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Abstract

This is the first one in a series of two papers on the continuation of our
study in cup products in Hopf cyclic cohomology. In this note we con-
struct cyclic cocycles of algebras out of Hopf cyclic cocycles of algebras
and coalgebras. In the next paper we consider producing Hopf cyclic
cocycle from “equivariant” Hopf cyclic cocycles. Our approach in both
situations is based on (co)cyclic modules and bi(co)cyclic modules to-
gether with Eilenberg-Zilber theorem which is different from the old
definition of cup products defined in [11] via traces and cotraces on
DG algebras and coalgebras.

1 Introduction and some preliminaries

Hopf cyclic cohomology was invented by Connes and Moscovici as part of
their fundamental work of computing the class of the index of the hypoelliptic
signature operator [4]. The decidedly nontrivial idea was to show that the
index cocyclic is in the range of a characteristic map.

Hopf cyclic cohomology was vastly generalized to study Hopf-(co)module
(co)algebras and coefficients(partially in [12] and comprehensively in [9, 8]);
later on Hopf cyclic cohomology was generalized to encompass the category
of bialgebra-(co)module (co)algebras [10]. In [9] it was conjectured that any
characteristic map as above is just a component of a cup product in Hopf
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cyclic cohomology. In [11] the author and M. Khalkhali proved the existence
of the cup products defined via traces and cotraces over DG algebras and
coalgebras. As an intermediate step, characteristic maps via higher traces
of Crainic [5] and Gorokhovsky [7] can be thought of as cup products with
trivial coefficients. In [3] it is beautifully disclosed how the idea of cup
product is applicable in case that (or even in general) the algebra under
question possesses no invariant trace; as a replacement one takes advantage
of an invariant cyclic cocycle to realize Hopf cyclic cocycles as cyclic cocycles
on the algebra.

In these notes, we define and study the above cup products in a very straight-
forward way by using a method we learned from [14]. The fact that the
equivariant property of cocycles yields that the produced cocycle to be well-
defined on the convolution and crossed product algebra is nontrivial. This
prompt us to do more research on this cup products [15]. This products
also has to be analyzed from the category and representation theory point of
view. The merit of our definitions is their simplicity and lack of dependence
on the algebra or coalgebra structures, since we use a Hopf twisting map the
whole procedure should work to a great extent for arbitrary twisting maps.
As one knows the cyclic cohomology of Hopf algebras is defined as the cyclic
cohomology of a canonical cocyclic module associated to the Hopf algebra;
one uses this fact to produce Hopf cyclic cocycles by exploiting “ equivariant”
Hopf cyclic cocycles [15].

There are at least eight kinds of cup products defined on Hopf cyclic coho-
mology but only two of them so far are applied in NCG, the reason could
be their lack of classic and/or geometric counterparts. For the first product,
one starts with Hopf cyclic cocycles over an algebra and a coalgebra with
coefficients in a SAYD module. To define the cup product one needs the
coalgebra to act on the algebra. The next step is to construct, via a twisting
map, the cup product as cocycle over the convolution algebra. But one knows
that any cocycle over the convolution algebra is automatically a cocycle over
the algebra. This cup product generalizes the characteristic map of Connes-
Moscovici [4]. Ingredients for the second cup product are cyclic cocycles on
a module algebra over a Hopf algebra and on a comodule algebra over the
same Hopf algebra. Out of the two Hopf cyclic cocycles one produces a cyclic
cocycle over the crossed product algebra. This cup product generalizes the
ordinary cup product in cyclic cohomology of algebras as defined by Connes
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[1].

For the reader convenience, we briefly recall the definition of Hopf cyclic co-
homology of coalgebras and algebras under the symmetry of Hopf algebras
and with coefficients in stable anti Yetter-Drinfeld (SAYD) modules [4, 8, 9].
In this note H is a Hopf algebra, µ, η,∆, ε, and S be its product, unite, co-
product, counit and antipode, which is also supposed invertible, respectively.
We use the Sweedler’s notation for coproduct, i.e., ∆(h) = h(1) ⊗ h(2) . Let C
be a H-module coalgebra, that is a coalgebra endowed with an action, say
from left, of H such that its comultiplication and counit are H-linear, i.e,

∆(hc) = h(1)c(1) ⊗ h(2)c(2) , ε(hc) = ε(h)ε(c). (1.1)

As the coefficients in this cohomology theory the notion of SAYD module is
defined in [8] and recalled as follows. It is said that a right module M which
is also a left comodule is a right-left SAYD module over a Hopf algebra H if
it satisfies the following conditions for any h ∈ H, and m ∈M .

m
<0>

m
<−1>

= m (1.2)

(mh)
<−1>

⊗ (mh)
<0>

= S(h(3))m
<−1>

h(1) ⊗m
<0>

h(2) , (1.3)

where the coaction of H is denoted by ∆M(m) = m
<−1>

⊗m
<0>

.

