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ISOPERIMETRIC REGIONS IN SPHERICAL CONES AND

YAMABE CONSTANTS OF M × S1

JIMMY PETEAN

Abstract. We study isoperimetric regions on Riemannian manifolds of the form
(Mn × (0, π), sin2(t)g+ dt2) where g is a metric of positive Ricci curvature ≥ n− 1.
When g is an Einstein metric we use this to compute the Yamabe constant of
(M ×R, g+dt2) and so to obtain lower bounds for the Yamabe invariant of M×S1.

1. Introduction

Given a closed Riemannian manifold (M, g) we consider the conformal class of the
metric g, [g]. The Yamabe constant of [g], Y (M, [g]), is the infimum of the normalized
total scalar curvature functional on the conformal class. Namely,

Y (M, [g]) = inf
h∈[g]

∫

sh dvol(h)

(V ol(M,h))
n−2

n

,

where sh denotes the scalar curvature of the metric h and dvol(h) its volume element.
If one writes metrics conformal to g as h = f 4/(n−2) g, one obtains the expression

Y (M, [g]) = inf
f∈C∞(M)

∫

( 4an‖∇f‖2g + f 2sg ) dvol(g)

‖f‖2pn
,

where an = 4(n − 1)/(n − 2) and pn = 2n/(n − 2). It is a fundamental result on
the subject that the infimum is actually achieved ([24, 23, 3, 21]). The functions f
achieving the infimum are called Yamabe functions and the corresponding metrics
f 4/(n−2) g are called Yamabe metrics. Since the critical points of the total scalar
curvature functional restricted to a conformal class of metrics are precisely the metrics
of constant scalar curvature in the conformal class, Yamabe metrics are metrics of
constant scalar curvature.

It is well known that by considering functions supported in a small normal neigh-
borhood of a point one can prove that Y (Mn, [g]) ≤ Y (Sn, [g0]), where g0 is the round
metric of radius one on the sphere and (Mn, g) is any closed n-dimensional Riemann-
ian manifold ([3]). We will use the notation Yn = Y (Sn, [g0]) and Vn = V ol(Sn, g0).

Therefore Yn = n(n− 1)V
2

n
n .

Then one defines the Yamabe invariant of a closed manifold M [11, 22] as

Y (M) = sup
g

Y (M, [g]) ≤ Yn.
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It follows that Y (M) is positive if and only if M admits a metric of positive scalar
curvature. Moreover, the sign of Y (M) determines the technical difficulties in un-
derstanding the invariant. When the Yamabe constant of a conformal class is non-
positive there is a unique metric (up to multiplication by a positive constant) of
constant scalar curvature in the conformal class and if g is any metric in the confor-
mal class, the Yamabe constant is bounded from below by (infM sg) (V ol(M, g))2/n.
This can be used for instance to study the behavior of the invariant under surgery
and so to obtain information using cobordism theory [19, 18, 6]. Note also that in
the non-positive case the Yamabe invariant coincides with Perelman’s invariant [2].
The previous estimate is no longer true in the positive case, but one does get a lower
bound in the case of positive Ricci curvature by a theorem of S. Ilias: if Ricci(g) ≥ λg
(λ > 0) then Y (M, [g]) ≥ nλ(V ol(M, g))2/n ([9]). Then in order to use this inequality
to find lower bounds on the Yamabe invariant of a closed manifold M one would try
to maximize the volume of the manifold under some positive lower bound of the Ricci
curvature. Namely, if one denotes Rv(M) = sup{V ol(M, g) : Ricci(g) ≥ (n − 1)g}
then one gets Y (M) ≥ n(n−1)(Rv(M))2/n (one should define Rv(M) = 0 if M does
not admit a metric of positive Ricci curvature). Very little is known about the invari-
ant Rv(M). Of course, Bishop’s inequality tells us that for any n-dimensional closed
manifold Rv(Mn) ≤ Rv(Sn) (which is of course attained by the volume of the metric
of constant sectional curvature 1). Moreover, G. Perelman [17] proved that there is
a constant δ = δn > 0 such that if Rv(M) ≥ Rv(Sn)− δn then M is homeomorphic
to Sn. Beyond this, results on Rv(M) have been obtained by computing Yamabe
invariants, so for instance Rv(CP2) = 2π2 (achieved by the Fubini-Study metric as
shown by C. LeBrun [12] and M. Gursky and C. LeBrun [10]) and Rv(RP3) = π2

(achieved by the metric of constant sectional curvature as shown by H. Bray and A.
Neves [7]).

