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INTEGRABILITY OF GEODESIC FLOWS AND ISOSPECTRALITY OF

RIEMANNIAN MANIFOLDS

DOROTHEE SCHUETH

Abstract. We construct a pair of compact, eight-dimensional, two-step Riemannian
nilmanifolds M and M

′ which are isospectral for the Laplace operator on functions and
such that M has completely integrable geodesic flow in the sense of Liouville, while M

′

has not. Moreover, for both manifolds we analyze the structure of the submanifolds of
the unit tangent bundle given by to maximal continuous families of closed geodesics with
generic velocity fields. The structure of these submanifolds turns out to reflect the above
(non)integrability properties. On the other hand, their dimension is larger than that of
the Lagrangian tori in M , indicating a degeneracy which might explain the fact that
the wave invariants do not distinguish an integrable from a nonintegrable system here.
Finally, we show that for M , the invariant eight-dimensional tori which are foliated by
closed geodesics are dense in the unit tangent bundle, and that both M and M

′ satisfy
the so-called Clean Intersection Hypothesis.

1. Introduction

The spectrum of a compact Riemannian manifold is defined as the collection of eigenvalues
of the Laplace operator acting on functions, counted with multiplicities. Two manifolds
are called isospectral if their spectra are equal.
Inverse spectral geometry deals with the question of how much information the spec-

trum of a manifold provides about its geometry. Classical tools for extracting geometrical
information from the spectrum are asymptotic expansions of the singularities of the heat
trace or the wave trace. The so-called heat invariants determine the dimension, the
volume, the total scalar curvature and a series of other integrals depending on the cur-
vature tensor of the manifold. The singularities of the wave trace are contained in the
set of lengths of closed geodesics on the manifold. Asymptotic expansions of these sin-
gularities near such a length yield, under suitable nondegeneracy assumptions, geometric
information on the set of closed geodesics of this length; see the fundamental article by
Duistermaat and Guillemin [3] or, for example, S. Zelditch’s article [10] for more detailed
results under stronger assumptions.
Closed geodesics thus being at the focus of the wave invariants, it is natural to ask to

which extent integrability properties of the dynamical system given by the geodesic flow
of a Riemannian manifold are determined by spectral data. In the present article, we will,
more precisely, answer the question whether complete integrability of the geodesic flow in
the sense of Liouville is a property determined by the Laplace spectrum on functions.
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A Riemannian manifold M is said to have completely integrable geodesic flow in the
sense of Liouville if there exist n = dimM first integrals f1, . . . fn ∈ C∞(T ∗M) of the
geodesic flow which Poisson commute and are functionally independent. These notions
are defined as follows: Let ω be the canonical symplectic form on T ∗M . For any smooth
function f on T ∗M , define the associated Hamiltonian vectorfield Xf by df = ω( . , Xf).
Then two functions f, h ∈ C∞(T ∗M) Poisson commute if ω(Xf , Xh) = 0, or equivalently,
if f is constant along the integral curves of Xh. A set {f1, . . . , fn} of smooth functions
on T ∗M is called functionally independent if df1 ∧ . . . ∧ dfn 6= 0 on an open dense subset
of T ∗M .
Our main result is:

Theorem 3.10. There exists a pair of compact closed isospectral Riemannian manifolds

M,M ′ such that M has completely integrable geodesic flow, while M ′ does not have com-

pletely integrable geodesic flow.

In recent years, L. Butler has studied the question of complete integrability of geodesic
flows on compact Riemannian nilmanifolds. These are manifolds of the form (Γ\N, g),
where N is a simply connected nilpotent Lie group, Γ is a cocompact discrete subgroup
of N , and g is a Riemannian metric induced by a left invariant metric on N . In partic-
ular, Butler has established sufficient criteria both for complete integrability and lack of
complete integrability for the case of two-step Riemannian nilmanifolds [1], [2]. Apply-
ing his results, together with a certain construction by C. Gordon and E. Wilson [8] of
isospectral nilmanifolds, we find a pair of compact eight-dimensional two-step Riemannian
nilmanifolds M,M ′ with the properties claimed in the above theorem.
As an aside, we will also see that there exist continuous isospectral families of compact

two-step Riemannian nilmanifolds each of which has completely integrable geodesic flow;
see Corollary 3.6.
For the manifold M we will, apart from just applying Butler’s integrability condition,

explicitly present a set of eight Poisson commuting and functionally independent first
integrals for the geodesic flow (see Lemma 4.4), following the lines of Butler’s proof of his
criterion in [1]. Note that these first integrals are C∞ but not analytic; in fact, complete
integrability by commuting analytic first integrals is impossible for compact nilmanifolds
which are not tori, due to a theorem by I. Taimanov [9].
Moreover, for any closed unit speed geodesic whose velocity field satisfies a certain

genericity condition, we will analyze the structure of the maximal continuous family of
closed orbits of the geodesic flow in the unit tangent bundle of M , resp. M ′, containing
the orbit associated with the given geodesic; see Corollary 5.6. While the dimension
of M and M ′ is eight, these subsets of the unit tangent bundles turn out to be nine-
dimensional submanifolds. “Generically” one would expect, at least in the case of M ,
eight dimensional submanifolds instead, namely, fibers of the (singular) T 8 foliation of
the unit tangent bundle whose existence is guaranteed by complete integrability of the
geodesic flow. The fact that the dimension of the submanifolds foliated by generic closed
geodesics is higher than expected provides some explanation for why the wave invariants
can, in this example, not distinguish between a completely integrable geodesic flow and a
nonintegrable one, in the sense that some degeneracy is present here.



INTEGRABILITY OF GEODESIC FLOWS AND ISOSPECTRALITY 3

On the other hand, the structure of these submanifolds reflects in a nice way the
(non)integrability properties of the geodesic flow: While in the case of M , the subman-
ifolds under consideration can be decomposed into a one-parameter family of invariant
T 8 fibers which are level sets of the first integrals and two singular T 7 fibers, the picture
is topologically quite different in the case of M ′: Here, the corresponding submanifolds
cannot be decomposed into invariant T 8 fibers, but instead (again up to two singular
fibers) into a one-parameter family of invariant fibers diffeomorphic to H3 × T 5, where
H3 is a compact three-dimensional Heisenberg manifold (a certain two-step nilmanifold
not diffeomorphic to a torus).
We will also show that for both M and M ′, the set of initial vectors of unit speed

closed geodesics satisfying the considered genericity condition is dense in the unit tangent
bundle. In particular, the invariant T 8 fibers in the unit tangent bundle of M which are
level sets of the first integrals and are fibered by closed orbits are dense in the unit tangent
bundle; see Corollary 5.8.
Finally, using a result by Ruth Gornet [4], we show in Remark 5.9 that the so-called

