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0 Surgery, Yamabe invariant,

and Seiberg-Witten theory
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Abstract

By using the gluing formula of the Seiberg-Witten invariant, we
compute the Yamabe invariant Y (X) of 4-manifolds X obtained by
performing surgeries along points, circles or tori on compact Kähler
surfaces. For instance, ifM is a compact Kähler surface of nonnegative
Kodaira dimension, andN is a smooth closed oriented 4-manifold with
b
+
2 (N) = 0 and Y (N) ≥ 0, then we show that

Y (M#N) = Y (M).

1 Introduction

The Yamabe invariant is a real-valued invariant of a smooth closed manifold
defined using the scalar curvature. It somehow measures how much the
negative scalar curvature is inevitable, and it can be used as a means to get
to a canonical metric on a given manifold.

Let M be a closed smooth n-manifold. In any conformal class

[g] = {ϕg | ϕ : M → R+ is smooth},

there exists a smooth Riemannian metric of constant scalar curvature, so-
called Yamabe metric, realizing the minimum of the normalized total scalar
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curvature

inf
g̃∈[g]

∫

M
sg̃ dVg̃

(
∫

M
dVg̃)

n−2
n

,

where sg̃ and dVg̃ respectively denote the scalar curvature and the volume
element of g̃. That minimum value is called the Yamabe constant of the
conformal class, and denoted as Y (M, [g]). Then the Yamabe invariant is
defined as the supremum of the Yamabe constants over the set of all confor-
mal classes on M , and one can hope for a canonical metric as a limit of such
a maximizing sequence.

The Yamabe invariant of a compact orientable surfaces is 4πχ(M) where
χ(M) denotes the Euler characteristic of M by the Gauss-Bonnet theorem.
In general, it is not quite easy to exactly compute the Yamabe invariant.
Recently much progress has been made in low dimensions. In dimension 3,
the geometrization by the Ricci flow gave many answers, and in dimension
4, the Spinc structure and the Dirac operator have been remarkable tools
for computing the Yamabe invariant. LeBrun [8, 9, 10] used the Seberg-
Witten theory to show that if M is a compact Kähler surface whose Kodaira
dimension κ(M) is not equal to −∞, then

Y (M) = −4
√
2π

√

(2χ+ 3τ)(M̃),

where τ denotes the signature and M̃ is the minimal model of M , and for
CP 2,

Y (CP 2) = 12
√
2π.

In particular, note that if κ(M) = 0 or 1, Y (M) = 0.
One notes that the blow-up does not change the Yamabe invariant of

Kähler surfaces and may ask:

Question 1.1 Let M be a smooth closed orientable 4-manifold with Y (M) ≤
0. Is there an orientation of M such that Y (M♯ m CP 2) = Y (M) for any
integer m > 0? What about connected sums or surgeries along circles with
4-manifolds with negative-definite intersection form and nonnegative Yamabe
invariant?

In this article, we will show :
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Theorem 1.2 Let M be a closed Kähler surface of κ(M) ≥ 0 (with b+2 (M) >
1 if κ(M) > 0), and N be a smooth closed oriented 4-manifold with b+2 (N) = 0
and Y (N) ≥ 0. Then

Y (M#N) = Y (M).

More generally, we prove the case of the surgery along circles.

Definition 1 Let M1 and M2 be smooth n-manifolds with embedded k-
spheres c1 and c2 respectively, where the normal bundles are trivial. A surgery
of M1 and M2 along ci’s are defined as the result of deleting tubular neigh-
borhood of each ci and gluing the remainders by identifying two boundaries
Sk ×Sn−k−1 using a diffeomorphism of Sk and the reflection map of Sn−k−1.
When M2 is not specified, it means a surgery with Sn.

Theorem 1.3 Let M be a closed Kähler surface with κ(M) ≥ 0 and
b+2 (M) > 1, and Ni for i = 1, · · · , m be smooth closed oriented 4-manifolds
with b+2 (Ni) = 0, b1(Ni) ≥ 1, and Y (Ni) ≥ 0. Suppose that ci ⊂ Ni is an
embedded circle nontrivial in H1(Ni,R) for i = 1, · · · , m. If M̃ is a manifold
obtained from M by performing a surgery with ∪m

i=1Ni along ∪m
i=1ci, then

Y (M̃) = Y (M).

Note that the surgery on M with (S1×S3)#N along a null-homotopic circle
in M and a circle representing [S1]× {pt} ∈ H1(S

1 × S3,Z) is M#N .
When b1(Ni) = 0, theorem 1.3 is no longer true in general. For example,

take a closed non-spin simply-connected Kähler surface M with κ(M) ≥ 0
and b+2 (M) > 1. Let Ni = S4, and ci be any embedded circle in Ni for all i.
Performing a surgery around null-homotopic circles inM with ∪m

i=1Ni, we get
M̃ which is just M#(#m

i=1(S
2×S2)). By applying Wall’s results [26, 27], it is

diffeomorphic to M#(#m
i=1(CP

2#CP 2)) which again becomes diffeomorphic
to a CP 2♯ a CP 2 where a = m+ 1

2
(b2(M) + τ(M)), if m is sufficiently large.