Of course, there is no hope to apply the previous comments directly when the
fundamental group of M is infinite. Nevertheless it seems that even in this case the
Yamabe invariant is realized by conformal classes of metrics which maximize volume
with a fixed positive lower bound on the Ricci curvature “in certain sense”. The
standard example is Sn−1 × S1. The fact that Y (Sn × S1) = Yn+1 is one of the first
things we learned about the Yamabe invariant [11, 22]. One way to see this is as
follows: first one notes that limT→∞ Y (Sn × S1, [g0 + T 2dt2]) = Y (Sn × R, [g0 + dt2])
[1] (the Yamabe constant for a non-compact Riemannian manifold is computed as
the infimum of the Yamabe functional over compactly supported functions). But the
Yamabe function for g0 + dt2 is precisely the conformal factor between Sn × R and
Sn+1 − {S,N}. Therefore one can think of Y (Sn × S1) = Yn+1 as realized by the
positive Einstein metric on Sn+1 − {S,N}. We will see in this article that a similar
situation occurs for any closed positive Einstein manifold (M, g) (although we only
get the lower bound for the invariant).

Let (N, h) be a closed Riemannian manifold. An isoperimetric region is an open
subset U with boundary ∂U such that ∂U minimizes area among hypersurfaces bound-
ing a region of volume V ol(U). Given any positive number s, s < V ol(N, h), there
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exists an isoperimetric region of volume s. Its boundary is a stable constant mean
curvature hypersurface with some singularities of codimension at least 7. Of course
one does not need a closed Riemannian manifold to consider isoperimetric regions,
apriori one only needs to be able to compute volumes of open subsets and areas of
hypersurfaces. One defines the isoperimetric function of (N, h) as Ih : (0, 1) → R > 0
by

Ih(β) = inf{V ol(∂U)/V ol(N, h) : V ol(U, h) = βV ol(N, h)},

where V ol(∂U) is measured with the Riemannian metric induced by h (on the non-
singular part of ∂U).

Given a closed Riemannian manifold (M, g) we will call the spherical cone on M
the space X obtained collapsing M ×{0} and M ×{π} in M × [0, π] to points S and
N (the vertices) with the metric g = sin2(t)g+ dt2 (which is a Riemannian metric on
X−{S,N}). Now if Ricci(g) ≥ (n−1)g one can see that Ricci(g) ≥ ng. One should
compare this with the Euclidean cones considered by F. Morgan and M. Ritoré in [16]:
ĝ = t2g+dt2 for which Ricci(g) ≥ (n−1)g implies that Ricci(ĝ) ≥ 0. The importance
of these spherical cones for the study of Yamabe constants is that if one takes out
the vertices the corresponding (non-complete) Riemannian manifold is conformal to
M × R. But using the (warped product version) of the Ros Product Theorem [20,
Proposition 3.6] (see [15, Section 3]) and the Levy-Gromov isoperimetric inequality
[8] one can understand isoperimetric regions in these spherical cones. Namely,

Theorem 1.1. Let (Mn, g) be a compact manifold with Ricci curvature Ricci(g) ≥
(n − 1)g. Let (X, g) be its spherical cone. Then geodesic balls around any of the

vertices are isoperimetric.

But now, since the spherical cone over (M, g) is conformal to (M × R, g + dt2)
we can use the previous result and symmetrization of a function with respect to the
geodesic balls centered at a vertex to prove:

Theorem 1.2. Let (M, g) be a closed Riemannian manifold of positive Ricci curva-

ture, Ricci(g) ≥ (n− 1)g and volume V . Then

Y (M × R, [g + dt2]) ≥ (V/Vn)
2

n+1 Yn+1.

As we mentioned before one of the differences between the positive and non-positive
cases in the study of the Yamabe constant is the non-uniqueness of constant scalar
curvature metrics on a conformal class with positive Yamabe constant. And the
simplest family of examples of non-uniqueness comes from Riemannian products. If
(M, g) and (Nn, h) are closed Riemannian manifolds of constant scalar curvature and
sg is positive then for small δ > 0, δg + h is a constant scalar curvature metric on
M×N which cannot be a Yamabe metric. If (M, g) is Einstein and Y (M) = Y (M, [g])
it seems reasonable that Y (M × N) = limδ→0 Y (M ×N, [δg + h]). Moreover as it is
shown in [1]

lim Y (M ×N, [δg + h]) = Y (M × R
n, [g + dt2]).