Clean Intersection Hypothesis (a hypothesis always needed in order to establish a wave
trace formula [3]), is satisfied for both M and M ′. So the reason for why the wave trace
fails to distinguish between the different integrability properties of the geodesic flows ofM
and M ′ does not lie in a failure of the Clean Intersection Hypothesis, but must be subtler.
In fact, the main reason seems to lie in the phenomenon already mentioned above,

namely, that the closed geodesics fill out larger dimensional families than Lagrangian
tori. In section 8 of his excellent survey paper [11], Zelditch explains why the the most
natural setting for the “Can one hear integrability?” problem or any positive conjecture in
this respect is that of “simple clean length spectrum”, where, in the context of a manifold
with completely integrable geodesic flow, “simple” means that for any given length, the
family of closed geodesics of that length forms a Lagrangian submanifold which should,
moreover, be connected. The natural approach for showing that any Riemannian manifold
isospectral to a manifold with these properties and completely integrable geodesic flow
should again have integrable geodesic flow — this approach has indeed yielded results in
dimension two, see [11] — is the following: The wave invariants determine the dimension
of the submanifolds foliated by closed geodesics, and they determine certain properties
of the geodesic flow on these submanifolds. The hope is that if these submanifolds are
Lagrangian tori in the reference manifold, then the wave invariants would force them to
be tori also in the second manifold, which in turn might be used to derive integrability of
its geodesic flow.
However, as we have seen, the Lagrangian condition is certainly violated in our examples

because the dimension of the submanifolds in question is larger than half the dimension
of the cotangent bundle. Let us mention here, without discussing it in the paper, that the
connectedness condition is not satisfied either: For a given length, there will in general
be more than one continuous family of closed geodesics of that length.
The paper is organized as follows:
In Sections 2 and 3, we set out the necessary framework on two-step Riemannian nil-

manifolds and present the results of Gordon and Wilson [8] and Butler [1], [2], respectively,
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which we need for our construction. In Example 2.6 we define the pair of Riemanian man-
ifolds M and M ′ whose isospectrality is established in Section 2, while their integrability
vs. nonintegrability properties are proven in Section 3. In Section 4 we explicitly estab-
lish eight Poisson commuting, functionally independent first integrals of the geodesic flow
of M . In Section 5 we analyze the geometry of the submanifolds of the unit tangent bun-
dles of M and M ′ which are foliated by maximal continuous families of closed geodesics
satisfying a certain genericity condition. We conclude by proving the results mentioned
above on the density of closed geodesics and on the Clean Intersection Hypothesis.
The author would like to thank Steve Zelditch for raising her attention to the question

of whether complete integrability of the geodesic flow is spectrally determined, and for
several inspiring conversations.

2. Isospectral two-step nilmanifolds

Let v and z be euclidean vector spaces, each endowed with a fixed inner product.

Definition 2.1. Given the above data, one associates with any linear map j : z → so(v)
the following:

(i) The two-step nilpotent metric Lie algebra n(j) with underlying vector space v⊕ z,
whose inner product is given by letting v and z be orthogonal and taking the given
inner product on each factor, and whose Lie bracket [ , ]j is defined by letting z

be central, [v, v]j ⊆ z and 〈j(Z)X, Y 〉 = 〈Z, [X, Y ]j〉 for all X, Y ∈ v and Z ∈ z.
(ii) The two-step simply connected nilpotent Lie group N(j) whose Lie algebra is n(j),

and the left invariant Riemannian metric g(j) on N(j) which coincides with the
chosen inner product on n(j) = TeN(j).

Notation and Remarks 2.2.

(i) Note that the Lie group exponential map expj : n(j) → N(j) is a diffeomorphism
because N(j) is simply connected and nilpotent.

(ii) Since N(j) is two-step nilpotent, the Campbell-Baker-Hausdorff formula implies
that expj(X) · expj(Y ) = expj(X + Y + 1

2
[X, Y ]j) for all X, Y ∈ n(j).

(iii) In particular, if a lattice G in v ⊕ z has the property that [G,G]j ⊆ 2G, then
Γ := expj(G) is a discrete subgroup of N(j); hence Γ\N(j), endowed with the
metric induced by g(j), is a two-step Riemannian nilmanifold. We denote the
induced metric by g(j) again. If, moreover, G has full rank, then Γ is cocompact,
and (Γ\N(j), g(j)) is a compact two-step Riemannian nilmanifold.

(iv) If L is a cocompact lattice in z, then we denote by L∗ := {Z ∈ z | 〈Z,L〉 ⊆ Z} the
dual lattice, viewed as a lattice in z.

Definition 2.3.

(i) Two linear maps j, j′ : z → so(v) are called isospectral if for each Z ∈ z, the
maps j(Z), j′(Z) ∈ so(v) are similar, that is, have the same eigenvalues (with
multiplicities) in C.

(ii) Two lattices in a euclidean vector space are called isospectral if the lengths of their
elements, counted with multiplicities, coincide.
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We will use the following special version of a result from [8].

Proposition 2.4 (see [8] 3.2, 3.7, 3.8). Let j, j′ : z → so(v) be isospectral. Let M
and L be cocompact lattices in v and z, respectively. Assume that [M,M]j and [M,M]j

′

are contained in 2L. For each Z ∈ L∗ assume that the lattices ker(j(Z)) ∩ M and

ker(j′(Z))∩M are isospectral. Write Γ (j) := expj(M+L), and similarly for j′. Then the

compact Riemannian manifolds (Γ (j)\N(j), g(j)) and (Γ (j′)\N(j′), g(j′)) are isospectral

for the Laplace operator on functions.

Remark 2.5. (i) In the situation of Proposition 2.4, note that for Z ∈ L∗, the subspace
〈Z〉⊥ of z is rational with respect to L, that is, its intersection with L is a cocompact
lattice in this subspace. Using the assumption [M,M]j ⊆ 2L ⊂ L and the fact that M
has full rank in v, one concludes that the subspace {X ∈ v | [X, v]j ⊆ 〈Z〉⊥} = ker(j(Z))
of v is rational with respect to M. Thus ker(j(Z)) ∩M is actually a cocompact lattice
in ker(j(Z)), and similarly for j′.
(ii) We indicate how to derive Proposition 2.4 from the cited results of [8].
Let Z ∈ L∗\{0}. Consider the compact two-step Riemannian nilmanifold MZ associ-

ated as in 2.1 and 2.2 with the euclidean spaces v and 〈Z〉, the linear map from 〈Z〉 to
so(v) mapping Z to j(Z), and the lattices M ⊂ v and proj〈Z〉L ⊂ 〈Z〉, where proj〈Z〉
denotes orthogonal projection onto 〈Z〉. Analogously define M ′

Z using j(Z) instead of
j′(Z). (MZ is actually the Riemannian submersion quotient of (Γ (j)\N(j), g(j)) by the
canonical action of the torus 〈Z〉⊥/(〈Z〉⊥ ∩ L) on this manifold, and similarly for j′.)
We first note that MZ and M ′

Z are then isospectral by Proposition 3.7/Remark 3.8
of [8]. In fact, their base tori (the Riemannian submersion quotients by the action of the
circle 〈Z〉/(〈Z〉 ∩ proj〈Z〉L)) are both isometric to the torus v/M and thus isospectral,

the maps j(Z) and j′(Z) are similar, the lattice in ker(j(′)(Z))⊕ 〈Z〉 is a sum of lattices
in the two factors as required in Remark 3.8 of [8], and the lattices ker(j(Z)) ∩M and
ker(j′(Z)) ∩M are isospectral by assumption.
Finally, the manifold M0, defined as the Riemannian submersion quotient of the man-

ifold (Γ (j)\N(j), g(j)) by the action of the torus z/L, is isometric to the analogously
defined manifold M ′

0 since both are isometric to v/M; in particular, M0 and M ′
0 are

isospectral. Isospectrality of the pairs MZ and M ′
Z for each Z ∈ L∗ now implies, by

Theorem 3.2 of [8], the isospectrality statement of Proposition 2.4.

We now give an example of a pair of isospectral manifolds arising from Proposition 2.4
with the property that, as we will show in Section 3, the geodesic flow on the first manifold
is completely integrable, while the geodesic flow on the second manifold is not.

Example 2.6. Let dim v = 5, dim z = 3, and let {Xi, Xj , Yi, Yj, Yk} and {Zi, Zj, Zk}
be orthonormal bases of v and z, respectively. Define two Lie brackets [ , ] and [ , ]′

on v ⊕ z as follows: For a, b ∈ {i, j, k} with a 6= b denote by ab ∈ {±i,±j,±k} the
quaternionian product of a and b, and for c ∈ {i, j, k} write Z−c := −Zc. Now let
[Xa, Yb] = −[Yb, Xa] := Zab and [Xa, Xb]

′ := Zab, [Ya, Yb]
′ := Zab for all a 6= b in {i, j, k},

ignoring any expressions containing Xk, and let all other brackets between basis elements

be zero. Then [ , ] = [ , ]j and [ , ]′ = [ , ]j
′

, where j, j′ : z → so(v) are the linear maps for
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which j(ciZi + cjZj + ckZk) and j′(ciZi + cjZj + ckZk) with ci, cj, ck ∈ R are expressed,
with respect to the given basis of v, by the matrices





0 0 0 −ck cj
0 0 ck 0 −ci
0 −ck 0 0 0
ck 0 0 0 0
−cj ci 0 0 0



 and





0 −ck 0 0 0
ck 0 0 0 0
0 0 0 −ck cj
0 0 ck 0 −ci
0 0 −cj ci 0



 , respectively.

