study of central
essential cohomology [16].

The conjectures have been verified in two families of cases. Benson showed in [5]
that if Conjecture 1.2 holds for H then it also holds for the wreath product
G = H ≀Cp. And the second verification is the following theorem, the main result
of the present paper.

Theorem 1.4. Conjecture 1.3 holds for every group of order less than 256.

Proof. By Theorem 1.1 c) a counterexample has to have δ(G) ≥ 3. By Proposi-
tion 2.1 the only groups of order less than 256 satisfying δ(G) ≥ 3 have order 128
and satisfy δ(G) = 3. By Proposition 3.1 there are fourteen groups of order 128
with δ(G) = 3, and each of these satisfies the conjecture. �

2. Reduction to the case |G| = 128

Proposition 2.1. Let G be a group of order less than 256. Then δ(G) ≤ 3; and
if δ(G) = 3 then |G| = 128.

Proof. Let S be a Sylow p-subgroup of G. In view of the inequality δ(G) ≤ δ(S)
and the restriction |G| < 256 it suffices to consider the case where G itself is a
p-group.

So suppose G is a p-group with δ(G) ≥ 3. By Lemma 2.2 below it follows that
p = 2, that δ(G) = 3, and that either |G| = 64 or |G| = 128. But Carlson’s
computations [see Theorem 1.1c) above] show that δ(G) ≤ 2 if |G| = 64. �

Lemma 2.2. Let G be a finite group and p a prime number.

a) If δ(G) ≥ 3 or more generally if gtD(G) ≥ 3 then p5 divides the order of G.
If p = 2 or p = 3 then p6 must divide |G|.

b) If δ(G) ≥ 4 or more generally if gtD(G) ≥ 4 then p6 divides the order of G.
If p = 2 or p = 3 then p7 must divide |G|.

c) If p = 2 and gtD(G) ≥ 4 then |G| is divisible by 256.

Proof. a): By Eqn. (2) we have δ(G) ≤ gtD(G). It is apparent from the definition
that a finite group and its Sylow p-subgroups have the same group-theoretic
defect. So it suffices to consider the case where G is a p-group and gtD(G) ≥ 3.

Every nontrivial p-group has a centre of rank at least one. So a p-group with
gtD ≥ 3 must have a subgroup which is elementary abelian of rank 4. It must be
nonabelian too, so the order must be at least p5.

Suppose that there is such a group of order p5. Then the centre is cyclic of
order p, and there is an elementary abelian subgroup V of order p4. This V is a
maximal subgroup of a p-group and therefore normal. Let a ∈ G lie outside V .
Then G = 〈a, V 〉 and the conjugation action of a on V must be nontrivial of
order p. So the minimal polynomial of the action divides Xp − 1 = (X − 1)p.
This means that the action has a Jordan normal form with sole eigenvalue 1. The
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eigenvectors in each Jordan block belong to the centre of G. So as the centre is
cyclic there can only be one Jordan block, of size 4. But for p = 2 the size 3
Jordan block does not square to the identity, so there can be no blocks of size
3 or higher. Similarly there can be no size 4 block for p = 3, since it does not
cube to the identity. So for p = 2, 3 there must be more than one Jordan block.

b): analogous.

c): We need to show that if |G| = 128 then gtD(G) ≥ 4 cannot happen. Such
a group would need to contain an elementary abelian 2-group V satisfying the
equation p-rk(V ) = 4+ p-rk(Z(G)). The rank of the centre must be at least one,
and if it is three or more then V = G and therefore G is abelian, a contradiction.
If the centre has rank two, then V has index two in G and we are in the same
situation as in a), except now we want two Jordan blocks. But we need at least
three, since V has rank six and only Jordan blocks of size one or two are allowed.

If the centre has rank one, then V has rank five and we may pick a subgroup H
with V ≤ H ≤ G and [G : H ] = [H : V ] = 2. If H is elementary abelian then we
are back in the immediately preceding case of an order two action on a rank six
elementary abelian. If H is not elementary abelian then the usual Jordan block
considerations mean that C has rank at least 3, where C is the unique largest
central elementary abelian of H . By applying the Jordan block considerations to
the conjugation action of G/H on C, we see that Z(G) must have rank at least
two, a contradiction. �

Remark 2.3. In fact there are only two groups of order 64 with gtD = 3. Here are
their numbers in the Hall–Senior list [15] and in the Small Groups Library [6].
Their defects are taken from the tables in [3, Appendix].

Small Group Hall–Senior δ(G)
32 250 2
138 259 1

As we shall see below there are 14 groups of order 128 with δ(G) = 3.