4 J. PETEAN

The only case which is well understood is when M = Sn and N = S1. Here
every Yamabe function is a function of the S1-factor [22] and the Yamabe function
for (Sn × R, g0 + dt2) is the factor which makes Sn × R conformal to Sn+1 − {S,N}.
It seems possible that under certain conditions on (M, g) the Yamabe functions of
(M ×R

n, g + dt2) depend only on the second variable. The best case scenario would
be that this is true if g is a Yamabe metric but it seems more attainable the case
when g is Einstein. It is a corollary to the previous theorem that this is actually true
in the case n = 1. Namely, using the notation (as in [1]) YN(M ×N, g+ h) to denote
the infimum of the (g + h)-Yamabe functional restricted to functions of the N -factor
we have:

Corollary 1.3. Let (Mn, g) be a closed positive Einstein manifold with Ricci curva-

ture Ricci(g) = (n− 1)g. Then

Y (M × R, [g + dt2]) = YR(M × R, g + dt2) =

(

V

Vn

)
2

n+1

Yn+1.

As Y (M×R, [g+dt2]) = limT→∞ Y (M×S1, [g+Tdt2]) it also follows from Theorem
1.2 that:

Corollary 1.4. If (Mn, g) is a closed Einstein manifold with Ricci(g) = (n−1)g and

volume V then

Y (M × S1) ≥ (V/Vn)
2

n+1 Yn+1.

So for example using the product metric we get

Y (S2 × S2 × S1) ≥

(

2

3

)(2/5)

Y5

and using the Fubini-Study metric we get

Y (CP2 × S1) ≥

(

3

4

)(2/5)

Y5.

Acknowledgements: The author would like to thank Manuel Ritoré, Kazuo Aku-
tagawa and Frank Morgan for several useful comments on the first drafts of this
manuscript.

2. Isoperimetric regions in spherical cones

As we mentioned in the introduction, the isoperimetric problem for spherical cones
(over manifolds with Ricci curvature ≥ n− 1) is understood using the Levy-Gromov
isoperimetric inequality (to compare the isoperimetric functions of M and of Sn) and
the Ros Product Theorem for warped products (to compare then the isoperimetric
functions of the spherical cone over M to the isoperimetric function of Sn+1). See for
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example section 3 of [15] (in particular 3.2 and the remark after it). For the reader
familiar with isoperimetric problems, this should be enough to understand Theorem
1.1. In this section, for the convenience of the reader, we will give a brief outline on
these issues. We will mostly discuss and follow section 3 of [20] and ideas in [16, 13]
which we think might be useful in dealing with other problems arising from the study
of Yamabe constants.

Let (Mn, g) be a closed Riemannian manifold of volume V and Ricci curvature
Ricci(g) ≥ (n − 1)g. We will consider (Xn+1, g) where as a topological space X is
the suspension of M (X = M × [0, π] with M ×{0} and M ×{π} identified to points
S and N) and g = sin2(t) g + dt2. Of course X is not a manifold (except when M
is Sn) and g is a Riemannian metric only on X − {S,N}.

The following is a standard result in geometric measure theory.
Theorem : For any positive number r < V ol(x) there exists an isoperimetric open

subset U of X of volume r. Moreover ∂U is a smooth stable constant mean curvature
hypersurface of X except for a singular piece ∂1U which consists of (possibly) S, N ,
and a subset of codimension at least 7.

Let us call ∂0U the regular part of ∂U , ∂0U = ∂U − ∂1U . Let Xt, t ∈ (−ε, ε), be
a variation of ∂0U such that the volume of the enclosed region Ut remains constant.
Let λ(t) be the area of Xt. Then λ′(0) = 0 and λ′′(0) ≥ 0. The first condition is sat-
isfied by hypersurfaces of constant mean curvature and the ones satisfying the second
condition are called stable. If N denotes a normal vector field to the hypersurface
then variations are obtained by picking a function h with compact support on ∂0U
and moving ∂0U in the direction of h N . Then we have that if the mean of h on ∂0U
is 0 then λ′

h(0) = 0 λ′′
h(0) ≥ 0. This last condition is written as

Q(h, h) = −

∫

∂0U

h(∆h + (Ricci(N,N) + σ2)h)dvol(∂0U) ≥ 0.