Having the datum (H, C,M), one defines [9] cocyclic module {Cn
H(C,M), ∂i, σj , τ}n≥0

as follows.

Cn := Cn
H(C,M) =M ⊗H C

⊗n+1, n ≥ 0,

with the following cocyclic structure,

∂i : C
n → Cn+1, 0 ≤ i ≤ n+ 1 (1.4)

σj : C
n → Cn−1, 0 ≤ j ≤ n− 1, (1.5)

τ : Cn → Cn, (1.6)

defined explicitly as follows, where we abbreviate c̃ = c0 ⊗ . . .⊗ cn,

∂i(m⊗H c̃) = m⊗H c
0 ⊗ . . .⊗∆(ci)⊗ . . .⊗ cn, (1.7)

∂n+1(m⊗H c̃) = m
<0>

⊗H c
0
(2) ⊗ c1 ⊗ . . .⊗ cn ⊗m

<−1>
c0(1) , (1.8)

σi(m⊗H c̃) = m⊗H c
0 ⊗ . . .⊗ ǫ(ci+1)⊗ . . .⊗ cn, (1.9)

τ(m⊗H c̃) = m
<0>

⊗H c
1 ⊗ . . .⊗ cn ⊗m

<−1>
c0. (1.10)
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It is checked [9] that ∂i, σj , and τ satisfy the following identities, which are
recalled from [1] as the definition of cocyclic module.

∂j∂i = ∂i∂j−1, i < j, σjσi = σiσj+1, i ≤ j (1.11)

σj∂i =





∂iσj−1 i < j

1n if i = j or i = j + 1
∂i−1σj i > j + 1;

(1.12)

τn∂i = ∂i−1τn−1, 1 ≤ i ≤ n, τn∂0 = ∂n (1.13)

τnσi = σi−1τn+1, 1 ≤ i ≤ n, τnσ0 = σnτ
2
n+1 (1.14)

τn+1
n = 1n . (1.15)

As the motivating example of the above theory one recovers the cyclic com-
plex of a Hopf algebra H endowed with a modular pair in involution (MPI)
(δ, σ), which we recall it here from [4]. The character δ is an algebra map
H → C, and the group-like element σ ∈ H is a coalgebra map C → H, i.e.
σ := σ(1) satisfies ∆(σ) = σ ⊗ σ. The pair (δ, σ) is called MPI if δ(σ) = 1,
and S̃δ = Adσ, where the twisted antipode S̃δ is defined by

S̃δ(h) = (δ ∗ S)(h) = δ(h(1))S(h(2)). (1.16)

One knows that H is left H-module coalgebra via left multiplication. On
the other hand if one lets M =σ Cδ to be the ground field C endowed with
the left H coaction via σ and right H action via the character δ, then its
checked [9] that (δ, σ) is a MPI if and only if σCδ is a SAYD. Thanks to the
multiplication and the antipode of H one identifies CH(H,M) withM⊗H⊗n

via the following map,

I :M ⊗H H⊗(n+1) →M ⊗H⊗n, (1.17)

I(m⊗H h
0 ⊗ . . .⊗ hn) = mh0(1) ⊗ S(h(2)) · (h1 ⊗ . . .⊗ hn). (1.18)

As a result one simplifies ∂i, σj , and τ , in this case, and recovers the original
definition of the cyclic cohomology of Hopf algebras [4].

∂0(h
1 ⊗ . . .⊗ hn−1) = 1⊗ h1 ⊗ . . .⊗ hn−1, (1.19)

∂j(h
1 ⊗ . . .⊗ hn−1) = h1 ⊗ . . .⊗∆hj ⊗ . . .⊗ hn−1, 1 ≤ j ≤ n− 1

∂n(h
1 ⊗ . . .⊗ hn−1) = h1 ⊗ . . .⊗ hn−1 ⊗ σ,

σi(h
1 ⊗ . . .⊗ hn+1) = h1 ⊗ . . .⊗ ε(hi+1)⊗ . . .⊗ hn+1, 0 ≤ i ≤ n ,

τn(h
1 ⊗ . . .⊗ hn) = (∆p−1S̃(h1)) · h2 ⊗ . . .⊗ hn ⊗ σ.
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Similarly an algebra which is H-module and its algebra structure is H-linear
is called H-module algebra. Let A be a H-module algebra and then one
endows M ⊗ A⊗n+1 with the diagonal action of H and forms Cn

H(A,M) =
HomH(M ⊗ A⊗n+1,C) as the space of H-linear maps. It is checked that the
following defines a cocyclic module structure on Cn(A,M).