Remark 2.4. For p ≥ 5 let G be the following semidirect product group of order p5:
there is a rank four elementary abelian on the bottom and a cyclic group of
order p on top. The conjugation action is a size 4 Jordan block. This group has
gtD(G) = 3, since









1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1









n
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0 0 1
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





.

3. The groups of order 128

Let G be a group of order 128. By Lemma 2.2c) we have gtD(G) ≤ 3.
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Proposition 3.1. Only 57 out of the 2328 groups of order 128 satisfy gtD(G) =
3. Of these 57 groups, 43 satisfy δ(G) ≤ 2. The remaining 14 groups satisfy
δ(G) = 3. Each of these 14 groups of order 128 with δ(G) = 3 satisfies Conjec-
ture 1.3.

According to the numbering of the Small Groups Library [6] these fourteen
groups are: numbers 36, 48, 52, 194, 515, 551, 560, 561, 761, 780, 801, 813, 823
and 836.

Proof. By machine computation. Inspecting the Small Groups library, one sees
that there are 57 groups with gtD(G) = 3. See Appendix A for a discussion of
how the p-rank is computed.

These 57 groups are listed in Table 1. The cohomology rings of these 57
groups were computed using an improved version of the author’s cohomology
program [14]. These cohomology rings may be viewed online [13]. The cohomol-
ogy rings were calculated using Benson’s test for completion [4, Thm 10.1].

Benson’s test involves constructing a filter-regular system of parameters and
determining in which degrees it is not strictly regular. This means that one
automatically determines whether the group satisfies Conjecture 1.3 when one
computes cohomology using Benson’s test. The Cohen–Macaulay defect is an-
other by-product of a computation based on Benson’s test.

The value of δ(G) for each of the 57 groups is given in Table 1. The four-
teen groups listed in the statement of the proposition are indeed the only ones
with δ(G) = 3. The computations showed that these 14 groups do satisfy the
conjecture. �

Remark. The test is phrased in such a way that it is easy to implement. With one
exception: it is not immediately clear how to construct a filter-regular system of
parameters in low degrees. This point is discussed in the next section.

Remark. The computation that took the longest time was group number 836,
one of the δ(G) = 3 groups. Its cohomology ring has 65 generators and 1859
generators.

Remark. The distribution of these 57 groups by Cohen–Macaulay defect is as
follows:

δ(G) 0 1 2 3
#G 1 11 31 14

Remark. Some of these groups have been studied before. Groups 928 and 1578
are wreath products: D8 ≀2 and 23 ≀2 respectively. By the Carlson–Henn result [9]
one has δ(D8 ≀2) = 1 and δ(23 ≀2) = 2. Groups 850 of order 128 is a direct product
of the form G = H × 2, where H is group number 32 of order 64; and the same
applies to group 1755 of order 128 and group 138 of order 64. It is immediate
that δ(G) = δ(H) for such groups, so Carlson’s work guarantees δ(G) ≤ 2 for
both these groups of order 128.
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gp K d r δ gp K d r δ
36 5 2 2 3 850 5 3 2 2
48 5 2 2 3 852 4 2 1 2
52 4 1 1 3 853 4 2 1 2
194 5 2 2 3 854 4 2 1 2
513 5 3 2 2 859 4 2 1 2
515 5 2 2 3 860 4 2 1 2
527 4 2 1 2 866 4 2 1 2
551 5 2 2 3 928 4 3 1 1
560 4 1 1 3 929 4 2 1 2
561 4 1 1 3 931 4 2 1 2
621 5 3 2 2 932 4 2 1 2
623 4 2 1 2 934 4 2 1 2
630 5 3 2 2 1578 6 4 3 2
635 4 2 1 2 1615 4 3 1 1
636 4 2 1 2 1620 4 2 1 2
642 4 2 1 2 1735 5 3 2 2
643 4 3 1 1 1751 4 2 1 2
645 4 3 1 1 1753 4 3 1 1
646 4 2 1 2 1755 5 4 2 1
740 4 2 1 2 1757 4 3 1 1
742 4 2 1 2 1758 4 3 1 1
753 5 3 2 2 1759 4 3 1 1
761 5 2 2 3 1800 4 2 1 2
764 4 2 1 2 2216 5 4 2 1
780 4 1 1 3 2222 5 3 2 2
801 4 1 1 3 2264 5 3 2 2
813 4 1 1 3 2317 4 3 1 1
823 4 1 1 3 2326 4 4 1 0
836 4 1 1 3

Table 1. For each group of order 128 with gtD(G) = 3, we give
its number in the Small Groups library, the Krull dimension K and
depth d of H∗(G), the rank r = K − 3 of Z(G) and the Cohen–
Macaulay defect δ = K − d. Underlined entries have δ = 3. Nota-
tion based on that of [3, Appendix].