Here we consider ∂0U as a Riemannian manifold (with the induced metric) and use
the corresponding Laplacian and volume element. σ2 is the square of the norm of the
second fundamental form. This was worked out by J. L. Barbosa, M. do Carmo and
J. Eschenburg in [4, 5]. As we said before, the function h should apriori have compact
support in ∂0U but as shown by F. Morgan and M. Ritoré [16, Lemma 3.3] it is enough
that h is bounded and h ∈ L2(∂0U). This is important in order to study stable
constant mean curvature surfaces on a space like X because X admits what is called
a conformal vector field V = sin(t)∂/∂t and the function h one wants to consider is
h = div(V −g(V,N) N) where N is the unit normal to the hypersurface (and then h is
the divergence of the tangencial part of V ). This has been used for instance in [13, 16]
to classify stable constant mean curvature hypersurfaces in Riemannian manifolds
with a conformal vector field. When the hypersurface is smooth this function h has
mean 0 by the divergence theorem and one can apply the stability condition. But
when the hypersurface has singularities one would apriori need the function h to have
compact support on the regular part. This was done by F. Morgan and M. Ritoré in
[16, Lemma 3.3].
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We want to prove that the geodesic balls around S are isoperimetric. One could
try to apply the techniques of Morgan and Ritoré in [16] and see that they are the
only stable constant mean curvature hypersurfaces in X . This should be possible,
and actually it might be necessary to deal with isoperimetric regions of more general
singular spaces that appear naturally in the study of Yamabe constants of Riemannian
products. But in this case we will instead take a more direct approach using the Levy-
Gromov isoperimetric inequality [8] and Ros Product Theorem [20].

The sketch of the proof is as follows: First one has to note that geodesic balls
centered at the vertices produce the same isoperimetric function as the one of the round
sphere. Therefore to prove that geodesic balls around the vertices are isoperimetric is
equivalent to prove that the isoperimetric function of g is bounded from below by the
isoperimetric function of g0. To do this, given any open subset U of X one considers
its symmetrization Us ⊂ Sn+1, so the the slices of Us are geodesic balls with the
same normalized volumes as the slices of U . Then by the Levy-Gromov isoperimetric
inequality we can compare the normalized areas of the boundaries of the slices. We
have to prove that the normalized area of ∂Us is at most the normalized area of ∂U .
This follows from the warped product version of [20, Proposition 3.6]. We will give
an outline following Ros’ proof for the Riemannian product case. We will use the
notion of Minkowski content. This is the bulk of the proof and we will divide it into
Lemma 2.1, Lemma 2.2 and Lemma 2.3.

Proof of Theorem 1.1 : Let U ⊂ X be a closed subset. For any t ∈ (0, π) let

Ut = U ∩ (M × {t}).

Fix any point E ∈ Sn and let (Us)t be the geodesic ball centered at E with volume

V ol((Us)t, g0) =
Vn

V
V ol(Ut, g).

(recall that V = V ol(M, g) and Vn = V ol(Sn, g0)). Let Us ⊂ Sn+1 be the corre-
sponding subset (i.e. we consider Sn+1 − {S,N} as Sn × (0, π) and Us is such that
Us ∩ (Sn × {t}) =(Us)t. One might add S and/or N to make Us closed and con-
nected). Note that one can write (Us)t = (Ut)

s = Us
t as long as there is no confusion

(or no difference) on whether we are considering it as a subset of Sn or as a subset of
Sn+1.

Now

V ol(U) =

∫ π

0

sinn(t) V ol(Ut, g) dt

=
V

Vn

∫ π

0

sinn(t) V ol((Us)t, g0) dt =
V

Vn
V ol(Us, g0).

Also if B(r) = M × [0, r] (the geodesic ball of radius r centered at the vertex at 0)
then
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V ol(B(r)) =

∫ r

0

sinn(t)V dt =
V

Vn

∫ r

0

sinn(t)Vndt =
V

Vn

V ol(B0(r)) (1)

where B0(r) is the geodesic ball of radius r in the round sphere. And

V ol(∂B(r)) = sinn(r)V =
V

Vn

V ol(∂B0(r)) (2).