(∂iϕ)(m⊗ ã) = ϕ(m⊗ a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an+1), 0 ≤ i < n,

(∂n+1ϕ)(m⊗ ã) = ϕ(m
<0>

⊗ (S−1(m
<−1>

)an+1)a0 ⊗ a1 ⊗ . . .⊗ an),

(σiϕ)(m⊗ ã) = ϕ(m⊗ a0 ⊗ . . .⊗ ai ⊗ 1⊗ . . .⊗ an−1), 0 ≤ i ≤ n− 1,

(τϕ)(m⊗ ã) = ϕ(m
<0>

⊗ (S−1(m
<−1>

)an)⊗ a0 ⊗ . . .⊗ an−1),

The cyclic cohomology of this cocyclic module is denoted by HC∗
H(A,M).

An algebra is called H-comodule coalgebra if it is a H comodule and its
coalgebra structure are H colinear. Similar to the other case, one defines
HCn(A,M) to be the space of all colinear maps from A⊗n+1 to M . One
checks that the following defines a cocyclic module structure on HCn(A,M).

(∂iϕ)(ã) = ϕ(a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an+1), 0 ≤ i < n,

(∂n+1ϕ)(ã) = ϕ(an+1
<0>

a0 ⊗ a1 . . .⊗ an−1 ⊗ an)an+1
<−1>

,

(σiϕ)(ã) = ϕ(a0 ⊗ . . .⊗ ai ⊗ 1⊗ . . .⊗ an−1), 0 ≤ i ≤ n− 1,

(τϕ)(a0 ⊗ . . .⊗ an) = ϕ(an
<0> ⊗ a0 ⊗ . . .⊗ an−1 ⊗ an−1)an

<−1> .

The cyclic cohomology of this cocyclic module is denoted by HHC∗(A,M).
For completeness, we record below the bi-complex

(CC∗,∗(C,H,M), b, B)

that computes the Hopf cyclic cohomology of a coalgebra C with coefficients
in a SAYD module M under the symmetry of a Hopf algebra H:

CCp,q(C,H;M) =

{
C
q−p
H (C,M) , q ≥ p ,

0 , q < p ,

the operator

b : Cn
H(C,M) → Cn+1

H (C,M), b =

n+1∑

i=0

(−1)i∂i
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and the B-operator B : Cn
H(C,M) → Cn−1

H (C,M) is defined by the formula

B = A ◦B0 , n ≥ 0 ,

where
B0 = σn−1τ(1− (−1)nτ)

and
A = 1 + λ+ · · ·+ λn , with λ = (−1)n−1τn .

The groups {HCn(H; δ, σ)}n∈N are computed from the first quadrant total
complex (TC∗(H; δ, σ), b+B) ,

TCn(H; δ, σ) =
n∑

k=0

CCk,n−k(H; δ, σ) ,

and the periodic groups {HP i(H; δ, σ)}i∈Z/2 are computed from the full total
complex (TP ∗(H; δ, σ), b+B) ,

TP i(H; δ, σ) =
∑

k∈Z

CCk,i−k(H; δ, σ) .

Let (Cn, δi, σi, τn) and (C ′n, δi, σi, τn) be two cocyclic objects in the category
of vector spaces. Their product is the cocyclic object ((C × C ′)n, δi, σi, τn)
with (C × C ′)n = Cn ⊗ C ′n and δi = δi ⊗ δi), σi = σi ⊗ σi and τn = τn ⊗ τn.
Their tensor product is the bicocyclic module C⊗C ′ defined by (C⊗C ′)m,n =
Cm ⊗ Cn with horizontal and vertical structure borrowed from C and C ′

respectively. Eilenberg-Zilber states that the Cyclic cyclic cohomology of
mixed complexes C × C ′ and Tot(C ⊗ C ′) are the same via the the shuffle
map [13].

2 Module algebras paired with module coal-

gebras

Let H be a Hopf algebra, A be a H-module algebra and (δ, σ) be a modular
pair in involution on H. Connes and Moscovici [4] showed that the following
defines a map of cocyclic modules

χ : H♮
(δ,σ) → C∗(A), (2.1)

χ(h1 ⊗ . . .⊗ hn)(a0 ⊗ . . .⊗ an) = τ(a0h1(a1) . . . hn(an)).
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Here τ : A→ C is a δ-invariant σ-trace, i.e. for all a, b and h

τ(ha) = δ(h)τ(a), (2.2)

τ(ab) = τ(bσa). (2.3)

The above map then induces the following characteristic map on the level of
cohomologies:

χ : HCn
(δ,σ)(H) → HCn(A). (2.4)

Hopf cyclic cohomology and SAYD (stable anti-Yetter-Drinfeld) modules,
generalize cyclic cohomology of Hopf algebras and MPI (modular pair in
involution), respectively. Now a δ-invariant σ-trace is exactly a closed cyclic
cocycle in C0

H(A,
σ Cδ). These facts prompted us in [9] to conjecture that

there should exist a generalization of characteristic map as a pairing between
Hopf cyclic cohomology of module algebras and module coalgebras:

HCn
H(A,M)⊗HCm

H (C,M) → HCn+m(A,M), (2.5)

whereM is a left-right SAYD module over H and C is a H module coalgebra
acting on A in the sense that there is a map

C ⊗ A→ A, (2.6)

such that for any h ∈ H, any c ∈ C and any a, b ∈ A one has

(hc)a = h(ca) (2.7)

c(ab) = (c(1)a)(c(2)b) (2.8)

c(1) = ǫ(c)1 (2.9)

Although there is a proof of the above conjecture in [11], we would like to
give a more direct proof based on theory of cyclic modules instead of traces
on DG algebras. The advantage of this new view is not only its simplicity
but also its efficiency which enables one to use the precise expression of these
cup products as it is shown in [15].

One constructs a very useful convolution algebra B = HomH(C,A), which
is the algebra of all H-linear maps from A to C. The unit of this algebra
is given by η ◦ ǫ, where η : C → A is the unit of A. The multiplication of
f, q ∈ B is given by

(f ∗ g)(c) = f(c(1))g(c(2)) (2.10)
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Now consider two cocyclic modules

(C∗
H(A,M), δi, σj , t), and (C∗

H(C,M), di, sj, τ)

and let us make a new bicocyclic module by just tensoring these two ones.
The bicocyclic module has in bidegree (p, q)

Cp,q := HomH(M ⊗ A⊗p+1,C)+⊗(M ⊗H C
⊗q+1),

with horizontal structure
→

∂ i = di ⊗ Id,
→
σ j = sj ⊗ Id, and

→
τ = t ⊗ Id

and vertical structure ↑ ∂i = δi ⊗ Id, ↑ σj = σj ⊗ Id, and ↑ τ = τ ⊗ Id.

Obviously (Cn,m,
→

∂,
→
σ,

→
τ , ↑∂, ↑σ, ↑τ) defines a bicocyclic module, where +⊗ :=

⊗ for which we use it to distinguish between HomH(M ⊗ A⊗p+1,C) and
(M ⊗H C

⊗q+1).
Now let us define the map

Ψc : C
n,n → Hom(B⊗n+1,C), (2.11)

Ψc(φ+⊗m⊗ c0 ⊗ . . .⊗ cn)(f 0 ⊗ . . .⊗ fn) = φ(m⊗ f 0(c0)⊗ . . .⊗ fn(cn)),

which is obviously well defined due to the facts that f is H-linear, φ is
equivariant and (2.7) holds.

Proposition 2.1. The map Ψc defines a cyclic map between the diagonal of

C∗,∗ and the cocyclic module C∗(B).

Proof. We have to show that Ψ commutes with the cyclic structures of the
two sides. Indeed we just check it for the first face and cyclic operator and
leave the rest to the reader. We have

Ψc(
→

∂ 0 ↑∂0(φ+⊗m⊗ c0 ⊗ . . .⊗ cn))(f 0 ⊗ . . .⊗ fn+1) =

Ψc(d0φ+⊗δ0(m⊗ c0 ⊗ . . .⊗ cn))(f 0 ⊗ . . .⊗ fn+1) =

φ(m⊗ f 0(c0(1))f 1(c0(2))⊗ f 2(c1)⊗ . . .⊗ fn+1(cn) =

φ(m⊗ (f 0 ∗ f 1)(c0)⊗ f 2(c1)⊗ . . .⊗ fn+1(cn)) =

(d0Ψc(φ+⊗m⊗ c̃))(f 0 ⊗ . . .⊗ fn+1).
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Ψc(
→
τ ↑τ(φ+⊗m⊗ c0 ⊗ . . .⊗ cn))(a0 ⊗ . . .⊗ an) =

Ψc(tφ+⊗τ(m⊗ c0 ⊗ . . .⊗ cn))(f 0 ⊗ . . .⊗ fn) =

tφ(m
<0>

f 0(c1)⊗ . . .⊗ fn−1(cn))⊗m
<−1>

fn(c0)) =

φ(m
<0>

⊗ S−1(m
<−1>

)m
<−2>

fn(c0)⊗ f 0(c1)⊗ . . .⊗ fn−1(cn)) =

φ(m⊗ fn(c0)⊗ f 0(c1)⊗ . . .⊗ fn−1(cn)) =

(tΨc(φ+⊗m⊗ c0 ⊗ . . .⊗ cn))(f 0 ⊗ . . .⊗ fn).

One can take advantage of properties (2.7),(2.8), and (2.9) to prove that there
exists a natural unital algebra map ♮ : A → HomH(A,C), explicitly defined
by ♮(a)(c) = c(a). As a result, one obtains a cyclic map ♮ : C∗(B,C) →
C∗(A,C). One then composes ♮ with Ψc to get a cyclic map

Ψ = ♮ ◦Ψc : C
∗(D(C∗,∗)) → C∗(A,C).

