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CONNECTED SUMS WITH HPn OR CaP 2

AND THE YAMABE INVARIANT

CHANYOUNG SUNG

Abstract. Let M be a smooth closed 4k-manifold whose Yamabe in-
variant Y (M) is nonpositive. We show that

Y (M♯ l HP
k
♯ m HP k) = Y (M),

where l, m are nonnegative integers, and HP k is the quaternionic pro-
jective space. When k = 4, we also have

Y (M♯ l CaP
2
♯ m CaP 2) = Y (M),

where CaP 2 is the Cayley plane.

1. Introduction

The Yamabe invariant is an invariant of a smooth closed manifold defined
using the scalar curvature. Let M be a closed smooth n-manifold. By
the well-known solution of the Yamabe problem, each conformal class of a
smooth Riemannian metric on M contains a so-called Yamabe metric which
has constant scalar curvature. Moreover, letting

[g] = {ϕg | ϕ : M → R
+ is smooth}

be the conformal class of a Riemannian metric g, a Yamabe metric of [g]
actually realizes

Y (M, [g]) := inf
g̃∈[g]

∫

M sg̃ dVg̃

(
∫

M dVg̃)
n−2

n

,

where sg̃ and dVg̃ respectively denote the scalar curvature and the volume
element of g̃. The value Y (M, [g]), which is the value of the scalar curvature
of a Yamabe metric with the total volume 1 is the Yamabe constant of the
conformal class.
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In a quest of a “best” Yamabe metric or more ambitiously a “canonical”
metric on M , one naturally takes the supremum of the Yamabe constants
over the set of all conformal classes on M . This is possible, because by
Aubin’s theorem [2], the Yamabe constant of any conformal class on any
n-manifold is always bounded by that of the unit n-sphere Sn(1) ⊂ R

n+1,

which is n(n− 1)(Vol(Sn(1)))2/n.
The Yamabe invariant of M , Y (M), is then defined as the supremum

of the Yamabe constants over the set of all conformal classes on M . This
supremum is not always attained, but if it is attained by a metric which is the
unique Yamabe metric with total volume 1 in its conformal class, then the
metric has to be an Einstein metric.([1]) In general, one can hope a singular
or degenerate Einstein metric leading to a kind of a “geometrization” from
a maximizing sequence of Yamabe metrics. It is also noteworthy that the
Yamabe invariant is a topological invariant of a closed manifold depending
only on the smooth structure of the manifold.

The Yamabe invariant of a compact orientable surfaces is just 4πχ(M)
where χ(M) denotes the Euler characteristic of M by the Gauss-Bonnet
theorem. In higher dimensions, it is not an easy task to compute the Yam-
abe invariant. Nevertheless recently there have been much progresses in
dimension 3 and 4. In dimension 3, the geometrization by the Ricci flow
gives a lot of answers, and in dimension 4, the Spinc structure and the Dirac
operator are keys for computing the Yamabe invariant. In particular, Le-
Brun [7, 8] showed that if M is a compact Kähler surface whose Kodaira
dimension is not equal to −∞, then

Y (M) = −4
√
2π

√

(2χ+ 3σ)(M̃ ),

where σ denotes the signature and M̃ is the minimal model of M . Now
based on this evidence, one can ask if the blowing-up does not change the
Yamabe invariant of a closed orientable 4-manifold with nonpostive Yamabe
invariant, namely

Question 1.1. Let M be a closed orientable 4-manifold with Y (M) ≤ 0. Is

there an orientation of M such that Y (M♯ l CP 2) = Y (M) for any integer

l > 0? What about in higher dimensions?

Further one can also ask whether the analogous statement holds true
for the “quaternionic blow-up”, i.e. a connected sum with the quaternionic

projective space HP k with reverse orientation, or even a connected sum with
the Cayley plane CaP 2 with reverse orientation. More generally we prove :

Theorem 1.2. Let M be a smooth closed 4k-manifold with Y (M) ≤ 0.
Then

Y (M♯ l HP k♯ m HP k) = Y (M),
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where l,m are nonnegative integers. When k = 4, we also have

Y (M♯ l CaP 2♯ m CaP 2) = Y (M).