Let M be the lattice in v generated by the basis given above, and L be the lattice in z gen-
erated by {1

2
Zi,

1
2
Zj,

1
2
Zk}; in particular, [M,M]j = [M,M]j

′

= 2L. Then, with notation
as in 2.1, 2.2, 2.4, the associated manifolds (Γ (j)\N(j), g(j)) and (Γ (j′)\N(j′), g(j′)) are
isospectral by Proposition 2.4.
In fact, j and j′ are isospectral since the two matrices given above have the same

characteristic polynomials λ(λ + c2k)(λ + c2i + c2j + c2k). It remains to show that for each
Z ∈ L∗, the two lattices ker(j(Z)) ∩ M and ker(j′(Z)) ∩ M are isospectral; we will
actually see that they are isometric. For c = (ci, cj, ck) ∈ R3 write Xc := ciXi + cjXj,
Yc := ciYi + cjYj + ckYk, Zc := ciZi + cjZj + ckZk. Then we have for all c ∈ R3 and, in
particular, for all c ∈ (2Z)3 (that is, for Zc ∈ L∗):

ker(j(Zc)) = ker(j′(Zc)) = span{Yc} if ck 6= 0,

ker(j(Zc)) = span{Xc, Yi, Yj}, ker(j′(Zc)) = span{Xi, Xj, Yc} if ck = 0 and c 6= 0,

ker(j(Zc)) = ker(j′(Zc)) = v if c = 0.

In the first case, the two subspaces are equal, and thus the two lattices in question coincide.
The same holds for the third case. In the second case, note that Yc = ciYi + cjYj since
ck = 0; this and the fact that M∩ span{Xi, Xj, Yi, Yj} is invariant under exchanging the
X- with the Y -space shows isometry of the lattices in the two subspaces also in this case.

Remark 2.7. The metric Lie algebras n and n′ are not isomorphic. This implies [8] that
the two manifolds (Γ\N, g) and (Γ ′\N ′, g′) from Example 2.6 are not locally isometric.

3. Complete integrability of geodesic flows on two-step nilmanifolds

We are going to use results by L. Butler [1], [2] in order to show that the first of the two
isospectral manifolds from Example 2.6 has completely integrable geodesic flow, while the
second has not.

Definition 3.1. (i) A two-step nilpotent Lie algebra n is called a Heisenberg-Reiter

Lie algebra, shortly: HR Lie algebra, if there exists a vector space decomposition
n = x ⊕ y ⊕ z such that [n, n] ⊆ z, [z, n] = 0, [x, x] = 0, and [y, y] = 0. Such a
decomposition is then called a presentation of n.

(ii) A presentation x ⊕ y ⊕ z of an HR Lie algebra n is called injective if there exists
c ∈ z∗ such that c|[X,y] 6= 0 for all X ∈ x\{0}.

Theorem 3.2 ([1], Theorem 2.22). Let n be an HR Lie algebra admitting an injective

presentation, and let N be the associated simply connected Lie group. Assume that there

exists a discrete, cocompact subgroup Γ of N . Then for any such Γ and any left invariant

metric g on N , the geodesic flow of (Γ\N, g) is completely integrable.
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Corollary 3.3. The manifold (Γ (j)\N(j), g(j)) from Example 2.6 has completely inte-

grable geodesic flow.

Proof. We use the notation from Example 2.6.
Let x := span{Xi, Xj} and y := span{Yi, Yj, Yk}. Since x and y are abelian, n(j) =

x ⊕ y ⊕ z is an HR Lie algebra. Note that j(Zk)|x is injective, and hence 〈Zk, [X, y]〉 =

〈j(Zk)X, y〉 6= 0 for all X ∈ x\{0}. It follows that x⊕ y ⊕ z is an injective representation
of n(j), and thus the corollary follows from Theorem 3.2. �

Remark 3.4. (i) It seems that the proof of Theorem 3.2 in [1] presupposes that the
rational and the HR structure of the Lie algebra n are in some sense compatible;
more precisely: The proof given there of complete integrability of the geodesic flow
of (Γ\N, g) works without any additional arguments if there exists an injective
presentation x⊕ y⊕ z of n with the property that there exists a complement x̃ of z
in x⊕ z and a complement ỹ of z in y⊕ z such that the union x̃∪ ỹ∪ z contains a set
of vectors which is mapped to a generating set for Γ by the Lie group exponential
map. (Of course, x̃⊕ ỹ⊕ z is then itself an injective presentation of n.)

(ii) By our construction of Γ (j) in Example 2.6 it is clear that the injective represen-
tation x⊕ y⊕ z of n(j) from the proof of Corollary 3.3 does satisfy the additional
assumption just mentioned. Moreover, we will reconfirm complete integrability of
the geodesic flow on (Γ (j)\N(j), g(j)) in Section 4 directly: Guided by the proof
of Theorem 3.2 in [1], we will explicitly establish eight commuting, functionally
independent first integrals.

Remark 3.5. It is easy to find examples of continuous families of isospectral manifolds
each of which has completely integrable geodesic flow, using Butler’s above result and
not the above construction from [8], but another construction by Gordon and Wilson [7],
involving so-called almost-inner automorphisms. For example, let dim v = 4, dim z = 2,
and let {X1, X2, Y1, Y2} and {Z1, Z2} be orthonormal bases of v and z, respectively. Define
a Lie bracket on the orthogonal sum n := v ⊕ z by letting [X1, Y1] = [X2, Y2] = Z1,
[X1, Y2] = Z2, and letting pairs of basis vectors commute if they do not occur in these three
equations. Let N be the associated simply connected Lie group, associated with the left
invariant metric g defined by the given inner product on n. Now consider the continuous
family of lattices Γt := exp(Gt) in the associated simply connected Lie group N , where
Gt := span{X1, X2, Y1, Y2 + tZ2,

1
2
Z1,

1
2
Z2}. By [7], the family (Γt\N, g) is nontrivial and

isospectral (even strongly isospectral, that is, also on p-forms for all p). Note that these
manifolds are locally isometric to each other because it is just the lattice that changes.
Using the automorphism Φt of N whose differential on n is given by Id + 〈 . , Y2〉 · tZ2,
we can instead view this family as the deformation of the metric on a fixed underlying
manifold because (Γ\N,Φ∗

t g) is isometric to (Γt\N, g).
Since x := span{X1, X2} and y := span{Y1, Y2} are abelian, n is an HR Lie algebra.

Moreover, j(Z1) is invertible; in particular, x⊕y⊕z is an injective presentation of n. Letting
x̃ := x and ỹ := span{Y1, Y2 + tZ2} in Remark 3.4(ii), we see that Butler’s integrability
theorem applies; hence, each of the manifolds in this isospectral family has completely
integrable geodesic flow. It is also an easy exercise to find six commuting first integrals
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for each of these manifolds, along the lines of Butler’s proof, similarly to how we will do
this in the next section for the first manifold from Example 2.6. So we can state:

Corollary 3.6. There exist continuous isospectral families of compact Riemannian man-

ifolds each of which has completely integrable geodesic flow.