Group number 2326 is the extraspecial group 21+6
+ ; Quillen showed that its

cohomology ring is Cohen–Macaulay [21]. Group number 931 is the Sylow 2-
subgroup of the Mathieu groups M22 and M23; its cohomology was studied by
Adem and Milgram [1]. Group number 934 is the Sylow 2-subgroup of the Janko
group J2; its cohomology ring was calculated by Maginnis [17].
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I am not aware of any previous cohomological investigations concerning the
other two groups that I can name. One of these is group 932, the Sylow 2-
subgroup of G2(3) : 2. The other is group number 836, the Sylow 2-subgroup of
one double cover of the Suzuki group Sz(8). This group (number 836) turned out
to have the most complicated cohomology ring in the study.

4. The weak rank-restriction condition

How does one construct a filter-regular system of parameters in a cohomology
ring which is defined over the prime field Fp and also lies in low degree? An
efficient implementation of Benson’s test calls for an answer to this question.

Benson shows that the Dickson invariants (suitably interpreted) form a filter-
regular system of parameters. This means a sequence of cohomology classes in
H∗(G) whose restrictions to the elementary abelian subgroups of G are (powers
of) the appropriate Dickson invariants. Given information about restriction to
subrings it is a straightforward task to compute classes with the appropriate
restriction patterns. However the degrees involved can be large.

Definition. (c.f. [4, §8]) Let G be a p-group with p-rk(G) = K. Let C =
Ω1(Z(G)). Homogeneous elements ζ1, . . . , ζK ∈ H∗(G) satisfy the weak rank
restriction condition if for each rank elementary abelian subgroup V ≥ C of G
the following holds, where s = p-rk(V ):

The restrictions of ζ1, . . . , ζs to V form a homogeneous system of
parameters for H∗(V ); and the restrictions of ζs+1, . . . , ζK are zero.

Lemma 4.1. If ζ1, . . . , ζK ∈ H∗(G) satisfy the weak rank restriction condition
then they constitute a filter-regular system of parameters.

Proof. By a well known theorem of Quillen (see e.g. Evens’ book [11]), ζ1, . . . , ζK is
a homogeneous system of parameters for H∗(G). The proof of Theorem 9.6 of [4]
applies just as well to parameters satisfying the weak rank restriction condition,
because if E is an arbitrary rank i elementary abelian subgroup of G, then setting
V = 〈C,E〉 one has V ≥ C and CG(V ) = CG(E), yet the rank of V is at least as
large as the rank of E. So the restrictions of ζ1, . . . , ζi to H∗(CG(E)) do form a
regular sequence, by the same argument based on the Broto–Henn approach to
Duflot’s theorem. �

Lemma 4.2. Let G be a p-group with p-rk(G) = K and p-rk(Z(G)) = r. Let
C = Ω1(Z(G)). Suppose that homogeneous elements ζ1, . . . , ζK ∈ H∗(G) satisfy
the following conditions:

a) The restrictions of ζ1, . . . , ζr to H∗(C) form a regular sequence there; and
b) For each rank r+s elementary abelian subgroup V ≥ C of G the restrictions

of ζr+s+1, . . . , ζK to V are zero, and for 1 ≤ i ≤ s the restrictions of ζr+i

to V is a power of the ith Dickson invariant in H∗(V/C).
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Then ζ1, . . . , ζK ∈ H∗(G) is a filter-regular system of parameters for H∗(G).
Moreover such systems of parameters exist.

Remark. By the ith Dickson invariant I mean the one which restricts nontrivially
to dimension i subspaces, but has zero restriction to smaller subspaces. That is,
if i < j then the ith Dickson invariant lies in lower degree than the jth Dickson
invariant.

Proof. Such classes clearly satisfy the weak rank restriction condition. The exis-
tence of ζ1, . . . , ζr already follows from Evens’ theorem that the cohomology ring
of an arbitrary subgroup H ≤ G is a finitely generated module over the image of
restriction from G. For the ζr+i: these are given by restrictions to each elemen-
tary abelian subgroup, and these restrictions satisfy the compatibility conditions
that one expects from genuine restrictions, c.f. Quillen’s work on the spectrum of
a cohomology ring [22]. This means that – on raising these defining restrictions
by sufficiently high pth powers – the ζr+i do indeed exist. �

Remark. The point is that Lemma 4.2 is a recipe for constructing a filter-regular
system of parameters. Recent work of Kuhn [16] in fact shows that one can
choose the generators of H∗(G) in such a way that ζ1, . . . , ζr may be chosen from
amongst these generators.