Let K be a sub Hopf algebra of H. Although A is a H-module algebra, the
coalgebra C = C(H,K) = H ⊗K C does not inherit this property from H
since the action of C on A is not well-defined. One cures this problem by
letting C acts on the invariant sub algebra of A under the action of K. Let

AK = {a ∈ A | ka = ε(k)a}. (2.12)

One checks that the action of C on AK is well defined and satisfies (2.7),
(2.8), and (2.9). One notes that it is not possible to write the map (2.11)
for the case AK and C because AK is not a H-module algebra. Instead one
writes the invariant form of (2.11) as follows. Let us introduce

Cp,q
r = C

p
H(A,M)+⊗Cq

H(H,K;M)

with its standard cyclic structure. Then one has a cyclic map

Ψr : D(C∗,∗
r ) → C∗(AK), (2.13)

Ψr(φ+⊗m⊗ c0 ⊗ c1 ⊗ . . .⊗ cn)(a0 ⊗ . . .⊗ an) =

φ(m⊗ c0(a0)⊗ . . .⊗ cn(an)).

It is shown that the above map defines a cyclic map. Note that it does not
land in C∗(A).
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Corollary 2.2. The map Ψ induces the following maps on cyclic cohomolo-

gies:

Ψ : HCn(D(C∗,∗)) → HCn(A) (2.14)

Ψc : HC
n(D(C∗,∗

c )) → HCn(HomH(C,A)) (2.15)

Ψr : HC
n(D(C∗,∗

r )) → HCn(AK). (2.16)

Now composing Ψ, Ψc, and Ψr with the corresponding Alexander-Whitney
map AW one obtains the following cup products:

∪ = Ψ ◦ AW : HCp
H(A,M)⊗HC

q
H(C,M) → HCp+q(A),

∪ = Ψc ◦ AW : HCp
H(A,M)⊗HC

q
H(C,M) → HCp+q(HomH(C,A)),

∪ = Ψr ◦ AW : HCp
H(A,M)⊗HC

q
H(H,K;M) → HCp+q(AK).

Proposition 2.3. The above cup product is precisely given by the following

formula in the level of Hochschild cohomology.

∪ : Cp
H(A,M)⊗ C

q
H(C,M) → Cp+q(A),

(φ ∪ (m⊗ c0 ⊗ . . .⊗ cq))(a0 ⊗ . . .⊗ ap+q) =

φ(m⊗ c0(p+1)(a0)c1(a1) . . . cq(aq)⊗ c0(1)(aq+1)⊗ . . .⊗ c0(p)(ap+q))

Proof. By composing the AW map given in [13] with Ψ one obtains the above
formula.

3 Module algebras paired with comodule al-

gebras

Let H be a Hopf algebra, A a left H-module algebra, B a left H-comodule
algebra andM be a right-left SAYD module overH. One constructs a crossed
product algebra whose underlying vector space is A⊗ B with the 1 >⊳ 1 as
its unit and the following multiplication:

(a >⊳ b)(a′ >⊳ b′) = ab
<−1>(a

′) >⊳ b
<0>b

′ (3.1)

Now consider the two cocyclic modules

(C∗
H(A,M), δi, σj, t), and (HC∗(B,M), di, sj, τ)

10



introduced in [9] and let us make a new bicocyclic module by just tensoring
these two ones. Its (p, q) component Cp,q is given by

HomH(M ⊗ A⊗p+1,C)⊗H Hom(B⊗q+1,M),

with horizontal structure
→

∂ i = di ⊗ Id,
→
σ j = sj ⊗ Id, and

→
τ = t ⊗ Id and

vertical structure ↑∂i = δi ⊗ Id, ↑σj = σj ⊗ Id, and ↑τ = τ ⊗ Id. Obviously

(Cn,m,
→

∂ ,
→
σ,

→
τ , ↑∂, ↑σ, ↑τ) defines a bicocyclic module. Now let us define the

following map

Ψ : Cn,n → Hom((A >⊳ B)⊗n+1,C), (3.2)

Ψ(φ⊗ ψ)(a0 >⊳ b0 ⊗ . . .⊗ an >⊳ bn) =

φ(ψ(b0
<0>

⊗ . . .⊗ bn
<0>

)⊗ S−1(b0
<1>

. . . bn
<−1>

)a0 ⊗ . . .⊗ S−1(bn
<−n−1>

)an).

Proposition 3.1. The map Ψ defines a cyclic map between the diagonal of

C∗,∗ and the cocyclic module C∗(A >⊳ B).

Proof. We have to show that Ψ commutes with the cyclic structures. We
shall check it for the first face operator and the cyclic operator and leave the
rest to the reader.