However, it remains an open question whether there might even exist a continuous
isospectral deformation of a manifold with completely integrable geodesic flow to a man-
ifold whose geodesic flow is nonintegrable. Note that in the family just constructed, the
geodesic flows of the manifolds involved, even though they share the property of complete
integrability, are not symplectically conjugate (i.e., conjugate by a symplectomorphism)
to each other because any pair of compact two-step Riemannian nilmanifolds with sym-
plectically conjugate geodesic flows must be isometric [6].
We now consider a sufficient nonintegrability criterion by Butler [2]:

Definition 3.7. Let n be a two-step nilpotent Lie algebra.

(i) For λ ∈ n∗ let nλ := {X ∈ n | ad∗
Xλ = 0} = {X ∈ n | λ|[X,n] = 0}.

(ii) λ ∈ n∗ is called regular if nλ has minimal dimension.
(iii) n is called nonintegrable if there exists a dense open subset U of n∗ × n∗ such that

for each (λ, µ) ∈ U , both λ and µ are regular and [nλ, nµ] has positive dimension.

Theorem 3.8 ([2], Theorem 1.3). Let n be a nonintegrable two-step nilpotent Lie algebra,

and let N be the associated simply connected Lie group. Assume that there exists a discrete,

cocompact subgroup Γ of N . Then for any such Γ and any left invariant metric g on N ,

the geodesic flow of (Γ\N, g) is not completely integrable.

Corollary 3.9. The manifold (Γ (j′)\N(j′), g(j′)) from Example 2.6 does not have com-

pletely integrable geodesic flow.

Proof. We use the notation from Example 2.6. Letting n′ := n(j′), we write elements of
n′ = v⊕z in the form V +Z with V ∈ v and Z ∈ z. Then for (V +Z)∗ := 〈V +Z, . 〉 ∈ n′ ∗

we have n′(V +Z)∗ = ker(j′(Z)) ⊕ z. Thus (V + Z)∗ is regular if and only if Z = Zc for

some c ∈ R3 with ck 6= 0; in that case, n′(V +Z)∗ = span{Yc} ⊕ z (see the discussion in

Example 2.6). Moreover, if Ṽ ∈ v and Z̃ = Zc̃ with c̃k 6= 0, then

[n′(V +Z)∗ , n
′
(Ṽ+Z̃)∗

] = span{[Yc , Yc̃]
j′},

which has positive dimension (namely, dimension one) if and only if c and c̃ are linearly

independent, or equivalently: if Z and Z̃ are linearly independent. The set of pairs of
vectors (V +Z, Ṽ + Z̃) ∈ n′×n′ such that Z and Z̃ are linearly independent and both have
nonvanishing Zk-component is obviously open and dense in n′×n′. Using the identification
of n′ with n′ ∗ induced by 〈 , 〉, one concludes that there is an open and dense subset U of
n′ ∗ × n′ ∗ with the property required in Definition 3.7(iii). Thus n′ is nonintegrable, and
the corollary follows from Theorem 3.8. �

We now conclude our main result:
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Theorem 3.10. There exists a pair of isospectral compact closed Riemannian manifolds

M,M ′ such that M has completely integrable geodesic flow, while M ′ does not have com-

pletely integrable geodesic flow.

Proof. This follows immediately from Example 2.6 and Corollaries 3.3 and 3.9, letting
M := (Γ (j)\N(j), g(j)) and M ′ := (Γ (j′)\N(j′), g(j′)). �

4. Explicit first integrals

In this section we will explicitly establish eight Poisson commuting first integrals for the
geodesic flow of the first manifold (Γ (j)\N(j), g(j)) from Example 2.6, using the ideas of
the proof of Theorem 3.2 from [1] (see also Remark 3.4). We will do our computations
on the tangent bundle rather than on the cotangent bundle; these two are canonically
identified by the euclidean metric induced by g(j) on each tangent space.

Notation and Remarks 4.1. Let v, z, j be data as in Definition 2.1, let n := n(j) be
the associated two-step nilpotent Lie algebra with underlying vector space v⊕ z and Lie
bracket [ , ] := [ , ]j, let N := N(j) be the associated simply connected Lie group, g := gj

be the associated left invariant metric on N , and exp := expj : n → N be the Lie group
exponential map.

(i) We denote elements of n in the form V +Z with V ∈ v and Z ∈ z, and we denote
elements of N in the form (v, z) := exp(v + z) with v ∈ v and z ∈ z. By the
Campbell-Baker-Hausdorff formula we have

(v, z) · (v̄, z̄) = (v + v̄, z + z̄ + 1
2
[v, v̄]).

(ii) For a ∈ N , we denote left multiplication by a by La : N → N . We identify the
tangent bundle TN with N×n using left translation; that is, we write X ∈ T(v,z)N
in the form ((v, z), L−1

(v,z)∗X) ∈ N × n. Note that for a ∈ N we have

La∗((v, z), X) = (La(v, z), X).

Lemma 4.2. [5] In the situation of 4.1, let γ : R → N be a geodesic in (N, g). Write

γ̇(t) =
(

(v(t), z(t)), V (t)+Z(t)
)

with v(t), V (t) ∈ v and z(t), Z(t) ∈ z. Then the following

geodesic equations hold:

V̇ (t) = j(Z(t))V (t), Ż(t) = 0,

v̇(t) = V (t), ż(t) = Z(t) + 1
2
[v(t), V (t)];

hence Z(t) ≡ Z(0) =: Z and

V (t) = etj(Z)V (0),

v̇(t) = etj(Z)V (0), ż(t) = Z + 1
2
[v(t), V (t)].

Notation and Remarks 4.3. In the following, let v, z be as in Example 2.6, and let
j : z → so(v) be the first of the two maps considered there.
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(i) For Z ∈ z with Z = Zc = ciZi + cjZj + ckZk let

E1(Z) := ciXi + cjXj, E2(Z) := −cjYi + ciYj

E3(Z) := |c|(cjXi − ciXj), E4(Z) := ck(ciYi + cjYj)− (c2i + c2j)Yk

and

Y (Z) := Yc = ciYi + cjYj + ckYk.

Note that we then have

(1)

j(Z)E1(Z) = ckE2(Z), j(Z)E2(Z) = −ckE1(Z),

j(Z)E3(Z) = |c|E4(Z), j(Z)E4(Z) = −|c|E3(Z),

j(Z)Y (Z) = 0.

Thus, for generic Z (namely, with |c| > |ck| > 0), the sets {E1(Z), E2(Z)} and
{E3(Z), E4(Z)} are bases of the eigenspaces associated with the eigenvalues −c2k
and −|c|2 of j(Z)2, respectively, and Y (Z) spans the zero eigenspace of j(Z).

(ii) Let x := span{Xi, Xj}, y := span{Yi, Yj, Yk} as in the proof of Corollary 3.3. For
Z ∈ z with Z = ciZi + cjZj + ckZk and ck 6= 0 we denote by C(Z) : y → x the
linear map whose matrix with respect to the given bases of y and x is

(ck|c|
2)−1

(

−cicj c2i+c2
k
−cjck

−c2j−c2
k

cicj cick

)

Note that we then have

C(Z) ◦ j(Z)|x = Idx .

In fact, C(Z) is just (j(Z)|yj(Z)|x)
−1j(Z)|y .

(iii) Let ϕ ∈ C∞(R) be the map x 7→ e−1/x2
with ϕ(0) := 0. Define Φ : z → R by

Φ(ciZi + cjZj + ckZk) := ϕ(ck|c|
2).

(iv) For V ∈ v = x⊕y denote by Vx and Vy the components of V in x and y, respectively.