An additional saving follows from the fact that if ζ1, . . . , ζK is a system of
parameters and ζ1, . . . , ζK−1 is filter-regular, then the whole system is automati-
cally filter-regular. This means that one can replace the ζK of Lemma 4.2 by any
element that completes a system of parameters.

In earlier calculations, filter-regular parameters were constructed by hand on
a trial and error basis. Subsequently most calculations were performed or re-
performed using the parameter choice method of Lemma 4.2. In the worst case
calculations this meant finishing the computation in degree 17, although the
presentation was finished earlier.

5. The a-invariants

Let k be a field and R a connected finitely presented graded commutative k-
algebra. Let M be a finitely generated graded R-module, and m the ideal in R
of all elements in positive degree. The a-invariants of M are defined by

ai
m
(M) = max{m | H i,m

m
(M) 6= 0} ,

with ai
m
(M) = −∞ if H i

m
(M) = 0. One can then take

Reg(M) = max
i≥0

{ai
m
(M) + i}

as the definition of the Castelnuovo–Mumford regularity of M . Table 2 lists the
a-invariants of H∗(G) for the 57 groups of order 128 with gtD(G) = 3.

In order to calculate the a-invariants, one uses Lemma 4.3 of [4], which is based
on methods of N. V. Trung. The lemma says that if ζ ∈ Rn is such that AnnM(ζ)
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gp K aK−3
m

aK−2
m

aK−1
m

aK
m

gp K aK−3
m

aK−2
m

aK−1
m

aK
m

36 5 −5 −5 −5 −5 850 5 −∞ −6 −5 −5
48 5 −5 −5 −5 −5 852 4 −∞ −5 −4 −4
52 4 −4 −4 −4 −4 853 4 −∞ −5 −4 −4
194 5 −6 −6 −5 −5 854 4 −∞ −5 −4 −4
513 5 −∞ −5 −5 −5 859 4 −∞ −6 −4 −4
515 5 −5 −5 −5 −5 860 4 −∞ −5 −4 −4
527 4 −∞ −4 −4 −4 866 4 −∞ −5 −4 −4
551 5 −6 −5 −5 −5 928 4 −∞ −∞ −4 −4
560 4 −6 −5 −4 −4 929 4 −∞ −5 −4 −4
561 4 −5 −4 −4 −4 931 4 −∞ −3 −4 −4
621 5 −∞ −5 −5 −5 932 4 −∞ −6 −4 −4
623 4 −∞ −4 −4 −4 934 4 −∞ −3 −5 −4
630 5 −∞ −5 −5 −5 1578 6 −∞ −6 −6 −6
635 4 −∞ −4 −4 −4 1615 4 −∞ −∞ −4 −4
636 4 −∞ −4 −4 −4 1620 4 −∞ −4 −4 −4
642 4 −∞ −4 −4 −4 1735 5 −∞ −5 −5 −5
643 4 −∞ −4 −4 −4 1751 4 −∞ −6 −4 −4
645 4 −∞ −∞ −4 −4 1753 4 −∞ −∞ −4 −4
646 4 −∞ −4 −4 −4 1755 5 −∞ −∞ −5 −5
740 4 −∞ −4 −4 −4 1757 4 −∞ −∞ −4 −4
742 4 −∞ −4 −4 −4 1758 4 −∞ −∞ −5 −4
753 5 −∞ −5 −5 −5 1759 4 −∞ −∞ −4 −4
761 5 −5 −5 −5 −5 1800 4 −∞ −4 −4 −4
764 4 −∞ −5 −4 −4 2216 5 −∞ −∞ −5 −5
780 4 −6 −4 −4 −4 2222 5 −∞ −6 −5 −5
801 4 −4 −4 −4 −4 2264 5 −∞ −6 −5 −5
813 4 −4 −4 −4 −4 2317 4 −∞ −∞ −4 −4
823 4 −4 −4 −4 −4 2326 4 −∞ −∞ −∞ −4
836 4 −4 −5 −4 −4

Table 2. For each of the 57 groups of order 128 with gtD(G) = 3,
we give its number in the Small Groups library, the Krull dimension
K and the last four a-invariants of H∗(G). For 0 ≤ i < K − 3 one
has ai

m
= −∞. The defect δ(G) is three if and only if aK−3

m
is finite.

consists entirely of m-torsion, then

(3) ai+1

m
(M) + n ≤ ai

m
(M/ζM) ≤ max(ai

m
(M), ai+1

m
(M) + n) .