Formulas (1) and (2) tell us that the geodesic balls around the vertices inX produce
the same isoperimetric function as the round metric g0. Therefore given any open
subset U ⊂ X we want to compare the area of ∂U with the area of the boundary of
the geodesic ball in Sn+1 with the same normalized volume as U .

Given a closed set W let B(W, r) be the set of points at distance at most r from
W . Then one considers the Minkowski content of W ,

µ+(W ) = lim inf
V ol(B(W, r))− V ol(W )

r
.

If W is a smooth submanifold with boundary then µ+(W ) = V ol(∂W ). And this is
still true if the boundary has singularities of codimension ≥ 2 (and finite codimension
1 Hausdorff measure).

The Riemannian measure on (Sn, g0), normalized to be a probability measure is
what is called a model measure: if Dt, t ∈ (0, 1) is the family of geodesic balls (with
volume V ol(Dt) = t) centered at some fixed point then they are isoperimetric regions
which are ordered by volume and such that for any t, B(Dt, r) = Dt′ for some t′.
See [20, Section 3.2]. The following result follows directly from the Levy-Gromov
isoperimetric inequality [8, Appendix C] and [20, Proposition 3.5] (see the lemma in
[14, page 77] for a more elementary proof and point of view on [20, Proposition 3.5]).

Lemma 2.1. : Let (M, g) be a closed Riemannian manifold of volume V and Ricci

curvature Ricci(g) ≥ (n − 1)g. For any nonempty closed subset Ω ⊂ M and any

r ≥ 0 if BΩ is a geodesic ball in (Sn, g0) with volume V ol(BΩ) = (Vn/V )V ol(Ω) then
V ol(B(BΩ, r)) ≤ (Vn/V )V ol(B(Ω, r)).

Proof. Given any closed Riemannian manifold (M, g), dividing the Riemannian mea-
sure by the volume one obtains a probability measure which we will denote µg. As
we said before, the round metric on the sphere gives a model measure µg0. On the
other hand the Levy-Gromov isoperimetric inequality [8] says that Iµg

≥ Iµg0
. The

definition of BΩ says that µg(Ω) = µg0(BΩ) and what we want to prove is that
µg(B(Ω, r)) ≥ µg0(B(BΩ, r)) . Therefore the statement of the lemma is precisely [20,
Proposition 3.5].

�

Fix a positive constant λ. Note that the previous lemma remains unchanged if
we replace g and g0 by λg and λg0: the correspondence Ω → BΩ is the same and
µλg = µg.
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Lemma 2.2. For any t0 ∈ (0, π) B((Us)t0 , r) ⊂ (B(Ut0 , r))
s.

Proof. First note that the distance from a point (x, t) ∈ X to a vertex depends only
on t and not on x (or even on X). Therefore if r is greater than the distance δ between
t0 and 0 or π then both sets in the lemma will contain a geodesic ball of radius r− δ
around the corresponding vertex.

Also observe that the distance between points (x, t0) and (y, t) depends only on the
distance between x and y (and t, t0, and the function in the warped product, which
in this case is sin) but not on x, y or X . In particular for any t so that |t − t0| < r,
(B((Us)t0 , r))t is a geodesic ball.

We have to prove that for any t

(B((Us)t0 , r))t ⊂ ((B(Ut0 , r))
s)t.

But since they are both geodesic balls centered at the same point it is enough to
prove that the volume of the subset on the left is less than or equal to the volume of
the subset on the right. By the definition of symmetrization the normalized volume
of ((B(Ut0 , r))

s)t is equal to the normalized volume of (B(Ut0 , r))t. But from the
previous comment there exist ρ > 0 such that, considered as subsets of M ,

(B(Ut0 , r))t = B(Ut0 , ρ)

and, as subsets of Sn,

(B((Us)t0 , r))t = B(Us
t0
, ρ).

The lemma then follows from Lemma 2.1 (and the comments after it).
�

Now for any closed subset U ⊂ X let BU be a geodesic ball in (Sn+1, g0) with
volume V ol(BU , g0) = (Vn/V )V ol(U, g). Since geodesic balls in round spheres are
isoperimetric (and V ol(BU , g0) = V ol(Us, g0)) it follows that V ol(∂BU ) ≤ µ+(Us).

Lemma 2.3. Given any closed set U ⊂ X, µ+(U) ≥ (V/Vn)V ol(∂BU ).

Proof. Since (B(U, r))s is closed and B(Us, r) is the closure of ∪t∈(0,π) B(Us
t , r) we

have from the previous lemma that

B(Us, r) ⊂ (B(U, r))s.