But
Y (a CP 2♯ a CP 2) > 0 ≥ Y (M).

We also give a different proof of the following result proved by Gursky
and LeBrun in [6]:

Theorem 1.4 Let N be a smooth closed oriented 4-manifold satisfying
b2(N) = 0 and Y (N) ≥ 12

√
2π(= Y (CP 2)). Then

Y (CP 2#N) = Y (CP 2).
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For surgeries of codimension less than 3, in general the Yamabe invari-
ant changes drastically after a surgery. But some surgeries along T 2 in 4-
manifolds do preserve the Yamabe invariant.

We introduce some well-known different types of surgeries in 4-manifolds.
Suppose that a smooth 4-manifoldM contains a homologically essential tours
T 2 with self-intersection zero. Deleting a tubular neighborhood T 2 ×D2 of
T 2 and gluing back using a diffeomorphism ϕ of the boundary T 3, we get a
new smooth 4-manifold Mϕ called a generalized logarithmic transform of M .

Now suppose that two smooth 4-manifolds M1 and M2 each contain an
embedded closed surface F with self-intersection zero. Deleting a tubular
neighborhood F × D2 in each and gluing the remaining parts along the
boundary F × S1 using a diffeomorphism of F and the complex conjuga-
tion map of S1, we get a fiber sum of M1 and M2. When it is performed
along two embedded surfaces in M , we call it an internal fiber sum of M .

Finally a knot surgery manifold for a knot K ⊂ S3 with the knot exterior
E(K) is a smooth 4-manifold obtained by gluingM\(T 2×D2) and S1×E(K)
along the boundary T 3 in such a way that the homology class [pt × ∂D2] is
identified with [pt × λ] where λ is a longitude of K. Then a knot surgery
of M is the same as the fiber sum of M with S1 × MK along the torus
S1 × m ⊂ S1 × MK , where m is a meridian circle to K and MK is the
3-manifold obtained by performing 0-framed surgery on K.

Now let M be a closed Kähler surface of Kodaira dimension equal to 0
or 1 with b+2 (M) > 1. It is known that M admits a T -structure defined
by Cheeger and Gromov [3]. (For an explicit construction, see Paternain
and Petean [17].) The existence of a T -structure implies that the manifold
admits a sequence of Riemannian metrics with volume form converging to
zero uniformly while the sectional curvatures are bounded below, so that
the Yamabe invariant must be nonnegative.([17]) Let M̃ be the manifold
obtained from M by a generalized logarithmic transform or an internal fiber
sum or a fiber sum with S1×N where N is a closed oriented 3-manifold with
nonzero Seiberg-Witten invariant along an embedded T 2 which is a regular
orbit of the above T -structure. Then M̃ has an obvious induced T -structure,
and if M̃ also has a nontrivial Seiberg-Witten invariant, we immediately get

Y (M̃) = Y (M) = 0.

It is interesting to note that these phenomena also appear in some cases of
Kodaira dimension 2 as follows:
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Theorem 1.5 Let M = Σ1 × Σ2 be a product of two Riemann surfaces of
genus > 1, and α1, · · · , αm and β1, · · · , βm be non-intersecting homologically-
essential circles embedded in Σ1 and Σ2 respectively.

Suppose that Xk for k = 1, · · · , µ where µ ≤ m is a closed oriented 3-
manifold with b1(Xk) ≥ 1 and nonzero Seiberg-Witten invariant in a cham-
ber, and ck for k = 1, · · · , µ is an embedded circle in Xk representing a
non-torsion generator of H1(Xk,Z).

Let M̃ be a manifold obtained from M by performing on ∪m
i=1αi × βi an

internal fiber sum or a fiber sum with ∪µ
k=1S

1×Xk around ∪µ
k=1S

1×ck. Then

Y (M̃) = Y (M).

Corollary 1.6 Let each Mi for i = 1, · · · , l be a product of two Riemann sur-
faces of genus > 1, and T1, · · · , Tm be tori embedded in ∪l

i=1Mi as above. Let
M̃ be a manifold obtained from ∪l

i=1Mi by performing on ∪m
i=1Ti an internal

fiber sum or a fiber sum with S1 ×Xk’s as above. Then

Y (M̃) = −(
l∑

i=1

|Y (Mi)|2)
1
2 .

It is left as a further question whether the above theorems still hold true for
any homologically essential tori.

2 Basic formulae of Yamabe invariant

When Y (M) ≤ 0, it can be written as a very nice form:

Y (M) = − inf
g
(

∫

M

|sg|
n
2 dµg)

2
n = − inf

g
(

∫

M

|s−g |
n
2 dµg)

2
n ,

where s−g = min(sg, 0). (For a proof, see [10, 22].)
Another practical formula is the gluing formula of the Yamabe invariant

under the surgery.