Lemma 4.4. We use Notation 4.1. Then in the situation of 4.3, each of the follow-

ing eight functions on TN is a smooth first integral of the geodesic flow on (N, g) :=
(N(j), g(j)) and is invariant under the left action of Γ := Γ (j) from Example 2.6:

qW : TN ∋ ((v, z), V + Z) 7→ 〈Z,W 〉 ∈ R with W ∈ {Zi, Zj, Zk},

h1 : TN ∋ ((v, z), V + Z) 7→ 〈V,E1(Z)〉
2 + 〈V,E2(Z)〉

2 ∈ R,

h2 : TN ∋ ((v, z), V + Z) 7→ 〈V,E3(Z)〉
2 + 〈V,E4(Z)〉

2 ∈ R,

k : TN ∋ ((v, z), V + Z) 7→ 〈V, Y (Z)〉 ∈ R,

fX : TN ∋ ((v, z), V + Z) 7→

{

0 ∈ R if Z = Zc with ck = 0,

Φ(Z) sin(2π〈X, vx − C(Z)Vy〉) ∈ R, else,

with X ∈ {Xi, Xj}.

In particular, each of these functions descends to a first integral of the geodesic flow on

(Γ\N, g).



INTEGRABILITY OF GEODESIC FLOWS AND ISOSPECTRALITY 11

Proof. Smoothness of the above functions is immediate from their construction. Note
that qW , h1, h2, and k are invariant under the left action of N on TN . Moreover, if
a = (v̄, z̄) ∈ Γ then v̄ is an integer combination of the basis vectors; hence

fX
(

La∗((v, z), V + Z)
)

= fX
(

(v̄ + v, z̄ + z + 1
2
[v̄, v]), V + Z

)

= fX
(

(v, z), V + Z
)

for X ∈ {Xi, Xj} because 〈X, vx〉 differs from 〈X, vx + v̄x〉 by an integer.
It remains to show that each of the eight functions is invariant under the geodesic flow.

Let γ be a geodesic in (N, g) and write γ(t) =
(

(v(t), z(t)), V (t) +Z(t)
)

. Then Z(t) =: Z

is constant by Lemma 4.2; in particular, qW ◦ γ̇ is constant. Always using 4.2 and the
equations (1), we observe:

(h1 ◦ γ̇)
′(t) = 2〈V (t), E1(Z)〉〈j(Z)V (t), E1(Z)〉+ 2〈V (t)E2(Z)〉〈j(Z)V (t), E2(t)〉

= −2〈V (t), E1(Z)〉〈V (t), ckE2(Z)〉 − 2〈V (t), E2(t)〉〈V (t),−ckE1(Z)〉 = 0,

and similarly for h2. Moreover,

(k ◦ γ̇)′(t) = 〈j(Z)V (t), Y (Z)〉 = −〈V (t), j(Z)Y (Z)〉 = 0.

Finally, noting that d
dt
V (t)y = (j(Z)V (t))y = j(Z)V (t)x , we have

(fX ◦ γ̇)′(t) = Φ(Z) cos(2π〈X, v(t)x− C(Z)V (t)y) · 2π〈X, V (t)x − C(Z)j(Z)V (t)x〉 = 0

if Z = Zc with ck 6= 0; if ck = 0 then (fX ◦ γ̇)(t) ≡ 0 by definition. �

Lemma 4.5. (i) The eight first integrals from Lemma 4.4(i) are functionally inde-

pendent, and

(ii) they Poisson commute with each other.

Proof. (i) Note that with respect to the left invariant Riemannian product metric g×〈 , 〉
on TN ∼= N ×n, the gradients of the functions qZi , qZj , qZk , h1, h2, k are all tangent to the
second factor. The gradients of qZi, qZj , qZk at ((v, z), V + Z) ∈ TN are just

(0, Zi), (0, Zj), (0, Zk) ∈ T(v,z)N ⊕ TV+Zn
∼= T(v,z)N ⊕ n.

The gradients of h1, h2, k at ((v, z), V + Z), viewed as elements of T(v,z)N ⊕ n, are of the
form

(0, 2〈V,E1(Z)〉E1(Z) + 2〈V,E2(Z)〉E2(Z) +W ),

(0, 2〈V,E3(Z)〉E3(Z) + 2〈V,E4(Z)〉E4(Z) + W̃ ),

(0, Y (Z) + U),

respectively, where W, W̃ , U are in z. If Z = Zc with |c| > |ck| > 0, and if V is not orthog-
onal to any of the subspaces span{E1(Z), E2(Z)}, span{E3(Z), E4(Z)}, and span{Y (Z)},
then these six gradients are obviously linearly independent (recall 4.3(i)). Moreover, for
these Z, the gradient of fXi at the point ((v, z), V + Z) is of the form

(0,W ) + Φ(Z) cos(2π〈Xi, vx − C(Z)Vy〉) · 2π(L(v,z)∗Xi , −
tC(Z)Xi) ∈ T(v,z)N ⊕ n

with some W ∈ z, and similarly for Xj. Since L(v,z)∗Xi and L(v,z)∗Xj are linearly inde-
pendent, it follows that the set of points in TN at which all eight gradients are linearly
independent is open and dense in TN .
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(ii) The symplectic form ω on TN , after identification with T ∗N by the left invariant
metric g, is given at the point ((v, z), V + Z) ∈ TN ∼= N × n by

ω((v,z),V +Z)

(

(L(v,z)∗A,B), (L(v,z)∗Ã, B̃)
)

= 〈B, Ã〉 − 〈A, B̃〉 − 〈V + Z, [A, Ã]〉

= 〈B, Ã〉 − 〈A, B̃〉 − 〈j(Z)Av , Ãv〉

for all A,B, Ã, B̃ ∈ n, where Av denotes the v-component of A in n = v ⊕ z. For any
f ∈ C∞(TN), the Hamiltonian vectorfield Xf is characterized by 〈 . , gradf〉 = df =
ω( . , Xf). This and the above formula for ω shows that if the gradient of f at the point
((v, z), V + Z) ∈ TN is (L(v,z)∗B,A), then Xf at this point is

(L(v,z)∗A,−B + j(Z)Av).

Therefore, the Hamiltonian vectorfields of the functions qZi , h1, h2, k, f
Xi at the point

((v, z), V + Z) are of the form

(Zi, 0),

(∗ , 2〈V,E1(Z)〉j(Z)E1(Z) + 2〈V,E2(Z)〉j(Z)E2(Z)),

(∗ , 2〈V,E3(Z)〉j(Z)E3(Z) + 2〈V,E4(Z)〉j(Z)E4(Z)),

(∗ , j(Z)Y (Z)) = (∗ , 0),

(W, 0) + Φ(Z) cos(2π〈Xi , vx − C(Z)Vy〉) · 2π(−L(v,z)∗
tC(Z)Xi,−Xi − j(Z)tC(Z)Xi)

= (W − Φ(Z) cos(. . .) · 2πL(v,z)∗
tC(Z)Xi, 0),

with some W ∈ z, where the last equality follows from

−j(Z)tC(Z)Xi =
t(j(Z)|x)

tC(Z)Xi = Xi .

The formulas for qZj , qZk , fXj are analogous. Thus, the second components of the Hamil-
tonian vectorfields of the functions qW , k, fX vanish. Since the functions qW , h1, h2, k
depend only on the second component of ((v, z), V + Z), it follows immediately that
the latter functions Poisson commute with the qW , k, fX . It only remains to show that
{h1, h2} = 0 and {fXi , fXj} = 0: The derivative of h2 in direction of Xh1 vanishes because
the second component of Xh1 at ((v, z), V + Z) is in span{E1(Z), E2(Z)} and thus or-
thogonal to E3(Z) and E4(Z); the derivative of f

Xj in direction of XfXi vanishes because
tC(Z)Xi ∈ y has vanishing x-component. �

5. Structure of submanifolds foliated by generic closed orbits

In this section, we will describe the submanifolds of the unit tangent bundles foliated by
continuous families of closed geodesics in the two manifolds from Example 2.6. We will
consider only families most of whose geodesics have velocity vectors satisfying a certain
genericity condition. The result (Corollary 5.6) will nicely reflect the (non)integrability
properties of the geodesic flows established in Section 3.