Then

V ol(∂BU ) ≤ µ+(Us) = lim inf
V ol(B(Us, r))− V ol(Us)

r

≤ lim inf
V ol((B(U, r))s)− V ol(Us)

r

= (Vn/V ) lim inf
V ol(B(U, r))− V ol(U)

r
= (Vn/V )µ+(U)

and the lemma follows.
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�

Now if we let BM
U be a geodesic ball around a vertex in X with volume

V ol(BM
U , g) = V ol(U, g) =

V

Vn
V ol(BU , g0)

then it follows from (1) and (2) in the beginning of the proof that

V ol(∂BM
U , g) =

V

Vn

V ol(∂BU , g0).

and so by Lemma 2.3

V ol(∂BM
U , g) ≤ µ+(U)

and Theorem 1.1 is proved.
�

3. The Yamabe constant of M × R

Now assume that g is a metric of positive Ricci curvature, Ricci(g) ≥ (n− 1)g on
M and consider as before the spherical cone (X, g) with g = sin2(t)g + dt2. By a
direct computation the sectional curvature of g is given by:

Kg(vi, vj) =
Kg(vi, vj)− cos2(t)

sin2(t)

Kg(vi, ∂/∂t) = 1,

for a g-orthonormal basis {v1, ..., vn}. And the Ricci curvature is given by:

Ricci(g)(vi, ∂/∂t) = 0

Ricci(g)(vi, vj) = Ricci(g)(vi, vj)− (n− 1) cos2(t)δji + sin2(t)δji

Ricci(g)(∂t, ∂t) = n.

Therefore by picking {v1, ..., vn} which diagonalizes Ricci(g) one easily sees that if
Ricci(g) ≥ (n − 1)g then Ricci(g) ≥ ng. Moreover, if g is an Einstein metric with
Einstein constant n− 1 the g is Einstein with Einstein constant n.

Let us recall that for non-compact Riemannian manifolds one defines the Yamabe
constant of a metric as the infimum of the Yamabe functional of the metric over
smooth compactly supported functions (or functions in L2

1, of course). So for instance
if g is a Riemannian metric on the closed manifold M then

Y (M × R, [g + dt2]) = inf
f∈C∞

0
(M×R)

∫

M×R

(

an+1‖∇f‖2 + sg f 2
)

dvol(g + dt2)

‖f‖2pn+1

.



10 J. PETEAN

Proof of Theorem 1.2 : We have a closed Riemannian manifold (Mn, g) such that
Ricci(g) ≥ (n− 1)g. Let f0(t) = cosh−2(t) and consider the diffeomorphism

H : M × (0, π) → M × R

given by H(x, t) = (x, h0(t)), where h0 : (0, π) → R is the diffeomorphism defined by
h0(t) = cosh−1((sin(t))−1) on [π/2, π) and h0(t) = −h0(π/2− t) if t ∈ (0, π/2).

By a direct computation H∗(f0(g + dt2)) = g = sin2(t)g + dt2 on M × (0, π).
Therefore by conformal invariance if we call gf0 = f0(g + dt2)

Y (M × R, [g + dt2]) = inf
f∈C∞

0
(M×R)

∫

M×R

(

an+1‖∇f‖2g+dt2 + sgf
2
)

dvol(g + dt2)

‖f‖2pn+1

= inf
f∈C∞

0
(M×R)

∫

M×R

(

an+1‖∇f‖2gf0
+ sgf0f

2
)

dvol(gf0)

‖f‖2pn+1

= inf
f∈C∞

0
(M×(0,π))

∫

M×(0,π)

(

an+1‖∇f‖2
g
+ sgf

2
)

dvol(g)

‖f‖2pn+1

= Y (M × (0, π), [g]).

Now, as we showed in the previous section, Ricci(g) ≥ n. Therefore sg ≥ n(n+1).
So we get

Y (M × R, [g + dt2]) ≥ inf
f∈C∞

0
(M×(0,π))

∫

M×(0,π)

(

an+1‖∇f‖2
g
+ n(n + 1)f 2

)

dvol(g)

‖f‖2pn+1

.