Theorem 2.1 (Kobayashi [7], Petean and Yun [18]) Let M1,M2 be
smooth closed manifolds of dimension n ≥ 3. Suppose that an (n − q)-
dimensional smooth closed (possibly disconnected) manifold W embeds into
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both M1 and M2 with isomorphic normal bundle. Assume q ≥ 3. Let M be
any manifold obtained by gluing M1 and M2 along W . Then

Y (M) ≥







−(|Y (M1)|n/2 + |Y (M2)|n/2)2/n if Y (Mi) ≤ 0 ∀i
min(Y (M1), Y (M2)) if Y (M1) · Y (M2) ≤ 0
min(Y (M1), Y (M2)) if Y (Mi) ≥ 0 ∀i and q = n

A nontrivial estimation of the Yamabe invariant on 4-manifolds comes
from the Seiberg-Witten theory.

Theorem 2.2 (LeBrun [8, 9]) Let (M, g) be a smooth closed oriented Rie-
mannian 4-manifold with b+2 (M) ≥ 1. Let s be a Spinc structure on M with
first chern class c1(s). Suppose that Seiberg-Witten invariant of s is nontriv-
ial in a chamber. Then

Y (M, [g]) ≤ |4πc1(s) ∪ [ω]|
√

[ω]2/2

where ω is nonzero and self-dual harmonic with respect to g. If the Seiberg-
Witten invariant of s is nontrivial for any small perturbation, then

Y (M, [g]) ≤ −4
√
2π||c+1 (s)||L2

where c+1 denotes the self-dual harmonic part of c1(s).

3 Computation of Seiberg-Witten invariant

Let M be a smooth closed oriented Riemannian 4-manifold and P be its or-
thonormal frame bundle which is a principal SO(4) bundle. Consider oriented
R3-vector bundles ∧2

+ and ∧2
− consisting of self-dual 2-forms and anti-self-dual

2-forms respectively. Let’s let P1 and P2 be associated SO(3) frame bundles.
Unless M is spin, it is impossible to lift these to principal SU(2) bundles.
Instead there always exists the Z2-lift, a principal U(2) = SU(2) ⊗Z2 U(1)
bundle, of a SO(3) ⊕ U(1) bundle, when the U(1) bundle on the bottom,
denoted by L, has first chern class equal to w2(TM) modulo 2. We call this
lifting a Spinc structure on M .

Let W+ and W− be C2-vector bundles associated to the above-obtained
principal U(2) bundles. One can define a connection ∇A on them by lift-
ing the Levi-Civita connection and a U(1) connection A on L. Then the
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Dirac operator DA : Γ(W+) → Γ(W−) is defined as the composition of
∇A : Γ(W+) → T ∗M ⊗ Γ(W+) and the Clifford multiplication.

For a section Φ of W+, (perturbed) Seiberg-Witten equations of (A,Φ) is
given by

{
DAΦ = 0

F+
A + µ = Φ⊗ Φ∗ − |Φ|2

2
Id,

where F+
A is the self-dual part of the curvature dA of A, and a purely imagi-

nary self-dual 2-form µ is a perturbation term, and finally the identification
of both sides in the second equation comes from the Clifford action.

Now we review the Seiberg-Witten invariant as defined by Ozsváth and
Szabó [19]. Suppose b+2 (M) > 0, and let s be a Spinc structure on M . The
configuration space B of the Seiberg-Witten equations is given by

(A(W+)× Γ(W+))/Map(M,S1),

where A(W+) is the space of connections on L = det(W+) and is identified
with Ω1(M ; iR), and Map(M,S1) is the group of gauge transformations.

Since Γ(W+) is contractible, B is homotopy-equivalent to T b1(M) = H1(M ;R)
H1(M ;Z)

.
The irreducible configuration space B

∗ is

(A(W+)× (Γ(W+)− {0}))/Map(M,S1),

and it is homotopy-equivalent to CP∞ × H1(M ;R)
H1(M ;Z)

so that

H∗(B∗;Z) ≃ Z[U ]⊗ ∧∗H1(M ;Z).

Defining the graded algebra A(M) over Z by

Z[H0(M ;Z)]⊗ ∧∗H1(M ;Z)

with H0(M ;Z) grading two and H1(M ;Z) grading one, we have an obvious
isomorphism

µ : A(M)→̃H∗(B∗;Z)

such that µ maps the positive generator of H0(M ;Z) to U . Note that the
µ map restricted to a subset H1(M ;Z) ⊗ Z is given by Hol∗c(dθ)|B∗ for c ∈
H1(M ;Z), where Holc : B → S1 is the holonomy map around c.