Notation 5.1. Let (Γ\N, g) := (Γ (j)\N(j), g(j)) and (Γ ′\N ′, g′) := (Γ (j′)\N(j′), g(j′))
be the two manifolds from Example 2.6. Let γ : R → (N (′), g(′)) be a geodesic. Recalling
Notation 4.1, write γ̇(0) = (γ(0), V +Z) for some V ∈ v, Z = Zc ∈ z. If |c| > |ck| > 0 then
we write V = Vck +V|c|+V0 where Vλ denotes the component of V in the (−λ2)-eigenspace



INTEGRABILITY OF GEODESIC FLOWS AND ISOSPECTRALITY 13

of j(′)(Z)2. In what follows, we will restrict our attention to geodesics γ with “generic”
velocity fields; by this, we mean that the vectors Z = Zc and V satisfy the following
genericity condition:

(2) |c| > |ck| > 0 and Vck 6= 0, V|c| 6= 0, V0 6= 0.

Note that by the geodesic equations 4.2, this property is invariant under the geodesic
flow; so all γ̇(t) will satisfy the corresponding condition if γ̇(0) does so. Moreover, note
that the set of tangent vectors satisfying this genericity condition is open and dense in
the tangent bundle TN (′).

Remark 5.2. Let γ : R → (N (′), g(′)) be a geodesic, and let τ > 0. Then γ will descend
to a τ -periodic geodesic in the quotient manifold (Γ (′)\N (′), g(′)) if and only if

a := γ(τ)γ(0)−1 ∈ Γ (′) and γ̇(τ) = La∗γ̇(0).

Thus, if γ̇(0) = (γ(0), V +Z), then a necessary condition for γ to descend to a τ -periodic
geodesic is γ̇(τ) = (γ(τ), V +Z) with the same vector V +Z ∈ n. Assuming this condition
and the genericity condition (2) for V + Z, we will in the following lemma compute the
translational element a = γ(τ)γ(0)−1 in terms of τ , V + Z, and γ(0). We first supply
some notation concerning eigenvectors of j′(Z)2, analogous to Notation 4.3.

Notation and Remarks 5.3. Let j′ : z → so(v) be the second of the two maps from
Example 2.6. For Z ∈ z with Z = Zc = ciZi + cjZj + ckZk let

E ′
1(Z) := Xi, E ′

2(Z) := Xj

E ′
3(Z) := |c|(cjYi − ciYj), E ′

4(Z) := ck(ciYi + cjYj)− (c2i + c2j )Yk

and

Y (Z) := Yc = ciYi + cjYj + ckYk.

Note that we then have

(3)

j′(Z)E ′
1(Z) = ckE

′
2(Z), j′(Z)E ′

2(Z) = −ckE
′
1(Z),

j′(Z)E ′
3(Z) = |c|E ′

4(Z), j′(Z)E ′
4(Z) = −|c|E ′

3(Z),

j′(Z)Y (Z) = 0.

Lemma 5.4. Let V +Z ∈ v⊕z satisfy the genericity condition (2). Let γ : R → (N (′), g(′))
be a geodesic with γ̇(0) = ((v, z), V +Z), where (v, z) = γ(0). Let τ > 0, and assume that

γ̇(τ) = (γ(τ), V + Z). Then the translational element a := γ(τ)γ(0)−1 is equal to

(

τV0 , τ
(

1 +
|V⊥|

2

2|c|2
)

· Zc + τβ
(

α2 −
ck

c2i + c2j
(xici + xjcj)

)

·
(

−cjZi + ciZj

)

+ τ
(

−
|Vck |

2

2ck|c|2
+ β

(

α4 −
1

c2i + c2j
(xicj − xjci)

)

)

·
(

ck(ciZi + cjZj)− (c2i + c2j)Zk

)

)(4)
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in (N, g), respectively to
(

τV0 , τ
(

1 +
|V⊥|

2

2|c|2
)

· Zc + τβ
(

−|c|α′
3 + yk −

ck
c2i + c2j

(yici + yjcj)
)

·
(

−cjZi + ciZj

)

+ τ
(

−
|Vck |

2

2ck|c|2
+ β

(

α′
4 −

1

c2i + c2j
(yicj − yjci)

)

)

·
(

ck(ciZi + cjZj)− (c2i + c2j)Zk

)

)(5)

in (N ′, g′), where, using Notation 5.1(ii), 4.3, and 5.3, we write Z = Zc , V0 = βY (Z),

V⊥ := Vck +V|c| =:
∑4

m=1 α
(′)
mE

(′)
m (Z), and v = xiXi+xjXj+yiYi+yjYj+ykYk. Moreover,

we have τck ∈ 2πZ and τ |c| ∈ 2πZ.

Proof. By the geodesic equations 4.2 and our assumption on γ̇(τ), we have eτj(Z)V = V .
By the genericity condition on V , this implies here that eτj(Z) = Idv ; in particular, τck
and τ |c| are in 2πZ.
In addition, assume for the moment that γ(0) equals e = (0, 0), the neutral element of

N (′). In this situation, one sees either by using formulas from [5] or by direct integration
using the geodesic equations 4.2 and our explicit knowledge of the action of j(′)(Z) on the
three different eigenspaces of j(′)(Z)2:

γ(τ) =
(

τV0 , τZ + τ [V0, j(Z)
−1V⊥] +

1

2
τ [j(Z)−1Vck , Vck ] +

1

2
τ [j(Z)−1V|c| , V|c|]

)

in (N, g), and the analogous formula for (N ′, g′) with j′(Z) instead of j(Z) and [ , ]′

instead of [ , ], where j(′)(Z)−1 denotes the inverse of j(′)(Z)|span{V0}⊥ . Now if γ(0) =

(v, z) is arbitrary, then γ̄ := L−1
(v,z) ◦ γ is a geodesic as just considered, with ˙̄γ(0) =

((0, 0), V + Z). Then γ(τ)γ(0)−1 = (v, z)γ̄(τ)(v, z)−1. For any element (v̄, z̄) ∈ N (′), we
have (v, z)(v̄, z̄)(v, z)−1 = (v̄, z̄ + [v, v̄](′)) by 4.1(i). Thus, by adding the term [v, τV0] to
the z-component in the above formula, we get

a =
(

τV0 , τZ + τ [v, V0] + τ [V0, j(Z)
−1V⊥] +

1

2
τ [j(Z)−1Vck , Vck ] +

1

2
τ [j(Z)−1V|c| , V|c|]

)

in (N, g), and the analogous formula for (N ′, g′).
The rest of the proof consists in evaluating this formula in (N, g) and (N ′, g′), respec-

tively, using the definition of the Lie brackets [ , ] and [ , ]′ and the facts V0 = βY (Z) =

βYc , V⊥ = Vck + V|c|, Vck = α
(′)
1 E

(′)
1 (Z) + α

(′)
2 E

(′)
2 (Z), V|c| = α

(′)
3 E

(′)
3 (Z) + α

(′)
4 E

(′)
4 (Z),

j(′)(Z)−1Vck = −
α
(′)
1

ck
E

(′)
2 (Z) +

α
(′)
2

ck
E

(′)
1 (Z) and similarly for j(′)(Z)−1V|c| ; for developing

the resulting z-component into the claimed form it is moreover useful to note that
Zk = ck

|c|2Zc −
1

|c|2
(

ck(ciZi + cjZj) − (c2i + c2j )Zk

)

. The computation is a little tedious,

but straightforward; we spare the reader the details here. �

Remark 5.5. Note that by Lemma 5.4, all translational elements belonging to closed
geodesics with velocity fields satisfying the genericity condition (2) are elements of the
codimension two submanifold exp(y ⊕ z) ⊂ exp(n(′)) = N (′). So, only a quite special
type of free homotopy classes in Γ (′)\N (′) contains closed geodesics with generic velocity
fields in the above sense. This, however, should not lead to doubts as to whether the
notion of genericity is out of place here. The set of free homotopy classes is discrete
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anyway, and there is no notion of genericity within this set. Our genericity condition
concerns only the velocity vectors of the closed geodesics, as elements of the manifold
TN (′). It is a common phenomenon in compact Riemannian nilmanifolds that “generic”
closed geodesics belong only to a quite special set of free homotopy classes. For example,
in a compact Riemannian Heisenberg manifold (or, more generally, in any nonsingular
two-step Riemannian nilmanifold), all “generic” closed geodesics belong to central free
homotopy classes, while the other free homotopy classes contain only geodesics with very
special velocity fields.