To compute the infimum one needs to consider only non-negative functions. Now
for any non-negative function f ∈ C∞

0 (M × (0, π) ) consider its symmetrization f∗ :
X → R≥0 defined by f∗(S) = sup f and f∗(x, t) = s if and only if V ol(B(S, t), g) =
V ol({f > s}, g) (i.e. f∗ is a non-increasing function of t and V ol({f∗ > s}) =
V ol({f > s}) for any s). It is inmediate that the Lq-norms of f∗ and f are the same
for any q. Also, by the coarea formula

∫

‖∇f‖2
g
=

∫ ∞

0

(
∫

f−1(t)

‖∇f‖gdσt

)

dt.

≥

∫ ∞

0

(µ(f−1(t)))2
(
∫

f−1(t)

‖∇f‖−1
g
dσt

)−1

dt

by Hölder’s inequality, where dσt is the measure induced by g on {f−1(t)}. But

∫

f−1(t)

‖∇f‖−1
g
dσt = −

d

dt
(µ{f > t})



ISOPERIMETRIC REGIONS AND YAMABE CONSTANTS 11

= −
d

dt
(µ{f∗ > t}) =

∫

f−1
∗ (t)

‖∇f∗‖
−1
g
dσt

and since f−1(t) = ∂{f > t} by Theorem 1.1 we have µ(f−1(t)) ≥ µ(f−1
∗ (t)). There-

fore

∫ ∞

0

(µ(f−1(t)))2
(
∫

f−1(t)

‖∇f‖−1
g
dσt

)−1

dt

≥

∫ ∞

0

(µ(f−1
∗ (t)))2

(
∫

f−1
∗ (t)

‖∇f∗‖
−1
g
dσt

)−1

dt

(and since ‖∇f∗‖g is constant along f−1
∗ (t) )

=

∫ ∞

0

µ(f−1
∗ (t))‖∇f∗‖g dt

=

∫ ∞

0

(
∫

f−1
∗ (t)

‖∇f∗‖gdσt

)

dt =

∫

‖∇f∗‖
2
g
.

Considering Sn+1 as the spherical cone over Sn we have the function f 0
∗ : Sn+1 →

R≥0 which corresponds to f∗.
Then for all s

V ol({f 0
∗ > s}) =

(

Vn

V

)

V ol({f∗ > s},

and so for any q,

∫

(f 0
∗ )

qdvol(g0) =

(

Vn

V

)
∫

(f∗)
qdvol(g).

Also for any s ∈ (0, π)

µ((f 0
∗ )

−1(s)) =
Vn

V
µ(f−1

∗ (s)),

and since ‖∇f 0
∗‖g0 = ‖∇f∗‖g we have

∫

‖∇f 0
∗‖

2
g0

=
Vn

V

∫

‖∇f∗‖
2
g
.

We obtain

Y (M × R, [g + dt2]) ≥ inf
f∈C∞

0
(M×(0,π))

∫

M×(0,π)
an+1‖∇f‖2

g
+ n(n + 1)f 2 dvol(g)

‖f‖2pn+1

≥ inf
f∈C∞

0
(M×(0,π))

∫

M×(0,π)
an+1‖∇f∗‖

2
g
+ n(n+ 1)f 2

∗ dvol(g)

‖f∗‖
2
pn+1
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=

(

V

Vn

)1−(2/pn+1)

inf
f∈C∞

0
(M×(0,π))

∫

M×(0,π)
an+1‖∇f 0

∗‖
2
g0
+ n(n + 1)f 0

∗

2
dvol(g0)

‖f 0
∗‖

2
pn+1

≥

(

V

Vn

)2/(n+1)

Yn+1

This finishes the proof of Theorem 1.2.
�

Proof of Corollary 1.3 : Note that if sg is constant YR(M×R, g+dt2) only depends
on sg and V = V ol(M, g) Actually,

YR(M × R, g + dt2) = inf
f∈C∞

0
(R)

∫

R
an+1‖∇f‖2dt2V + sgV f 2 dt2

(
∫

R
f p)2/p V 2/p

= V 1−(2/p) inf
f∈C∞

0
(R)

∫

R
an+1‖∇f‖2dt2 + sgf

2 dt2

(
∫

R
f p)2/p

.

But as we said

inf
f∈C∞

0
(R)

∫

R
an+1‖∇f‖2dt2 + sgf

2 dt2

(
∫

R
f p)2/p

is independent of (M, g) and it is known to be equal to Yn+1V
−2/(n+1)
n . Corollary 1.3

then follows directly from Theorem 1.2.
�
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