Then the Seiberg-Witten invariant SWM,s is a function

SWM,s : A(M) → Z

7



a 7→ 〈MM,s, µ(a)〉,
where MM,s ⊂ B is the moduli space, i.e. the solution space modulo gauge
transformations of the Seiberg-Witten equations of (M, s). It turns out that
SWM,s is independent of the Riemannian metric and a generic perturbation,
if b+2 (M) > 1. (When b+2 (M) = 1, it may depend on the choice of the
chamber.) For a noncompact M with cylindrical-end metric, we can do the
same job by considering solutions with finite energy. Here, the energy of a
solution (A(t),Φ(t)) in temporal gauge on the cylinder T := ∂M × [0,∞] is
defined as

‖A′(t)‖2L2(T ) + ‖Φ′(t)‖2L2(T ),

where the temporal gauge means that A has no temporal component dt.
We denote M

irr
M,s := MM,s ∩ B

∗ and M
red
M,s := MM,s − M

irr
M,s. It is also

useful to define the Seiberg-Witten series of M to be the element of the group
ring Z[H2(M,Z)] given by

SWM :=
∑

s

SWM,s(1⊗ · · · ⊗ 1
︸ ︷︷ ︸

d(s)/2

) PD(c1(s)),

where d(s) := dimR MM,s, PD denotes the Poincaré-dual, and s runs over
all isomorphism classes of Spinc structures on M with even d(s).

For more details about the Seiberg-Witten theory and the gluing of the
moduli spaces, the readers are referred to [12, 11, 13, 15, 16, 23, 24].

Before stating the theorem, we note the following lemma.

Lemma 3.1 Let N be a smooth closed oriented 4-manifold with negative
intersection form Q. Then there exits a Spinc structure s

′ on N satisfying
c21(s

′) = −b2(N).

Proof. By the Donaldson’s theorem, Q is diagonalizable over Z. (Although
the original Donaldson’s theorem [4] is stated for simply-connected ones, a
simple Mayer-Vietoris argument can be applied for this generalization.) Let
{α1, · · · , αb2(N)} be a basis for H2(N,Z)⊗Q diagonalizing Q.

We have to show that there exists x ∈ H2(N,Z) satisfying that
Q(x, x) = −b2(N), and x is characteristic, i.e. Q(x, α) ≡ Q(α, α) mod

2 for any α ∈ H2(N,Z). It is easy to check that x =
∑b2(N)

i=1 ±αi do the job.
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Theorem 3.2 Let M and N be smooth closed oriented 4-manifolds such that
b+2 (M) > 0, b+2 (N) = 0, and b1(N) ≥ 1. Let c ⊂ N be an embedded circle
nontrivial in H1(N,R) and M̃ be a manifold obtained by performing a surgery
on M with N along c.

If s̃ is the Spinc structure on M̃ obtained by gluing a Spinc structure s on
M and a Spinc structure s

′ on N satisfying c21(s
′) = −b2(N), then

SWM̃,s̃(a · [d1] · · · [db1(N)−1]) = ±SWM,s(a)

for a ∈ A(M), where [d1], · · · , [db1(N)−1] along with r[c] for some r ∈ Q form
a basis for the torsion-free part of H1(N,Z).

Proof. By removing a tubular neighborhood S1 × D3 around the circle
where the surgery is performed, we construct M̂ and N̂ with cylindrical end
modeled on S1×S2 with a standard metric of positive scalar curvature which
we denote by Y . For Y with the trivial Spinc structure, the moduli space is
the set χ(Y ) of flat connections modulo gauge transformations of the trivial
Spinc structure, which is diffeomorphic to S1.

On S1 × D3 we put a metric of positive scalar curvature with the same
cylindrical-end, and see that its moduli space with the trivial Spinc structure
is also the set χ(S1 ×D3) of flat connections modulo gauge transformations
of the trivial Spinc structure, which is unobstructed. In an obvious way,
χ(S1 ×D3) is diffeomorphic to χ(Y ). From b+2 (M̂) > 0, MM̂,s = M

irr
M̂,s

and

it is unobstructed by using a generic exponentially-decaying perturbation.
Let Ĝ be the gauge transformations on M̂ . (Note that any gauge trans-

formations on Y extend to S1 ×D3 and N̂ . We will denote such extensions
of Ĝ also by Ĝ by abuse of notation.) Letting χ̂(Y ) be the set of equivalence
classes of flat connections on Y modulo Ĝ, χ̂(Y ) is a covering of χ(Y ) with
fiber H1(Y,Z)/H1(M̂,Z). Similarly we define χ̂(S1 × D3) and M̂N̂,s′. (In

fact, χ̂(S1 ×D3) = χ̂(Y ).) Since the asymptotic map

(∂∞, ∂∞) : MM̂,s × χ̂(S1 ×D3) → χ̂(Y )× χ̂(Y )

is transversal to the diagonal ∆ ⊂ χ̂(Y ) × χ̂(Y ), MM,s is diffeomorphic to
the fibred product, i.e

MM,s ≃ (∂∞, ∂∞)−1∆ = MM̂,s ×χ̂(Y ) χ̂(S
1 ×D3) ≃ MM̂,s.