Corollary 5.6. Under the assumptions of Lemma 5.4, assume that a ∈ Γ (′); in particular,

γ|[0,τ ] descends to a closed geodesic γ̂ in (Γ (′)\N (′), g(′)). Moreover, assume that γ is a unit

speed geodesic (i.e., |V +Z| = 1). Then the velocity fields of the largest continuous family

of closed unit speed geodesics containing γ̂ foliate a submanifold C, resp. C ′, of the unit

tangent bundle S(Γ\N), resp. S(Γ ′\N ′), with the following properties:

(i) C is diffeomorphic to T 6×S3; it consists of a one-parameter family of submanifolds

invariant under the geodesic flow and diffeomorphic to T 6×S1×S1 = T 8, and two

singular seven-dimensional fibers diffeomorphic to T 6 × S1 = T 7. The invariant

T 8 fibers are level sets of the first integrals from Lemma 4.4. The above decom-

position of C arises from the decomposition of the S3 factor into a one-parameter

family of T 2 = S1
r × S1√

1−r2
fibers and two singular S1 fibers.

(ii) C ′ is diffeomorphic to H3 × T 3 × S3, where H3 is a compact three-dimensional

Heisenberg manifold (in particular, not diffeomorphic to T 3). C ′ consists of a

one-parameter family of submanifolds invariant under the geodesic flow and dif-

feomorphic to H3×T 3×T 2 = H3×T 5, and two singular seven-dimensional fibers

diffeomorphic to H3×T 4. This decomposition of C ′ arises from the corresponding

decomposition of the S3 factor.

Proof. Let γ̂s be a continuous family of closed unit speed geodesics with γ̂0 = γ̂. For
the time being, we assume that the velocity field of each γ̂s satisfies the genericity con-
dition (2). Each γ̂s has the same length τ as γ̂ by the first variation formula. We lift
γ̂s to a continuous family γs : [0, τ ] → (N (′), g(′)) of unit speed geodesics in the universal
cover such that γ0(0) = γ(0), and extend them to geodesics γs : R → (N (′), g(′)); thus
γ0 = γ. Since the family is continuous, the translational element γs(τ)γs(0)

−1 ∈ Γ (′) must
be constant in s, hence equal to a for each s. Writing γ̇s(0) = ((vs, zs), V s + Zs) and
Zs = Zc(s) , we immediately read off from the first component of a in Lemma 5.4 that
V s
0 ≡ V0, whence all Yc(s) are scalar multiples of each other. Moreover, by the lemma,

τ |c(s)| ∈ 2πZ is constant. Therefore, c(s) ≡ c. By V0 = βsYc(s) = βsYc we obtain βs ≡ β.
From the coefficient of Zc occurring in the second component of a in Lemma 5.4, we
read off that |V s

⊥| ≡ |V⊥|. We continue the discussion separately for the two parts of the
statement:
(i) We obtain no restriction at all for the coefficients ysi , y

s
j , y

s
k, z

s
i , z

s
j , z

s
k of vs and zs.

There is also no further restriction on V s
ck

and V s
|c| apart from |V s

ck
|2 + |V s

|c||
2 = |V⊥|

2 and

(by the genericity condition) the requirement that both vectors be nonzero. These two
vectors then determine the coefficients αs

2 and αs
4 . These, in turn, are by Lemma 5.4 and
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the constancy of a seen to determine xs
i ci + xs

jcj and xs
i cj − xs

jci , and thus to determine
xs
i and xs

j (recall that (ci, cj) 6= 0).
Note that the sets of points in Γ · (v̄, z̄) ∈ Γ\N with fixed xi, xj coordinates for v̄

and arbitrary yi, . . . , zk coordinates are diffeomorphic to T 6 because the normal subgroup
of N whose Lie algebra is spanned by {Yi, . . . , Zk} is abelian. Moreover, the pairs of
possible vectors V s

ck
and V s

|c| fill out the sphere S3 with radius |V⊥| in span{V0}
⊥ ⊂ v,

except for two S1 fibers where the first or the second component is zero. If we now drop
the genericity condition (i.e., allow V s

ck
or V s

|c| to vanish), the possible pairs of vectors fill

out the entire S3.
Conversely, it is clear that any initial velocity ((vs, zs), V s + Zs) ∈ TN obtained by

choosing the various coordinates according to the restrictions and degrees of freedom
described above will indeed correspond to a closed unit speed geodesic in the maximal
continuous family containing γ̂. By the above discussion, this shows that the correspond-
ing submanifold C of the unit tangent bundle is indeed diffeomorphic to T 6 × S3. (Note
that quotienting by Γ will not identify pairs of tangent vectors with different (xi, xj)-
coordinates of the basepoint because such have been seen to arise only from different
velocity vectors.)
The decomposition into the two singular fibers T 6 × S1 and the one-parameter family

of fibers T 6 × S1 × S1 is respected by the geodesic flow because choosing one of these
fibers corresponds to fixing the norm of |V s

ck
| (and hence of |V s

|c||); note that these norms
are invariant under the geodesic flow by 4.2.
Finally, the T 6×S1×S1 = T 8 fibers turn out to be level sets of the first eight integrals

given in Lemma 4.4: The coefficients ci, cj, ck of Z which are constant here are the values
of qZi, qZj , qZk . The values |V s

ck
|2 and |V s

|c||
2, which are constant in such a T 8 fiber, are,

up to some multiplicative constants depending on c, just the values of h1 and h2. The
value of the first integral k is just 〈V s, Yc〉 = 〈βYc , Yc〉 = β|c|2 which is constant as well.
Moreover, one straightforwardly computes

vx − C(Z)Vy = xiXi + xjXj −
α2

ck
E1(Z)−

α4

|c|
E3(Z)

=
(

−
α2

ck
+

1

c2i + c2j
(xici + xjcj)

)

E1(Z) +
(

−
α4

|c|
+

1

|c|(c2i + c2j )
(xicj − xjci)

)

E3(Z).

Comparing with the coefficients in the z-component of the translational element a in
Lemma 5.4, we see that constancy of those coefficients is equivalent to constancy of the
first integrals fXi and fXj (note that Φ(Z) = Φ(Zc) is nonzero here because of ck 6= 0).
Conversely, one cannot continuously move out of such a T 8 fiber without changing the
values of any of the first integrals. This finishes the proof of statement (i).
(ii) The discussion is analogous to the corresponding discussion in (i). This time,

we obtain no restriction for the coefficients xs
i , x

s
j , z

s
i , z

s
j , z

s
k of vs and zs , and the same

restrictions vs. freedoms as in (i) for the two vectors V s
ck

and V s
|c| . The vector V s

|c| then

determine the coefficients α′ s
3 and α′ s

4 , which, in turn, determine ysk −
ck

c2i+c2j
(ysi ci + ysjcj)

and ysi cj − ysjci . The corresponding triples (ysi , y
s
j , y

s
k) constitute an affine line in the y-

component of v = x ⊕ y whose direction is rational with respect to the sublattice of Γ ′
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spanned by Yi, Yj, Yk : Note that c must be a scalar multiple of a rational vector because
τV0 = τβYc was by Lemma 5.4 the first component of a ∈ Γ ′.
The sets of points in Γ ′ · (v̄, z̄) ∈ Γ ′\N ′ with fixed yi, yj, yk coordinates for v̄ and ar-

bitrary xi, xj , zi, zj , zk coordinates are diffeomorphic to H3 × T 2, where H3 is a compact
three-dimensional Heisenberg manifold, corresponding to the three-dimensional Heisen-
berg algebra spanned by {Xi, Xj, Zk} in n′. Moreover, the pairs of possible vectors V s

ck
and V s

|c| have exactly the same freedom as in (i) and fill out, after dropping the genericity

condition on these, the sphere S3 of radius |V⊥| in span{V0}
⊥. Finally, the affine line of

possible (ysi , y
s
j , y

s
k) determined via α′ s

3 and α′ s
4 by these vectors yields another S1 factor

after quotienting by Γ ′ (recall that the line had rational direction); this indeed splits off
as a factor because y commutes with x⊕ z ⊂ n′.
By analogous arguments as in (i), we conclude that C ′ is indeed diffeomorphic to