Ψ(
→

∂ 0 ↑∂0(φ⊗ ψ))(a0 >⊳ b0 ⊗ . . .⊗ an+1 >⊳ bn+1) =

Ψ(d0φ⊗ δ0ψ))(a
0 >⊳ b0 ⊗ . . .⊗ an+1 >⊳ bn+1) =

δ0φ(δ0ψ(b
0
<0>

⊗ . . .⊗ bn+1
<0>

)⊗ S−1(b0
<−1>

. . . bn+1
<−1>

)a0 ⊗ . . .

. . .⊗ S−1(bn+1
<−n−2>)a

n+1) =

φ(ψ(b0
<0>b

1
<0> ⊗ . . .⊗ bn+1

<0>)⊗

⊗ S−1(b0
<−1>

. . . bn+1
<−1>

)a0S−1(b1
<−2>

. . . bn+1
<−2>

)a1 ⊗ . . .

. . .⊗ S−1(bn+1
<−n−2>)a

n+1) =

φ(ψ(b0
<0>b

1
<0> ⊗ . . .⊗ bn+1

<0>)⊗

⊗ S−1(b0
<−1> . . . b

n+1
<−1>)a

0S−1(b1
<−2> . . . b

n+1
<−2>)a

1 ⊗ . . .

. . .⊗ S−1(bn+1
<−n−2>)a

n+1) =

φ(ψ(b0
<0>b

1
<0> ⊗ . . .⊗ bn+1

<0>)⊗

⊗ S−1(b0
<−1>b

1
<−1> . . . b

n+1
<−1>)(a

0b0
<−2>a

1)⊗ . . .

. . .⊗ S−1(bn+1
<−n−1>

)an+1) =

Ψ(φ⊗ ψ)(a0b0
<−1>a

1 >⊳ b0
<0>b

1 ⊗ a2 >⊳ b2 ⊗ . . .⊗ an+1 >⊳ bn+1) =

d0Ψ(φ⊗ ψ)(a0 >⊳ b0 ⊗ . . .⊗ an+1 >⊳ bn+1).
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Using the facts that φ is H equivariant, ψ is H colinear and M is SAYD one
has:

Ψ(
→
τ ↑τ(φ⊗ ψ))(a0 >⊳ b0 ⊗ . . .⊗ an >⊳ bn) =

Ψ(tφ⊗ τψ)(a0 >⊳ b0 ⊗ . . .⊗ an >⊳ bn) =

tφ(τψ(b0
<0> ⊗ . . .⊗ bn

<0>)⊗ S−1(b0
<1> . . . b

n
<−1>)a

0 ⊗ . . .⊗ S−1(bn
<−n−1>)a

n) =

tφ(ψ(bn
<0> ⊗ b0

<0> ⊗ . . .⊗ bn−1
<0>)b

n
<−1>⊗

⊗ S−1(b0
<1>

. . . bn−1
<−1>

bn
<−2>

)a0 ⊗ . . .⊗ S−1(bn
<−n−2>

)an) =

φ([ψ(bn
<0> ⊗ b0

<0> ⊗ . . .⊗ bn−1
<0>)b

n
<−1> ]<0>⊗

S−1([ψ(bn
<0> ⊗ b0

<0> ⊗ . . .⊗ bn−1
<0>)b

n
<−1> ]<−1>(S

−1(bn
<−n−2>)a

n)⊗

⊗ S−1(b0
<1> . . . b

n−1
<−1>b

n
<−2>)a

0 ⊗ . . .⊗ S−1(bn−1
<−n+1>b

n
<−n−1>)a

n−1) =

φ(ψ(bn
<0> ⊗ b0

<0> ⊗ . . .⊗ bn−1
<0>)b

n
<−3>⊗

S−1(S(bn
<−2>)b

n
<−1>b

0
<−1> . . . b

n−1
<−1>)b

n
<−4>)(S

−1(bn
<−n−2>)a

n)⊗

⊗ S−1(b0
<1> . . . b

n−1
<−1>b

n
<−5>)a

0 ⊗ . . .⊗ S−1(bn−1
<−n+1>b

n
<−n−4>)a

n−1) =

φ(ψ(bn
<0>

⊗ b0
<0>

⊗ . . .⊗ bn−1
<0>

)bn
<−1>

⊗

S−1(b0
<−1> . . . b

n−1
<−1>)b

n
<−2>)(S

−1(bn
<−n−2>)a

n)⊗

⊗ S−1(b0
<1> . . . b

n−1
<−1>b

n
<−3>)a

0 ⊗ . . .⊗ S−1(bn−1
<−n+1>b

n
<−n−2>)a

n−1) =

φ(ψ(bn
<0>

⊗ b0
<0>

⊗ . . .⊗ bn−1
<0>

)⊗ S−1(bn
<−1>

b0
<−1>

. . . bn−1
<−1>

)an)⊗

⊗ S−1(b0
<1> . . . b

n−1
<−1>)a

0 ⊗ . . .⊗ S−1(bn−1
<−n+1>)a

n−1) =

Ψ(φ⊗ ψ)(an >⊳ bn ⊗ a0 >⊳ b0 ⊗ . . .⊗ an−1 >⊳ bn−1) =

tΨ(φ⊗ ψ)(a0 >⊳ b0 ⊗ . . .⊗ an >⊳ bn).