For N̂ part, first M̂
irr
N̂,s′

is unobstructed by a generic perturbation, but

reducible part is nontrivial because N̂ does not have a metric of positive scalar

9



curvature in general. Importantly, M̂red
N̂,s′

is non-empty for any perturbation,

because b+2 (N) = 0.

Lemma 3.3 When b1(N) ≤ 1, by a generic exponentially-decaying pertur-
bation, M̂red

N̂,s′
is unobstructed for the gluing with MM̂,s.

Proof. We will follow Vidussi’s method [25]. Recall the deformation complex
of appropriate weighted Sobolev spaces :

0 → Ω0
δ(N̂, iR) → Ω1

δ(N̂, iR)× Γδ(W+) → Ω2
δ,+(N̂, iR)× Γδ(W−) → 0

and the Kuranishi model near a reducible solution (A, 0):

H1(N̂, Y ; iR)×H1(Y, iR)× kerDA → H1(Y, iR)/H1(N̂, iR)× coker DA.

The virtual dimension of the moduli space is

2 indCDA + b1(N̂) =
1

4
(cN̂ − τ(N̂))− ηB(0) + b1(N̂)

where cN̂ = − 1
4π2

∫

N̂
FA∧FA, τ is the signature, and ηB(0) is the eta invariant

of the Dirac operator associated with the asymptotic limit B of A. From
our assumption cN̂ = c21(s

′) = τ(N̂), and the ηB(0) vanishes for Y with a

standard metric.(see [14].) Therefore the virtual dimension is b1(N̂). For the
surjectivity in the above Kuranishi picture, we only need to show coker DA =
0 for a generic exponentially-decaying perturbation. Since the index is zero,
it’s equivalent to showing kerDA = 0.

Letting d+ν ∈ Ω2
δ,+(N̂, iR) be a perturbation term (Recall b+2 (N̂) = 0.),

F+
A+ν = d+ν and (A+ ν, 0) is a reducible solution for the perturbed Seiberg-

Witten equations. Suppose there exists a nonzero Φ satisfying DA+νΦ = 0.
Consider a smooth map

F : Mred
N̂,s′

× (Γδ(W+)− {0})× Ω1
δ(N̂ , iR) → Γδ(W+)

(A,Φ, ν) 7→ DA+νΦ.

Since the differential DF is surjective, F−1(0) is a smooth manifold.
Applying the Sard-Smale theorem to the projection map π3 onto the third
factor, for a second category subset of ν, F−1(0) ∩ π−1

3 (ν) is a smooth
manifold of dimension b1(N̂) + 2 indCDA+ν = b1(N̂) ≤ 1. On the other

10



hand, as DA+ν is C-linear, the real dimension of the kernel of DA+ν must
be greater than or equal to 2 unless it is empty. By this contradiction, our
claim is proved.

We first consider the case of b1(N) = 1, in which M̂
red
N̂,s′

is diffeomorphic

to χ̂(Y ), and M̂
irr
N̂,s′

is zero-dimensional by the dimension formula. Chop off

M̂ and N̂ at Y ×{t} for t ≫ 1 and glue them along the boundary to get M̃ .
Then

MM̃,s̃ ≃ (MM̂,s(∗)×χ̂(Y ) (M̂
irr
N̂,s′

× S1))/S1 ∪ (MM̂,s ×χ̂(Y ) M̂
red
N̂,s′

)

= (MM̂,s(∗)×χ̂(Y ) M̂
irr
N̂,s′

) ∪MM̂,s,

where MM̂,s(∗) is the based moduli space, i.e. the solution space modulo
based gauge transformations which are equal to 1 at a fixed point. As is
well-known, the Seiberg-Witten invariant vanishes onMM̂,s(∗), because the µ
cocycles are pulled back from MM̂,s. Therefore the Seiberg-Witten invariant
forMM̃,s̃ is obtained from the evaluation onMM̂,s to give our desired formula.

Now, we turn to the case when b1(N) ≥ 2. Because of the obstruction
issue, we first kill di’s by the surgery, and glue with M , and finally revive the
di’s by the (inverse) surgery. Let N ′ be the manifold obtained from N by
the surgery around d1, · · · , db1(N)−1 with b1(N)−1 copies of S4. Then clearly
b1(N

′) = 1 and moreover :

Lemma 3.4 Let U := N − V and V := ∪b1(N)−1
i=1 S1 ×D3 which is a tubular

neighborhood of ∪b1(N)−1
i=1 di. Then H2(N,Z) ≃ H2(U,Z) ≃ H2(N

′,Z) with
isomorphic intersection paring, where both isomorphisms are induced by the
obvious inclusions.

Proof. This can be seen in the Mayer-Vietoris sequence. First for (U, V,N =
U ∪ V ),

H2(∂U)
i∗→ H2(U)⊕H2(V )

ϕ→ H2(N) → H1(∂U) → H1(U)⊕H1(V ).