H3 × S1 × T 2 × S3 = H3 × T 3 × S3, decomposed as claimed in the statement. �

Remark 5.7. We do not present here the corresponding analysis for initial velocities
which do not satisfy the genericity condition (2). We just mention that the submanifolds
of the unit tangent bundle fibered by closed geodesics belonging to central free homotopy
classes but having noncentral velocity fields (this is the case for most of such geodesics)
are of dimension ten for both of the manifolds from Example 2.6. There are other special
free homotopy classes for which dimensions lower than eight occur.

Corollary 5.8. For both of the 8-dimensional manifolds from Example 2.6, the set of

initial velocity vectors of closed unit speed geodesics satisfying the genericity condition (2)
is dense in the unit tangent bundle. In particular, by Corollary 5.6: The T 8 fibers of the

unit tangent bundle of the first manifold (Γ\N, g) which are invariant under the geodesic

flow and are level sets of the eight first integrals from Lemma 4.4 are dense in the unit

tangent bundle; the same holds for the corresponding invariant H3 × T 5 fibers in the unit

tangent bundle of the second manifold (Γ ′\N ′, g′).

Proof. We carry out the proof for (Γ\N, g) using formula (4) from Lemma 5.4; the proof
for (Γ ′\N ′, g′) is completely analogous, using formula (5) instead.
Let ((v̄, z̄), V̄ + Z̄) be an arbitrary element in the unit tangent bundle of (N, g). Write

Z̄ = Zc̄ for some c̄ ∈ R3. Let ε > 0 be arbitrary. Choose c ∈ Q3 such that |c − c̄| < ε,
|c| > |ck| > 0, and ck/|c| ∈ Q. For the latter condition, note that the rational points
c with rational value of ck/|c| are dense in R3 because the rational points are dense
in the unit sphere (since the standard stereographic projection preserves rationality).
Choose σ > 0 such that σck and σ|c| are in 2πZ (for instance, σ := 2π q

|c| if ck/|c| = p/q

with p ∈ Z, q ∈ N). Let Z := Zc and write V̄ = V̄0 + V̄⊥ with V̄0 ∈ span{Yc} and
V̄⊥ ⊥ Yc . Choose 0 6= V0 ∈ span{Yc} such that |V0 − V̄0| < ε and V0 ∈ 1

σ
QYc . Choose

V⊥ ⊥ Yc such that |V⊥ − V̄⊥| < ε, V⊥ is not orthogonal to neither span{E1(Z), E2(Z)}
nor span{E3(Z), E4(Z)}, and such that |V⊥|

2 ∈ 1
σ
Q. Let V := V0 + V⊥ . Finally, choose

v ∈ v such that |v − v̄| < ε and

β
(

α2 −
ck

c2i + c2j
(xici + xjcj)

)

∈
1

σ
Q and −

|Vck |
2

2ck|c|2
+ β

(

α4 −
1

c2i + c2j
(xicj − xjci)

)

∈
1

σ
Q,



18 DOROTHEE SCHUETH

where V0 = βYc , V⊥ =
∑4

m=1 αmEm(Z), and v = xiXi + xjXj + yiYi + yjYj + ykYk .
Let z̄ := z. Then by Lemma 5.4, for the geodesic γ with initial velocity ((v, z), V + Z)
we have γ(σ)γ(0)−1 ∈ exp(spanQ{Yi, . . . , Zk}). By replacing σ with a suitable multiple
τ = mσ, where m ∈ N, we obtain a := γ(τ)γ(0)−1 ∈ Γ and (still) τck ∈ 2πZ, τ |c| ∈ 2πZ.
In particular, eτj(Z) = Idv and hence La∗γ̇(0) = γ̇(τ), thus γ|[0,τ ] descends to a τ -periodic

geodesic in (Γ\N, g). Summarizing, we have shown: Arbitrarily close to any unit tangent
vector ((v̄, z̄), V̄+Z̄), we find another tangent vector ((v, z), V+Z) satisfying the genericity
condition (2) corresponding to the initial vector of a closed geodesic in (Γ\N, g). Choosing
a sequence of such vectors converging to ((v̄, z̄), V̄ + Z̄) and normalizing each vector of
this sequence, we obtain a sequence of unit vectors converging to our given unit vector,
consisting of initial velocities of closed geodesics and satisfying the genericity condition (2).
This proves the statement. �

Remark 5.9. On the one hand, it seems surprising at first sight that two manifolds
with the same Laplace spectrum, thus with the same wave trace, can differ so radically
with respect to the behaviour of their geodesic flows. On the other hand, as explained
in the Introduction, the fact that continuous families of closed geodesics in our pair of
manifolds have been seen to fill out larger dimensional families than Lagrangian tori shows
that the suitable version of the condition of “clean simple length spectrum”, under which
the problem of audibility of complete integrability and any positive conjecture in this
respect would make most sense, is violated here anyway. This yields an explanation of
why isospectrality in these examples fails to entail similar integrability properties.
An even more obvious explanation would be provided if the two manifolds failed to

satisfy the so-called Clean Intersection Hypothesis, a condition always needed for even
establishing a wave trace formula; see [3]. However, it turns out that both of our manifolds
actually do satisfy the Clean Intersection Hypothesis, which is defined as the following
condition: For any number ℓ > 0 and any free homotopy class α containing a closed
geodesic of length ℓ, the subset Wℓ(α) of the unit tangent bundle consisting of the velocity
vectors of all unit speed closed geodesics of length ℓ and contained in α is a finite union
of submanifolds of the unit tangent bundle, and for the differential of the time-ℓ-map of
the geodesic flow at any point of Wℓ(α), the eigenspace associated with the eigenvalue 1
is not larger than the tangent space of Wℓ(α) at that point.
In fact, Ruth Gornet [4] has recently shown that a compact, two-step Riemannian

nilmanifold (Γ\N, g) satisfies this hypothesis if and only if, using the notation from 2.1
and 2.2, for all V + Z ∈ exp−1(Γ ) ⊂ n and all nonzero eigenvalues ±iϑ of j(proj[V,n]⊥Z)
(where proj denotes orthogonal projection) we have ϑ /∈ πQ. In our manifolds from
Example 2.6, let us endow v and z with the rational structure given by spanQ{Xi, . . . , Yk}

and spanQ{Zi, Zj, Zk}. Then for all V +Z ∈ exp−1(Γ (′)), V and Z are rational vectors by

our definition of Γ (′). The subspace [V, n] = [V, v] ⊆ z is then rational as well. Elementary
arguments (using the orthonormality of the rational basis {Zi, Zj, Zk}) show that the
orthogonal projection of the rational vector Z to this rational subspace is again a rational
vector. Denote the resulting vector by Z⊥

V = ciZi+cjZj+ckZk. Then ci, cj, ck are rational;
in particular, the possibly nonzero eigenvalues −c2k and −|c|2 of j(Z⊥

V )
2 are rational. So
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these can, if nonzero, never be in π2Q. This implies that Gornet’s necessary and sufficient
criterion for the Clean Intersection Hypothesis is indeed satisfied.
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