Corollary 3.2. The map Ψ defined in (3.2) induces a map on cyclic coho-

mologies:

Ψ : HCn(D(C∗,∗)) → HCn(A >⊳ B). (3.3)

Now by composing Ψ with the corresponding map AW map one proves the
existence of the following map:

∪ = Ψ ◦ AW : HCp
H(A,M)⊗ HHCq(B,M) → HCp+q(A >⊳ B). (3.4)

One uses the formula of AW map [13] to find the following expression for
the above cup product.
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Proposition 3.3. The above cup product has the following formula in the

level of Hochschild cohomology.

φ ∪ ψ(a0 >⊳ b0 ⊗ . . .⊗ ap+q >⊳ bp+q) =

φ(ψ(bq+1
<0> . . . b

p+q
<0>b

0
<0> ⊗ b1

<0> ⊗ . . .⊗ bq
<0>)<−1>⊗

S−1(b0
<−1> . . . b

q
<−1>)a

0 . . . S−1(bq
<−q−1>)a

q ⊗ aq+1 ⊗ bq+1
<−p−1>a

q+2 ⊗ . . .⊗

bq+1
<−1>

. . . bp+q−1
<−1>

ap+q.

Example 3.4. Let G be a discrete group acting by unital automorphisms
on an algebra A and let k be a field of characteristic zero. In [?], the Hopf
cyclic cohomology groups of the Hopf algebra H = kG were computed in
terms of group cohomology with trivial coefficients:

kGHCp(kG, k) =
⊕

i≥0

Hp−2i(G, k).

The cohomology groups HCq
kG(A, k) are easily seen to be the cohomology of

the subcomplex of invariant cyclic cochains on A:

ϕ(ga0, ga1, · · · , gan) = ϕ(a0, a1, · · · , an),

for all g ∈ G and ai ∈ A. We denote this cohomology theory by HCq
G(A).

We have thus a pairing

Hp(G)⊗HC
q
G(A) −→ HCp+q(A⋊G).

4 Cup product via traces

In this section we derive some formulas for cup products defined in [11].
Let us briefly recall it here. Let A be a left H module algebra, B a left
H- comodule algebra and M a SAYD module on H. Let also ΩA be a DG
H-module algebra over A and ΓB be a DG H-comodule algebra over B. We
recall that a closed M-trace on ΩA is a linear map

∫
: M ⊗ ΩA → C such

that∫
(h(1)m⊗ h(2)ω) = ǫ(h)

∫
(m⊗ ω), (4.1)

∫
(m⊗ dω) = 0, (4.2)

∫
(m⊗ ω1 ⊗ ω2) = (−1)deg(ω

1)deg(ω2)

∫
(m

<0>
⊗ S−1(m

<−1>
)ω2ω1). (4.3)
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Similarly a closed M-trace on ΓB is defined as a linear map
∫

: ΓB → M

such that,

(

∫
γ)

<−1>
⊗ (

∫
γ)

<0>
= γ

<−1> ⊗

∫
(γ

<0>), (4.4)
∫
(dγ) = 0, (4.5)

∫
(γ1γ2) =

∫
(γ2

<0>
γ1)γ2

<−1>
. (4.6)

One identifies closed cyclic cocycles φ ∈ C
p
H(A,M) and ψ ∈H HCq(B,M)

with closedM-traces on Ω(A) and Γ(B), the universal H-module DG algebra
and H-comodule algebra respectively, as follows:

∫

φ

m⊗ a0da1 . . . dan = φ(m⊗ a0 ⊗ . . .⊗ ap) (4.7)

∫

ψ

(b0db1 . . . dbn) = ψ(b0 ⊗ . . .⊗ bq) (4.8)

Then one forms a DG algebra over A >⊳ B as the crossed product of Ω(A)
and Γ(B), which we denote it by Ω(A) >⊳ Γ(B). For any two closed M-
traces

∫
1
and

∫
2
on Ω(A) and Γ(B) one defines [11] the closed trace

∫
1
∪
∫
2

on Ω(A) >⊳ Γ(B) by

(

∫

1

∪

∫

2

)(ω >⊳ η) =

∫

1

(

∫

2

(ω)⊗ η), (4.9)

and hence the cup product of two cyclic cocycle is defined by

(φ ∪ ψ)(a0 >⊳ b0 ⊗ a1 >⊳ b1 ⊗ . . .⊗ ap+q >⊳ bp+q) =

(

∫

φ

∪

∫

ψ

)(a0 >⊳ b0d(a1 >⊳ b1) . . . d(ap+q >⊳ bp+q)).