Since ϕ is surjective, which is because H1(∂U) injects into H1(U), it is enough
to show that i∗ = 0. Obviously H2(V ) = 0, and to prove that i∗(H2(∂U)) =

11



0 ∈ H2(U), consider the following commutative diagram of exact sequences :

H3(U, ∂U)
∂∗

//

PD
��

H2(∂U)
i∗

//

PD
��

H2(U)

PD
��

H1(U)
i∗

// H1(∂U)
∂∗

// H2(U, ∂U).

Since ci’s are non-torsion in N , H1(∂U) = i∗(H1(U)), and hence it gets
mapped to zero by ∂∗.

The case for (U,∪m
i=1D

2×S2, N ′) is similar. In this case, i∗ maps H2(∂U)

isomorphically onto H2(∪m
i=1D

2 × S2).

We perform the surgery on M with N ′ around c to get M ′. Let s̃ be
the resulting Spinc structure on M ′. (We abused the notation, because it is
basically the same as s̃ on M̃ .) Since b+2 (N

′) = 0, we can apply the previous
process to get

SWM ′,s̃(a) = SWM,s(a)

for a ∈ A(M).
In order to get M̃ , we perform an (inverse) surgery on M ′ around two

spheres which are the cores of the added D2 × S2’s in the surgery around
ci’s. Those two spheres are homologically trivial, and we can apply Ozsváth
and Szabó’s theorem [19],

SWM̃,s̃(a · [d1] · · · [db1(N)−1]) = ±SWM ′,s̃(a)

for a ∈ A(M). This completes the proof.

Theorem 3.5 Let M and N be smooth closed oriented 4-manifolds such
that b+2 (M) > 0 and b+2 (N) = 0. Suppose s̃ is the Spinc structure on M#N
obtained by gluing a Spinc structure s on M and a Spinc structure s

′ on N
satisfying c21(s

′) = −b2(N). Then

SWM#N,s̃(a · [d1] · · · [db1(N)]) = ±SWM,s(a)

for a ∈ A(M), where [d1], · · · , [db1(N)] form a basis for the torsion-free part
of H1(N,Z).

Proof. This is an immediate corollary of the previous theorem, because
M#N is the same as the manifold obtained from M by a surgery with
(S1 × S3)#N along a circle representing [S1]× {pt} ∈ H1(S

1 × S3,Z).

12



4 Proof of Theorem 1.2

Just for simplicity, we may assume that M is minimal, because CP 2’s can
be absorbed into N . By the gluing formula of the theorem 2.1,

Y (M̃) ≥ Y (M).

To obtain the reverse inequality, the computations in the previous section
allows us to apply LeBrun’s theorem 2.2. Let s be the Spinc structure on
M induced by the canonical line bundle, which has nonzero Seiberg-Witten
invariant for a chamber.

Let’s first consider the case of κ(M) = 0. Recall that M is finitely covered
by T 4 or K3 surfaces which we denote by X . To the contrary, suppose
there exists a metric of positive scalar curvature on M#N . Then so does
X#N# · · ·#N where the number of copies of N is the order of the covering
map from X to M . Since b+2 (X) ≥ 2, the Seiberg-Witten invariant of the
obvious Spinc structure s̃ on X#N# · · ·#N is well-defined independently of
the chamber and nonzero by theorem 3.5. This means that it cannot admit
a metric of positive scalar curvature, which is a contradiction.

Now let’s consider the case when κ(M) > 0. Let c1(s) + E be the first
chern class of s̃ on M#N as in theorem 3.5, where E comes from N . For
any metric g on M̃

((c1(s)± E)+)2 = (c1(s)
+ ±E+)2

= (c1(s)
+)2 ± 2c1(s)

+ · E+ + (E+)2

≥ (c1(s)
+)2 ± 2c1(s)

+ · E+.

Thus at least one of ((c1(s) + E)+)2 and ((c1(s) − E)+)2 should be greater
than or equal to (c1(s)

+)2. Say ((c1(s)+E)+)2 ≥ (c1(s)
+)2. By applying the

second inequality of the theorem 2.2, we get

Y (M̃, [g]) ≤ −4
√
2π||(c1(s) + E)+||L2

≤ −4
√
2π||c+1 (s)||L2

≤ −4
√
2π

√

c21(s) = Y (M),

completing the proof.
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5 Proof of Theorem 1.3

Again for simplicity’s sake, we may assume that M is minimal, because any
embedded circle in X#CP 2# · · ·#CP 2 can be moved to X − D4 by an
isotopy, where D4 is the 4-ball in which the connected sums with CP 2’s are
done, and CP 2’s can be absorbed into N1. Then the proof is the same as
before.

Remark In case that κ(M) = 0 and b+2 (M) = 1, if the surgery is done along
the circle which is trivially covered by the covering map from X to M , then
we can lift up the surgery downstairs and use the previous argument in the
connected sum case to obtain the same result. ✷

6 Proof of Theorem 1.4

Again by the gluing formula of the theorem 2.1, it is immediate that

Y (CP 2#N) ≥ Y (CP 2).