2. Preliminaries

A computationally useful formula for the Yamabe constant is

|Y (M, [g])| = inf
g̃∈[g]

(

∫

M
|sg̃|

n
2 dµg̃)

2

n ,

where the infimum is attained only by a Yamabe metric. (For a proof, see
[8, 14].) So when Y (M, [g]) ≤ 0, this implies that

Y (M, [g]) = − inf
g̃∈[g]

(

∫

M
|s−g̃ |

n
2 dµg̃)

2

n ,

where s−g is defined as min{sg, 0}. Therefore when Y (M) ≤ 0,

Y (M) = − inf
g
(

∫

M
|sg|

n
2 dµg)

2

n = − inf
g
(

∫

M
|s−g |

n
2 dµg)

2

n .(2.1)

Also essential is Kobayashi’s connected sum formula [6, 13]

Y (M1♯M2) ≥
{

−(|Y (M1)|
n
2 + |Y (M2)|

n
2 )

2

n if Y (Mi) ≤ 0 ∀i
min(Y (M1), Y (M2)) otherwise,

which is in fact a special case of the surgery formula in codimension 3 or
more ([11]).

We also need to know about the geometry and topology of HP k and
CaP 2. Both have the homogeneous Einstein metric of positive scalar curva-
ture unique up to constant and can be viewed as the mapping cones of the
(generalized) Hopf fibrations

π1 : S
4k−1 → HP k−1

with S3 fibers and
π2 : S

15 → S8

with S7 fibers respectively. Thus a connected sum with them or their
orientation-reversed ones replaces a point with HP k−1 and S8 respectively
so that it deserves the name “blow-up”.

These fibrations have the associated geometries of Riemannian submersion
with totally geodesic fibers. In case of π1, S

4k−1 and S3 are endowed with the
round metric of constant curvature 1, and HP k−1 is given the homogeneous
Einstein metric with curvature ranging between 1 and 4. In case of π2, the
total space and the fibers have the round metric of curvature 1, but the base
has the round metric of curvature 4.

We will denote the round n-sphere with the metric of constant curvature
1
a2 by Sn(a), i.e. the sphere of radius a in the Euclidean R

n+1.
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3. Proof of Theorem

It’s enough to prove for one connected sum. Let M ′ be M♯ HP k or

M♯ HP k, and set n = 4k. First recall that HP k admits a metric of positive
scalar curvature meaning that Y (HP k) > 0. Thus by the connected sum
formula,

Y (M ′) ≥ Y (M).

The idea of the proof is to surger out an HP k−1 in M ′ by performing the
Gromov-Lawson surgery ([4]) to get back M without decreasing the Yamabe
constant much.

To prove by contradiction, let’s assume

Y (M ′) > Y (M) + 2c > Y (M)

for a constant c > 0. Let g be an unit-volume Yamabe metric on M ′ such
that

sg ≡ Y (M ′, [g]) = Y (M) + 2c.

Let W be an HP k−1 ⊂ HP k embedded in M ′. Take a δ-tubular neighbor-
hood

N(δ) = {x ∈ M ′| distg(x,W ) < δ}
of W for δ > 0. We will take δ small enough so that N(δ) is diffeomorphic
to HP k − {a point} and the boundary of N(δ) is diffeomorphic to S4k−1.

First, we consider the case of Y (M) = 0 so that sg > 0. We perform a
Gromov-Lawson surgery described in [4, 12, 13] on N(δ) along W keeping
the scalar curvature positive to get a cylindrical end isometric to

(S4k−1 × [0, 1], ĝ + dt2),

where (S4k−1, ĝ) is a Riemannian submersion onto (W, gW = g|W ) with
totally geodesic fibers isometric to S3(ε), the round 3-sphere of radius ε ≪ 1.
Here, the horizontal distribution is given by the connections on the normal
bundle. By arranging ε sufficiently small, ĝ has positive scalar curvature.

