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A COMPARISON THEOREM VIA THE RICCI FLOW

JUN LING

Abstract. We prove a comparison theorem for the compact surfaces
with negative Euler characteristic via the Ricci flow.

1. Introduction

A good way to understand geometry of manifolds is to compare gen-
eral manifolds with the ones with constant curvature. There have been
many such comparison results. Among them are Bishop and Guenther’s
volume comparison theorems, Cheeger-Yau’s heat kernel comparison theo-
rem, Faber-Krahn’s comparison theorem, to name only a few (see [1], [7]).
Those comparison theorems not only have great impact on geometry but
also are particularly beautiful. For example, Faber-Krahn’s theorem (see
[1], [7]) states that in Euclidean space R

n, the first Dirichlet eigenvalue of
the Laplacian of a domain Ω is greater than or equal to that of a ball B
as long as Ω and B have the equal volume. In this paper, we prove a new
comparison theorem (Theorem 1.1) that may be considered as an analogue
for closed surfaces. While Faber-Krahn’s is on domains of flat space Rn, ours
is on curved surfaces. One can expect that the curvature enters to play, as
showed in Theorem 1.1. Theorem 1.1 actually implies a sharp upper bound
for the ith eigenvalue. That is stated in Theorem 1.2.

We prove our results by using Hamilton’s Ricci flow. The proofs are
enlightened by Perelman’s work [6] on the monotonic property of the first
eigenvalue of the operator −4∆+R under the Ricci flow. Perelman [6] used
that and nondecreasing property of his entropy under the Ricci flow to rule
out nontrivial steady or expanding breathers on compact manifolds, among
other applications.

In this paper, we let M be a compact surface without boundary. For
any Riemannian metric g on M , we let Kg be the Gauss curvature, κg the
minimum of the Gauss curvature, Volg(M) the volume of M , dµg the volume
element, ∆g the Lalacian of the metric g. We have the following results.

Date: October 8, 2007, Revised: Aril 6, 2009.
2000 Mathematics Subject Classification. Primary 53C20, 35P15, 58J35; Secondary

53C21.
Key words and phrases. Comparison theorem, eigenvalue, Ricci flow.
The author thank the Mathematical Sciences Research Institute at Berkeley for its

hospitality for program ‘The Geometric Evolution Equations and Related Topics’ and
thank National Science Foundation for the support offered.

1

http://arxiv.org/abs/0710.2574v2


2 JUN LING

Theorem 1.1 (Comparison Theorem). Let M be a compact surface with

Euler Characteristic χ < 0, g any Riemannian metric on M , and g̃ a Rie-

mannian metric on M that has constant Gauss curvature Kg̃ and that is

in the same conformal class as g. If Volg(M) = Volg̃(M), and if the ith

eigenvalue λg of the Lapacian ∆g has C1-dependence on metric g, then we

have
λg

κg
≥

λg̃

κg̃
,

where the constant Gauss curvature for metric g̃ is Kg̃ = 2πχ/Volg(M).

Theorem 1.2 (Sharp Upper Bound). Let M be a compact surface with

Euler Characteristic χ < 0, g any Riemannian metric on M , and g̃ a Rie-

mannian metric on M that has constant Gauss curvature Kg̃ and that is in

the same conformal class as g. Let σ be a lower bound of the Gauss curvature

Kg. If Volg(M) = Volg̃(M), and if the ith eigenvalue λg of the Lapacian ∆g

has C1-dependence on metric g, then λg has an upper bound

λg ≤
λg̃

κg̃
σ,

that is,

λg ≤
λg̃

2πχ
Volg̃(M)σ,

where the constant Gauss curvature for metric g̃ is Kg̃ = 2πχ/Volg(M).
In particular, we have

λg ≤
λg̃

κg̃
κg,

that is

λg ≤
λg̃

2πχ
Volg̃(M)κg ,

for which, the equality holds for metric g with constant Gauss curvature.

2. Proofs

We prove Theorem 1.2 first, and prove Theorem 1.1 after that.

Proof of Theorem 1.2. We evolve metric g in the theorem by the normalized
Ricci flow. Let g(t) be the solution of the normalized Ricci flow

(2.1)
∂

∂t
g(t) = (r −R)g(t),

with initial value

(2.2) g(0) = g,

where R is the the scalar curvature of the metric g(t), r the average of the
scalar curvature

r =

∫

M

Rdµ
/

∫

M

dµ,
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and dµ = dµt the volume element of g(t). It is known from [3], [4], see also
[2], that g(t) exists for all t ≥ 0.