For the reverse inequality, let s be the Spinc structure on CP 2 induced by the
canonical line bundle, and [ω] be a nonzero element of H2(CP 2;Z). Recall
that the Seiberg-Witten invariant of (CP 2, s) for a perturbation tω with
|t| ≫ 1 is nonzero for either t > 0 or t < 0. By the theorem 3.5, so is
(CP 2#N, s̃). Therefore the first inequality of theorem 2.2 applies, and the
right hand side of the inequality is

|4πc1 ∪ [ω]|
√

[ω]2/2
=

|4π(3H · tH)|
√

(tH · tH)/2
= 12

√
2π,

where H denotes the hyperplane class of CP 2. This completes the proof.

7 Proof of Theorem 1.5 and Corollary 1.6

Let’s first consider the case of the theorem 1.5. Recall that M admits a
Kähler-Einstein metric so that

Y (M) = −4
√
2π

√

c21(s),
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where s is the Spinc structure on M given by the canonical line bundle. By
the adjunction formula, c1(s) vanishes on each torus Tj := αj × βj.

To apply the product formula of the Seiberg-Witten series, we check if
the so-called ”admissibility” condition in [16] is satisfied. Let’s denote M −
(∪m

j=1Tj × D2) by M ′ and the inclusion map ∂M ′ →֒ M ′ by i. Let γj be
{pt}×∂D2 ⊂ Tj ×∂D2. There are two non-obvious things to check: i∗[γj] =
0 ∈ H1(M

′,Z) for all j, and the cokernel of i∗ : H1(M ′,Z) → H1(∂M ′,Z) is
freely generated by the Poincaré-duals of [Tj ]’s in ∂M ′.

For the first one, consider the following commutative diagram of exact
sequences :

H2(M
′, ∂M ′)

∂∗
//

PD
��

H1(∂M
′)

i∗
//

PD
��

H1(M
′)

PD
��

H2(M ′)
i∗

// H2(∂M ′)
∂∗

// H3(M ′, ∂M ′).

It’s enough to show that PD([γj]) belongs to the image of i∗. This is because
PD([γj]) ∈ H2(∂M ′) which is the dual of [Tj ] × {pt} ∈ H2(∂M

′) actually
comes from H2(M) via pull-back.

For the second one, we need the following commutative diagram of exact
sequences :

H3(M
′, ∂M ′)

∂∗
//

PD
��

H2(∂M
′)

i∗
//

PD
��

H2(M
′)

PD
��

H1(M ′)
i∗

// H1(∂M ′)
∂∗

// H2(M ′, ∂M ′).

By using the above result i∗[γj] = 0, i∗([αj]× [γj]) and i∗([βj ]× [γj]) are all
zero in H2(M

′). But i∗([αj] × [βj ]) is nonzero because it is nonzero even in
H2(M). Thus the cokernel of i∗ is freely generated by PD([αj]× [βj ])’s.

In the same way, these two properties also hold for X ′
k := S1×Xk−(S1×

ck) for all k.(Here we need the condition [ck] ≡ ±1 ∈ H1(Xk,R).)
Note that by using the Mayer-Vietoris argument, it follows from i∗[γj ] = 0

that H2(M
′) is mapped isomorphically into H2(M) by the inclusion, and

likewise for Xk’s.
Recall that the Seiberg-Witten series of M is given by

SWM = [Σ1]
χ(Σ2)[Σ2]

χ(Σ1) + (−1)
χ(Σ1)χ(Σ2)

4 [Σ1]
−χ(Σ2)[Σ2]

−χ(Σ1)
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(see [12].), and the Seiberg-Witten invariant of S1 ×Xk is the same as that
of Xk with its basic classes coming from Xk via the pull-back.(see [1].) Now
applying the product formula for the Seiberg-Witten series [16],

SW M̃ = (SWM ′

µ
∏

k=1

SWX′

k
)|ϕ∗

= (SWM

m∏

j=1

([Tj ]
−1 − [Tj ])

µ
∏

k=1

SW S1×Xk
([S1 × ck]

−1 − [S1 × ck]))|ϕ∗
,

where |ϕ∗
denotes the identification in the homology induced by the gluing

map of the fiber sum construction, and if b1(Xk) = 1, we mean the Seiberg-
Witten Series for a chamber.

Now taking s
′ with nonzero Seiberg-Witten invariant from S1×Xk parts

and gluing with s, we obtain a Spinc structure s̃ with nonzero Seiberg-Witten
invariant on M̃ such that c21(s̃) = c21(s), because

c21(s
′) = 〈c1(s), c1(s′)〉 = 〈c1(s), Tj〉 = 〈c1(s′), Tj〉 = [Tj ] · [Tk] = 0 ∀j, k.

This enables us to apply the second inequality of the theorem 2.2 and to get

Y (M̃) ≤ −4
√
2π

√

c21(s) = Y (M).