Now we want to derive a formula for the above cup product. To this end we
need to know the (p, q) component of the form

θn = a0 >⊳ b0d(a1 >⊳ b1) . . . d(an >⊳ bn).
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For a permutation σ ∈ Sh(q, p) we use σ̄(i) = σ(i)− 1, and σ̂(i) = σ(i) + 1,
and define the following p+ q form

θnσ = a0(b0 . . . bn−1)
<−n>

a1 . . . (bσ̄(q+1)−1 . . . bn−1)
<−n+σ(q+1)−2>

aσ̄(q+1)

d((bσ̄(q+1) . . . bn−1)
<−n+σ̄(q+1)>

aσ(q+1) . . . (bσ̄(q+2)−1 . . . bn−1)
<−n+σ(q+2)−2>

aσ̄(q+2)) . . .

. . . d((bσ̄(n) . . . bn−1)
<−n+σ̄(n)>

aσ(n) . . . bn−1
<−1>

an) >⊳

b0
<0>

. . . bσ̄(1)
<0>

d(bσ(1)
<0>

. . . bσ̄(2)
<0>

) . . . d(bσ(q)
<0>

. . . bn−1
<0>

bn).

Lemma 4.1. The (q, p)th component of the above form θp+q is given by the

following formula.

∑

σ∈Sh(q,p)

(−1)σθp+qσ .

Proof. We prove it by induction . Obviously it is true for (p, q) = (0, 0).
Assume that the lemma is true for all (p, q) such that p+ q = n, we prove it
for all (p, q) that p+ q = n+ 1.
The (p, q)th component of a0 >⊳ b0d(a1 >⊳ b1) . . . d(ap+q >⊳ bp+q) is
θ(dap+q >⊳ bp+q)+θ′(ap+q >⊳ dbp+q), where θ and θ′ are (p−1, q)th, and (p, q−
1)th component of a0 >⊳ b0d(a1 >⊳ b1) . . . d(ap+q−1 >⊳ bp+q−1) respectively.
Now let µ ∈ Sh(q, p− 1), one observes that

∑

σ∈Sh(q−1,p)

(−1)σθp+q−1
σ (ap+q >⊳ dbp+q) +

∑

σ∈Sh(q,p−1)

(−1)σθp+q−1
σ (dap+q >⊳ bp+q) =

∑

σ∈Sh(q,p) σ(q)=p+q

(−1)σθp+qσ +
∑

σ∈Sh(q,p) σ(p+q)=p+q

(−1)σθp+qσ =

∑

σ∈Sh(q,p)

(−1)σθp+qσ .

As a result one has the following formula for cup product via traces.

Proposition 4.2. Let φ ∈ C
p
H(A,M) and ψ ∈ HCq(B,M) respectively be

two Hopf cyclic cocycles on A and B with coefficients in a SAYD module M .

Then φ ∪ ψ ∈ Cp+q(A ⋊ B) is a cyclic cocycle and is precisely given by the
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following formula

(φ ∪ ψ)(a0 >⊳ b0 ⊗ a1 >⊳ b1 ⊗ . . .⊗ ap+q >⊳ bp+q) =
∑

σ∈Sh(q,p)

(−1)σ∂σ̄(q) . . . ∂σ̄(1)φ(∂σ̄(q+p) . . . ∂σ̄(q+1)ψ(b
0
<0> ⊗ . . .⊗ bp+q−1

<0>b
p+q)⊗

a0 ⊗ b0
<−p−q>

a1 ⊗ . . .⊗ b0
<−1> . . . b

p+q−1
<−1>a

p+q).

Similarly by following [11], one uses cotraces on DG coalgebras to defined
a cup product that generalizes characteristic map in Hopf cyclic cohomol-
ogy. Indeed let C be a H-module coalgebra and A be a H-module alge-
bra satisfying the conditions (2.6). . . (2.9). Let also φ ∈ C

q
H(A,M) and

x := m ⊗H c0 ⊗ . . . ⊗ cp ∈ C
p
H(C,M) be Hopf cyclic cocycles. Then one

gets the following cyclic cocycle x ∪ φ on A by

x ∪ φ(a0 ⊗ a1 ⊗ . . .⊗ ap+q) =∑

σ∈Sh(q,p)

(−1)σ∂σ̄(q) . . . ∂σ̄(1)φ(∂σ̄(q+p) . . . ∂σ̄(q+1)x(a0 ⊗ . . .⊗ ap+q)),

where (m⊗ c0 ⊗ . . .⊗ cn)(a0 ⊗ . . .⊗ cn) := m⊗ c0(a0)⊗ . . .⊗ cn(an).
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