Replacing ζ by a suitable power if necessary, one can arrange for ai+1
m

(M) + n ≥
ai
m
(M) and therefore ai+1

m
(M) = ai

m
(M/ζM) − n. So the a-invariants of H∗(G)

may be computed recursively. To start the recursion we need a0
m
(M), which is the
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m-torsion: so if ζ ∈ Rn is such that AnnM(ζ) is finite dimensional, then a0
m
(M)

is the top dimension of AnnM(ζ).
Hence by starting from a filter-regular system of parameters and raising some

of the parameters to higher powers if necessary, one may compute the a-invariants
of H∗(G) by just computing kernels. For a cohomology computation one chooses
parameters in low degrees. So it is perhaps surprising that a survey of the au-
thor’s computations of all 256 nonabelian groups of order 64 and some 61 groups
of order 128 led to precisely one case where powers of the chosen parameters
were necessary. This is the Sylow 2-subgroup of L3(4) which has a-invariants
−∞,−∞,−3,−5,−4: a filter-regular system of parameters in degrees 4, 4, 2, 2
led to kernels with top degrees −∞,−∞, 5, 5, 8, leading to problems with the
calculation of a3

m
. Squaring the third parameter led to kernels with top degrees

−∞,−∞, 5, 7, 10, which was sufficient to permit calculation of the a-invariants.

6. Excess and defect

Definition. As in the introduction let G be a finite group, p a prime number and
k a field of characteristic p. We define the Duflot excess e(G) = ep(G) by

ep(G) = depthH∗(G, k)− p-rk(Z(S)) .

The following inequalities follow immediately from this definition taken together
with Equations (1) and (2).

0 ≤ e(G) ≤ gtD(G) δ(G) + e(G) = gtD(G) e(G) ≥ e(S) .(4)

Quillen showed that the extraspecial 2-group G = 21+2n
+ has Cohen–Macaulay

cohomology [21]. So this group has e(G) = n and δ(G) = 0.
Now let p be an odd prime, and let G be the extraspecial p-group G = p1+2n

+ of
exponent p. With the single exception of the case (p, n) = (3, 1), Minh proved [19]
that this group has δ(G) = n and e(G) = 0. In the one exceptional case the
cohomology ring is Cohen–Macaulay [18].

One good way to produce groups with small e(G)/δ(G) ratio satisfying Con-
jecture 1.2 is by iterating the wreath product construction. By passing from H to
H ≀ Cp one multiplies the p-rank by p but increases the depth by one only [9].

Question 6.1. How (for large values of n) are the p-groups of order pn distributed
on the graph with δ(G) on the x-axis and e(G) on the y-axis?

7. Outlook

To test the conjecture further we need to find more high defect groups.
There are 24 groups of order 36 with gtD(G) = 3. The presence of essential

classes in low degrees demonstrates that at least three of these groups have δ(G) =
3. These groups are numbers 35, 56 and 67 in the Small Groups Library. There
are essential classes in degrees 4, 2 and 4 respectively. Recall from Carlson’s
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paper [7] that the presence of essential classes means that depthH∗(G, k) =
p-rkZ(G) and therefore δ(G) = gtD(G).

Group number 299 of order 256 has gtD(G) = 4. The presence of an essential
class in H3(G) means that δ(G) = 4 too.

Appendix A. Computing the p-rank

The Small Groups library was accessed from GAP [12]. There is no built-
in command in GAP that returns the p-rank of a given p-group. The simplest
way to calculate it using existing commands would to be to generate the entire
subgroup lattice and then filter out the elementary abelian subgroups. We chose
instead to enumerate the conjugacy classes of elementary abelian subgroups using
a straightforward if not particularly efficient inductive approach.

LetG be a p-group. If |G| is small then it is feasible to list all the elements of the
group. By testing each element one then obtains the list of all order p elements.
A further element by element test yields all central elements of order p. This is
one way to obtain the greatest central elementary abelian subgroup Ω1(Z(G)),
denoted C in the paper. Of course, if one only wants Ω1(Z(G)) then it is quicker
to make use of the function IndependentGeneratorsOfAbelianGroup.

Carlson [7] shows that one only needs the elementary abelians which contain
Ω1(Z(G)). Given such an elementary abelian V of order pd, one can list all the
order p elements in CG(V ) and so obtain all the order pd+1 elementary abelians
containing V . This is the inductive step: the induction starts with V = C.
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