To show the reverse inequality, we need to construct a Riemannian metric
on M̃ whose Yamabe constant is arbitrarily close to Y (M). Let’s take a
maximal subset of {α1, · · · , αm}, any two elements of which are mutually non-
isotopic, and may assume that it is {α1, · · · , αm′} for m′ ≤ m by renaming.
In the same way, we define {β1, · · · , βm′′}. Let g1 be a complete metric of
constant curvature −1 on Σ̂1 := Σ1 − ∪m′

j=1αj. It is well-known that the
metric near the infinity is the cusp metric, i.e. dt2 + e−2tgS1 , t ∈ [a,∞),
where gS1 is the metric on the circle of radius 1. At each cusp, we cut it at
t = b for b ≫ 1 and glue a cylinder with a metric dt2 + e−2bgS1, t ∈ [b, b+ 1]
along {b} × S1. Then the resulting metric is only C0, so to obtain a nearby
smooth metric, take a smooth decreasing convex function ρ : [b−1, b] → [0, 1]
such that ρ ≡ e−t near b − 1, and ρ ≡ e−b near b. Then dt2 + ρ2gS1 is
a smooth metric with curvature ranging from −1 to 0, and we glue the
corresponding cylindrical ends along the boundary to get back Σ1 with a
metric g̃1 parameterized by b ≫ 1. In the same fashion, we construct g̃2 on

16



Σ2 parameterized by b ≫ 1, using a complete metric g2 of constant curvature
−1 on Σ̂2 := Σ2 − ∪m′′

j=1βj .
In (M, g̃1+ g̃2), we can find a δ-neighborhood Nj = {x ∈ M |dist(x, Tj) ≤

δ} for all j = 1, · · · , m such that they are mutually disjoint for some δ > 0
when b and c are sufficiently large. Note that Nj are all isometric to the
product e−2bgS1 + e−2bgS1 + gD2(δ) where gD2(δ) is the flat metric on the disk
of radius δ, and δ can remain constant if we take b further larger. For the
fiber sum, we bend gD2(δ) on D2( δ

2
) − D2( δ

3
) to a metric like a horn with a

cylindrical end dt2 + gS1( δ
3
), t ∈ [0, δ

4
], where gS1( δ

3
) is the metric on the circle

of radius δ
3
.

For the S1×Xk−(S1×ck) part, we first consider a finite-volume complete
metric h on Xk − ck such that h near the infinity is of the form e−2tgS1 +
dt2 + gS1( δ

3
), where e−2tgS1 is the metric in the ck direction. Then applying

the cutoff procedure as before, we change h into a metric h̃ parameterized by
b with a cylindrical end e−2bgS1 + dt2 + gS1( δ

3
), t ∈ [0, δ

4
]. Surely the volume

and curvature of h̃ is bounded independently of b > 0. We finally take the
metric e−2bgS1 + h̃ on S1 × (Xk − (S1 × ck)).

We now perform the fiber sum to get a metric g̃ on M̃ . The important
thing is that if we take b sufficiently large, the volume of the gluing region and
the parts from S1×Xk’s is made arbitrarily small with its curvature bounded.
Thus applying the Gauss-Bonnet theorem for complete finite-volume hyper-
bolic surfaces, we have that for any ǫ > 0, there exists g̃ such that

−(

∫

M̃

s2g̃dµg̃)
1
2 ≥ −(

∫

Σ̂2×Σ̂2

s2g1+g2
dµg1+g2)

1
2 − ǫ

= −2(4πχ(Σ̂1)4πχ(Σ̂2))
1
2 − ǫ

= −2(4πχ(Σ1)4πχ(Σ1))
1
2 − ǫ

= Y (M)− ǫ,

which is our desired inequality.
The case of Corollary 1.6 goes exactly the same. What we need is

Kobayashi’s formula [7] on the Yamabe invariant of the disjoint union by
which

Y (M1 ∪ · · · ∪Ml) = −(

l∑

i=1

|Y (Mi)|2)
1
2

for Y (Mi) ≤ 0 ∀i.
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Remark As mentioned in the introduction, a knot surgery is a special case
of the above construction. MK has the same homology as S1 × S2 with [m]
generating H1(MK ,Z), and

SW S1×MK
=

∆K([T ]
2)

([T ]−1 − [T ])2
,

where T denotes S1 ×m, and ∆K is the symmetrized Alexander polynomial
of a knot K. (For a proof, see [5] and [16].)

It is an interesting question whether a knot surgery on M = Σ1 × Σ2 as
above does not change the homeomorphism class of M . ✷

8 Examples

Let M be a Kähler surface of nonnegative Kodaira dimension, and Ni be an
S1 bundle over a rational homology 3-sphere for i = 1, · · · , m. Then

Y (M#N1# · · ·#Nm) = Y (M).

Also we can perform surgeries with a product of S1 with a rational homology
3-sphere along S1 × {pt} to get the same result.

For CP 2 case, presently we don’t have many examples but

Y (CP 2#m
i=1(S

1 × S3)) = 12
√
2π.
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