By (2.1) we have

d

dt
(dµ) = (r −R)dµ

and
d

dt
Volg(t)(M) =

d

dt

∫

M

1dµ =

∫

M

(r −R)dµ = 0.

So the volume Volg(t)(M) remains constant in t, that is

V =: Volg(t)(M) = Volg(0)(M) ∀t ≥ 0.

By the Gauss-Bonnet Theorem, we have

(2.3) r = 4πχ/V < 0.

Therefore r is a negative constant and the lower bounds of R are negative as
well. It is known from [4], see also [2], that g(t) converges exponentially in
any Ck-norm to a smooth metric g(∞) that has constant Gauss curvature
r/2.

R/2 is the Gauss curvature K of the metric g(t). Let σ < 0 be a lower
bound of K|t=0 = R|t=0/2,

(2.4) K|t=0 ≥ σ.

Let λ be the ith eigenvalue of the Laplacian ∆ of metric g(t), u the
corresponding eigenfunction. Then we have

−∆u = λu.

Take derivatives with respect to t,

−(
∂

∂t
∆)u−∆

∂

∂t
u = (

d

dt
λ)u+ λ

∂

∂t
u.

Multiply the equation by u and integrate,

(2.5) −

∫

u(
∂

∂t
∆)udµ −

∫

u∆
∂

∂t
udµ = (

d

dt
λ)

∫

u2dµ + λ

∫

u
∂

∂t
udµ.

Standard calculations (Ch. [2]) show that

(2.6)
∂

∂t
(∆g(t)) = (R− r)∆g(t).

Now (2.5), (2.6) and the equation

−

∫

u∆
∂

∂t
u = −

∫

∆u
∂

∂t
u = λ

∫

u
∂

∂t
u,
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imply that

d

dt
λ = −

∫

u(
∂

∂t
∆)udµ

/

∫

u2dµ

= −

∫

u(R − r)∆udµ
/

∫

u2dµ

= λ

∫

(R− r
)

u2dµ
/

∫

u2dµ.

Therefore we have

λ(t) = λ(0) exp
{

∫ t

0

∫

M
(R− r)u2dµ
∫

M
u2dµ

dτ
}

.

The scalar curvature R evolves by the equation

∂

∂t
R = ∆R+R(R− r).

Using the maximum principle to compare R with the solution

s(t) =
r

1−
(

1− r
2σ

)

ert

of the initial value problem of ODE






d

dt
s = s(s− r),

s(0) = 2σ,

we get

R ≥
r

1−
(

1− r
2σ

)

ert
∀x ∈ M,∀t ∈ [0,∞),

and

∫ t

0

∫

M

(

R(τ)− r
)

u2dµ
∫

M
u2dµ

dτ

≥

∫ t

0

∫

M

(

r

1−(1− r

2σ
)erτ

− r

)

u2dµ
∫

M
u2dµ

dτ

= ln
r
2σ e

rt

1−
(

1− r
2σ

)

ert
− rt.

Therefore

λ(t) ≥ λ(0)
r
2σ e

rt

1 −
(

1− r
2σ

)

ert

/

ert = λ(0)
r
2σ

1−
(

1− r
2σ

)

ert
.

Note that the eigenvalues of the Laplacian continuously depends on the
metric. Letting t → ∞, we have

(2.7) λ(∞) ≥ λ(0)
r

2σ
,
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where λ(∞) is the ith eigenvalue of the Laplacian of the metric g(∞) that
has constant Gauss curvature r/2.

Let g̃ = g(∞). It is clear that κg̃ = r/2, since Gauss curvature Kg̃ for
metric g̃ is constant. Taking these with (2.2) into (2.7), we get the first
estimate in the theorem, which with (2.3) yield the second estimate in the
theorem

λg ≤
λg̃

2πχ
σVolg̃(M).

By the Gauss-Bonnet Theorem, the constant Gauss curvature for metric
g̃ is r/2 = 2πχ/Volg̃(M) = 2πχ/Volg(M).

Letting σ = κg, we get the third and fourth estimates in the theorem
from the first two. �

Proof of Theorem 1.1. Letting g(∞) = g̃, σ = κg and r/2 = κg̃ in (2.7),
with (2.2), we get

λg ≤ λg̃

κg
κg̃

.

Therefore we have
λg

κg
≥

λg̃

κg̃
The last estimate follows from the above one. �
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