Now let’s take a homotopy

Hb(t) = λ(t)gW + (1− λ(t))gstd

of smooth metrics on W from gW to the homogeneous Einstein metric gstd
of HP k−1 with curvature ranging from 1 to 4, where λ : [0, 1] → [0, 1] is a
smooth decreasing function with the property that it is 1 for t near 0 and 0
near 1. This induces a homotopy H1(t) of smooth metrics on S4k−1 through
a Riemannian submersion with totally geodesic fibers S3(ε). And then we
homotope the horizontal distribution to that of the Hopf fibration through
a Riemannian submersion with totally geodesic fibers S3(ε). Let’s denote
this homotopy on S4k−1 be H2(t) for t ∈ [1, 2]. When ε is sufficiently small,
H1(t) + dt2 and H2(t) + dt2 will give a metric of positive scalar curvature
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on S4k−1 × [0, 2], because it is a Riemannian submersion with totally ge-
odesic fibers onto HP k−1 × [0, 2]. We concatenate this part to the above
one obtained from the Gromov-Lawson surgery to get a smooth metric with
the boundary isometric to the squashed sphere S4k−1 coming from the Hopf
fibration. Let’s denote this metric on the boundary by hε for a later purpose.

We want to close it up by a 4k-ball B4k equipped with a metric of positive
scalar curvature. To construct such a metric we resort to the Gromov-
Lawson surgery again. Take a sphere S4k with any metric of positive scalar
curvature and let p be any point on it. As before, we perform a Gromov-
Lawson surgery in a sufficiently small neighborhood of p to get a 4k-ball with
the positive scalar curvature and the cylindrical end isometric to S4k−1(ε′)×
[0, 1] for a ε′ > 0. And then we take a homothety of the whole thing by 1

ε′ so

that the boundary is isometric to the round sphere (S4k−1(1), h1). In order
to glue this to the above obtained part, we have to homotope the metric on
the boundary. We take a homotopy

H3(t) = λ(t)h1 + (1− λ(t))hε

for t ∈ [0, 1].

Lemma 3.1. The metric H3(t) on S4k−1 has positive scalar curvature for

every t ∈ [0, 1].

Proof. Note that h1 and hε differ only by the size of the Hopf fiber. So for
each t, H3(t) also has the same Riemannian submersion structure with the
fiber isometric to the round 3-sphere of radius r(t) := λ(t) + (1− λ(t))ε. By
the O’Neill’s formula [3],

sH3(t) =
1

r2(t)
sf + sb ◦ π − r2(t)|A|2,

where sf , sb, and A denote the scalar curvature of the fiber and the base, and
the integrability tensor for t = 0 respectively. Thus sH3(t) is constant for each
t and increases as t increases. From the fact that sH3(0) ≡ (4k−1)(4k−2) > 0,
the result follows.

Nevertheless the metric H3(t)+dt2 on S4k−1× [0, 1] may not have positive
scalar curvature in general. But due to Gromov and Lawson’s lemma in [4],
for a sufficiently large constant L > 0, H3(

t
L ) + dt2 on S4k−1 × [0, L] has

positive scalar curvature. Now we have a desired 4k-ball to be glued to the
part made previously out of M ′.

After the gluing, what we get is just M with a specially devised smooth
metric which we denote by ḡ. Note that

sḡ > 0,
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which is a contradiction to the fact that Y (M) = 0 so that M does not
admit a metric of positive scalar curvature metric.

Secondly, in case of Y (M) < 0, we use a method suggested by C. LeBrun
in [9]. We first take a conformal change e2ϕg of (M ′, g) such that ϕ ≡ 0
outside N(δ) and the scalar curvature of e2ϕg is positive on a much smaller
neighborhood N(δ′) of W .1 Moreover one can arrange that it satisfies

−(

∫

M ′

|s−
e2ϕg

|n2 dµe2ϕg)
2

n > −(

∫

M ′

|s−g |
n
2 dµg)

2

n − ǫ

for any ǫ > 0.2 Let’s take ǫ < c.
Now we perform a Gromov-Lawson surgery on (N(δ′), e2ϕg) keeping the

positivity of the scalar curvature there. Then in the same way as above, we
perform the homotopy process and close it up with a 4k-ball to get the final
metric ḡ. Since this process makes the scalar curvature positive, we have

−(

∫

M
|s−ḡ |

n
2 dµḡ)

2

n = −(

∫

M ′

|s−
e2ϕg

|n2 dµe2ϕg)
2

n

> (Y (M) + 2c)− c

> Y (M).

This is a contradiction to the formula (2.1), and completes a proof for the
HP k case.

The case of CaP 2 can be proved in the same way using the fact that CaP 2

also admits a metric of positive scalar curvature, and is the mapping cone

1One can take ϕ to be a smooth nonpositive function ρ(r) such that r(x) = distg(x,W )
for x ∈ M ′ and

ρ(r) =

{

−ar2 for r ≤ δ
3

0 for r ≥ δ

where a > 0 is a constant. Since ϕ takes the maximum on W , dϕ is identically zero
at W . For z ∈ W and a geodesic normal coordinate (x1, · · · , xn) around it such that
∂

∂x1
|z, · · · ,

∂
∂xn−4

|z are tangent to W ,

(∆gϕ)|z = (
1

√

|g|
∂k(

√

|g|gkl∂lϕ))|z = (gkl∂k∂l(−ar
2))|z

= −a(
n
∑

i=n−3

∂
2

i (x
2

n−3 + · · ·+ x
2

n))|z = −8a,

and hence

se2ϕg|W = (e−2ϕ(sg − 2(n− 1)∆gϕ− (n− 2)(n− 1)|dϕ|2))|W

= sg|W + 16(n− 1)a,

which is positive for sufficiently large a.
2For this, one replaces the above ϕ with δ2ρ( r

δ
) which is in fact equal to ϕ for r ≤ δ

3
,

and takes δ sufficiently small. Then as δ → 0, the scalar curvature is bounded below while
the volume of N(δ) tends to zero.
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of the (generalized) Hopf fibration π : S15 → S8 with S7 fibers as explained
in the previous section.

4. Examples and Final remarks

Obviously the theorem is vacuous for the case of HP 1 which is diffeomor-
phic to S4.

Example

Let H be a closed Hadarmard-Cartan manifold, i.e. one with a metric
of nonpositive sectional curvature. By the well-known theorem of Gromov
and Lawson [5] on the enlargeable manifolds, H cannot carry a metric with
positive scalar curvature. Therefore Y (H) ≤ 0. Applying our theorem to H,
one has

Y (H♯ l HP k♯ m HP k) = Y (H).

For a specific example, take M = T n ×H, where T n is an n-dimensional
torus and H is as above, e.g. a product of closed real hyperbolic manifolds.
Now since M has an obvious F -structure, its Yamabe invariant is actually
0 by collapsing the T n-part. (Refer to Paternain and Petean [10].) Thus

Y (M♯ l HP k♯ m HP k) = 0.

Similar examples can also be constructed for CaP 2. ♦

Going back to the question 1.1 addressed in the introduction, our argu-
ment does not apply to the case of complex projective space CP k. We still
have the fact that CP k is the mapping cone of the Hopf fibration

π : S2k−1 → CP k−1

with S1 fibers. So the CP k−1 is embedded as a submanifold of codimension
2 which is one less for the Gromov-Lawson surgery to work. Moreover the
statement corresponding to the theorem 1.2 can not be true at least in
dimension 4. This is because of Wall’s stabilization theorem [16]. Let M

be a simply-connected closed smooth 4-manifold. Then there exists integers
l,m such that

M♯ l CP 2♯ m CP 2 = a CP 2♯ b CP 2,

where a = l+ 1
2(b2(M)+σ(M)) and b = m+ 1

2(b2(M)−σ(M)). But we know

that Y (a CP 2♯ b CP 2) > 0. Thus the Yamabe invariant changes drastically

by taking connected sums with both CP 2 and CP 2. We do not know yet
whether the stabilization phenomenon of the Yamabe invariant is prevalent
also in higher dimensions. But at least the question 1.1 is worth investigating
in dimension both 4 and higher.
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